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Abstract. We completely describe the structure of the connected compo-
nents of transversals to a collectionefine segments iR3. With few
exceptions the components consist of zero, one or two isolated lines. We
catalog the exceptional cases and showthat 3 arbitrary line segments

in R? may admit up to» connected components of line transversals, and
that this bound can be achieved only in certain configurations when the
segments are coplanar, or they all lie on a hyperboloid of one sheet. This
implies an upper bound of on the number of geometric permutations of
line segments ifR3.

1 Introduction

A k-transversal to a family of convex setsif is an affine subspace of dimension

k (e.g. a point, line, plane, or hyperplane) that intersects every member of the family.
Goodman, Pollack, and Wenger [12] and Wenger [25] provide two extensive surveys
of the rich subject of geometric transversal theory. In this paper, we are interested in
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1-transversals (also called line transversals, or simply transversals) to line segments.
In R?, this question was studied in the 1980’s by Edelsbrunner et al. [10]: they proved
that the set of transversalsitdine segments consists of upitaconnected components
which can be computed ifi(n log n) time and which have total description complexity
O(n). Here we study the subject .

We address the following basic question: What is the cardinality and geometry
of the set of transversals to an arbitrary collectiomdine segments ilR3? Here a
segment may be open, semi-open, or closed, and it may degenerate to a point; segments
may intersect or even overlap. Since a lineHiA has four degrees of freedom, it
can intersect at most four lines or line segments in generic position. Conversely, it
is well-known that four lines or line segments in generic position admit zero or two
transversals; moreover, four arbitrary linesRA admit zero, one, two, or infinitely
many transversals [13, p. 164]. In contrast, our work shows that four arbitrary line
segmentadmit up to four or infinitely many transversals.

Our interest in line transversals to segment®&inis motivated by visibility prob-
lems. In computer graphics and robotics, scenes are often represented as unions of not
necessarily disjoint polygonal or polyhedral objects. The objects that can be seen in a
particular direction from a moving viewpoint may change when the line of sight be-
comes tangent to one or more objects in the scene. Since the line of sight then becomes
a transversal to a subset of the edges of the polygons and polyhedra representing the
scene, questions about transversals to segments arise very naturally in this context.

As an example, the visibility complex [8, 20] and its visibility skeleton [7] are data
structures that encode visibility information of a scene; an edge of these structures
corresponds to a set of segments lying in line transversals to oetges of the
scene. Generically ilR3, k is equal to three. In degenerate configurations, however,

k can be arbitrarily large. Such degenerate configurations can arise, for instance in
architectural scenes which frequently contain many coplanar edges. It is thus essential
for computing these data structures to characterize and compute the transveksals to
segments iR3. Also, to bound the size of the visibility complex one needs to bound
the number of connected components of transversdisatbitrary line segments. The
present paper establishes the actual bound.

As mentioned above, in the context of 3D visibility, lines tangent to objects are
more relevant than transversals; lines tangent to a polygon or polyhedron along an
edge happen to be transversals to this edge. (For bounds on the space of transversals
to convex polyhedra ilR? see [19].) The literature related to lines tangent to objects
falls into two categories. The one closest to our work deals with characterizing the
degenerate configurations of curved objects with respect to tangent lines. MacDonald,
Pach, and Theobald [16] give a complete description of the set of lines tangent to four
unit balls inR3. Megyesi, Sottile, and Theobald [18] describe the set of lines meeting
two lines and tangent to two spheresiii, or tangent to two quadrics iF®. Megyesi
and Sottile [17] describe the set of lines meeting one line and tangent to two or three
spheres iR3. A nice survey of these results can be found in [23].

The other category of results deals with lines tangerit &mongr objects inR3.

For polyhedral objects, de Berg, Everett, and Guibas [3] shovecha) lower bound
on the number of free (i.e., non-occluded by the interior of any object) lines tangent
to four amongn disjoint homothetic convex polyhedra. @mimann et al. [4] showed



that, under a certain general position assumption, the number of lines tangent to four
amongk bounded disjoint convex polyhedra of total complexitys O(n2k?). For
curved objects, Devillers et al. [6] presented a siniple?) lower bound on the num-
ber of free maximal segments tangent to four amonmit balls, and give a bound of
(n?) (due to Devillers and Ramos) fararbitrarily sized balls. Agarwal, Aronov, and
Sharir [1] showed an upper bound ©f»3+¢) on the complexity of the space of line
transversals ta balls; recently, with Koltun, they showed that the same upper bound
holds for the complexity of the set of lines that do not intersetialls [2]. Durand

et al. [8] showed an upper bound 6f»%/3) on the expected number of possibly oc-
cluded lines tangent to four amomnguniformly distributed unit balls. Under the same
model, Devillers et al. [6] recently showed a bounddifz) on the expected number

of maximal free line segments tangent to four amerizalls.

