I. Prefatory Notes
A. Reality

Gonna jump down, spin around, pick a bale of cotton.
Gonna jump down, spin around, pick a bale a day.
Norman Luboff, Harry Belafonte and William Attaway

1. Vectors are real.
 • Independent of coordinate axes, so
 • transform in a certain way when we change the axes.

Example transformations:

\[
\begin{align*}
\text{rotate } & \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} c & s \\ -s & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \\
\text{reflect } x & \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}
\end{align*}
\]

Note two assumptions underlying this Week: all the coordinate systems considered have common origin and common units.

So what are not vectors?
A twirl is not:
it has magnitude \(m \) and direction \(\theta \),
so \(x = \cos \theta \) and \(y = \sin \theta \)
but it does not reflect the way a vector does.
Twirl \((m, \theta)\)

Reflected \(x \rightarrow -x\)

This is not the reflection

We get \(m' = -m\), i.e., \(x' = -x\) and \(y' = -y\)

instead of \[
\begin{pmatrix}
x' \\
y'
\end{pmatrix}
= \begin{pmatrix}
-1 \\
1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
\]

In 3D, an area is like a twirl: it can have an orientation to distinguish above from below.

We saw that a right-handed twirl becomes a left-handed twirl in the mirror.

Similarly the direction of turn needed to rotate \(v_1\) into \(v_2\) is reversed in the mirror. This direction can be taken to determine the orientation of the parallelopiped area defined by \(v_1\) and \(v_2\).

In some sense, \(v_1 v_2 = -v_2 v_1\): the “product” is anticommutative. We’ll follow up this essential insight shortly (Note 6).

2. Some pairs are not vectors: their components are not coordinates.

\[
\begin{pmatrix}
\text{apples}' \\
\text{oranges}'
\end{pmatrix}
= \begin{pmatrix}
c \\
-s
\end{pmatrix}
\begin{pmatrix}
\text{apples} \\
\text{oranges}
\end{pmatrix}
\]

This is not a totally hokey example. Information retrieval (I.R.) often uses “vectors” to capture the content of documents.

<table>
<thead>
<tr>
<th></th>
<th>around</th>
<th>bale</th>
<th>cotton</th>
<th>day</th>
<th>down</th>
<th>jump</th>
<th>pick</th>
<th>spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>doc1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>doc2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
I.R. even uses dot products (Week 2, Note 5) to detect similarity between documents:

\[\frac{(\text{doc1} \cdot \text{doc2})}{|\text{doc1}||\text{doc2}|} = \frac{6}{\sqrt{7}\sqrt{7}}. \]

But documents are not vectors: it is not meaningful to rotate or reflect the axes.

3. Even pairs of numbers from geometry, where rotating and reflecting are meaningful, are not always vectors. Let’s try

\[
\begin{pmatrix}
\text{height} \\
\text{width}
\end{pmatrix}
\]

Here, no matter what the axes do, these numbers should not change.

What kind of thing remains invariant no matter what the axes do?

As with a vector, this thing, this pair of numbers, has a reality independent of the choice of coordinate axes. But the components of this one do not change if axes are rotated or reflected.

How about a matrix whose eigenvalues are \(w \) and \(h \)?

\[
T \vec{v}_1 = w \vec{v}_1 \\
T \vec{v}_2 = h \vec{v}_2
\]

For example, given the axes \(x \) and \(y \) shown,

\[
T = \begin{pmatrix} w & h \\ h & w \end{pmatrix}
\]

\[
v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]

\[
v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\]

Then, for axes \(x' \) and \(y' \), related to \(x \) and \(y \) by rotation \(R \),

\[
\vec{v}_1' = R \vec{v}_1 = \begin{pmatrix} c & -s \\ s & c \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]

and

\[
RTR^{-1} \vec{v}_1 = RT \vec{v}_1 = Rw \vec{v}_1 = wR \vec{v}_1 = w \vec{v}_1
\]

This suggests that \(T \) transforms to the new axes as \(T' = RTR^{-1} \).

Hence \(T' \vec{v}_1 = w \vec{v}_1 \)

Similarly \(T' \vec{v}_2 = h \vec{v}_2 \)
This is called a tensor transformation. Height and width (almost) form a “tensor”. This tensor is a diagonal matrix, \(\begin{pmatrix} w & h \\ h & w \end{pmatrix} \), when the axes are aligned with the rectangle, as \(x \) and \(y \) are.

This tensor is not diagonal for all coordinate axes, but we can see that it is a symmetric matrix.

\[
T' = RTR^{-1} = \begin{pmatrix} c & s \\ -s & c \end{pmatrix} \begin{pmatrix} w & h \\ h & w \end{pmatrix} \begin{pmatrix} c & -s \\ s & c \end{pmatrix}
\]

A symmetric matrix, \(T \), equals its own transpose, \(T = T^T \).

In general we may think of a tensor loosely as a matrix describing some real thing, as opposed to an operation or transformation.

\(T' = RTR^{-1} \) is symmetric because the inverse of \(R \) is the transpose of \(R \), \(R^{-1} = R^T \), which is the case for rotations, reflections and other “orthogonal” transformations of coordinate axes.

4. Maybe twirl is a tensor too.

Try \(S = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) and reflect in \(y \) by reversing the direction of \(x \) using the reflection matrix \(F \) to give the tensor transformation \(FSF^{-1} \)

\[
-\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}
\]

(Remember, Note 1 found out that the reflection just changes the sign of the twirl, i.e., of the tensor representing it.)

So \(a = 0 = d \).

Any reflection will give a similar sign change, so let’s see what reflecting in the line \(x = y \) gives us: \(F = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \)

\[
-\begin{pmatrix} c & b \\ b & c \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} b & c \\ c & b \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} b & c \\ c & b \end{pmatrix}
\]

and so \(c = -b \).

Unfortunately, we’ve gone too far. We now have only one number, \(b \), to describe a twirl, which we saw in Note 1 requires two numbers, \(m \) and \(\theta \).

So maybe two dimensions is too small to contain a twirl. This rather makes sense now that we think of it.

Let’s see if we can describe a twirl in three dimensions.

First note that \(\begin{pmatrix} b & -b \end{pmatrix} \) is an antisymmetric matrix: it equals the negative of its transpose.

