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1. Fundamental reflections.

The two fundamental rotations, R0 and R90, can be abstracted as the numbers 1 and i, from which
any rotation by angle c, s (with c2 + s2 = 1)

(

c −s
s c

)

= c

(

1
1

)

+ s

( −1
1

)

→ c + is

giving us, with the single additional rule that i2 = −1, the “two-dimensional numbers”.

Similarly the reflection in a line at half the angle, 1

2
6 (c, s), can be decomposed into two fundamental

reflections
(

c s
s −c

)

= c

(

1
−1

)

+ s

(

1
1

)

→ cf1 + sf2

These are reflections in lines at 0 degrees and 45 degrees, respectively, yet f1 and f2 can be
interpreted as axes at right angles to each other.

If we add f1+f2, for instance, we get a 45-degree line. Adding f1 to that has the effect of appending
an f1 to the end of f1 + f2 and is also just 2f1 + f2. This is exactly like adding components in two
dimensions.

1

f

f f

f  + (f  + f  )

f  + f

1

1

1

12

2

= 2f  + f1 2

2

Note that f1 and f2 in this interpretation are intervals in two-dimensional space. They do not have
absolute positions but can be located anywhere in the space.

When we get to multiplication we have some new algebraic properties.

First, since any reflection repeated is just the identity, we have

f2

1 = 1 and f2

2 = 1
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Second, since two reflections make a rotation (at twice the angle separating the mirrors), we have
a new symbol

f12 = f1f2 ←
(

1
−1

)(

1
1

)

=

( −1
1

)

= −R90

Thus
f2

12 = −1

just as i2 = −1 (since i is an alias for R90). Furthermore

f21 = f2f1 = R90 = −f12

As with matrices, and since order now matters, we will have a convention of working from right to
left.

Unlike 2-D numbers, this works in any number of dimensions. Reflections are more fundamental
than rotations.

2. Reflection algebra.

1 f1 =

(

1
−1

)

, f2 =

(

1
1

)

2-D basic reflections; f2
1 =

(

1
1

)

= f2
2 ,

f1f2 =

(

1
−1

)(

1
1

)

=

(

1
−1

)

= −rot(90)

f2f1 =

(

1
1

)(

1
−1

)

=

( −1
1

)

= rot(90)

2 f1, f2, · · · , fd basis for d-dimensional space
f2

j = 1, fjk = fjfk, f2

jk = −1 for j 6= k

3 ℓ: ℓ1, ℓ2, · · · line, normalized, ℓ2 = 1; subscripted for different lines

e.g., ℓ = 1

2
f1 +

√
3

2
f2:

1/2 is f1-component,
√

3/2 is f2–component
components

3/2
2f

f11/2

60

length=1

4 e: e1, e2, · · · , ed edge, e = length×corresponding ℓ, length2 = e2, | e | = length of e
e.g., e = f1 +

√
3f2, e2 = 1 + 3 = 4, | e |=

√
4 = 2

5 ℓe maps ℓ→ e, because ℓ(ℓe) = (ℓℓ)e = e
6 ℓ1ℓ2 = c + sn rotates ℓ1 → ℓ2: angle c, s in plane n (see 10) with c2 + s2 = 1

NB e1e2 =| e1 || e2 | ℓ1ℓ2 includes area of triangle

=  e        e      s / 2

e 2e

e1

s

21

area =base    height / 2

2

7 ℓeℓ invert e in ℓ: ‖ same sign, ⊥ change sign
e.g., f1(f1 + f2 + f3)f1 = f1 − f2 − f3