A topic closely related to line transversals is that of geometric permutations. A
geometric permutatioof pairwise disjoint convex objects iR¢ is an ordering of the
objects (or its reverse) such that the objects are met in that order by a line transver-
sal. Worst-case bounds for general convex objects are knwn: 2 is tight in two
dimensions [11], while in any dimension the best known bounds(dre—1) [14]
andO(n2?-2) [24]. The gap was closed for spheres by Smorodinsky et al. [22], who
showed that: spheres irfR? admit up to®(n?—!) geometric permutations, and the
same bound was also shown true for “fat” objects [15]. Recently, Cheong et al. [5] im-
proved the known bounds for congruent balls, by showing#haalls of same radius
admit at most two geometric permutationsif: 9, and three foB < n < 8.

2 Ourresults

We say that two transversals to a collection of line segments are in thecesnmected
componentf and only if one of the transversals can be continuously moved into the
other while remaining a transversalli¥ to the collection of line segments. (For the
sets of line transversals considered here, the notions of connected and path-connected
components are equivalent since all sets are semi-algebraic.) Equivalently, the two
points in line space (e.g., inRker space [21]) corresponding to the two transversals
are in the same connected component of the set of points corresponding to all the
transversals ifR? to the collection of line segments.

Our main result is the following theorem.

Theorem 1 A collection ofn > 3 arbitrary line segments iflR? admits any number

from O ton of connected components of line transversals. More precisely, the set of
line transversals consists of at most two isolated lines unless the segments lie in one of
the following configurations:

1. then segments are all contained in lines of one ruling of (a) a hyperbolic paraboloid
or (b) a hyperboloid of one sheet, or
2. they are all concurrent, or

3. they all lie in a plane, with the possible exception of a group of one or more
segments that all meet that plane at the same point.



In cases 1(a) and 2, the transversals form at most one connected component. In cases
1(b) and 3, the transversals can have any humber fromOdfbconnected components.
Moreover, in case 3, if all segments are not coplanar, this number is atimest.

In cases 1-3, each connected component can consist of infinitely many lines or re-
duce to an isolated line. For example, three segments forming a triangle and a fourth
segment intersecting the interior of the triangle in one point have exactly three transver-
sals (Figure 2b shows a similar example with infinitely many transversals). Also, the
four segments in Figure 1 can be shortened so that the four connected components of
transversals reduce to four isolated transversals.

A trivial consequence of our theorem is the following bound on the number of
geometric permutations ef segments ifR3.

Corollary 2 A set of pariwise disjoint > 3 segments iflR? admits up to» geometric
permutations and this bound is tight.

Proof. By the theorem above;, segments ifR? admit up ton connected components

of line transversals. Within a connected component, the lines transversals must inter-
sect the segments in the same order, otherwise by the intermediate value theorem there
would exist a line in that component where two objects would intersect somewhere on
that line, a contradiction. Hence the upper bound. The lower bound is proven by the
configuration of Figure 1 generalizedstcsegments: the geometric permutations are

all the cyclic permutations ofl, . .., n). O

Finally, as discussed in the conclusion @fm log n)-time algorithm for computing
the transversals to segments follows directly from the proof of Theorem 1.

3 Proof of Theorem 1

Every non-degenerate line segment is contained isufgporting line We define the
supporting line of a point to be the vertical line through that point. We prove Theo-
rem 1 by considering the following three cases which cover all possibilities but are not
exclusive.

1. Three supporting lines are pairwise skew.
2. Two supporting lines are coplanar.
3. All the segments are coplanar.

We can assume in what follows thaie supporting lines are pairwise distindh-
deed, if disjoint segments have the same supportingJitreen? is the only transversal
to those segments, and so the set of transversals is either empty or congistsdof
the theorem is satisfied. If some non-disjoint segments have the same supporting line,
then any transversal must meet the intersection of the segments. In that case, we can
replace these overlapping segments by their common intersection and the theorem for
the smaller collection will imply the result for the original collection.



Figure 1: Two views of a hyperboloid of one sheet containing four line segments and
their four connected components of transversals (corresponding to the shaded regions).
The four segments are symmetric under rotation about the axis of the hyperboloid.