So we’ll try an antisymmetric matrix in 3D. A 3\times3 antisymmetric matrix has three components.

\[
\begin{pmatrix} u & v & w \\ -u & w & v \\ -v & -w & u \end{pmatrix}
\]

Try reflecting in the \(yz \) plane: \(x \leftrightarrow -x \)

\[
\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} -u & u & v \\ -v & w & v \\ -w & -v & u \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} u & u & v \\ v & -w & -w \\ -u & -v & w \end{pmatrix}
\]

This almost just changes the sign of the matrix. Is it right?
Yes, if we interpret \(w \) as the \(x \)-component of the twirl, \(v \) as the \(y \)-component and \(u \) as the \(z \)-component. Check the diagram carefully!

Let’s see what happens if we rotate in the \(xy \) plane.

\[
\begin{pmatrix}
 c & s \\
-\,s & c
\end{pmatrix}
\begin{pmatrix}
 u & v \\
-w & w
\end{pmatrix}
\begin{pmatrix}
 c & -s \\
 s & c
\end{pmatrix}
=
\begin{pmatrix}
-\,u & u & sw + cv \\
-(sw + cv) & -(cw - sv) & cw - sv
\end{pmatrix}
\]

This should be, and is, the same result we would get with \(\begin{pmatrix} w \\ v \\ u \end{pmatrix} \) being just a vector, transformed in the usual vector way,

\[
\begin{pmatrix}
 c & -s \\
 s & c
\end{pmatrix}
\begin{pmatrix}
 w \\
 v \\
 u
\end{pmatrix}
\]

So a twirl, while transforming like a vector under rotation, is in general a tensor; for instance, it does not transform like a vector under reflection.

(Even though “twirl” is in one sense a rotation, we are here looking at it as a “real thing” so the matrix representing it is a tensor—as opposed to the quite different matrix that describes the operator, rotation.)

5. Twirl and area are “pseudovectors” or “axial vectors” in Willard Gibbs’ vector analysis (which is widely used in spatial science). We now know that they are really tensors. It is just a coincidence that \(3 \times 3 \) antisymmetric tensors have 3 components, like a vector. This does not happen in two dimensions (1 component) or four dimensions (6 components).

Vector analysis generates pseudovectors by a “cross product” of two vectors: \(A = v_1 \times v_2 = -v_2 \times v_1 \), to use the area example from Note 1.

Vector analysis is unsatisfactory because

a) it is not a closed system: operating on vectors we get things that are not vectors (and, worse, they look like vectors);

b) it only works in three dimensions and does not generalize to more, or fewer, dimensions.

Can we make better abstractions for spatial entities, instead of vectors?

We need a formalism

- which is independent of coordinate axes;
- which captures the notion of area being the anticommutative combination of two vectors;
- which does not depend on the number of dimensions of the space.
B. Interval Algebra
6. Vectors and Areas and .. All Together

- Parts of space are lines, areas, volumes, ..
- We'll ignore absolute position and consider only direction and magnitude.
- We'll take the basis elements to be orthonormal and anticommutative.

(We'll use the word “elements” instead of “vectors”: some but not all elements can be thought of as vectors.)

1. The basis elements are e_1 and e_2, which are defined to have the following properties.

$$
e_1 e_1 \overset{\text{def}}{=} 1$$
$$
e_2 e_2 \overset{\text{def}}{=} 1$$
$$
e_{12} \overset{\text{def}}{=} e_1 e_2 \overset{\text{def}}{=} -e_2 e_1$$

2. An arbitrary element can be a linear combination of basis elements. Its product with itself is the square of its length or magnitude.

$$u = e_1 + e_2$$
$$uu = (e_1 + e_2)(e_1 + e_2) = 1 + 1 = 2$$
$$v = \sqrt{3}e_1 + e_2$$
$$vv = (\sqrt{3}e_1 + e_2)(\sqrt{3}e_1 + e_2) = 3 + 1 = 2^2$$

3. The product of two different elements gives their magnitudes times the cosine and sine of the angle between them.

$$uv = (e_1 + e_2)(\sqrt{3}e_1 + e_2)$$
$$= \sqrt{3} + 1 + (1 - \sqrt{3})e_{12}$$
$$= 2\sqrt{2}(\frac{\sqrt{3} + 1}{2\sqrt{2}} + \frac{1 - \sqrt{3}}{2\sqrt{2}} e_{12})$$
$$= 2\sqrt{2}(\cos(\pi/6 - \pi/4) + \sin(\pi/6 - \pi/4)e_{12})$$

$$(ce_1 + se_2)(c'e_1 + s'e_2) = (cc' + ss') + (cs' - c's)e_{12}$$
$$= \cos(v - u) + \sin(v - u)e_{12}$$
where \(\cos(v - u) \) and \(\sin(v - u) \) are respectively the cosine and sine of the angle from \(u \) to \(v \): an interval from \(a \) to \(b \) is \(b - a \) because adding \(s \) to it gives \(b \).

7. Rotation

Let’s have a magnitude operator (\(|v| \) is an alternative notation),

\[
\text{mag}(v) = |v| = \sqrt{vv} = \text{length of } v
\]

and a normalizing operator (\(^n v \) is an alternative notation),

\[
\text{norm}(v) = ^n v = v/\text{mag}(v) : \text{norm}(v)\text{norm}(v) = 1; \ v \text{ norm}(v) = \text{mag}(v)
\]

and \(\text{norm}(v)\text{norm}(u)u = \text{norm}(v)\text{mag}(u) \), which rotates \(u \) into the direction of \(v \).

\[
\text{Try } \text{norm}(u) = ce_1 + se_2
\]

\[
v = \text{mag}(v)(c'e_1 + s'e_2) = xe_1 + ye_2
\]

\[
\text{norm}(u)\text{norm}(v) = (cc' + ss') + (cs' - sc')e_{12} = C + S e_{12}
\]

where \(C = \cos(v - u) \) and \(S = \sin(v - u) \) as in Note 6. Compare this with 2-numbers, \(C + iS \).

If we note that \(e_{12}e_{12} = e_1e_2e_1e_2 = -e_1e_2e_1e_2 = -1 \), we seem to find that \(e_{12} \) is the square root of \(-1 \). It’s better to think of \(e_{12} \) as a \(\pi/2 \) rotation when postmultiplied (or a \(-\pi/2 \) rotation when premultiplied):

\[
e_{12} = e_2 \quad e_{12}e_2 = e_1
\]

\[
e_{2}e_{12} = -e_1 \quad e_{12}e_1 = -e_2
\]

(It is even better to think of \(e_{12} \) as a plane: see Note 11, below.)

