Reflection Algebra in Two and Three Dimensions

T. H. Merrett*
McGill University, Montreal, Canada

May 24, 2022

1. Fundamental reflections.

The two fundamental rotations, R_{0} and R_{90}, can be abstracted as the numbers 1 and i, from which any rotation by angle c, s (with $c^{2}+s^{2}=1$)

$$
\left(\begin{array}{cc}
c & -s \\
s & c
\end{array}\right)=c\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right)+s\left(\begin{array}{ll}
& -1 \\
1 &
\end{array}\right) \rightarrow c+i s
$$

giving us, with the single additional rule that $i^{2}=-1$, the "two-dimensional numbers".
Similarly the reflection in a line at half the angle, $\frac{1}{2} \angle(c, s)$, can be decomposed into two fundamental reflections

$$
\left(\begin{array}{cc}
c & s \\
s & -c
\end{array}\right)=c\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right)+s\left(\begin{array}{ll}
& 1 \\
1 &
\end{array}\right) \rightarrow c f_{1}+s f_{2}
$$

These are reflections in lines at 0 degrees and 45 degrees, respectively, yet f_{1} and f_{2} can be interpreted as axes at right angles to each other.
If we add $f_{1}+f_{2}$, for instance, we get a 45 -degree line. Adding f_{1} to that has the effect of appending an f_{1} to the end of $f_{1}+f_{2}$ and is also just $2 f_{1}+f_{2}$. This is exactly like adding components in two dimensions.

Note that f_{1} and f_{2} in this interpretation are intervals in two-dimensional space. They do not have absolute positions but can be located anywhere in the space.
When we get to multiplication we have some new algebraic properties.
First, since any reflection repeated is just the identity, we have

$$
f_{1}^{2}=1 \quad \text { and } \quad f_{2}^{2}=1
$$

[^0]Second, since two reflections make a rotation (at twice the angle separating the mirrors), we have a new symbol

$$
f_{12}=f_{1} f_{2} \leftarrow\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right)\left(\begin{array}{ll}
& 1 \\
1 &
\end{array}\right)=\left(\begin{array}{ll}
& -1 \\
1 &
\end{array}\right)=-R_{90}
$$

Thus

$$
f_{12}^{2}=-1
$$

just as $i^{2}=-1$ (since i is an alias for R_{90}). Furthermore

$$
f_{21}=f_{2} f_{1}=R_{90}=-f_{12}
$$

As with matrices, and since order now matters, we will have a convention of working from right to left.
Unlike 2-D numbers, this works in any number of dimensions. Reflections are more fundamental than rotations.
2. Reflection algebra.

1	$f_{1}=\left(\begin{array}{ll} 1 & \\ & -1 \end{array}\right), f_{2}=\left(\begin{array}{ll} 1 \\ 1 & \end{array}\right)$	2-D basic reflections; $f_{1}^{2}=\left(\begin{array}{cc}1 & \\ & 1\end{array}\right)=f_{2}^{2}$, $\begin{aligned} & f_{1} f_{2}=\left(\begin{array}{ll} 1 & \\ & -1 \end{array}\right)\left(\begin{array}{ll} 1 & 1 \\ 1 & \end{array}\right)=\left(\begin{array}{ll} & 1 \\ -1 & \\ f_{2} f_{1}=\left(\begin{array}{ll} 1 & 1 \\ 1 & \end{array}\right)\left(\begin{array}{ll} 1 & \\ & -1 \end{array}\right)=\left(\begin{array}{ll} 1 & -1 \\ 1 & \end{array}\right)=\operatorname{rot}(90) \end{array} . \begin{array}{ll} & \end{array}\right) \end{aligned}$
2	$f_{1}, f_{2}, \cdots, f_{d}$	basis for d-dimensional space $f_{j}^{2}=1, f_{j k}=f_{j} f_{k}, f_{j k}^{2}=-1 \text { for } j \neq k$
3	$\ell: \ell_{1}, \ell_{2}, \cdots$	line, normalized, $\ell^{2}=1$; subscripted for different lines e.g., $\ell=\frac{1}{2} f_{1}+\frac{\sqrt{3}}{2} f_{2}$: $1 / 2$ is f_{1}-component, $\sqrt{3} / 2$ is f_{2}-component components
4	$e: e_{1}, e_{2}, \cdots, e_{d}$	$\begin{aligned} & \text { edge, } e=\text { length } \times \text { corresponding } \ell \text {, length }{ }^{2}=e^{2},\|e\|=\text { length of } e \\ & \text { e.g., } e=f_{1}+\sqrt{3} f_{2}, e^{2}=1+3=4,\|e\|=\sqrt{4}=2 \end{aligned}$
5	ℓe	maps $\ell \rightarrow e$, because $\ell(\ell e)=(\ell \ell) e=e$
6	$\ell_{1} \ell_{2}=c+s n$	rotates $\ell_{1} \rightarrow \ell_{2}$: angle c, s in plane n (see 10) with $c^{2}+s^{2}=1$ NB $e_{1} e_{2}=\left\|e_{1}\right\|\left\|e_{2}\right\| \ell_{1} \ell_{2}$ includes area of triangle area $=$ base \times height $/ 2$ $=\left\|e_{1}\right\|\left\|e_{2}\right\| \mathrm{s} / 2$
7	ℓ ¢	invert e in $\ell:\| \|$ same sign, \perp change sign $\text { e.g., } f_{1}\left(f_{1}+f_{2}+f_{3}\right) f_{1}=f_{1}-f_{2}-f_{3}$
8	$\begin{aligned} & \frac{1}{2}(e+\ell e \ell) \\ & \frac{1}{2}(e-\ell e \ell) \\ & \hline \end{aligned}$	projection of e onto ℓ projection of $e \perp \ell$
9	$\begin{aligned} & e f_{12} \\ & e\left(c+s f_{12}\right) \end{aligned}$	in 2D, perpendicular to e, e.g., $\left(c f_{1}+s f_{2}\right) f_{12}=-s f_{1}+c f_{2}$ rotate e, e.g., $\left(c^{\prime} f_{1}+s^{\prime} f_{2}\right)\left(c+s f_{12}\right)=\left(c c^{\prime}+s s^{\prime}\right) f_{1}+\left(c^{\prime} s+c s^{\prime}\right) f_{2}$, new angle $=\angle(c, s)+\angle\left(c^{\prime}, s^{\prime}\right)$

