
CS++: Reinventing Computer Science (for Secondary Storage)

T. H. Merrett∗

McGill University, Montreal, Canada

March 11, 2005

Abstract

Secondary storage (”SS”) offers a significantly different memory organization from RAM,
which most of computer science is geared to support. This forces a revision of data structures
and algorithms on one hand and of programming language on the other. Algorithms become
simpler, but in the frequent situation that the data structure sizes exceed RAM capacity, even
polynomial complexity becomes intractable unless it is sub-quadratic. Languages are obliged
to abstract over looping, which presents opportunities for programming at a much higher level
than allowed by the “von Neumann bottleneck” that restricts most languages geared for RAM.

This paper describes the challenges of developing data structures and language which operate
at the level demanded by SS. We look at some benefits of abstracting over looping: enormous
reductions in code for building large systems, intrinsic parallelization, and easy incorporation
of the Internet. We note a diversity of SS applications, including expert systems, data mining,
and semistructured data, as well as conventional organizational management. We will see that
Computer Science SS also has benefits for ordinary RAM programming, and will touch on some
data structure ideas as illustration.

Keywords Algorithms, Data structures, Programming language, Secondary storage

1 Introduction

Four decades of research and commercialization have been dedicated to perfecting systems to sup-
port data which are large, persistent and shared. These are all characteristics of secondary storage.
The “++” in the title of this paper is intended to represent “SS”: CS-SS, computer science for
secondary storage.

Secondary storage serves this role because it is cheap. Prices have been falling for primary
memory (“RAM” or “random-access memory”), but SS prices have dropped faster. The technical
cost of this monetary economy per bit is that SS requires totally different data organization than
does RAM.

The central difference is “latency”, the time it takes to locate the data to be processed. What
is important is that this is a relative difference: it is relative to the time needed to process the data,
once found. This difference can be quantized by the access-transfer ratio, which is the number of
bytes that might have been processed during the time it took to locate the data for processing. An
ideal definition of RAM gives it an access-transfer ratio of 1. The typical SS access-transfer ratio
today is close to 1 million. (Remarkably, as SS technology improves, i.e., becomes cheaper, the
access-transfer ratio increases: fifteen years ago, it was closer to ten thousand.)

This degree of relative latency applies not only to SS but also to networks of computers. Even
RAM meets a small relative latency (in comparison with caches, for example), although this access-
transfer ratio is now only about ten. Thus, the experience of secondary storage research and
practice, which seriously encountered the problem first, is directly applicable in a much broader
domain.

∗Copyleft c©T. H. Merrett, 2005

1

The significant consequence of large relative latency is that data, once found, must be transferred
in considerable quantities, called “blocks” or “pages”, preferably of the order of the access-transfer
ratio itself, but certainly of thousands of bytes. This is entirely to reduce the per-byte overhead
of handling the data. It means immediately that, to avoid inefficiencies of the order of the access-
transfer ratio, or at least of the block size, data must be organized to be completely processed the
one time the block it is on is transferred to RAM.

This concern with data organization leads to data structures and algorithms which are unique
to SS. They often resemble their RAM cousins, but are costed differently, of course, in terms of
numbers of accesses rather than in terms of byte operations. They are often simpler than the
alternatives developed for RAM, only because of their more severe constraints. Thinking about
SS data structures also happens to have on occasion provided the key to RAM data structure
problems.

Data structure differences are reflected in programming language differences. The most im-
portant consequence of needing large blocks of data is that these force the language designer to
abstract over looping. Only thus can the programmer avoid writing code which would work fine
in RAM but would make the repeated accesses to the same block that must be avoided on SS.
This immediately moves an SS programming language to a much higher level of abstraction than
is found in “high-level” programming languages built for RAM.

Some of this higher level of abstraction is seen in database query languages, but they, while
suggestive, are limited to expressions of various kinds of logic. A programming language, on the
other hand, must support procedural abstraction, data abstraction, typing, recursion, and, yes,
even looping, among other capabilities.

This paper provides an overview of selected topics from data structures, databases, and pro-
gramming. The overview is deep in that, where we illustrate with code, we give the full code, but
superficial in that we do not attempt to teach the language in which the code is written. That would
take more space than we have, and is available elsewhere (notably [?]). What we do here is start a
number of topics, many of them major research areas with years of work already accomplished by
many workers. Our purpose is to show how these topics can be simplified and approached directly
through the above abstractions, which are fuelled by the demands of secondary storage. This is
the sense in which secondary storage has reinvented computer science.

The next section discusses four examples from algorithms and data structures for secondary
storage: variable multidimensional arrays; finding all substrings (in a genomics example); variable-
resolution maps; and lossless data compression. The third section looks at seven examples signifi-
cantly ameliorated by language supporting programming at a very high level: software engineering
of large projects made suddenly much smaller; automatic parallelization (of simple algorithms for
numerical linear algebra); an inference engine for an expert system; processing the datacube for
classification mining of data; dealing with marked-up text and semistructured data; and database
distribution via Internet.