8 1

2
(e + ℓeℓ) projection of e onto ℓ

1

2
(e− ℓeℓ) projection of e ⊥ ℓ

9 ef12 in 2D, perpendicular to e, e.g., (cf1 + sf2)f12 = −sf1 + cf2

e(c + sf12) rotate e, e.g., (c′f1 + s′f2)(c + sf12) = (cc′ + ss′)f1 + (c′s + cs′)f2,
new angle = 6 (c, s) + 6 (c′, s′)
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10 n: n1, n2, · · · plane, normalized n2 = −1; subscripted for different planes

e.g., n = 1

3
f12 +

√

2

3
f23 +

√
2

3
f31

= 1.52

3  3
2

f12

f23

f31

f12 f23 f31
ab
2

bc ca
2 2

+ +

3

f

f

f
b

c

1

2

3

1/3

2/3

2/3

components

a

b = 2

a =

c =

= 0.62

area(abc) = 1

2
3

= 1.07

11 h: h1, h2, · · · face (hedron); h= area×corresponding n, area2 = h2, | h | = area of h
e.g., h = f12 +

√
6f23 +

√
2f31, h2 = 1 + 6 + 2 = 9, | h |=

√
9 = 3

12 −nh maps n→ h because n(−nh) = (−nn)h = h
13 n1n2 = c + sn3 rotates n1 → n2, “dihedral” angle c, s (c2 + s2 = 1) in plane n3, n3 ⊥ n1, n3 ⊥ n2

14 ℓn maps ℓ→ n
−nℓ maps n→ ℓ

15 −nhn invert h in n, ‖ same sign, ⊥ change sign
e.g., −f12(f12 + f23 + f31)f12 = f12 − f23 − f31

16 1

2
(h− nhn) projection of h onto n

1

2
(h + nhn) projection of h ⊥ n

17 ℓhℓ invert h in plane ⊥ ℓ, e.g., f1(f12 + f23 + f31)f1 = −f12 + f23 − f31

18 1

2
(h− ℓhℓ) projection of h off ⊥ ℓ

1

2
(h + ℓhℓ) projection of h ⊥ ℓ

19 nen invert e in n, e.g., f12(f1 + f2 + f3)f12 = f1 + f2 − f3

20 1

2
(e + nen) projection of e onto n

1

2
(e− nen) projection of e ⊥ n

21 ef123 in 3D, perpendicular to e, e.g., (pf1 + qf2 + rf3)f123 = rf12 + pf23 + qf31

22 −hf123 in 3D, perpendicular to h, e.g., −(pf12 + qf23 + rf31)f123 = qf1 + rf2 + pf3

23 ℓ2ℓ1eℓ1ℓ2 rotates e in plane of ℓ1, ℓ2 by twice angle between ℓ1, ℓ2

e.g. (see 3), (1

2
f1 +

√
3

2
f2)f1(f1 + f2 + f3)f1(

1

2
f1 +

√
3

2
f2)

= (1

2
−

√
3

2
f12)(f1 + f2 + f3)(

1

2
+

√
3

2
f12)

= (1

4
− 3

4
−

√
3

4
−

√
3

4
)f1 + (1

4
+ 3

4
+

√
3

4
+

√
3

4
)f2 + (1

4
+ 3

4
)f3 + (−

√
3

4
+

√
3

4
)f123

= (−1

2
−

√
3

2
)f1 + (−1

2
+

√
3

2
)f2 + f3

= (−1

2
f1 +

√
3

2
f2) + (−1

2
f2 −

√
3

2
f1) + f3

NB 6 ℓ1ℓ2 = 60o, final rotation 120o

24 ℓ2ℓ1nℓ1ℓ2 rotates n in plane of ℓ1, ℓ2 by twice angle between ℓ1, ℓ2

e.g., (1

2
f1 +

√
3

2
f2)f1(f12 + f23 + f31)f1(

1

2
f1 +

√
3

2
f2)

= (1

2
−

√
3

2
f12)(f12 + f23 + f31)(

1

2
+

√
3

2
f12)

= (1

4
+ 3

4
)f12 + (−

√
3

4
+

√
3

4
) + (1

4
− 3

4
−

√
3

4
−

√
3

4
)f23 + (1

4
− 3

4
+

√
3

4
+

√
3

4
)f31

= f12 + (−1

2
−

√
3

2
)f23 + (−1

2
+

√
3

2
)f31
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3. Practice: building a tetrahedron.