3. Practice: building a tetrahedron.

Suppose you want to build a house with a sloping roof. To design the roof trusses you'll need the dihedral angle, which is the angle between the planes of the roof and the wall it meets. (Or maybe that angle minus 90 degrees.) If you have dormer windows or additional roof planes, the calculations become more complicated.
We won't build a house but something else which exercises all the same skills needed, and which can easily be checked: a tetrahedron.
We start with an equilateral triangle of unit edges, ℓ_{1}, ℓ_{2} and ℓ_{3}.
Let's keep the first edge simple: $\ell_{1}=f_{1}$.
Rotate this 60° (see table, rows 6 and 9). (We don't know ℓ_{2} yet but are going to find it out. But we do know the c and s for 60°.)

$$
\begin{aligned}
\ell_{2} & =\ell_{1}\left(\ell_{1} \ell_{2}\right) \\
& =f_{1}\left(\frac{1}{2}+\frac{\sqrt{3}}{2} f_{12}\right) \\
& =\frac{1}{2} f_{1}+\frac{\sqrt{3}}{2} f_{2}
\end{aligned}
$$

And rotate it -60°.

$$
\begin{aligned}
\ell_{3} & =\ell_{1}\left(\ell_{1} \ell_{3}\right) \\
& =f_{1}\left(\frac{1}{2}-\frac{\sqrt{3}}{2} f_{12}\right) \\
& =\frac{1}{2} f_{1}-\frac{\sqrt{3}}{2} f_{2}
\end{aligned}
$$

The equilateral triangle with these edges gives one face of the tetrahedron, let's say the base, h_{0}. Its area is half of the s in $c+s f_{12}$ (see table, row 6).

$$
\begin{aligned}
\ell_{1} \ell_{2} & =f_{1}\left(\frac{1}{2} f_{1}+\frac{\sqrt{3}}{2} f_{2}\right) \\
& =\frac{1}{2}+\frac{\sqrt{3}}{2} f_{12} \\
\text { area } & =\frac{1}{2} \frac{\sqrt{3}}{2} \\
& =\frac{\sqrt{3}}{4}
\end{aligned}
$$

So

$$
h_{0}=\frac{\sqrt{3}}{4} f_{12}
$$

and we have one face of the tetrahedron.

Now we need an edge going up in another dimension to the apex of the tetrahedron. It will have length 1 , so normalized, and so we can call it

$$
\ell_{4}=p f_{1}+q f_{2}+r f_{3}
$$

with $p^{2}+q^{2}+r^{2}=1$.
It will be at 60° to, say, ℓ_{1} in some plane n_{1}. We don't yet know n_{1}.
(It's best to use a normalized plane. We will easily be able to find the corresponding face because it will have the same area as h_{0}

$$
\left.h_{1}=\frac{\sqrt{3}}{4} n_{1} .\right)
$$

So we know that

$$
\begin{aligned}
\frac{1}{2}+\frac{\sqrt{3}}{2} n_{1} & =\ell_{1} \ell_{4} \\
& =f_{1}\left(p f_{1}+q f_{2}+r f_{3}\right) \\
& =p+q f_{12}-r f_{31}
\end{aligned}
$$