2 Algorithms and Data Structures

Secondary storage forces us to think in terms of transferring large amounts of data and to make full
use of all this data, once transferred. We could show the simplifications to familiar algorithms and
data structures, such as sorting or hashing, which arise from this new thinking, but the following
four examples should make the point.

2.1 Variable multidimensional arrays

A problem which went unsolved until approached from the fresh perspective of secondary storage
is how to add new data to a multidimensional array, for example, a new row or column. For one
dimension, we just append the new data to the end of the array. For higher dimensions, since
the array still must be mapped to a one-dimensional set of storage addresses, the addition is more

2

problematical. Here is an example in two dimensions. (Two dimensions crack the problem: arrays
of more than two dimensions can be treated by a straightforward generalization.)

A Leontieff matrix of an economy is a good example where a fairly large amount of data is
represented as a two-dimensional array, which may need to be changed from time to time. Here is a
fictitious example in which Charles, Fred and Harry supply clothing, food and housing, respectively,
to themselves and the others, and which must be extended at a later date to accommodate Pete,
who provides power. (We show total earnings and total expenses for each of these agents, just to
illustrate which way the matrices are directed, although they are not part of the stored data.)

out\in C F H earned out\in C F H P earned

C 2 1 3 6 C 2 1 3 3 9

F 2 2 3 10 F 2 2 3 3 10

H 2 3 4 9 H 2 3 4 2 11

spent 6 6 10 P 1 3 5 1 10

spent 7 9 15 9

The original matrix might be stored in memory, in row-major order, as

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CC CF CH FC FF FH HC HF HH

in which CF represents the value in row C (Charlie) and column F (Fred), and so on.
The conventional representation of the matrix augmented by P (Pete), also in row-major order,

would be

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CC CF CH CP FC FF FH FP HC HF HH HP PC PF PH PP

but note the displacement of original elements FC, FF, FH, HC, HF, and HH by the new elements
CP and FP.

Instead of the formula a = i + 4j, which gives the address, a, in terms of row i and column j
for the second row-major representation, we can find an alternative which does not displace any
of the elements of the original. We do this by adding axial arrays which store base addresses for
each row and for each column, say rowbase(i) and colbase(j). These simply store the addresses,
respectively, for the 0th column and the 0th row. Then the element address for the expanded array
is the original address, a = i + 3j, for any original element, or

max(rowbase(i),colbase(j)) + the other one, i or j
for the new elements.

This approach comes from a problem in secondary-storage data representation in multiple di-
mensions in which the array elements are pages which cluster data in, say, two dimensions, but
store to a one-dimensional addressing scheme. For such pages, we already have axial arrays, which
index the data on the pages for fast retrieval. It is an easy step from here to rowbase, colbase, and
so on.

The approach works because we can think of the array being built up by adding “slabs” of
elements to each face. These additions have a history, and the history is captured by rowbase and
colbase. Here for our example is the extended Leontieff matrix, in which column 3 was added first,
starting at address 9, and then row 3 was added, starting at address 12.

0 0 0 1 2 9
1 3 3 4 5 10
2 6 6 7 8 11
3 12 12 13 14 15

 0 1 2 9
 j 0 1 2 3
i

3

In this illustration, rowbase is the column of numbers, 0, 3, 6, 12, beside the column of i
indices, colbase is the row of numbers, 0, 1, 2, 9, below the row of j indices and the numbers
in the boxes are the addresses of the elements. The boxes give the history if we stipulate that the
array must be rectangular at every stage. The illustration shows the original 3-by-3 matrix and
only two stages of addition. In fact, the whole matrix could be grown from a 1-by-1 by a succession
of stages, and we could dispense with the row-major addressing altogether. Furthermore, a third
dimension could be added and its growth captured by a third axial array, and so on for any number
of dimensions. References: [?, ?].

2.2 Finding all substrings

To find all substrings of a sequence of n characters effectively requires a search of O(\∈) characters,
namely the original n characters plus n− 1 characters starting at the second, n− 2 starting at the
third, and so on. A basis for such searches was proposed in 1968 [?], building on the “trie” structure
introduced nine years earlier [?]. Tries make possible both sublinear search time for substrings and
massive data compression, but both these advantages required that tries be exploited for secondary
storage.

Trie methods have been used with great success for data in the form of text, but it is currently
topical to consider an example from genomics. Here are 16 base letters from the Mycobacterium
tuberculosis genome, starting at codon 729.

atgtcatatgtgatcg

Here, a and g stand for the purines, adenine and guanine, respectively, and c and t stand for the
pyrimidines, cytosine and thymine, respectively: these bases occur in DNA in pairs, at and gc,
and we have shown only one side of the above DNA fragment. For various reasons, we will encode
these four letters in binary as a = 00, c = 01, g = 10 and t = 11.