Suppose you want to build a house with a sloping roof. To design the roof trusses you’ll need
the dihedral angle, which is the angle between the planes of the roof and the wall it meets. (Or
maybe that angle minus 90 degrees.) If you have dormer windows or additional roof planes, the
calculations become more complicated.

We won’t build a house but something else which exercises all the same skills needed, and which
can easily be checked: a tetrahedron.

We start with an equilateral triangle of unit edges, ℓ1, ℓ2 and ℓ3.

Let’s keep the first edge simple: ℓ1 = f1.

Rotate this 60o (see table, rows 6 and 9). (We don’t know ℓ2 yet but are going to find it out. But
we do know the c and s for 60o.)

ℓ2 = ℓ1(ℓ1ℓ2)

= f1

(

1

2
+

√
3

2
f12

)

=
1

2
f1 +

√
3

2
f2

And rotate it −60o.

ℓ3 = ℓ1(ℓ1ℓ3)

= f1

(

1

2
−
√

3

2
f12

)

=
1

2
f1 −

√
3

2
f2

The equilateral triangle with these edges gives one face of the tetrahedron, let’s say the base, h0.
Its area is half of the s in c + sf12 (see table, row 6).

ℓ1ℓ2 = f1

(

1

2
f1 +

√
3

2
f2

)

=
1

2
+

√
3

2
f12

area =
1

2

√
3

2

=

√
3

4

So

h0 =

√
3

4
f12

and we have one face of the tetrahedron.
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12

l  =

0h =    f4
3

2
21

l  
=

2
1f +

   
 f3 2

32
2 1

l  =3

1f −   f2

11 f
Now we need an edge going up in another dimension to the apex of the tetrahedron. It will have
length 1, so normalized, and so we can call it

ℓ4 = pf1 + qf2 + rf3

with p2 + q2 + r2 = 1.

It will be at 60o to, say, ℓ1 in some plane n1. We don’t yet know n1.

(It’s best to use a normalized plane. We will easily be able to find the corresponding face because
it will have the same area as h0

h1 =

√
3

4
n1.)

So we know that

1

2
+

√
3

2
n1 = ℓ1ℓ4

= f1(pf1 + qf2 + rf3)

= p + qf12 − rf31

So p = 1/2.

(And n1 = 2√
3
(qf12 − rf31).)

The new edge, ℓ4, must also be at 60o to, say, ℓ2 in another plane n2, which has a similar relationship
to the corresponding face of the tetrahedron

h2 =

√
3

4
n2.

So

1

2
+

√
3

2
n2 = ℓ2ℓ4

=

(

1

2
f1 +

√
3

2
f2

)

(pf1 + qf2 + rf3)

=
p

2
+

q
√

3

2
+

(

q

2
− p
√

3

2

)

f12 − r

(√
3

2
f23 −

1

2
f31

)

giving

q =
1− p√

3
=

1

2
√

3

And, from normalization,

r2 = 1− (p2 + q2) = 1− 1

4
− 1

12
=

2

3

5



So r =
√

2

3
.

Thus

ℓ4 =
1

2
f1 +

1

2
√

3
f2 +

√

2

3
f3

and

n1 =
2√
3

(

1

2
√

3
f12 −

√

2

3
f31

)

=
1

3
f12 −

2
√

2

3
f31

h1 =

√
3

4
n1

=
1

4
√

3
f12 −

1√
6
f31

We can also find the next face, h2, from the equation for the second rotation (previous page).

√
3

2
n2 =

(

1

4
√

3
−
√

3

4

)

f12 +
1√
2
f23 −

1√
6
f31

= − 1

2
√

3
f12 +

1√
2
f23 −

1√
6
f31

n2 = −1

3
f12 +

√

2

3
f23 −

√
2

3
f31

h2 =

√
3

4
n2

= − 1

4
√

3
f12 +

1

2
√

2
f23 −

1

2
√

6
f31

We now have ℓ1, ℓ2, ℓ3, ℓ4, h0(n0), h1(n1) and h2(n2) in the figure.