So $p=1 / 2$.
(And $n_{1}=\frac{2}{\sqrt{3}}\left(q f_{12}-r f_{31}\right)$.)
The new edge, ℓ_{4}, must also be at 60° to, say, ℓ_{2} in another plane n_{2}, which has a similar relationship to the corresponding face of the tetrahedron

$$
h_{2}=\frac{\sqrt{3}}{4} n_{2} .
$$

So

$$
\begin{aligned}
\frac{1}{2}+\frac{\sqrt{3}}{2} n_{2} & =\ell_{2} \ell_{4} \\
& =\left(\frac{1}{2} f_{1}+\frac{\sqrt{3}}{2} f_{2}\right)\left(p f_{1}+q f_{2}+r f_{3}\right) \\
& =\frac{p}{2}+\frac{q \sqrt{3}}{2}+\left(\frac{q}{2}-\frac{p \sqrt{3}}{2}\right) f_{12}-r\left(\frac{\sqrt{3}}{2} f_{23}-\frac{1}{2} f_{31}\right)
\end{aligned}
$$

giving

$$
q=\frac{1-p}{\sqrt{3}}=\frac{1}{2 \sqrt{3}}
$$

And, from normalization,

$$
r^{2}=1-\left(p^{2}+q^{2}\right)=1-\frac{1}{4}-\frac{1}{12}=\frac{2}{3}
$$

So $r=\sqrt{\frac{2}{3}}$.
Thus

$$
\ell_{4}=\frac{1}{2} f_{1}+\frac{1}{2 \sqrt{3}} f_{2}+\sqrt{\frac{2}{3}} f_{3}
$$

and

$$
\begin{aligned}
n_{1} & =\frac{2}{\sqrt{3}}\left(\frac{1}{2 \sqrt{3}} f_{12}-\sqrt{\frac{2}{3}} f_{31}\right) \\
& =\frac{1}{3} f_{12}-\frac{2 \sqrt{2}}{3} f_{31} \\
h_{1} & =\frac{\sqrt{3}}{4} n_{1} \\
& =\frac{1}{4 \sqrt{3}} f_{12}-\frac{1}{\sqrt{6}} f_{31}
\end{aligned}
$$

We can also find the next face, h_{2}, from the equation for the second rotation (previous page).

$$
\begin{aligned}
\frac{\sqrt{3}}{2} n_{2} & =\left(\frac{1}{4 \sqrt{3}}-\frac{\sqrt{3}}{4}\right) f_{12}+\frac{1}{\sqrt{2}} f_{23}-\frac{1}{\sqrt{6}} f_{31} \\
& =-\frac{1}{2 \sqrt{3}} f_{12}+\frac{1}{\sqrt{2}} f_{23}-\frac{1}{\sqrt{6}} f_{31} \\
n_{2} & =-\frac{1}{3} f_{12}+\sqrt{\frac{2}{3}} f_{23}-\frac{\sqrt{2}}{3} f_{31} \\
h_{2} & =\frac{\sqrt{3}}{4} n_{2} \\
& =-\frac{1}{4 \sqrt{3}} f_{12}+\frac{1}{2 \sqrt{2}} f_{23}-\frac{1}{2 \sqrt{6}} f_{31}
\end{aligned}
$$

We now have $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}, h_{0}\left(n_{0}\right), h_{1}\left(n_{1}\right)$ and $h_{2}\left(n_{2}\right)$ in the figure.

The rest can be found by rotating.
But we must now be careful. We are working in three dimensions but rotating in two.
For the lines- ℓ_{4} must be rotated $\pm 120^{\circ}$ in plane f_{12} - we can proceed in either of two ways.
The easiest is to ignore the vertical, f_{3}, component, and rotate the rest.
Let's try it for $\ell_{4} \rightarrow \ell_{6}$. That's $+120^{\circ}$.

$$
\begin{aligned}
\ell_{6} & =\ell_{4}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} f_{12}\right) \\
& =\left(\frac{1}{2} f_{1}+\frac{1}{2 \sqrt{3}} f_{2}+\left[\sqrt{\frac{2}{3}} f_{3}\right]\right)\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} f_{12}\right) \\
& =\left(-\frac{1}{4}-\frac{1}{4}\right) f_{1}+\left(-\frac{1}{4 \sqrt{3}}+\frac{\sqrt{3}}{4}\right) f_{2}+\left[\sqrt{\frac{2}{3}} f_{3}\right] \\
& =-\frac{1}{2} f_{1}+\frac{1}{2 \sqrt{3}} f_{2}+\sqrt{\frac{2}{3}} f_{3}
\end{aligned}
$$