With this encoding, atgtcatatgtgatcg occupies 32 bits, and the 16×17/2 = 136 letters rep-
resenting every possible starting point in this string require 272 bits. Here is a trie representation
which requires only 174 bits.

11

11 11

111111

11 11 11 11

11

11

01

01

01

11

11 11

10

1001

01

(a) (c) (g) (t)

(t) (t)(c) (c)(a) (g)

(g)

(t)

(t)

01
(c)(a)

4

The 174 bits include the original string and the following 142 bits (shown without breaks).

11111101111111010001000011101101111011001011001111110001101111111000001
00010010000110011010010100100010100110001110100000100100011000000000111

These are easier to explain laid out as follows,
11
11 11
01 11 11 11
01 000100 001110 11 01 11 10 4,14
11 001011 001111 11 000110 11 11 11,15,6
11 10 000010 001001 000011 001101 001010 01 2,9,3,13
000101 001100 01 11 5,12
01 000001 001000 1,8
11
000000 000111 0,7

where the six-bit groups are also shown translated into decimal.
These 16 six-bit groups are 00 followed by the locations in the original string of each of the

16 substrings that run from some intermediate address all the way to the end of the string. The
two-bit groups represent the nodes of the trie: 11 for a node with two descendents, 01 for a node
with only a right descendent, and 10 for a node with only a left descendent. The trie encodes
bitstrings by the simple rule: 0 means go left; 1 means go right. Thus we see that a path of two
left edges represents 00 or a, a path of a left then a right edge means 01 or c, and so on.

Thus if we are searching for the substring ca = 0100, we follow the trie branching left, right,
left, .. and we would branch left after this except the trie ends at address 4, so we look that up in
the original string and find the substring catatgtgatcg, which starts with ca as requested.

Any such search can be carried out (with a little bookkeeping to do what our eyes do to follow
the trie) on the 142 bits we first showed above. Everything so far would work fine in RAM, but there
is a problem: the search on the 142 bits is linear, not sublinear. Secondary storage comes to the
rescue by breaking the trie into pages, in a manner we have no space to show here, and recording a
synopsis of the bookkeeping, in two additional integers per page. This allows the search to descend
a path in a tree of pages without considering any other pages on the same level: the linear search
has become logarithmic in the size of the trie, and so O(log \) in cost. Reference: [?].

2.3 Variable-resolution maps

It is sometimes preferable to store all the data in the trie, rather than using the trie just as an
index to the data. Since a trie node in the above representation needs two bits, the lower parts of
the trie, which may be simple paths without bifurcation, can be twice as expensive to store this
way than just storing the single bits of the original data. So some compression is lost. But there
are compensating advantages, particularly when the data is fixed-length.

Here is a trie representation of a simple diagram, which could be a map in a geographical
information system.

5

1

2

3

4

7

6

1

3

2

4
5

2 3 6 7 5 4 1

This trie is a “kd-trie”, representing data of more than one dimension by cycling the dimension
as we descend the levels of the trie. The root node of the trie, since it discriminates whether the
first bit is 0 or 1, splits the data space in half. We can chose this split to be on x, falling between
small x-values and large x-values. The next level down splits these subspaces in half in turn, and,
in a kd-trie, we could choose these splits to fall between small y-values and large y-values.

In the diagram shown, what is represented are not 2-D points, but 2-D edges. An edge has four
coordinates, two for each end-point, and is thus a four-dimensional object. The kd-trie shown is
indeed a 4d-trie, the first level for the x-coordinate of one endpoint, the second for the y-coordinate
of that endpoint, and the third and fourth for the x and y-coordinates, respectively, of the other
endpoint. In this illustration, each coordinate uses three bits, so full resolution is the diagram on
the 8-by-8 grid shown on the right, with seven edges corresponding to the seven branches of the
trie.

If we truncate the trie to two bits per coordinate, i.e., eight node levels, we see only five branches.
These correspond to four edges and a single point into which the last three edges have coalesced.
If we truncate to one bit, the diagram becomes the smallest one shown, on a two-by-two grid: the
trie has four branches, but the two endpoints of edge 2 coincide so it disappears.

Since on secondary storage the trie is paged, as we discussed in the previous section, truncating
it means that we simply do not fetch certain pages from secondary storage. This means that, if
we wish to display only an overview of a large diagram such as a map, we do not need to transfer
all the data and then filter it to the resolution offered by the display. Instead we fetch only the
relevant pages.