6

l

ll

lh

h h

h0

1

1

2
l2 3

3

l 4

5
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The rest can be found by rotating.

But we must now be careful. We are working in three dimensions but rotating in two.

For the lines—ℓ4 must be rotated ±120o in plane f12—we can proceed in either of two ways.

The easiest is to ignore the vertical, f3, component, and rotate the rest.

Let’s try it for ℓ4 → ℓ6. That’s +120o.

ℓ6 = ℓ4

(

−1

2
+

√
3

2
f12

)

=

(

1

2
f1 +

1

2
√

3
f2 +

[

√

2

3
f3

])(

−1

2
+

√
3

2
f12

)

=

(

−1

4
− 1

4

)

f1 +

(

− 1

4
√

3
+

√
3

4

)

f2 +

[

√

2

3
f3

]

= −1

2
f1 +

1

2
√

3
f2 +

√

2

3
f3

It’s the same as ℓ4 except for the sign on f1. That’s what the picture expects.

ℓ5 requires a negative rotation and is different.

ℓ5 = ℓ4

(

−1

2
−
√

3

2
f12

)

=

(

1

2
f1 +

1

2
√

3
f2 +

[

√

2

3
f3

])(

−1

2
−
√

3

2
f12

)

=

(

−1

4
+

1

4

)

f1 +

(

− 1

4
√

3
−
√

3

4

)

f2 +

[

√

2

3
f3

]

= − 1√
3
f2 +

√

2

3
f3

It has no f1 component—again expected—and the same vertical (f3) component as ℓ6, and ℓ4 of
course.

We can get away with the above procedure because it is easy to isolate the unchanged component
in this case. The proper way to do it is with two inversions (table, row 23).

Let’s go for ℓ4 → ℓ5 this time. It’s a −120o rotation so the lines we invert in must be at −60o to
each other.

ℓ5 =

(

1

2
f1 −

√
3

2
f2

)

f1ℓ4f1

(

1

2
f1 −

√
3

2
f2

)

=

(

1

2
f1 −

√
3

2
f2

)

f1

(

1

2
f1 +

1

2
√

3
f2 +

√

2

3
f3

)

f1

(

1

2
f1 −

√
3

2
f2

)

=

(

1

2
+

√
3

2
f12

)(

1

2
f1 +

1

2
√

3
f2 +

√

2

3
f3

)(

1

2
−
√

3

2
f12

)

=

(

1

8
− 3

8
+

1

8
+

1

8

)

f1 +

(

1

8
√

3
−
√

3

8
−
√

3

8
−
√

3

8

)

f2

+

(

1

2
√

6
+

√
3

2
√

2

)

f3 +

(

1

2
√

2
− 1

2
√

2

)

f123

7



= − 1√
3
f2 +

√

2

3
f3

which we got before.

We can now save a little algebra by doing ℓ5 → ℓ6.

ℓ6 =

(

1

2
f1 −

√
3

2
f2

)

f1ℓ5f1

(

1

2
f1 −

√
3

2
f2

)

=

(

1

2
+

√
3

2
f12

)(

− 1√
3
f2 +

√

2

3
f3

)(

1

2
−
√

3

2
f12

)

=

(

−1

4
− 1

4

)

f1 +

(

− 1

4
√

3
+

√
3

4

)

f2 +

(

1

2
√

3
−
√

3

2
√

2

)

f3 +

(

1

2
√

2
− 1

2
√

2

)

f123

= −1

2
f1 +

1

2
√

3
f2 +

√

2

3
f3

as before.