It's the same as ℓ_{4} except for the sign on f_{1}. That's what the picture expects. ℓ_{5} requires a negative rotation and is different.

$$
\begin{aligned}
\ell_{5} & =\ell_{4}\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} f_{12}\right) \\
& =\left(\frac{1}{2} f_{1}+\frac{1}{2 \sqrt{3}} f_{2}+\left[\sqrt{\frac{2}{3}} f_{3}\right]\right)\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} f_{12}\right) \\
& =\left(-\frac{1}{4}+\frac{1}{4}\right) f_{1}+\left(-\frac{1}{4 \sqrt{3}}-\frac{\sqrt{3}}{4}\right) f_{2}+\left[\sqrt{\frac{2}{3}} f_{3}\right] \\
& =-\frac{1}{\sqrt{3}} f_{2}+\sqrt{\frac{2}{3}} f_{3}
\end{aligned}
$$

It has no f_{1} component-again expected—and the same vertical $\left(f_{3}\right)$ component as ℓ_{6}, and ℓ_{4} of course.
We can get away with the above procedure because it is easy to isolate the unchanged component in this case. The proper way to do it is with two inversions (table, row 23).
Let's go for $\ell_{4} \rightarrow \ell_{5}$ this time. It's a -120° rotation so the lines we invert in must be at -60° to each other.

$$
\begin{aligned}
\ell_{5}= & \left(\frac{1}{2} f_{1}-\frac{\sqrt{3}}{2} f_{2}\right) f_{1} \ell_{4} f_{1}\left(\frac{1}{2} f_{1}-\frac{\sqrt{3}}{2} f_{2}\right) \\
= & \left(\frac{1}{2} f_{1}-\frac{\sqrt{3}}{2} f_{2}\right) f_{1}\left(\frac{1}{2} f_{1}+\frac{1}{2 \sqrt{3}} f_{2}+\sqrt{\frac{2}{3}} f_{3}\right) f_{1}\left(\frac{1}{2} f_{1}-\frac{\sqrt{3}}{2} f_{2}\right) \\
= & \left(\frac{1}{2}+\frac{\sqrt{3}}{2} f_{12}\right)\left(\frac{1}{2} f_{1}+\frac{1}{2 \sqrt{3}} f_{2}+\sqrt{\frac{2}{3}} f_{3}\right)\left(\frac{1}{2}-\frac{\sqrt{3}}{2} f_{12}\right) \\
= & \left(\frac{1}{8}-\frac{3}{8}+\frac{1}{8}+\frac{1}{8}\right) f_{1}+\left(\frac{1}{8 \sqrt{3}}-\frac{\sqrt{3}}{8}-\frac{\sqrt{3}}{8}-\frac{\sqrt{3}}{8}\right) f_{2} \\
& +\left(\frac{1}{2 \sqrt{6}}+\frac{\sqrt{3}}{2 \sqrt{2}}\right) f_{3}+\left(\frac{1}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}\right) f_{123}
\end{aligned}
$$

$$
=-\frac{1}{\sqrt{3}} f_{2}+\sqrt{\frac{2}{3}} f_{3}
$$

which we got before.
We can now save a little algebra by doing $\ell_{5} \rightarrow \ell_{6}$.

$$
\begin{aligned}
\ell_{6} & =\left(\frac{1}{2} f_{1}-\frac{\sqrt{3}}{2} f_{2}\right) f_{1} \ell_{5} f_{1}\left(\frac{1}{2} f_{1}-\frac{\sqrt{3}}{2} f_{2}\right) \\
& =\left(\frac{1}{2}+\frac{\sqrt{3}}{2} f_{12}\right)\left(-\frac{1}{\sqrt{3}} f_{2}+\sqrt{\frac{2}{3}} f_{3}\right)\left(\frac{1}{2}-\frac{\sqrt{3}}{2} f_{12}\right) \\
& =\left(-\frac{1}{4}-\frac{1}{4}\right) f_{1}+\left(-\frac{1}{4 \sqrt{3}}+\frac{\sqrt{3}}{4}\right) f_{2}+\left(\frac{1}{2 \sqrt{3}}-\frac{\sqrt{3}}{2 \sqrt{2}}\right) f_{3}+\left(\frac{1}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}\right) f_{123} \\
& =-\frac{1}{2} f_{1}+\frac{1}{2 \sqrt{3}} f_{2}+\sqrt{\frac{2}{3}} f_{3}
\end{aligned}
$$

as before.
To rotate plane n_{1} to n_{2} and n_{3} we'll use inversions of $\pm 60^{\circ}$ in plane $n_{0}=f_{12}$. Just as ℓ_{2} is -120° from ℓ_{1}, so h_{2} is -120° from h_{1}.