So what is the meaning of \(C + Se_{12} \)?

\[
u(C - Se_{12}) = (xe_1 + ye_2)(C + Se_{12})
\]

\[
= (Cx - Sy)e_1 + (Sx + Cy)e_2
\]

\[
= (e_1 e_2) \begin{pmatrix} C & -S \\ S & C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}
\]

It’s the rotation that rotates \(u \) onto \(v \) (the figure uses \(^n v \) for \(\text{norm}(v) \)): \(u\text{norm}(u)\text{norm}(v) = v = \text{norm}(v)\text{norm}(u)u \).
8. Reflection

If uvu and vu rotate $u \rightarrow v$ what is uvu?

Let's try it with u and v normalized.

$$u = c'e_1 + s'e_2$$
$$v = ce_1 + se_2$$
$$uvu = (c'e_1 + s'e_2)(ce_1 + se_2)(c'e_1 + s'e_2)$$
$$= Ce_1 + Se_2$$

where

$$C = \cos(\theta_u - \theta_v + \theta_u) = \cos(\theta_u - (\theta_v - \theta_u))$$
$$S = \sin(\theta_u - \theta_v + \theta_u) = \sin(\theta_u - (\theta_v - \theta_u))$$

uvu is the reflection of v in u.

(Another viewpoint: since $w(vu)$ rotates w by the angle between v and u, so $u(vu)$ is the reflection of v in u.)

Note that the projection of v in u is $(uvu + v)/2$, which can be written as a relationship among the reflection operator, F, the identity operator, I, and the projection operator, P: $P = (F + I)/2$.

Note finally that a rotation is two reflections:

1. in e_1;
2. in “half-u”, an element whose angle with e_1 is half the angle we wish to rotate through.

(We'll use the subscript J to indicate half-angles, since J sort of looks like 2 upside-down.)

$$v = xe_1 + ye_2$$
$$u_J = c_je_1 + s_je_2$$
$$u_J e_1 v e_1 u_J = (c_J - s_J e_{12})v(c_J + s_J e_{12})$$
$$= (e_1 e_2) \begin{pmatrix} c & -s \\ s & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

which is the rotation. (Recall that $c = c_J^2 - s_J^2$ and $s = 2c_J s_J$.) $\theta/2 + \theta/2 + \alpha - \alpha = \theta$:

\[\]
9. 3D rotations

Outside of a 2-D plane we can’t use $C + Se_{12}$ in 3-D:

$$e_3(C + Se_{12}) = Ce_3 + Se_{123}$$

(Note the extension of the rule for combining basis elements:

$$e_3e_{12} = e_3e_1e_2 = -e_1e_3e_2 = e_1e_2e_3 \overset{\text{def}}{=} e_{123}$$)

So let’s try two reflections:

rotate $v = xe_1 + ye_2 + ze_3$
in plane $P = re_{12} + pe_{23} + qe_{31}$

with P normalized: $p^2 + q^2 + r^2 = 1$.

$$(c, s)P(v(c, s) + sJ) =$$

$$(e_1 e_2 e_3) \left(\begin{pmatrix} c & -sr & sq \\ sr & c & -sp \\ -sq & sp & c \end{pmatrix} + (1 - c) \begin{pmatrix} p \\ q \\ (p, q, r) \end{pmatrix} \right) \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Note that $pe_1 + qe_2 + re_3 \perp P = re_{12} + pe_{23} + qe_{31}$.

Note also that $\begin{pmatrix} p \\ q \\ r \end{pmatrix}$ is an eigenvector of the rotation matrix: what is the significance of that?

Now two rotations:

$$\begin{align*}
\text{by } (c, s) \text{ about } & \quad pe_1 + qe_2 + re_3 \\
\text{then by } (c', s') \text{ about } & \quad p'e_1 + q'e_2 + r'e_3 \\
\downarrow \\
\text{a rotation by } (c'', s'') \text{ about } & \quad p''e_1 + q''e_2 + r''e_3 \\
(c, s)(re_{12} + pe_{23} + qe_{31})(c_J + s_J(r'e_{12} + p'e_{23} + q'e_{31})) & = c_J'' + s_J''(r''e_{12} + p''e_{23} + q''e_{31})
\end{align*}$$

where

$$\begin{align*}
c_J'' & = c_Jc_J' - s_Js_J'(rr' + pp' + qq') \\
s_J''r'' & = s_Jc_J'r + c_Js_J'r' + s_Js_J'(qq' - pp') \\
s_J''p'' & = s_Jc_J'p + c_Js_J'p' + s_Js_J'(rq' - qr') \\
s_J''q'' & = s_Jc_J'q + c_Js_J'q' + s_Js_J'(pr' - rp')
\end{align*}$$
Note that in 3-D all the angles are half angles.

Note that 3-D rotations do not commute.

10. Intervals plus locations. The intervals described by the interval algebra have magnitude and orientation but no location.

Thus they cannot solve problems such as finding the distance from a point to a line.

We must work with both points and line intervals.

For a start, the line interval must be anchored to a point, say \((x, y)\).

Then we can formulate the problem as “find the distance from a point \((x', y')\) to the line that is the interval \(m(p e_1 + q e_2)\) starting from point \((x, y)\).

Here, \(m\) is the magnitude of the interval and \(p\) and \(q\) give its orientation (normalized so \(p^2 + q^2 = 1\)). \((x, y)\) and \((x', y')\) are two points, which are beyond the scope of the interval algebra, and our task is to find the length of the dashed line, which is the distance from \((x', y')\) to the interval starting at \((x, y)\), and to ascertain that this vertical actually meets the original line within the interval.

We can find the dashed line as an interval, \(p'e_1 + q'e_2\), which we might as well normalize, \(p'^2 + q'^2 = 1\). This does not locate the interval, but we can do that by making it start at \((x', y')\). For orthogonality, either \(pp' + qq' = 0\) or, directly, take the interval product with the containing plane

\[
p'e_1 + q'e_2 = (pe_1 + qe_2)e12 = -qe_1 + pe_2
\]

We consider as unknowns the two distances to the intersection of the solid and dashed lines, \(d_1\) from \((x, y)\), and \(d_2\) from \((x', y')\).

Then we can switch to vector notation and write

\[
\begin{pmatrix} x \\ y \end{pmatrix} + d_1 \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix} - d_2 \begin{pmatrix} -q \\ p \end{pmatrix}
\]

(Why is there a \(-\) sign before \(d_2\)?)

This becomes

\[
\begin{pmatrix} p & -q \\ q & p \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = \begin{pmatrix} x' - x \\ y' - y \end{pmatrix}
\]

which is easily solved, especially since the determinant is 1.

If \(d_1 \leq m\), the dashed line does meet the solid line within the given interval.

11. Interval algebra in 3D. We can get a better feeling for interpreting the interval algebra from using it in 3D than from using it in 2D.