To rotate plane n1 to n2 and n3 we’ll use inversions of ±60o in plane n0 = f12. Just as ℓ2 is −120o

from ℓ1, so h2 is −120o from h1.

n2 =

(

1

2
+

√
3

2
f12

)

n1

(

1

2
−
√

3

2
f12

)

=

(

1

2
+

√
3

2
f12

)(

1

3
f12 −

2
√

2

3
f31

)(

1

2
−
√

3

2
f12

)

=

(

1

12
+

1

4

)

f12 +

(

− 1√
6
− 1√

6

)

f23 +

(

− 1

3
√

2
+

1√
2

)

f31 +

(

1

4
√

3
− 1

4
√

3

)

=
1

3
f12 −

√

2

3
f23 +

√
2

3
f31

And a positive rotation for n3. (It’s the same algebra with a few sign changes.)

n3 =

(

1

2
−
√

3

2
f12

)

n1

(

1

2
+

√
3

2
f12

)

=

(

1

2
−
√

3

2
f12

)(

1

3
f12 −

2
√

2

3
f31

)(

1

2
+

√
3

2
f12

)

=

(

1

12
+

1

4

)

f12 +

(

1√
6

+
1√
6

)

f23 +

(

− 1

3
√

2
+

1√
2

)

f31 +

(

− 1

4
√

3
+

1

4
√

3

)

=
1

3
f12 +

√

2

3
f23 +

√
2

3
f31

8



In summary

6

l

ll

lh

h h

h0

1

1

2
l2 3

3

l 4

5

ℓ1 = f1

ℓ2 =
1

2
f1 +

√
3

2
f2

ℓ3 =
1

2
f1 −

√
3

2
f2

ℓ4 =
1

2
f1 +

1

2
√

3
f2 +

√

2

3
f3

ℓ5 = − 1√
3
f2 +

√

2

3
f3

ℓ6 = −1

2
f1 +

1

2
√

3
f2 +

√

2

3
f3

h0 =

√
3

4
f12

h1 =

√
3

4
n1 =

1

4
√

3
f12 −

1√
6
f31

h2 =

√
3

4
n2 = − 1

4
√

3
f12 +

1

2
√

2
f23 −

1

2
√

6
f31

h3 =

√
3

4
n2 =

1

4
√

3
f12 +

1

2
√

2
f23 +

1

2
√

6
f31

4. Visualizing planar components.

It is easy to visualize lines and their components, For example

ℓ4 =
1

2
f1 +

1

2
√

3
f2 +

√

2

3
f3

has f1-component 1

2
= 0.5, f2-component 1

2
√

3
≈ 0.29 and f3-component

√

2

3
≈ 0.82.

These are all positive, so as ℓ4 moves up 0.5 in the f1 direction it also moves up 0.29 in the f2

direction and up 0.82 in the f3 direction (out of the page).

A negative value for any of these three components would force the line “down” in that direction.

We can also see components of a plane as the projections of the area of the plane on the basis

9



planes f12, f23 and f31

Here are the planes n3 (on the right) and n2 (on the left) of the tetrahedron. I’ve rotated f1 and
f2 to align with the tetrahedron in earlier figures.

−++

2

f1

f23

f12
f31

f2

f12 f23 f31

f12 f23 f31

f
d

3

1−f

tetrahedron planes

−

−a a

b

−cf  + sf

ab
2

bd da
2 2

+ +

bd da
2 2

+ −
ab
2

−

2 3

+++

f

I’ve used positive numbers, a, b and d, for the intersections of the planes on the axes, and given the
expressions for the planes in terms of these.

So n3 has three positive coefficients and creates the triangle shown in the +++ octant.

n2 as shown here has two negative coefficients and appears in the −+ + octant. This is indeed the
form given for h2 in the summary at the end of the previous section. But it is the negative of the
form given for n2 by rotation the page before that.

Planes and faces also have directions, and their expression can change sign depending on which
side of the plane we’re looking from. Different methods of deriving the planar expression can give
different signs.

So I’ve shown planes in directions that give an even number of − signs, 0 or 2. Their negations are
the same planes viewed from the other side.

We can find the direction of a plane by constructing it as the product of two normalized lines in
it—not collinear—together with the “right-hand rule”.

1l2 = c + sn

l2

l1

l
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We have ℓ1 and ℓ2 in a plane n. The direction of the plane is the direction of the thumb of your
right hand when you’ve curled the fingers to point in the direction of the arc-arrow in the angle
from ℓ1 to ℓ2.