For maps and similar diagrams, the trie structure thus allows variable resolution in addition to
the ability to display only certain ranges of the map. The left map, below, shows a whole region at
low resolutions, while the right map shows the bottom left corner of this region at higher resolution.
Using this technique, we could store the whole 1:50,000 topographic series for Canada in a couple
of gigabytes, and yet never transfer more than the megabyte or so of data needed for most displays,
either to show the whole country in outline or to show smaller parts at appropriate levels of detail.
The technique is also useful in transferring images across the Internet, presenting the recipient with
an overview first, then increasing the resolution as more transmission time elapses. Reference: [?].

6

2.4 Data Compression

Because tries, of both sorts discussed in the previous two sections, enable the different data to
share storage, they compress the data as we mentioned. Here is a simple argument giving an upper
bound of 1 − 2/lg n to this compression, where n is the number of bits in each data item (which
we assume to be fixed in length).

If the trie is h = lg n levels of nodes high, it has up to 2h branches, which represent 2h data
items of h bits each. These would occupy h × 2h bits in raw form. As a trie, this data occupy
2h − 1 nodes, and with two bits per node, as above, the trie needs 2(2h − 1) bits. This is a factor
2/h = 2/ lg n smaller. As a percentage, the compression is, for various file sizes

n 103 106 109 1012

2/lg n 1/5 1/10 1/15 1/20
lossless compression 80% 90% 93% 95%

Experimentally, the result is not far from this simplistic upper bound:

number of records

st
or

ag
e

co
ns

um
pt

io
n/

 s
iz

e
of

 s
ou

rc
e

fil
e

compression ratio vs. #records

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10 -2

10 -1

10 0

10 1

trie method
trie method (map data)

These and other experimental results can be found in [?].

7

3 Programming Language Principles

The previous four examples are ways in which secondary-storage considerations have led to the
solution of outstanding problems or have had other beneficial side-effects. These solutions and
benefits might have happened without thinking in terms of transferring large amounts of data,
although they mostly did not.

in the realm of programming, secondary storage obliges us to abstract over looping, and this
introduces a much higher level of thinking than is usual. Here are seven examples of the benefits.

3.1 Software engineering

High in the list of challenges faced by software engineering are effective development of the product
and maintainability of the result. Both of these challenges would be ameliorated by reducing the
size of software. If very much higher-order primitives were available and effective for a wide range
of tasks, the number of lines of code would be substantially reduced and the tasks of software
building and maintenance become easier. Secondary-storage considerations give us these higher-
order primitives.

The system diagram of a moderately-sized enterprise might be several times more extensive
than the following, in which each little hexagon represents a program of thousands of lines of code.

Manufacturing Costs Subsystem

...

...

SALARY TEAMS ROUTING FIXED ASSETS

LABCOST

BASIC COSTS

B.O.M.

CONSTITUENTS

FINAL COSTS PRICE

ORDLINEPART PROFIT

ORDERANALORDERS

EQUIPCOST PRODUCTION RMCOST

What we might like to do with this is represented by this symbolic extension of the part shown
above in the dashed box:

8

SALARY TEAMS ROUTING FIXED ASSETS

LABCOST EQUIPCOST PRODUCTION RMCOST

EQUIPCOST (ROUTING FIXED ASSETS)

LABCOST SALARY TEAMS ROUTING

In the diagram part, the hexagons have been replaced by combinations of a small number of
operators distinguished by their shapes: binary operators (two inputs and one output) are shown as
circles; unary operators (one input and one output) are five-sided polygons in different orientations.

The upper two lines above give the same structure as the diagram, but in the form of statements
built up of expressions. The effect is to turn one program into two binary operators and a second
program into an expression with two unary and one binary operator. If we can devise a small set
of different operators of sufficient flexibility to support the whole enterprise, then whole programs
can be replaced by expressions or a few high-level statements.

The operators shown are indeed the selection/projection and the joins of the relational algebra
[?, ?].

3.2 Parallel algorithms

In addition to simplifying system construction by reducing program size, the abstraction over
looping offered by high-level programming operators simplifies parallelization. Here is a schematic
for matrix multiplication, which normally requires three loops nested inside each other.

!

!

!

i
j

j
k

BA

In fact, each of these loops can be performed in any order, and so they are shown with a →!←
label. If the code for matrix multiplication were written in a low-level language such as Java or
C++, the loops would be explicit and a clever compiler would be needed to “parallelize” the code
for running on multiple processors. This parallelization would undo the order explicitly specified
by the programmer who wrote the loops.

9

In a language which abstracts over looping, no order is ever specified. Here is matrix multipli-
cation code for matrices represented as relations, A(i, j, a) and B(j, k, b).

let ab be equiv + of a× b by i, k;
AB <−[i, k,ab] in (A natjoin B);

The second line is relational algebra, which takes the natural join of A and B, then projects the
result on i, k and a calculated attribute, ab. The first line is “domain algebra”, which calculates ab
as a sum of a× b over j (i.e., grouped by i and k).