$$
\begin{aligned}
n_{2} & =\left(\frac{1}{2}+\frac{\sqrt{3}}{2} f_{12}\right) n_{1}\left(\frac{1}{2}-\frac{\sqrt{3}}{2} f_{12}\right) \\
& =\left(\frac{1}{2}+\frac{\sqrt{3}}{2} f_{12}\right)\left(\frac{1}{3} f_{12}-\frac{2 \sqrt{2}}{3} f_{31}\right)\left(\frac{1}{2}-\frac{\sqrt{3}}{2} f_{12}\right) \\
& =\left(\frac{1}{12}+\frac{1}{4}\right) f_{12}+\left(-\frac{1}{\sqrt{6}}-\frac{1}{\sqrt{6}}\right) f_{23}+\left(-\frac{1}{3 \sqrt{2}}+\frac{1}{\sqrt{2}}\right) f_{31}+\left(\frac{1}{4 \sqrt{3}}-\frac{1}{4 \sqrt{3}}\right) \\
& =\frac{1}{3} f_{12}-\sqrt{\frac{2}{3}} f_{23}+\frac{\sqrt{2}}{3} f_{31}
\end{aligned}
$$

And a positive rotation for n_{3}. (It's the same algebra with a few sign changes.)

$$
\begin{aligned}
n_{3} & =\left(\frac{1}{2}-\frac{\sqrt{3}}{2} f_{12}\right) n_{1}\left(\frac{1}{2}+\frac{\sqrt{3}}{2} f_{12}\right) \\
& =\left(\frac{1}{2}-\frac{\sqrt{3}}{2} f_{12}\right)\left(\frac{1}{3} f_{12}-\frac{2 \sqrt{2}}{3} f_{31}\right)\left(\frac{1}{2}+\frac{\sqrt{3}}{2} f_{12}\right) \\
& =\left(\frac{1}{12}+\frac{1}{4}\right) f_{12}+\left(\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}}\right) f_{23}+\left(-\frac{1}{3 \sqrt{2}}+\frac{1}{\sqrt{2}}\right) f_{31}+\left(-\frac{1}{4 \sqrt{3}}+\frac{1}{4 \sqrt{3}}\right) \\
& =\frac{1}{3} f_{12}+\sqrt{\frac{2}{3}} f_{23}+\frac{\sqrt{2}}{3} f_{31}
\end{aligned}
$$

In summary

$$
\begin{aligned}
& \ell_{1}=f_{1} \\
& \ell_{2}=\frac{1}{2} f_{1}+\frac{\sqrt{3}}{2} f_{2} \\
& \ell_{3}=\frac{1}{2} f_{1}-\frac{\sqrt{3}}{2} f_{2} \\
& \ell_{4}=\frac{1}{2} f_{1}+\frac{1}{2 \sqrt{3}} f_{2}+\sqrt{\frac{2}{3}} f_{3} \\
& \ell_{5}=-\frac{1}{\sqrt{3}} f_{2}+\sqrt{\frac{2}{3}} f_{3} \\
& \ell_{6}=-\frac{1}{2} f_{1}+\frac{1}{2 \sqrt{3}} f_{2}+\sqrt{\frac{2}{3}} f_{3} \\
& h_{0}=\frac{\sqrt{3}}{4} f_{12} \\
& h_{1}=\frac{\sqrt{3}}{4} n_{1}=\frac{1}{4 \sqrt{3}} f_{12}-\frac{1}{\sqrt{6}} f_{31} \\
& h_{2}=\frac{\sqrt{3}}{4} n_{2}=-\frac{1}{4 \sqrt{3}} f_{12}+\frac{1}{2 \sqrt{2}} f_{23}-\frac{1}{2 \sqrt{6}} f_{31} \\
& h_{3}=\frac{\sqrt{3}}{4} n_{2}=\frac{1}{4 \sqrt{3}} f_{12}+\frac{1}{2 \sqrt{2}} f_{23}+\frac{1}{2 \sqrt{6}} f_{31}
\end{aligned}
$$

4. Visualizing planar components.

It is easy to visualize lines and their components, For example

$$
\ell_{4}=\frac{1}{2} f_{1}+\frac{1}{2 \sqrt{3}} f_{2}+\sqrt{\frac{2}{3}} f_{3}
$$

has f_{1}-component $\frac{1}{2}=0.5, f_{2}$-component $\frac{1}{2 \sqrt{3}} \approx 0.29$ and f_{3}-component $\sqrt{\frac{2}{3}} \approx 0.82$.
These are all positive, so as ℓ_{4} moves up 0.5 in the f_{1} direction it also moves up 0.29 in the f_{2} direction and up 0.82 in the f_{3} direction (out of the page).
A negative value for any of these three components would force the line "down" in that direction. We can also see components of a plane as the projections of the area of the plane on the basis
planes f_{12}, f_{23} and f_{31}
Here are the planes n_{3} (on the right) and n_{2} (on the left) of the tetrahedron. I've rotated f_{1} and f_{2} to align with the tetrahedron in earlier figures.