First, let’s define the order of an interval, or part of an interval, as the number of subscripts on the basis elements. Intervals can be of homogenous order, such as the line interval \(pe_1 + qe_2 + re_3\).
where, if the line (order-1) intervals are contained, respectively, in the plane (order-2) intervals, $pp' + qq' + rr' = 0$ because the line intervals are orthogonal, respectively, to the line intervals orthogonal (“normals”) to the plane intervals. (The word “normals” can be confused with the word “normal”, describing an interval of magnitude 1, so we do not continue to use it.)

We can use these interpretations to find a new set of orthonormal axes (orthogonal to each other and normalized) given one desired axis. We work a specific example in which $f_1 = (e_1 + e_2 + e_3)/\sqrt{3}$.

First, find the plane interval orthogonal to f_1

$$(e_1 + e_2 + e_3)e_{123}/\sqrt{3} = (e_{23} + e_{31} + e_{12})/\sqrt{3}$$
Second, find any line interval in this plane: the condition is that \(p' e_1 + q' e_2 + r' e_3 \) is orthogonal to \(f_1 \) so \(p' + q' + r' = 0 \). This eliminates one of the three unknowns, and we might as well make a choice among the others which is as simple as possible. So suppose \(r' = 0 \) and \(q' = -p' \):

\[
f_2 = (e_1 - e_2)/\sqrt{2}
\]

Third, find a second line interval in the orthogonal plane which is orthogonal to the first.

\[
f_3 = (e_1 - e_2)(e_{23} + e_{31} + e_{12})/\sqrt{3}/\sqrt{2} = (e_1 + e_2 - 2e_3)/\sqrt{6}
\]

Check that \(f_j f_j = 1 \) and \(f_j f_k = -f_k f_j \) if \(j \neq k \), the same properties that the \(e_j \) have.

Finally, observe that the matrix transforming from the \(e_j \) to the \(f_k \) is just given by the coefficients.

\[
\begin{pmatrix}
f_1 \\
f_2 \\
f_3
\end{pmatrix} = \begin{pmatrix}
1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\
1/\sqrt{2} & -1/\sqrt{2} & 0 \\
1/\sqrt{6} & 1/\sqrt{6} & -2/\sqrt{6}
\end{pmatrix} \begin{pmatrix}
e_1 \\
e_2 \\
e_3
\end{pmatrix}
\]

Check that the inverse of this matrix is its transpose, and convince yourself that the transformation of coordinates, if the space were to be rotated the same way, relative to the original axes, \(e_j \), is this transpose.

12. Summary

(These notes show the trees. Try to see the forest!)

- Vectors are real things, independent of coordinates.
- So where they are written in terms of coordinates, these coordinates must transform correctly under rotation, reflection, projection and inversion: \(X\vec{v} \).
- Some real things are not vectors, but tensors, and so tensor elements must also transform correctly: \(XTX^{-1} \).
- Clifford or geometric or angle or interval algebra:
 - parts of space: lines, areas, volumes, ..;
 - ignore position, consider only magnitude, direction;
 - basic elements are orthonormal and commutative.
- 2-D rotation from \(u \) to \(v \) is \(uuv \) or \(vuu \).
- Reflection of \(v \) in \(u \) is \(uvu \).
- 3-D rotation by \((c,s) \) about \(re_{12} + pe_{23} + qe_{31} \) ..
- Two 3-D rotations need half angles and are not commutative.
- Intervals have no locations, only magnitudes and orientations, so the interval algebra must be supplemented by points if, say, distances are to be found.
- Interval products have a number of useful interpretations, including angles between lines and planes, and orthogonals to lines and planes.

NB In 2-D: \(1, e_1, e_2, e_3, e_{12} \). In 3-D: \(1, e_1, e_2, e_3, e_{23}, e_{31}, e_{12}, e_{123} \).
13. Appendix: Summary of vector and matrix operations

\[\vec{u} + \vec{v} = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \end{pmatrix} \]

\[A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix} \]

\[\vec{u} \cdot \vec{v} = (u_1)(v_1) \]

\[= u_1v_1 + u_2v_2 \]

\[= |\vec{u}| \cdot |\vec{v}| \cdot \cos(\angle(\vec{u}, \vec{v})) \]

\[A\vec{u} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \]

\[= (a_{11}u_1 + a_{12}u_2) \]

\[= (a_{21}u_1 + a_{22}u_2) \]

\[\vec{a}A = (u_1)(v_1) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \]

\[= (u_1a_{11} + u_2a_{21} u_1a_{12} + u_2a_{22}) \]

\[AB = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix} \]

\[\otimes \]

\[A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{pmatrix} \]

Clifford algebra

\[uv = (u_1e_1 + u_2e_2)(v_1e_1 + v_2e_2) \]

\[= u_1v_1 + u_2v_2 + (u_1v_2 - u_2v_1)e_{12} \]

\[= \vec{u} \cdot \vec{v} + |\vec{u} \times \vec{v}| \cdot e_{12} \]

\[= \text{mag}(u)\text{mag}(v)(\cos(\angle(\vec{u}, \vec{v})) + \sin(\angle(\vec{u}, \vec{v}))e_{12}) \]

(The third line does not use the Clifford algebra mag() operator because it is not Clifford algebra. It is a digression for those familiar with Gibbs’ vector algebra.)

Compare \(\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \) \((v_1, v_2)\) = \(\begin{pmatrix} u_1v_1 \\ u_2v_1 \\ u_1v_2 \\ u_2v_2 \end{pmatrix} \)

Finally, compare these with 2-numbers (Week 4: we use 2-number notation for the magnitude instead of the Clifford algebra mag() operator):

\[u + v = u_1 + v_1 + i(u_2 + v_2) \]

\[uv = (u_1 + iu_2)(v_1 + iv_2) \]

\[= u_1v_1 - u_2v_2 + i(u_1v_2 + u_2v_1) \]

\[= |u| \cdot e^{i\angle u \cdot \angle v} \]

\[= |u| \cdot |v| \cdot e^{i(\angle u + \angle v)} \]
II. The Excursions
You've seen lots of ideas. Now do something with them!