The domain algebra is orthogonal to the relational algebra, in a way which has recently become
familiar through “aspect-oriented” programming but is more precise: domain algebra operations
are carried out independently of any relation and this independence is an important vehicle to save
intellectual work. The domain and relational algebras are orthogonal aspects of secondary-storage
programming. Statements of the domain algebra are syntactically differentiated from relational
algebra statements by the let construct.

Note that no loop constructs are needed in the matrix multiplication example, because all three
loops are order-independent. Gaussian elimination provides a more subtle example, in which one
loop in each step (triangulation and back-substitution) must be ordered. These loops must be
explicit in the code, while the loops nested within them (two for triangularization and one for
back-substitution) have no preferred order and may be implicit.

!
!

!

!

!

0
0
0 0

0
0 X

Back−substitutionTriangularization

Here is the code, where A[i, j] includes the matrices A and B (in its last column) for the equation
AX = B.

Triangularization
let a′ be a; let a′′ be a;
for row <− 1 to [red max of i] in A
{ A′ <−[j, a′] where i=row and j >row in A;

A′′ <−[i, a′′]where j=row and i >row in A;
let aa be (a′ × a′′)/A[row,row];
update A delete where i >row and j ≤row in A;
update A change a <− if i ≤row then a else a−aa using [i, j, aa]

in (A′′ natjoin A′)
}

The first two lines in the loop pick out the current row and column. The first update set to zero the
column below the diagonal. The second update modifies all the other elements below the current
row, hence incorporating the two inner loops.

Back-substitution
relation X(j, x);
let ax be equiv + of a× x by j;
for row <− [red max of i] in A to 1 by −1
{ AX <− [ax] in (A natjoin X);

10

let x be (X[row,red max of i + 1] − ax)/A[row,row];
let j be row;
update X add [j, x] in AX

}
The loop repeatedly takes the natural join of X with the current row, and this incorporates the
inner loop.

3.3 Expert systems

A language, motivated by the bulk processing which secondary storage requires, does not abstract
over all loops but judiciously over certain loops. The Gaussian elimination example showed explicit
looping where the order of evaluation needed to be controlled by the programmer. Recursion is a
powerful alternative to explicit loops.

A classical Prolog-like example defines an ancestor to be a parent or the parent of an ancestor.
The relation ancestor(Sr, Jr) is derived from the relation parent(Sr, Jr):

ancestor is parent union parent[Jr natcomp Sr]ancestor;
The is “assignment” implements the view mechanism of databases, which in this case happens to
be a recursive view: ancestor is defined in terms of itself.

A similar construct gives a one-line inference engine.
NewFacts is Facts union [Concl] in (NewFacts[Concl ⊇ Ante]Horn)

This applies to the Horn clauses, Horn(Rule#,Ante,Concl), and the initial facts, Facts(Concl). A
simple example successively deduces that the animal being examined is a bird and then that it is
a duck:

[New]Facts Horn
(Concl) (Rule# Ante Concl)
lays eggs 1 lays eggs is bird
has feathers 1 has feathers is bird
swims 2 flies is bird
—— 2 is not mammal is bird
is bird 3 is bird is duck
—— 3 swims is duck
is duck 3 is brown is duck

4 is bird is duck
4 swims is duck
4 is green is duck
4 is red is duck
5 is duck migrates
5 is not tame migrates

Reference [?] expands this one-line inference engine to fifty, in a 200-line expert system shell,
which emulates a couple of commercial expert systems and adds some useful features.

3.4 Bill of materials

Including domain algebra adds still more power to the recursive relational algebra, and the inde-
pendence of the two formalisms from each other make the thinking particularly straightforward.
Here is a bill of materials example which needs a couple of pages of code in textbook Prolog, a
language with much higher-level abstractions than popular imperative languages.

A bill of materials is a description of a manufactured product in terms of its components, such
as the wallplug shown. Typical bill-of-material processing would find out from this description total
quantities of raw materials, for instance that the wallplug needs four screws and four connectors.