I've used positive numbers, a, b and d, for the intersections of the planes on the axes, and given the expressions for the planes in terms of these.
So n_{3} has three positive coefficients and creates the triangle shown in the +++ octant.
n_{2} as shown here has two negative coefficients and appears in the -++ octant. This is indeed the form given for h_{2} in the summary at the end of the previous section. But it is the negative of the form given for n_{2} by rotation the page before that.
Planes and faces also have directions, and their expression can change sign depending on which side of the plane we're looking from. Different methods of deriving the planar expression can give different signs.
So I've shown planes in directions that give an even number of - signs, 0 or 2 . Their negations are the same planes viewed from the other side.
We can find the direction of a plane by constructing it as the product of two normalized lines in it-not collinear-together with the "right-hand rule".

We have ℓ_{1} and ℓ_{2} in a plane n. The direction of the plane is the direction of the thumb of your right hand when you've curled the fingers to point in the direction of the arc-arrow in the angle from ℓ_{1} to ℓ_{2}.
We can construct the planes of the tetrahedron with their directions outwards from the tetrahedron in the summary figure above.

$$
\begin{aligned}
n_{0}: \ell_{2} \ell_{1} & =\left(\frac{1}{2} f_{1}-\frac{\sqrt{3}}{2} f_{2}\right) f_{1} \\
& =\frac{1}{2}-\frac{\sqrt{3}}{2} f_{12} \\
n_{0} & =-f_{12}
\end{aligned}
$$

with n_{0} normalized, $n_{0} n_{0}=-1$. Here $c=\frac{1}{2}$ and $s=\frac{\sqrt{3}}{2}$: the lines ℓ_{2} and ℓ_{1} are 60° apart..

$$
\begin{aligned}
n_{1}: \ell_{1} \ell_{4} & =f_{1}\left(\frac{1}{2} f_{1}+\frac{1}{2 \sqrt{3}} f_{2}+\sqrt{\frac{2}{3}} f_{3}\right) \\
& =\frac{1}{2}+\frac{1}{2 \sqrt{3}} f_{12}-\sqrt{\frac{2}{3}} f_{31} \\
& =\frac{1}{2}+\frac{\sqrt{3}}{2} n_{1} \\
n_{1} & =\frac{2}{\sqrt{3}}\left(\frac{1}{2 \sqrt{3}} f_{12}-\sqrt{\frac{2}{3}} f_{31}\right) \\
& =\frac{1}{3} f_{12}-\frac{2 \sqrt{2}}{3} f_{31}
\end{aligned}
$$

normalizing n_{1}.

$$
\begin{aligned}
n_{2}: \ell_{4} \ell_{2}= & \left(\frac{1}{2} f_{1}+\frac{1}{2 \sqrt{3}} f_{2}+\sqrt{\frac{2}{3}} f_{3}\right)\left(\frac{1}{2} f_{1}+\frac{\sqrt{3}}{2} f_{2}\right) \\
= & \frac{1}{4}+\frac{1}{4}+\left(\frac{\sqrt{3}}{4}-\frac{1}{4 \sqrt{3}}\right) f_{12}-\frac{1}{\sqrt{2}} f_{23}+\frac{1}{\sqrt{6}} f_{31} \\
= & \frac{1}{2}+\frac{1}{2 \sqrt{3}} f_{12}-\frac{1}{\sqrt{2}} f_{23}+\frac{1}{\sqrt{6}} f_{31} \\
= & \frac{1}{2}+\frac{\sqrt{3}}{2} n_{2} \\
n_{2}= & \frac{2}{\sqrt{3}}\left(\frac{1}{2 \sqrt{3}} f_{12}-\frac{1}{\sqrt{2}} f_{23}+\frac{1}{\sqrt{6}} f_{31}\right) \\
= & \frac{1}{3} f_{12}-\sqrt{\frac{2}{3}} f_{23}+\frac{\sqrt{2}}{3} f_{31} \\
n_{3}: \ell_{5} \ell_{3} & =\left(-\frac{1}{\sqrt{3}} f_{2}+\sqrt{\frac{2}{3}} f_{3}\right)\left(\frac{1}{2} f_{1}-\frac{\sqrt{3}}{2} f_{2}\right) \\
& =\frac{1}{2}+\frac{1}{2 \sqrt{3}} f_{12}+\frac{1}{\sqrt{2}} f_{23}+\frac{1}{\sqrt{6}} f_{31} \\
& =\frac{1}{2}+\frac{\sqrt{3}}{2}\left(\frac{1}{3} f_{12}+\sqrt{\frac{2}{3}} f_{23}+\frac{\sqrt{2}}{3} f_{31}\right)
\end{aligned}
$$

$$
n_{3}=\frac{1}{3} f_{12}+\sqrt{\frac{2}{3}} f_{23}+\frac{\sqrt{2}}{3} f_{31}
$$