1. Dot product.
 a) The dot product (see Week 2 Note 5) of two normalized vectors in any number of dimensions equals the cosine of the angle between the vectors. Show this: i) use \((Xu)^T Xv = u^T v\) to discover that the dot product is invariant under any axis transformation, \(X\), whose transpose is its inverse; and ii) use this invariance to reduce any two \(d\)-dimensional vectors, \(\vec{u}\) and \(\vec{v}\), to the two dimensions of their common plane.
 b) What is the angle between doc1 and doc2 in Note 2?
 c) How does the dot product of a vector, \(v\), with itself relate to the interval algebra product \(vv\) in Note 6?
 d) How would you define the dot product of the interval algebra basis elements \(e_1\) and \(e_2\) so that for any vectors \(u = u_1 e_1 + u_2 e_2\) and \(v = v_1 e_1 + v_2 e_2\), \(u.v = u_1 v_1 + u_2 v_2\)? Relate this to the definition of the dot product (Week 2 Note 5) in terms of some particular coordinate system. Why is the product \(a x b + a y b y\) of any coordinates \(a\) and \(b\) invariant, i.e., has the same value no matter what axes are used to specify the coordinates?
 e) Show that \(\vec{u}.\vec{v}/|v|\) is the component of \(\vec{u}\) along the direction of \(\vec{v}\) for any two vectors \(\vec{u}\) and \(\vec{v}\).

2. Calculate the reflections in the \(yz\) plane of twirls pointing along each of the \(x, y\) and \(z\) axes, and explain why what you get is right.

3. Confirm that \(w, u\) and \(v\) in the 3D twirl tensor must refer to the \(x, y\) and \(z\) components, respectively.

4. Is there a way to use 2-numbers to represent 3D twirl as a 2\(\times\)2 tensor?

5. Show that postmultiplying by \(e_{12}\) is the same as premultiplying by \(e_{21}\) in Note 7. What does this imply for expressing the rotation from \(u\) to \(v\) as a premultiplication?

6. What is the matrix for the reflection of \(v = xe_1 + ye_2\) in \(u = ce_1 + se_2\) (\(c\) and \(s\) are cosine and sine, respectively, so \(u\) is normalized)?

7. Why is \(u(vu)\) the reflection of \(v\) in \(u\)? Explain in terms of the rotation, \((uv)\). (Take \(u\) and \(v\) to be normalized.)

8. A ball moving along trajectory \(b\) bounces off a wall \(w\). What is its new trajectory?

9. Explain why the projection of \(v\) on \(u\) is \((uvu + v)/2\). For \(u = c'e_1 + s'e_2\) and \(v = ce_1 + se_2\), give the matrices \(F\) (reflection) and \(P\) (projection). What is the significance of \(P - I\), where \(I\) is the identity matrix?

10. Show that 3D rotation by angle \((c, s)\) about \(re_{12} + pe_{23} + qe_{31}\) is the matrix given in Note 9. Show that \((p, q, r)^T\) is an eigenvector (Note 1 of Week 8), find the corresponding eigenvalue, and explain what these mean.

11. Check the derivation of the expression for double rotation in 3D. How would we find \(p''\), \(q''\) and \(r''\)?

12. Compare rotating by \(\pi/2\) about \((1,0,0)\) then \(\pi/2\) about \((0,1,0)\) with rotating \(\pi/2\) about \((0,1,0)\) then \(\pi/2\) about \((1,0,0)\). Use both interval algebra and your hands and some physical object such as a book.
13. Using rotations (and other operations) in the interval algebra and a starting edge, \(e_1 \), find the other two edges of an equilateral triangle. How would this help you draw it with a graphics program? Once you’ve found the second edge, there are at least three ways of finding the third: figure them all out and compare.

14. Rotate the equilateral triangle of the previous Excursion just enough to map it onto itself and show that the edges you found there do indeed map onto each other.

15. Why can the Interval Algebra not be used to find the intersection of two lines?

16. Tetrahedron. Using rotations (and other operations) in the interval algebra and the equilateral triangle of the previous Excursion, calculate the three edges needed to build it into an equilateral tetrahedron. How would you find the angles between the planes in the tetrahedron?

17. What is the 3-by-3 matrix that gives a 1/3 rotation (i.e., by \(2\pi/3 \)) about the axis \((1,1,1)\)? Check that this make sense: multiply it by itself once, then once more.

18. a) (Warmup and check.) What is the plane formed by the edges \(e_1 \) and \((e_2 + e_3)/\sqrt{2}\)? What is the angle between these two edges? What angle does the plane make with \(e_{12} \)? (Keep all edges and planes normalized! Be careful about signs, and check what they mean!)

b) Answer the questions from (a) for the edges \((e_1 + e_3)/\sqrt{2}\) and \((e_2 + e_3)/\sqrt{2}\).

c) Examine and test the MATLAB function

```matlab
% function [cos12,sin12,face12] = product(edge1,edge2)
% THM 070410 in file: product.m
% edge1: normalized 3-vector, e.g. [p1,q1,r1]
% edge2: normalized 3-vector, e.g. [p2,q2,r2]
% cos12 = p1p2+q1q2+r1r2
% sin12 = +sqrt(1-cos^2)
% face12: normalized 3-vector, % [(q1r2-r1q2)/sin12,(r1p2-p1r2)/sin12,(p1q2-q1p2)/sin12]
% (Works for planes as input, but use -cos12, -sin12)
```
function [cos12,sin12,face12] = product(edge1,edge2)
p1 = edge1(1); q1 = edge1(2); r1 = edge1(3);
p2 = edge2(1); q2 = edge2(2); r2 = edge2(3);
cos12 = p1*p2+q1*q2+r1*r2;
sin12 = sqrt(1-cos12^2); % when might this be 0?
if abs(sin12)<10^-8 face12 = [0,0,0]; else
 face12 = [(q1*r2-r1*q2)/sin12,(r1*p2-p1*r2)/sin12,(p1*q2-q1*p2)/sin12];
end

Why must we change the sign if edge1 and edge2 represent faces rather than edges on input? (Hint. Multiplying by \(e_{12} \) in 2D gives a quarter-rotation. Does multiplying by \(e_{123} \) in 3D also do this? What does a “quarter rotation” mean in this case for an edge? For a face? What is \(e_{123}e_{123} \)?)

d) (Warmup and check.) Rotate the edges \(e_1 \) and \((e_2 + e_3)/\sqrt{2}\) through the angle you found in (a) so as to put them both in \(e_{12} \): this should give \(e_1 \) itself and \(e_2 \), respectively.

e) Rotate the edges from (b) so as to put them both in \(e_{12} \). Check that they have the same angle with each other that they did before rotating.

f) Find two additional normalized edges that share with each of the new edges from (e) the same angle you found in (b) that they have with each other. (Note that the solution is direct if the input edges are in \(e_{12} \) but would require iteration if the \(e_3 \) components of the edges are nonzero: try it!)

g) Write a MATLAB function, \texttt{e12equiAngle()}\texttt{}, for (f), i.e., which given two edges in \(e_{12} \) finds an edge sharing with those two edges the angle that is between the input edges.