3.1 Three supporting lines are pairwise skew

Three pairwise skew lines lie on a unique doubly-ruled hyperboloid, namely, a hyper-
bolic paraboloid or a hyperboloid of one sheet (see the discussion if3R1Further-
more, they are members of one ruling, say the “first” ruling, and their transversals are
the lines in the “second” ruling that are not parallel to any of the three given skew lines.
Consider first the case where there exists a fourth segment whose supportihg line
does not lie in the first ruling. Eithéris not contained in the hyperboloid or it lies in the
second ruling. In both cases, there are at most two transversals to the four supporting
lines, which are lines of the second ruling that meet or coincide wjtt8, p. 164].
Thus there are at most two transversals tortti@ee segments.
Now suppose that all the > 3 supporting lines of the segmentslie in the first
ruling of a hyperbolic paraboloid. The lines in the second ruling can be parameterized
by their intersection points with any lineof the first ruling. Thus the set of lines in
the second ruling that meet a segmentorresponds to an interval on line Hence
the set of transversals to thesegments corresponds to the intersection oftervals
onr, that is, to one interval on this line, and so the transversals form one connected
component.
Consider finally the case where thex 3 supporting lines lie in the first ruling of
a hyperboloid of one sheet (see Figure 1). The lines in the second ruling can be pa-
rameterized by points on a circle, for instance, by their intersection points with a circle
lying on the hyperboloid of one sheet. Thus the set of transversals to $egments
corresponds to the intersectioniofntervals on this circle. This intersection can have
any number of connected components from zero up, tand any of these connected
components may consist of an isolated point on the circle. The set of transversals can
thus have any number of connected components from zero updod any of these
connected components may consist of an isolated transversal. Figure 1 shows two
views of a configuration witw = 4 line segments having four connected components
of transversals.
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Figure 2: (a) Lines; and /s intersect at poinp, and line/s intersects plandd in
a pointg distinct fromp. (b) Four segments having three connected components of
transversals.

3.2 Two supporting lines are coplanar

Let ¢, and/, be two (distinct) coplanar supporting lines in a plaheFirst consider the
case wheré, and/, are parallel. Then the transversals to theegments all lie irff.

If some segment does not intersétthen there are no transversals; otherwise, we can
replace each segment by its intersection witho obtain a set of coplanar segments, a
configuration treated in Section 3.3.

Now suppose that; and/; intersect at poinp. Consider all the supporting lines
not in H. If no such line exists then all segments are coplanar; see Section 3.3. If such
lines exist and any one of them is parallelfiothen all transversals to thesegments
lie in the plane containing and that line. We can again replace each segment by its
intersection with that plane to obtain a set of coplanar segments, a configuration treated
in Section 3.3.

We can now assume that there exists a supporting line nft iSuppose that all
the supporting lines not il go throughp. If all the segments lying in these supporting
lines contairp then we may replace all these segments by the poiithout changing
the set of transversals to thesegments. Then all resulting segments are coplanar, a
configuration treated in Section 3.3. Now if some segnsethbes not contaip then
the only possible transversal to thesegments is the line containirgandp.

We can now assume that there exists a supporting’limetersectingH in exactly
one pointg distinct fromp (see Figure 2(a)). Lek be the plane containingand/s.

Any transversal to the lineg, />, and/s lies in K and goes through, or lies in H
and goes through.

If there exists a segmestthat lies neither ind nor in K and goes through neither
p nor g, then there are at most two transversals tortlsegments, namely, at most one
line in K throughp ands and at most one line il throughg ands.

We can thus assume that all segments lié/ior K or go throughp or ¢. If there
exists a segmentthat goes through neithernor g, it lies in H or K. If it lies in H



then all the transversals to thesegments lie il (see Figure 2(b)). Indeed, no line in
K throughp intersects; except possibly the lingg which also lies inH. We can again
replace each segment by its intersection witho obtain a set of coplanar segments;
see Section 3.3. The case whellees in K is similar.

We can now assume that all segments go thrqughgq (or both). Letn, be the
number of segments not containipgandn,, be the number of segments not containing
g. Note thatn, + ng < n.

Among the lines in throughg, the transversals to thesegments are the transver-
sals to then, segments not containing We can replace these, segments by their
intersections withi to obtain a set ofi, coplanar segments iff. The transversals
to these segments i throughg can form up ton, connected components. Indeed,
the lines inH throughg can be parameterized by a point on a circle, for instance, by
their polar angle iR /7Z. Thus the set of lines iff throughg and through a segment
in H corresponds to an interval &/7Z. Hence the set of transversals to theseg-
ments corresponds to the intersectiomgintervals inR /7Z which can have up ta,
connected components.