11

connector mould

2

plug

cover

screw

fixture

wallplug

platescrew

2
2

2

We can represent the bill of materials by PartOf (A, S, Q), standing for assembly, subassembly
and quantity, respectively, and containing tuples such as (plug, connector, 2) and (fixture,
plug, 2). The code must find the transitive closure of the tree or DAG, which relational algebra
recursion does as for ancestor and NewFacts, above. It must also calculate the cumulative quantities
while doing the recursion, and this can be expressed orthogonally in the domain algebra.

let A′ be A; let S′ be S; let Q′ be Q;
let Q′′ be equiv + of Q×Q′ by A, S′;
let Q′′′ be Q + Q′′; let Q be Q′′′;
Explo is [A, S, Q] in [A, S, Q′′′] in (PartOf [A, S union A, S ′]

[A, S′, Q′′] in (Explo [S natjoin A′] [A′, S′, Q′] in PartOf));

3.5 Object-orientation

The most important idea behind object-oriented programming is instantiation. “Objects” are
encapsulated states with associated code, and instantiation is a programming abstraction which
creates instances from a template “class”. In low-level languages, this is done one object at a time
by an explicit operator, usually new. In a language motivated by secondary storage we abstract
from individual objects to the class as a whole, just as we abstract from individual tuples, or
records, to the relation as a whole. Thus we must be able to instantiate many objects at once.
Here is how we can do this with a join operator.

The example is a bank account class, modelled as a persistent first-class procedure [?] (the
procedure itself persists on secondary storage, so that it can serve as a library, common to many
programs; procedures are first-class data types, meaning in particular that they can be returned as
parameters, so procedures serve as “methods” as well as as the class).

proc bankAccount (Balance, Deposit) is
state BAL intg

12

{ proc Deposit(dep) is
{ BAL <− BAL + dep};
proc Balance(bal) is
{ bal <− BAL;
BAL <− 0

}
Here, Deposit and Balance are the two methods of the class bankAccount, which has BAL as

its state, initialized to zero. Since BAL must be instantiated for every account, we have a set of
accounts.

relation accts(acctno, client) <− {(1729, "Pat"),(4104, "Jan")};
We instantiate by joining the class, bankAccount, with the accts relation,

Accounts <− accts natjoin bankAccount;
giving a new relation with a hidden attribute, BAL.

(accno client Balance Deposit [BAL])
1729 Pat [0]
4104 Jan [0]

Note that the join produces a result, as always, whose attributes are the union of the attribute
sets of its operands: Balance and Deposit are constant attributes, having the same value for every
tuple, and this value is their respective representations as methods.

Since BAL is hidden (and so shown as [BAL]), we can access it only through the methods. Here
is how we update Jan’s BAL by depositing 100$.

update Accounts change Deposit(100) using where acctno=4104;
Reference: [?].

Inheritance is a second object-oriented idea: given classes, which instantiate to sets of objects,
we may want to consider subsets with special properties. Here is a class of interest-bearing accounts
which we will make a subclass of bankAccount and which thus will inherit its methods.

proc interest(Interest) is
state BAL intg;
{ proc Interest(int) is
{ BAL <− BAL × (1 + int/100.0)};

}
(We repeat the declaration of BAL because it is needed syntactically and, unconventionally, we
have not specified the inheritance yet.)

We define intaccts as a subset of accts and we instantiate interest on intaccts in the same way
as before.

relation intaccts (acctno, intrate) <− {(4104, 3)};
InterestAccounts <− intaccts natjoin interest;

Then we introduce a new keyword (the only new keyword in the whole treatment of object
orientation) to specify the inheritance.

InterestAccounts isa Accounts;
(This keyword, isa, is implemented as a join, and says merely that any future reference to Inter-
estAccounts will be taken to mean InterestAccounts natjoin Accounts.)

Finally, the bank can calculate and apply the interest for all interest-bearing accounts.
update InterestAccounts change Interest(3) using intaccts;

This gives

(accno client intrate Balance Deposit Interest [BAL])
1729 Pat − − [0]
4104 Jan 3 [103]

13

3.6 Data mining

Classification data mining uses “training data” to build a “theory” which can subsequently be used
to classify any unanticipated input. For instance, we might want to learn from set of example
weather conditions when it is a good idea to pick cotton: rainy, still days are good, independent
of whether the temperature is hot or mild; sunny, humid and windy days are not good; and so on
through a number of samples shown below.

Training
(Outlook Humidity Windy N P)
sunny high f 2 0
sunny high t 1 0
sunny normal f 0 1
sunny normal t 0 1

overcast high f 0 1
overcast high t 0 1
overcast normal f 0 1
overcast normal t 0 1

rain high f 0 1
rain high t 1 0
rain normal f 0 2
rain normal t 1 0

(The N and P are negative and positive evaluations of the conditions—no evaluation can be
both—and the 2 entries are in tuples that represent two samples in which temperature, not shown,
is either high or mild. Since these pairs of samples have outcomes independent of temperature, the
temperature does not figure in the final theory.)

This training data is a classic example illustrating “decision tree” theories, which are grown
from decision nodes that minimize information, i.e., surprise, at each step. We do not build such a
tree here but discuss the basic construct needed to build it, the “datacube”.

The datacube for this training data summarizes the N, P pairs in three dimensions, one for the
Outlook attribute, one for Humidity, and one for Windy. The twelve training tuples shown give a
3× 2× 2 array of pairs, shown to the left below.