Write a MATLAB function, \texttt{equiAngle()}\texttt{}, which given \textit{any} two edges finds an edge sharing with those two edges the angle that is between the input edges: find the plane of the given edges, rotate it into the \(e_{12} \) plane, use \texttt{e12equiAngle()}\texttt{ to find the new edge, and rotate this back again. (The next excursion gives a possible \texttt{rotate3D()} function interface.)

h) Rotate the edge from (f) that has the negative \(e_3 \) component inversely to the rotation in (e). What is the resulting combination of this edge and the two original edges in (b)?

19. Inspect and run the following MATLAB function.

```matlab
% function [pentcoords,pentedges,pentface] = pentagon(startcoords,startedge,pentface)
% THM 070409 in file: pentagon.m
% Makes pentagon of unit edges, given 3D coords for 1 vertex, 1 edge, 1 plane
% startcoords 3-vector, e.g. [0,0,0]
% startedge 3-vector, e.g. [1,0,0]
% pentface 3-vector, e.g. [0,0,1] The plane in which the pentagon is made
% pentcoords 5x3 array, e.g. [0,0,0;1,0,0;...]
% pentedges 5x3 array, e.g. [1,0,0;...]
% uses rotate3D

function [pentcoords,pentedges,pentface] = pentagon(startcoords,startedge,pentface)
    angle = 2*pi/5;
    edgesIN = startedge';
    planesIN = pentface';
    pentedges = edgesIN;
    pentcoords = startcoords';
    [edgesOUT,planesOUT] = rotate3D(pentface,angle,edgesIN,planesIN);
    for k = 1:4
        pentedges = [pentedges,edgesOUT(k,:)]
        pentcoords = pentcoords(k,:) + pentedges(k,:)
    end
```
Write the function `rotate3D(plane, angle, edgesIN, planesIN)`, which rotates arbitrary sets of `edgesIN` and `planesIN` about `angle` in `plane`. Write a program which calls `pentagon()` and uses `quiver3` to draw the resulting pentagon.

Above are the five “Platonic solids”: the tetrahedron (4 faces), the cube (hexahedron, 6 faces), octahedron (8 faces), dodecahedron (12 faces) and icosahedron (20 faces). Use the techniques of the previous excursions to build them in MATLAB. (The cube and octahedron do not need interval algebra machinery and their edges can be written down straight from pairs of coordinates. They make a good place to start. The tetrahedron can also be written down directly from coordinates, or it can be made from an equilateral triangle and an additional vertex out of the plane and equidistant from each vertex of the triangle; but it is good exercise to use interval algebra for this, following the Tetrahedron Excursion, above, or the notes on Clifford Algebra available from the course home page.)

By finding a way to draw the octahedron inside the cube and the icosahedron inside the dodecahedron, show that these are two pairs of “duals”—the faces of one of each pair correspond to the vertices of the other, and vice-versa. What is the dual of the tetrahedron?

21. Use the pdf notes “Clifford Algebra” for this week to find the coordinates of the centre of a tetrahedron (the point equidistant from each vertex) and to show that the angle between any two edges connecting the centre with two vertices is about 109°27′.

22. How many colours are needed to colour the vertices of each of the Platonic solids, if no two vertices of the same colour may be joined by an edge? How many colours for the faces, if no two faces separated by an edge as a boundary may have the same colour? What about colouring vertices of polygons in 2D?

23. Confirm that the Platonic solids satisfy

\[2 + E = F + V \]

where \(E \) is the number of edges, \(F \) is the number of faces and \(V \) is the number of vertices. Does this hold for any other figure?

24. How many spheres can be packed around a sphere of the same radius? (Hint: start with 2D and show that six circles pack a centre circle. What angle does each circle subtend at the centre? Approximately what proportion of the spherical surface area, \(4\pi r \), is inside one of the packing spheres centred at distance \(r \)? Must the centres of the packing spheres form the vertices of one of the Platonic solids?)
25. The red additions to the cube and the dodecahedron above are the paths of length 2. That is, since the cube has a blue edge (0,0,0)–(1,0,0) and a blue edge (1,0,0)–(1,1,0), then (0,0,0)–(1,1,0) will be a red edge.

Here are all the coordinate pairs for the cube, in two different orders: the set on the left is sorted by columns 4, 5 and 6; the set on the right is sorted by columns 1, 2 and 3.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

a) Confirm that these coordinate pairs link up so as to give the red edges shown with the cube.

b) Examine the following MATLAB code which will make the links you checked in (a). It implements a simplified *natural composition* operator of the *relational algebra*. It is built in terms of three other relational algebra operators, *natural join*, *projection* and a family of operators that treat relations as sets of rows and produce set difference (−), union (∪), intersection (∩) and symmetric difference (+). (Note that this last operator is here applied to the set of *columns* of the relations being put together.)

Look up [Mer99, Database programming], implement these operators, and show that
relationCompos() applied to the coordinate pairs for the cube produces the red figures shown.
c) Run your relationCompos() on the coordinate pairs you got for the dodecahedron in an earlier excursion.

% function joinOut = relationCompos(joinIndices,joinIn1,joinIn2)
% THM 070420 in file relationCompos.m
% joinIndices 2*m array giving indices to be joined
% joinIn1 n1*m1 array
% joinIn2 n2*m2 array
% joinOut n*(m1-m+m2) array
% joinOut rows will be unduplicated if joinIn1 and joinIn2 rows are
% Uses relationSetOp(), relationJoin(), relationProject()
function joinOut = relationCompos(joinIndices,joinIn1,joinIn2)
sizIn1 = size(joinIn1);
sizIn2 = size(joinIn2);
sizInd = size(joinIndices(1,:));
%all = zeros(sizInd); % indices for compareRows(): all columns
for k = 1:sizIn1(2) - sizInd(2) + sizIn2(2) all(k) = k; end
projIndices = relationSetOp('-',all',joinIndices(1,:))
joinOut = relationProject(projIndices',relationJoin(joinIndices,joinIn1,joinIn2));

26. Combine the methods of Notes 10 and 11 to find the distance in three dimensions between a given point and a line made up of an interval and another given point as start point. (You will need to solve for three distances, and combine two of them to give the desired distance.)