You can compare the signs with our previous derivations of these planes, and so determne which side we are looking from.
I did not show plane

$$
n_{1}=\frac{1}{3} f_{12}-\frac{2 \sqrt{2}}{3} f_{31}
$$

in the diagram of tetrahedral planes.
That is because one of the edges is parallel to f_{1} : one of the triangular components would have to be zero, and the others could not be triangles.
What I did show was the line perpendicular to that plane

$$
\begin{aligned}
-n_{1} f_{123} & =-\left(\frac{1}{3} f_{12}-\frac{2 \sqrt{2}}{3} f_{31}\right) f_{123} \\
& =\frac{1}{3} f_{3}-\frac{2 \sqrt{2}}{3} f_{2}
\end{aligned}
$$

which should now make it easy to see how the plane goes.
Here is the tetrahedron we have. Edges are directed as shown. Faces are directed as seen from outside the tetrahedron.

5. Dihedral angles.

Just as the product of two (normalized) lines gives the angle between them, so the product of two (normalized) planes gives the dihedral angle between the planes.
So we can find the angles between pairs of planes in the tetrahedron. By symmetry, all six of them
are the same.

$$
\begin{aligned}
n_{0} n_{1} & =-f_{12}\left(\frac{1}{3} f_{12}-\frac{2 \sqrt{2}}{3} f_{31}\right) \\
& =\frac{1}{3}+\frac{2 \sqrt{2}}{3} f_{23}
\end{aligned}
$$

in which $c=\frac{1}{3}$ and $s=\frac{2 \sqrt{2}}{3}$ correspond to an angle of about 70.5° in the normalized plane f_{23}. You should be able to see from the picture of the tetrahedron that this is the correct plane for that dihedral angle to be in.
Similarly

$$
\begin{aligned}
n_{0} n_{2} & =-f_{12}\left(\frac{1}{3} f_{12}-\sqrt{\frac{2}{3}} f_{23}+\frac{\sqrt{2}}{3} f_{31}\right) \\
& =\frac{1}{3}-\frac{\sqrt{2}}{3} f_{23}-\sqrt{\frac{2}{3}} f_{31} \\
& =\frac{1}{3}-\frac{2 \sqrt{2}}{3} \frac{3}{2 \sqrt{2}}\left(\frac{\sqrt{2}}{3} f_{23}-\sqrt{\frac{2}{3}} f_{31}\right) \\
& =\frac{1}{3}-\frac{2 \sqrt{2}}{3}\left(\frac{1}{2} f_{23}+\frac{\sqrt{3}}{2} f_{31}\right)
\end{aligned}
$$

This gives an angle of about -70.5° in the normalized plane $\frac{1}{2} f_{23}+\frac{\sqrt{3}}{2} f_{31}$.
Changing a sign gives

$$
\begin{aligned}
n_{0} n_{3} & =-f_{12}\left(\frac{1}{3} f_{12}+\sqrt{\frac{2}{3}} f_{23}+\frac{\sqrt{2}}{3} f_{31}\right) \\
& =\frac{1}{3}-\frac{2 \sqrt{2}}{3}\left(\frac{1}{2} f_{23}-\frac{\sqrt{3}}{2} f_{31}\right)
\end{aligned}
$$

Same angle, slightly different plane. It is harder to visulalize the two dihedral planes we just got for $n_{0} n_{2}$ and $n_{0} n_{3}$ but we can check the angle between them.

$$
\begin{aligned}
\left(\frac{1}{2} f_{23}+\frac{\sqrt{3}}{2} f_{31}\right)\left(\frac{1}{2} f_{23}-\frac{\sqrt{3}}{2} f_{31}\right) & =-\frac{1}{4}+\frac{3}{4}+\left(\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}\right) f_{12} \\
& =\frac{1}{2}+\frac{\sqrt{3}}{2} f_{12}
\end{aligned}
$$

which is 60° in the f_{12} plane, as a little introspection says it should be.
Combining n_{1}, n_{2} and n_{3} is a little more complicated but reveals the same 70.5° each time.