3,0 0,2 1,1
0,2 0,2 1,2

1,0 0,1 1,0
0,1 0,1 1,0

0,1 0,1 0,2
2,0 0,1 0,1

2

2,1 0,2 0,3 2,6
1,1 0,2 2,0 3,3 2

4,
,

,
, ,

,

6

2

4
3,2 0,4 2,3 5,9

1

1

2
1

3
0

Outlook

Windy

Humidity

S O R

N
H

F

T

The right of the picture shows the aggregates that are needed to compute the information that
the decision tree will minimize. These form faces to the datacube, as we sum the numbers in the
N, P pairs along each of the three dimensions.

For this special case, it is easy to use the domain algebra to calculate the datacube in a single
loop over the three dimensions. (The inventor of the relational algebra said that such processing was
not intended for database systems, and coined the term “OLAP” (on-line analytical processing) to

14

separate such transcendental operations from ordinary, transaction processing. But he was thinking
of SQL-like query languages, not of a secondary-storage programming language.) To construct and
process general datacubes, with arbitrary attributes in any number of dimensions, we need new
capabilities in the form of attribute metadata. Here is the code, including such syntax, for building
a general datacube.

let N be totN ;
let P be totP ;
domain attr attribute ;
relation AllAttribs(attr) <− AttribsOf Training ;

//Outlook, Humidity, Windy, N, P
relation ClassAttribs(attr) <− {(N), (P)} ;
relation TotAttribs(attr) <− {(totN), (totP)} ;
PropAttribs <− AllAttribs diff ClassAttribs ;
LoopAttribs <− PropAttribs ;
while [] in LoopAttribs
{ Attrib <− pick LoopAttribs ;

update LoopAttribs delete Attrib ;
let eval Attrib be "ANY" ;
let totN be equiv + of N by (PropAttribs diff Attrib);
let totP be equiv + of P by (PropAttribs diff Attrib);
update Training add [AllAttribs] in

[PropAttribs diff Attrib union TotAttribs] in Training ;
}

This code adds tuples to Training with the placeholder "ANY" marking the attribute(s) that
have been aggregated. The metadata syntax allows expressions, on unary relations on an attribute
of type attribute, to be used where constant attribute lists were used before.

From this datacube, the decision tree analysis is easily done. In addition, simpler special-case
classification methods, such as “one-rule” and Bayesian, also follow from the datacube. Reference:
[?].

3.7 Semistructured data

The eXtensible Markup Language, XML, is the best-known embodiment of semistructured data.
Semistructured data is more flexible than data usually represented by flat relations with their
fixed attributes. Semistructured systems support, among other things, indefinite nesting, optional,
multiple and alternative attributes, internal linking, and even alternative types. It does this by
embedding the schema, which describes the data, into the data itself. It is not true, however,
that semistructured data cannot be fully represented or processed relationally. There is, indeed,
considerable advantage to doing so, because it includes semistructured data under the same terms
as all other kinds of data, so all forms of data can be integrated within one framework.

We start with a marked-up text in a format which is even more flexible than XML: it allows text
outside the tags in addition to tagged values. (This format could be called xML, with x standing
for G, SG, HT, X, etc., all the related kinds of markup language.)

<Person>
<Name>Ted</Name> married
<Family><Conj>Alice</Conj> in
<Wed>1932</Wed>. Their children,
<Children><Name>Mary</Name> (<DoB>1934</DoB>) married

<Family><Conj>Alex</Conj> in <Wed>1954</Wed>
:

</Family>

15

:
</Children>

</Family>
</Person>

This is a partial display of the following text, the rest of whose markup is self-evident.

Ted married Alice in 1932. Their children, Mary (1934) married Alex in 1954 (Joe was
born to Mary and Alex in 1956) and James (1935) married Jane in 1960 (James and
Jane had Tom in 1961 and Sue in 1962).

For now, we ignore the text outside the tags, collapsing the present discussion to conventional
XML. We wish to convert the marked-up text to a relation, one which is not only nested but
recursively nested.

PERSON
(Name FAMILY)

(Conj Wed CHILDREN)
(DoB Name FAMILY)

(Conj Wed CHILDREN)
(DoB Name)

Ted Alice 1932 1934 Mary Alex 1954 1956 Joe
1935 James Jane 1960 1961 Tom

1962 Sue

The code to make this conversion involves a new operator, mu2nest, which works at only one
level of nesting. To complete the conversion, we introduce recursion into the domain algebra.

let FAMILY be [Conj, Wed, CHILDREN] mu2nest Family;
let CHILDREN be [DoB, Name, FAMILY] mu2nest Children;
PERSON <− [Name, FAMILY] mu2nest Person;

(This example actually involves mutual recursion between FAMILY and CHILDREN.)
The self-reference must always be one level down. Thus FAMILY refers to CHILDREN as an

attribute, and CHILDREN refers to FAMILY as an attribute.
Such recursive domain algebra can be used for queries, with no new syntax. But it is handy

to have a syntactic sugar for the common special cases. This takes the form of path expressions
linking relations with their attributes down the nested structure. The following example queries
show simple paths, paths using regular-expression operators, and paths in the condition of a where
clause.