27. Note 11 gives the expression \(c + s \) normPlane(\(u, v \)).
a) Show that \(c^2 + s^2 = 1 \) so that it is plausible to interpret \(c \) and \(s \) as \(\cos() \) and \(\sin() \), respectively. (Try it in two dimensions first.)
b) Use the axis-rotating method of Note 11 to change axes so that a new \(f_3 \) is orthogonal to the plane containing \(u \) and \(v \), and thereby establish that \(c \) and \(s \) really are \(\cos() \) and \(\sin() \) in the two-dimensional \(f_12 \) plane.

28. Show that \(pp' + qq' + rr' = 0 \) also results from the condition that the reflection of \(p'e_1 + q'e_2 + r'e_3 \) in the plane orthogonal to \(pe_1 + qe_2 + re_3 \) equals \(p'e_1 + q'e_2 + r'e_3 \) itself.

29. Direction cosines. The normalized \(p, q \) and \(r \) we have been using in Notes 9–11 for three dimensions are also known as direction cosines

\[
p = \cos \alpha, \quad q = \cos \beta, \quad r = \cos \gamma
\]
a) For line intervals, what are the angles \(\alpha \), \(\beta \) and \(\gamma \)?
b) What are the direction cosines in two dimensions (what must \(\sin() \) be replaced by)?
c) When two line intervals, angle \(\theta \) apart, are given by direction cosines, show that the sines of the projections of \(\theta \) on the \(e_{12}, e_{23} \) and \(e_{31} \) planes are, respectively,

\[
\sin \theta_{12} = \frac{pq' - qp'}{\sqrt{p^2 + q^2}\sqrt{p'^2 + q'^2}}, \quad \sin \theta_{23} = \frac{qr' - rq'}{\sqrt{q^2 + r^2}\sqrt{q'^2 + r'^2}}, \quad \sin \theta_{31} = \frac{rp' - pr'}{\sqrt{r^2 + p^2}\sqrt{r'^2 + p'^2}}
\]
(In the figure, red is used for the primed direction cosines. Use the differences between the angles \(\delta \), \(\epsilon \) and \(\zeta \) shown and their red counterparts.)
d) What are the cosines of these projections of θ?

e) Note that the redundancy of $p^2 + q^2 + r^2 = 1$ hides the signs. Why is it useful to have all three direction cosines? (All two in 2D?)

30. The Gibbs “cross product” of two vectors in 3D is defined as

$$(a, b, c) \times (a', b', c') = ((bc' - cb', ca' - ac', ab' - ba'))$$

Show that this is not a vector but a tensor. Write the tensor.
Show that it is not a line interval but a plane interval. Write the plane interval.

31. **Nonorthogonal axes and tensor notation.** We’ve seen that the two “tensors” in Notes 3 and 4 are independent of rotations of the coordinate system. Tensor notation is intended to cope with any linear transformation of the axes. After the following discussion, show that the twirl of Note 4 survives nonorthogonal axis transformations but the height- and width-eigenvalues of Note 3 do not.
Here is a non-orthogonal axis transformation, from the black axes (solid lines) to the red (dashed lines).
a) To transform the vectors
\[
\begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\]
to the red axes shown, persuade yourself that we would use the matrix
\[
S = \frac{1}{\sqrt{c_+}} \begin{pmatrix} c_\alpha & s_\beta \\ s_\alpha & c_\beta \end{pmatrix}
\]
where \(c_z\) is \(\cos(z)\), \(s_z\) is \(\sin(z)\) for \(z\) either \(\alpha\) or \(\beta\), and \(c_+ = \cos(\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta)\). (This latter is the determinant of the part of \(S\) written above as a matrix. We need not divide that matrix by \(\sqrt{c_+}\) but to do so normalizes the matrix in a way that allows the example to illustrate a minor but significant point (see (j)).)

The first point to make is that to transform the coordinates describing the point \(p = (p^x, p^y)\), so that the same point, \(p\), is identified by new (red) coordinates, \(\bar{p} = (\bar{p}^x, \bar{p}^y)\), we use the inverse of \(S\),
\[
S^{-1} = \frac{1}{\sqrt{c_+}} \begin{pmatrix} c_\beta & -s_\beta \\ -s_\alpha & c_\alpha \end{pmatrix}
\]
b) Persuade yourself that this statement is true. (Think about rotations as an example, and compare finding a rotated point, \(p\), with finding new coordinates for \(p\) under rotated axes.)

So
\[
\begin{pmatrix} p^\bar{x} \\ p^\bar{y} \end{pmatrix} = \frac{1}{\sqrt{c_+}} \begin{pmatrix} c_\beta & -s_\beta \\ -s_\alpha & c_\alpha \end{pmatrix} \begin{pmatrix} p^x \\ p^y \end{pmatrix}
\]
c) The new red coordinates are non-orthogonal: the red axes are not at right angles to each other. What is different about a non-orthogonal coordinate system is that invariants such as the length of a vector (say, the distance from \(p\) to the origin) or the angle between two vectors will apparently change under the transformation: calculate \(\sqrt{p^\bar{x} \times p^\bar{x} + p^\bar{y} \times p^\bar{y}}\) and compare it to \(\sqrt{p^x \times p^x + p^y \times p^y}\). This does not happen with orthogonal transformations such as rotations: such invariants are left safely fixed by the rotation. (Show that the two above square roots are the same if \(\beta = -\alpha\) but not necessarily for other \(\beta\). If your algebraic
results do not convince you, try it with the two angles drawn in the above figure: \(c_\alpha = \frac{12}{13} \) and \(c_\beta = \frac{24}{25} \). Show that the squares of the lengths are about 2.75 versus 5. Or just look at the drawing.

So we need to think of something else. This is the first contribution of tensor theory. Because we used \(S^{-1} \) to transform \(p^j \) to \(\bar{p}^k \) this transformation is called **contravariant**. A corresponding transformation using \(S^T \) is called **covariant**, and that is what we need. Tensor notation writes contravariant elements with superscript indices. (That is why I repeated the \(p_x \) and the \(p_y \) above to square them instead of writing \(p_x^2 \) and \(p_y^2 \); it is best in tensor notation not to use superscript operators to denote powers.)

And covariant elements are written with subscript indices. You’ll find this in the blue components, \(\bar{p}_x \) and \(\bar{p}_y \), in the diagram.

Only in orthogonal coordinate systems are the contravariant and the covariant components the same. Thus, in black, \(p_x = p^x \) and \(p_y = p^y \).

In the diagram, the blue (dot-dash lines) shows the transformation.

\[
\left(\begin{array}{c} \bar{p}_x \\ \bar{p}_y \end{array} \right) = \frac{1}{\sqrt{c_+}} \left(\begin{array}{cc} c_\alpha & s_\alpha \\ s_\beta & c_\beta \end{array} \right) \left(\begin{array}{c} p_x \\ p_y \end{array} \right)
\]

(d) Show that the covariant transformation of \((1,0)\) is orthogonal to the contravariant transformation of \((0,1)\) and vice-versa in this example.