$$
\begin{aligned}
n_{1} n_{2} & =\left(\frac{1}{3}-\frac{2 \sqrt{2}}{3} f_{31}\right)\left(\frac{1}{3} f_{12}-\sqrt{\frac{2}{3}} f_{23}+\frac{\sqrt{2}}{3} f_{31}\right) \\
& =-\frac{1}{9}+\frac{4}{9}+\frac{4}{3 \sqrt{3}} f_{12}+\left(\frac{2 \sqrt{2}}{9}+\frac{\sqrt{2}}{9}\right) f_{23}+\frac{\sqrt{2}}{3 \sqrt{3}} f_{31} \\
& =\frac{1}{3}+\frac{4}{3 \sqrt{3}} f_{12}+\frac{\sqrt{2}}{3} f_{23}+\frac{\sqrt{2}}{3 \sqrt{3}} f_{31}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{3}+\frac{2 \sqrt{2}}{3} \frac{3}{2 \sqrt{2}}\left(\frac{4}{3 \sqrt{3}} f_{12}+\frac{\sqrt{2}}{3} f_{23}+\frac{\sqrt{2}}{3 \sqrt{3}} f_{31}\right) \\
& =\frac{1}{3}+\frac{2 \sqrt{2}}{3}\left(\sqrt{\frac{2}{3}} f_{12}+\frac{1}{2} f_{23}+\frac{1}{2 \sqrt{3}} f_{31}\right)
\end{aligned}
$$

And, changing a sign,

$$
\begin{aligned}
n_{1} n_{3} & =\left(\frac{1}{3}-\frac{2 \sqrt{2}}{3} f_{31}\right)\left(\frac{1}{3} f_{12}+\sqrt{\frac{2}{3}} f_{23}+\frac{\sqrt{2}}{3} f_{31}\right) \\
& =\frac{1}{3}-\frac{2 \sqrt{2}}{3}\left(\sqrt{\frac{2}{3}} f_{12}-\frac{1}{2} f_{23}+\frac{1}{2 \sqrt{3}} f_{31}\right)
\end{aligned}
$$

The dihedral planes for these two meet at a 60° angle in the plane $\frac{1}{3} f_{12}-\frac{2 \sqrt{2}}{3} f_{31}$.
Finally,

$$
\begin{aligned}
n_{2} n_{3} & =\left(\frac{1}{3} f_{12}-\sqrt{\frac{2}{3}} f_{23}+\frac{\sqrt{2}}{3} f_{31}\right)\left(\frac{1}{3} f_{12}+\sqrt{\frac{2}{3}} f_{23}+\frac{\sqrt{2}}{3} f_{31}\right) \\
& =\frac{1}{9}-\frac{2}{3}+\frac{2}{9}+\left(\frac{2}{3 \sqrt{3}}+\frac{2}{3 \sqrt{3}}\right) f_{12}+\left(\frac{\sqrt{2}}{9}-\frac{\sqrt{2}}{9}\right) f_{23}+\left(-\frac{\sqrt{2}}{3 \sqrt{3}}-\frac{\sqrt{2}}{3 \sqrt{3}}\right) f_{31} \\
& =-\frac{1}{3}+\frac{4}{3 \sqrt{3}} f_{12}-\frac{2 \sqrt{2}}{3 \sqrt{3}} f_{31} \\
& =-\frac{1}{3}+\frac{2 \sqrt{2}}{3} \frac{3}{2 \sqrt{2}}\left(\frac{4}{3 \sqrt{3}} f_{12}-\frac{2 \sqrt{2}}{3 \sqrt{3}} f_{31}\right) \\
& =-\frac{1}{3}+\frac{2 \sqrt{2}}{3}\left(\sqrt{\frac{2}{3}} f_{12}-\frac{1}{\sqrt{3}} f_{31}\right)
\end{aligned}
$$

6. Absolute coordinates..

The elements of the reflection algebra are all intervals and so one symbol, f_{1} or f_{12} and so on, denotes an element which may be placed anywhere in the space.
But we can anchor them by going outside of the reflection algebra and specifying coordinates of the end points of lines.

I've given the origin arbitrarily as the lowest left-hand vertex.You can see how the direct edges from there, ℓ_{1}, ℓ_{2} and ℓ_{4}, give the coordinates of the other vertices. (For convenience I've reversed the direction of ℓ_{6} from previous diagrams.)
You can also see how edges can be added or subtracted to give other edges.

$$
\begin{aligned}
\ell_{2}+\ell_{3} & =\ell_{1} \\
\ell_{4}+\ell_{6} & =\ell_{1} \\
\ell_{2}+\ell_{5} & =\ell_{4} \\
\ell_{5}+\ell_{6} & =\ell_{3} \\
\ell_{4}-\ell_{5} & =\ell_{2}
\end{aligned}
$$

and so on.

[^0]: ${ }^{*}$ Copyleft ©T. H. Merrett, 2022. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation in a prominent place. Copyright for components of this work owned by others than T. H. Merrett must be honoured. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to republish from: T. H. Merrett, School of Computer Science, McGill University, fax 514398 3883.