PERSON/Name Ted
PERSON/FAMILY/CHILDREN/Name Mary, James
PERSON/FAMILY/CHILDREN/FAMILY/CHILDREN/Name Joe, Tom, Sue
PERSON/(./)*Name Ted, Mary, James, Joe, Tom, Sue
Name where FAMILY/Conj="Alice" in PERSON Ted

The first query is a projection, since Name is a simple attribute. The second and third queries
collapse three and five levels respectively. The fourth query uses the Kleene star to express recursion:
it returns the union of all levels that contain the Name attribute. The fifth query uses the same
path-expression syntactic sugar with a different meaning: the selection condition is raised from a
lower level. Reference: [?].

3.8 Databases distributed by Internet

The same path-expression syntax we have just introduced can be used in a completely different
setting to link multidatabases (on one host) and distributed databases (on different hosts, connected

16

by Internet). For both, this provides a kind of assembler language which does not address the central
issues of transparency, etc., but simply offers a naming convention to make reference to database
resources at various locations.

The protocol, which could be called the aldat protocol, aldatp, mimics HTTP by designating
special directories to hold publically-accessible database resources, including relations and persistent
procedures. Here is a sketch of directories on two hosts, mimi and willy, with two owners, Jan and
Pat, and database elements, Ei and Fi, which are either public or private.

mimi willy

public_aldatp

E1

~jan

public_aldatp privB

E2 pubA E4 F4

public_aldatp

E5

~pat

public_aldatp privD

E6 pubC

E7 F7

E8 F8

E3 F3

Any resource in the current directory of a database system may be referred to simply by its
name. Any resource elsewhere requires the extended name, beginning with the protocol header,
aldatp://. This naming convention is universal, and will locate any element which the operating
system permissions allow.

F4 <− aldatp://mimi/∼jan/pubA/E3;
aldatp://mimi/∼jan/pubA/F3 <− E2;
aldatp://willy/∼pat/pubC/{F7 <− E7};

The first statement is executed from Jan’s private directory, privB, and assigns to F4 the value
of E3 in Jan’s public directory, pubA, under Jan’s special aldatp directory, public aldatp. Like
public http, this directory is not named in the query, but provides an effective root directory for
aldatp access.

The second statement runs in Jan’s public aldatp directory, and copies E3 in Jan’s public di-
rectory, pubA. The third statement can run anywhere, and executes an assignment in Pat’s public
directory, pubC.

To come closer to the flavour of distributed databases, here is a semijoin to join E3(A, B) in
Jan’s pubA with E7 (B, C) in Pat’s pubC, where the statement is being executed. Note how the
statement reaches over to Jan’s pubA to get E3, then reaches back to Pat’s pubC to project and
get E7 for the first join. The second join with the full E7 is the last operation, performed locally
in pubC.

{aldatp://mimi/∼jan/pubA/{E3 natjoin
aldatp://willy/∼pat/pubC/{[B] in E7}} natjoin E7

Reference: [?]

4 Conclusion

Secondary storage differs from primary memory by requiring orders of magnitude greater seek time
than retrieval time, which in turn requires data to be stored and transferred in large blocks. For
storage and processing data structures and algorithms, this imposes strong use-all constraints to
avoid re-fetching the same block. For programming language, it imposes abstraction over looping,
which raises the level of programming significantly above the level of common languages.

17

We have shown many areas of computer science which are simplified by this new thinking: object
orientation, parallel programming, artificial intelligence and networking, among others. We have
shown simplification in a sample of applications: numerical analysis, bioinformatics, geographical
information systems, and semistructured systems, among others.

We have not discussed many other areas, such as event programming and concurrency (which
are not the same thing). Future work involves locating where further new insights are most likely
to arise. This includes areas which we reckon can be reduced to the approach in this paper but do
not yet know exactly how. In rough order of decreasing certainty, these areas might include: data
visualization and what might be called “relational graphics” (which we are currently working on);
constraint databases; peer-to-peer cooperative work; and agent programming.

5 Acknowledgements

We are indebted to the Natural Science and Engineering Research Council of Canada for support
under grant OGP0004365. The Quebec and Canadian taxpayers have covered salaries, grants and
scholarships. Over 100 graduate supervisees have done the work, funded by many private sources
as well as public.

18