Now we consider how to describe the invariant length of \(p \) (that is, the distance of point \(p \) from the origin). We use both contravariant and covariant coordinate systems. Writing the transformations as matrices and the coordinates as vectors

\[
(p_x, p_y) \left(\begin{array}{c} p^\beta \\ p^\alpha \end{array} \right) = (p_x, p_y) S S^{-1} \left(\begin{array}{c} p^\beta \\ p^\alpha \end{array} \right) = (p_x, p_y) \left(\begin{array}{c} p^x \\ p^y \end{array} \right) = (p^x, p^y) \left(\begin{array}{c} p_x \\ p_y \end{array} \right)
\]

Here I used row vector \(\times \) column vector to express the sum of products (in this case, the sum of squares), and I’ve used the less usual way of writing the transformation \(S^T \times (\text{column vector}) \) as (row vector) \(\times S \).

Let’s look at this in terms of the indices. I’ll write them out first in the conventional matrix way with all indices as subscripts.

\[
\sum_j p_j p_j = \sum_j (\sum_k p_k S_{kj}) (\sum_{k'} S_{jk'}^{-1} p_{k'})
\]

\[
= \sum_k p_k \sum_{k'} (\sum_j S_{kj} S_{jk'}^{-1}) p_{k'}
\]

\[
= \sum_k p_k (\sum_{k'} I_{kk'})
\]

\[
= \sum_k p_k p_k
\]

From the first to the second line we rearranged the order of the sums, which you should convince yourself we can always do. Then we got \(S S^{-1} \), and this is the identity \(I \). The identity gets rid of the sum of \(k' \) by just setting \(k' \) to \(k \).

Because we can always rearrange summation order and because multiplication of the individual elements commutes, even though multiplication of the matrices does not, tensors introduce a second notational simplification: the **Einstein summation convention** says drop the \(\sum \) signs and just repeat indices to sum.

Combining this with the use of superscript indices for contravariant tensors and subscript indices for covariant, we can write this argument in tensor notation. Transposes don’t appear at all. But I’ve written a place-holding dot just to indicate which was the left (row)
and which the right (column) matrix index, in order to maintain a connection with matrix multiplication.

\[p_j p^j = p_k S^k_j (S^{-1})^j_{k'} p^{k'} = p_k I^k_{k'} p^{k'} = p_k p^k \]

e) We saw that the second-order tensors in Notes 3 and 4 transform using both the transformation matrix and its inverse, e.g., \(T \rightarrow RTR^{-1} \). Write this in tensor notation and argue that tensors that transform as \(T \) does should be written with one contravariant and one covariant index. That is why I wrote the transformation matrices, say \(S \), above as \(S^k_j \).

The above discussion requires that we have both contravariant and covariant components in order to compute invariants such as the inner product (length of one vector or angle between two different normalized vectors). But there is a way to find length, say, if we have only one of these sets, such as the contravariant components. We start with the length in the orthogonal system.

\[p^j p^j = S^j_{k'} p^{k'} S^j_{k'} p^{k'} = p^k (S^T)^j_{k'} S^j_{k'} p^{k'} = p^k (S^T S)_{k'} k' p^{k'} = g_{k' k'} p^k p^{k'} \]

where \(g_{k' k'} \) is the covariant double tensor called the fundamental metric tensor. \(g \) enables us to find invariants even though limiting ourselves to contravariant coordinates.

f) Calculate \(g_{k' k'} \) for the working example of this Excursion.

g) Show that \(g_{k' k} \) is symmetric, i.e., \(g_{k' k} = g_{k k'} \).

h) What is the contravariant fundamental metric tensor, \(g^{k' k} \)?

i) Show that \(g_{k' k} \) applied to any tensor with a contravariant index \(k' \) (or \(k \)) lowers that index, making it covariant. Hint: use \(p^j p^j = p_j p^j \).

At last, the “minor but significant point” I promised to illustrate back at the beginning of this Excursion when I introduced \(1/\sqrt{c+} \) as a normalizing factor in the example transformations.

j) Show that without that factor, \(S \) would transform \((1,0)\) and \((0,1)\) into vectors of the same length, 1. Then convince yourself that the scaling factor \(1/\sqrt{c+} = 1.13 \) increases the distance between the unit marks along the transformed axes in the diagram.

k) The vector product \(b^j x^j \) is not the only invariant. A constant, \(c \), is always invariant, of course. And so is the 2nd-order product \(g_{j k} x^j x^k \) above, as is, for \(a_{j k}, a_{j k} x^j x^k \).

These can be combined in a generalization of the quadratic equation for scalars \(ax^2 + bx + c \) to the general quadric

\[a_{j k} x^j x^k + b_j x^j + c \]

What are the interpretations that can be made of the general quadric, in the sense that the quadratic can be interpreted as a parabola or, in special cases, a straight line? (Classify all the possibilities in 2D. Look into 3D: what are planes? What are lines? Show that any matrix is the sum of a symmetric and an antisymmetric matrix: what contribution to \(a_{j k} x^j x^k \) is made by the antisymmetric part of \(a \)?)

l) Look up [McC57]: this Excursion prepares you for Parts I and II, where you can learn about classical geometry as an application of tensors. This is an older book but application-directed once you are over the initial hurdles—and you should now be prepared for these.

32. Look up H. S. M. Coxeter’s *Regular Polytopes* [Cox63] and use the interval algebra to construct higher-dimensional versions of the tetrahedron, cube and octahedron.
33. How might we use the interval algebra to describe a shear operation?

34. Look up William Kingdon Clifford, 1845–1879, and describe his role in creating the interval algebra. (It is really called the Clifford algebra, or sometimes the geometric algebra.)

35. Look up Josiah Willard Gibbs, 1839–1903, and his vector analysis.

36. Look up Sir William Rowan Hamilton, 1805–1865, and his “quaternions”. What mental block stumped him for a long time? How did he misinterpret what he invented, and how do quaternions relate to 3D interval algebra? (see [Alt92].)

37. How do the Pauli matrices (Week 6) relate to 3D interval algebra?

38. Why is the number of basic elements of \(d\)-dimensional interval algebra equal to \(2^d\)?

39. Survey the usage of the phrase “real world” and distinguish a legitimate usage from a put-down of academics.

40. Any part of the Preliminary Notes that needs working through.

References