We can construct the planes of the tetrahedron with their directions outwards from the tetrahedron
in the summary figure above.

n0 : ℓ2ℓ1 =

(

1

2
f1 −

√
3

2
f2

)

f1

=
1

2
−
√

3

2
f12

n0 = −f12

with n0 normalized, n0n0 = −1. Here c = 1

2
and s =

√
3

2
: the lines ℓ2 and ℓ1 are 60o apart..

n1 : ℓ1ℓ4 = f1

(

1

2
f1 +

1

2
√

3
f2 +

√

2

3
f3

)

=
1

2
+

1

2
√

3
f12 −

√

2

3
f31

=
1

2
+

√
3

2
n1

n1 =
2√
3

(

1

2
√

3
f12 −

√

2

3
f31

)

=
1

3
f12 −

2
√

2

3
f31

normalizing n1.

n2 : ℓ4ℓ2 =

(

1

2
f1 +

1

2
√

3
f2 +

√

2

3
f3

)(

1

2
f1 +

√
3

2
f2

)

=
1

4
+

1

4
+

(√
3

4
− 1

4
√

3

)

f12 −
1√
2
f23 +

1√
6
f31

=
1

2
+

1

2
√

3
f12 −

1√
2
f23 +

1√
6
f31

=
1

2
+

√
3

2
n2

n2 =
2√
3

(

1

2
√

3
f12 −

1√
2
f23 +

1√
6
f31

)

=
1

3
f12 −

√

2

3
f23 +

√
2

3
f31

n3 : ℓ5ℓ3 =

(

− 1√
3
f2 +

√

2

3
f3

)(

1

2
f1 −

√
3

2
f2

)

=
1

2
+

1

2
√

3
f12 +

1√
2
f23 +

1√
6
f31

=
1

2
+

√
3

2

(

1

3
f12 +

√

2

3
f23 +

√
2

3
f31

)
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n3 =
1

3
f12 +

√

2

3
f23 +

√
2

3
f31

You can compare the signs with our previous derivations of these planes, and so determne which
side we are looking from.

I did not show plane

n1 =
1

3
f12 −

2
√

2

3
f31

in the diagram of tetrahedral planes.

That is because one of the edges is parallel to f1: one of the triangular components would have to
be zero, and the others could not be triangles.

What I did show was the line perpendicular to that plane

−n1f123 = −
(

1

3
f12 −

2
√

2

3
f31

)

f123

=
1

3
f3 −

2
√

2

3
f2

which should now make it easy to see how the plane goes.

Here is the tetrahedron we have. Edges are directed as shown. Faces are directed as seen from
outside the tetrahedron.

12
f1 1

3
2

f 2

1 2
f  

+
1

l  
=

2

3
2 f

2

12 f  −1

l  =33 1
3 f

2
f  +
2

3
l  =

 −
5

2

6 f31

3
4 1

f   +
12

23
2 1

f   +
12

h  =3

6
f31

33

3

2

6
f 31

3

23
2

1
f  

 +
2

h 
 =

2

1

4
1

f  
 −

12

3

h  =1
1

f  −2

3
f3

2

1
2

l  = 1
2 f  −1

6

f  +2

3f3
2

1
2

l  =4

1
2
f  +1

4
1 f   −12

0h  = −      f4
l  =

5. Dihedral angles.

Just as the product of two (normalized) lines gives the angle between them, so the product of two
(normalized) planes gives the dihedral angle between the planes.

So we can find the angles between pairs of planes in the tetrahedron. By symmetry, all six of them
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are the same.

n0n1 = −f12

(

1

3
f12 −

2
√

2

3
f31

)

=
1

3
+

2
√

2

3
f23

in which c = 1

3
and s = 2

√
2

3
correspond to an angle of about 70.5o in the normalized plane f23.

You should be able to see from the picture of the tetrahedron that this is the correct plane for that
dihedral angle to be in.