Similarly, the lines inK throughp that are transversals to thesegments can form
up ton, connected components. Note furthermore that thegdinis a transversal to
all segments and that the connected component of transversals that containsghe line
is counted twice. Hence there are at mast--n, — 1 < n — 1 connected components
of transversals to the segments.

To see that the bound ef — 1 connected components is reached, first consider
|n/2] lines in H throughp, but not throughy. Their transversals throughare all
the lines inH throughg, except for the lines that are parallel to any of the/2]
given lines. This givegn /2| connected components. Shrinking the/2| lines to
sufficiently long segments still givels:/2| connected components of transversals in
H throughg. The same construction wiftn /2] line segments in plang gives|n/2]
connected components of transversaldsirthroughp. This givesn — 1 connected
components of transversals to thesegments since the component containing the line
pq is counted twice. Figure 3(a) shows an example of four segments having three
connected components of transversals.

3.3 All the segments are coplanar

Let H be the plane containing all thesegments. There exists a transversal nd{ iif
and only if all segments are concurrent at a ppinh this case, the transversals consist
of the lines throughy together with the transversals lying . To see that they form
only one connected component, notice that any transverddl @an be translated to
p while remaining a transversal throughout the translation. We thus can assume in the
following that all transversals lie i, and we consider the problemR?.

We consider the usual geometric transform (see e.g. [10]) where a IRé\vith
equationy = ax + b is mapped to the poirflz, b) in the dual space. The transversals
to a segment are transformed to a double wedge; the double wedge degenerates to a
line when the segment is a point. The apex of the double wedge is the dual of the line
containing the segment.
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Figure 3: (a) Four segments having three connected components of transversals.
(b) Four coplanar segments having four connected components of transversals.

A transversal to thes segments is represented in the dual by a point in the inter-
section of all the double wedges. There are at most1 connected components of
such points [10] (see also [9, Lemma 15.3]). Indeed, each double wedge consists of
two wedges separated by the vertical line through the apex. The intersection of all
the double wedges thus consists of at most 1 convex regions whose interiors are
separated by at mostvertical lines.

Notice that if there are exactly + 1 convex regions then two of these regions are
connected at infinity by the dual of some vertical line, in which case the segments have
a vertical transversal. Thus the number of connected components of transversals is at
mostn.

To see that this bound is sharp consider the configuration in Figure 3(b) of four
segments having four components of transversals. Three of the components consist
of isolated lines and one consists of a connected set of lines tho(gjtaded in the
figure). Observe that the line segmeidtmeets the three isolated lines. Thus the set
of transversals to the four initial segments and segme&iebnsists of the three previ-
ously mentioned isolated transversals, the jhavhich is isolated, and a connected
set of lines throughy. This may be repeated for any number of additional segments,
giving configurations of» coplanar line segments with connected components of
transversals.

4  Algorithmic considerations and conclusion

While algorithmic issues have not been the main concern of the paper, we note that the
proof of Theorem 1 leads to an(n logn)-time algorithm in the real RAM model of
computation. First reduce iD(n log n) time the set of segments to the case of pairwise



distinct supporting lines. Choose any three of these lines. Either they are pairwise skew
or two of them are coplanar. If they are pairwise skew (see Section 3.1), their transver-
sals, and hence the transversals tonadlegments, lie in one ruling of a hyperboloid.
Any segment that intersects the hyperboloid in at most two points admits at most two
transversals that lie in that ruling. Checking whether these lines are transversals to the
n segments can be done in linear time. Consider now the case of a segment that lies
on the hyperboloid. Its set of transversals, lying in the ruling, can be parameterized
in constant time by an interval on a line or a circle depending on the type of the hy-
perboloid. Computing the transversals to theegments thus reduces in linear time to
intersectingr intervals on a line or on a circle, which can be don®jim logn) time.

If two supporting lines are coplanar (see Section 3.2), computing the transversals to the
n segments reduces in linear time to computing transversals to atrnsegfments in

one or two planes, which can be don&lfn logn) time [10].

Finally, note that we did not consider in this paper, for simplicity, segments that
can extend to lines or half-lines & although our theorem holds in those situations as
well. For example, ilR3, the transversals to > 3 lines of one ruling of a hyperboloid
of one sheet are all the lines of the other ruling with the exception of the lines parallel to
then given lines. Thus, iiR3, the transversals form connected components. Notice
however that our theorem does not hold for lines in projective spacen this case,
our proof directly yields that, if a set of lines admit infinitely many transversals, they
form one connected component.
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