Similarly

n0n2 = −f12

(

1

3
f12 −

√

2

3
f23 +

√
2

3
f31

)

=
1

3
−
√

2

3
f23 −

√

2

3
f31

=
1

3
− 2
√

2

3

3

2
√

2

(√
2

3
f23 −

√

2

3
f31

)

=
1

3
− 2
√

2

3

(

1

2
f23 +

√
3

2
f31

)

This gives an angle of about −70.5o in the normalized plane 1

2
f23 +

√
3

2
f31.

Changing a sign gives

n0n3 = −f12

(

1

3
f12 +

√

2

3
f23 +

√
2

3
f31

)

=
1

3
− 2
√

2

3

(

1

2
f23 −

√
3

2
f31

)

Same angle, slightly different plane. It is harder to visulalize the two dihedral planes we just got
for n0n2 and n0n3 but we can check the angle between them.

(

1

2
f23 +

√
3

2
f31

)(

1

2
f23 −

√
3

2
f31

)

= −1

4
+

3

4
+

(√
3

4
+

√
3

4

)

f12

=
1

2
+

√
3

2
f12

which is 60o in the f12 plane, as a little introspection says it should be.

Combining n1, n2 and n3 is a little more complicated but reveals the same 70.5o each time.

n1n2 =

(

1

3
− 2
√

2

3
f31

)(

1

3
f12 −

√

2

3
f23 +

√
2

3
f31

)

= −1

9
+

4

9
+

4

3
√

3
f12 +

(

2
√

2

9
+

√
2

9

)

f23 +

√
2

3
√

3
f31

=
1

3
+

4

3
√

3
f12 +

√
2

3
f23 +

√
2

3
√

3
f31
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=
1

3
+

2
√

2

3

3

2
√

2

(

4

3
√

3
f12 +

√
2

3
f23 +

√
2

3
√

3
f31

)

=
1

3
+

2
√

2

3

(

√

2

3
f12 +

1

2
f23 +

1

2
√

3
f31

)

And, changing a sign,

n1n3 =

(

1

3
− 2
√

2

3
f31

)(

1

3
f12 +

√

2

3
f23 +

√
2

3
f31

)

=
1

3
− 2
√

2

3

(

√

2

3
f12 −

1

2
f23 +

1

2
√

3
f31

)

The dihedral planes for these two meet at a 60o angle in the plane 1

3
f12 − 2

√
2

3
f31.

Finally,

n2n3 =

(

1

3
f12 −

√

2

3
f23 +

√
2

3
f31

)(

1

3
f12 +

√

2

3
f23 +

√
2

3
f31

)

=
1

9
− 2

3
+

2

9
+

(

2

3
√

3
+

2

3
√

3

)

f12 +

(√
2

9
−
√

2

9

)

f23 +

(

−
√

2

3
√

3
−
√

2

3
√

3

)

f31

= −1

3
+

4

3
√

3
f12 −

2
√

2

3
√

3
f31

= −1

3
+

2
√

2

3

3

2
√

2

(

4

3
√

3
f12 −

2
√

2

3
√

3
f31

)

= −1

3
+

2
√

2

3

(

√

2

3
f12 −

1√
3
f31

)

6. Absolute coordinates..

The elements of the reflection algebra are all intervals and so one symbol, f1 or f12 and so on,
denotes an element which may be placed anywhere in the space.

But we can anchor them by going outside of the reflection algebra and specifying coordinates of the
end points of lines.
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3 f  −2
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2

1
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 −
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3
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1

2
1

3 3
2

(0,0,0) (1,0,0)

(    ,    ,0)

(    ,     ,   )1

l  =

I’ve given the origin arbitrarily as the lowest left-hand vertex.You can see how the direct edges
from there, ℓ1, ℓ2 and ℓ4, give the coordinates of the other vertices. (For convenience I’ve reversed
the direction of ℓ6 from previous diagrams.)

You can also see how edges can be added or subtracted to give other edges.

ℓ2 + ℓ3 = ℓ1

ℓ4 + ℓ6 = ℓ1

ℓ2 + ℓ5 = ℓ4

ℓ5 + ℓ6 = ℓ3

ℓ4 − ℓ5 = ℓ2

and so on.
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