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Abstract. We completely describe the structure of the connected compo-
nents of transversals to a collection ofn line segments inR3. With few
exceptions the components consist of zero, one or two isolated lines. We
catalog the exceptional cases and show thatn > 3 arbitrary line segments
in R3 may admit up ton connected components of line transversals, and
that this bound can be achieved only in certain configurations when the
segments are coplanar, or they all lie on a hyperboloid of one sheet. This
implies an upper bound ofn on the number of geometric permutations of
line segments inR3.

1 Introduction

A k-transversal to a family of convex sets inRd is an affine subspace of dimension
k (e.g. a point, line, plane, or hyperplane) that intersects every member of the family.
Goodman, Pollack, and Wenger [12] and Wenger [25] provide two extensive surveys
of the rich subject of geometric transversal theory. In this paper, we are interested in
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1-transversals (also called line transversals, or simply transversals) to line segments.
In R2, this question was studied in the 1980’s by Edelsbrunner et al. [10]: they proved
that the set of transversals ton line segments consists of up ton connected components
which can be computed inO(n log n) time and which have total description complexity
O(n). Here we study the subject inR3.

We address the following basic question: What is the cardinality and geometry
of the set of transversals to an arbitrary collection ofn line segments inR3? Here a
segment may be open, semi-open, or closed, and it may degenerate to a point; segments
may intersect or even overlap. Since a line inR3 has four degrees of freedom, it
can intersect at most four lines or line segments in generic position. Conversely, it
is well-known that four lines or line segments in generic position admit zero or two
transversals; moreover, four arbitrary lines inR3 admit zero, one, two, or infinitely
many transversals [13, p. 164]. In contrast, our work shows that four arbitrary line
segmentsadmit up to four or infinitely many transversals.

Our interest in line transversals to segments inR3 is motivated by visibility prob-
lems. In computer graphics and robotics, scenes are often represented as unions of not
necessarily disjoint polygonal or polyhedral objects. The objects that can be seen in a
particular direction from a moving viewpoint may change when the line of sight be-
comes tangent to one or more objects in the scene. Since the line of sight then becomes
a transversal to a subset of the edges of the polygons and polyhedra representing the
scene, questions about transversals to segments arise very naturally in this context.

As an example, the visibility complex [8,20] and its visibility skeleton [7] are data
structures that encode visibility information of a scene; an edge of these structures
corresponds to a set of segments lying in line transversals to somek edges of the
scene. Generically inR3, k is equal to three. In degenerate configurations, however,
k can be arbitrarily large. Such degenerate configurations can arise, for instance in
architectural scenes which frequently contain many coplanar edges. It is thus essential
for computing these data structures to characterize and compute the transversals tok
segments inR3. Also, to bound the size of the visibility complex one needs to bound
the number of connected components of transversals tok arbitrary line segments. The
present paper establishes the actual bound.

As mentioned above, in the context of 3D visibility, lines tangent to objects are
more relevant than transversals; lines tangent to a polygon or polyhedron along an
edge happen to be transversals to this edge. (For bounds on the space of transversals
to convex polyhedra inR3 see [19].) The literature related to lines tangent to objects
falls into two categories. The one closest to our work deals with characterizing the
degenerate configurations of curved objects with respect to tangent lines. MacDonald,
Pach, and Theobald [16] give a complete description of the set of lines tangent to four
unit balls inR3. Megyesi, Sottile, and Theobald [18] describe the set of lines meeting
two lines and tangent to two spheres inR3, or tangent to two quadrics inP3. Megyesi
and Sottile [17] describe the set of lines meeting one line and tangent to two or three
spheres inR3. A nice survey of these results can be found in [23].

The other category of results deals with lines tangent tok amongn objects inR3.
For polyhedral objects, de Berg, Everett, and Guibas [3] showed aΩ(n3) lower bound
on the number of free (i.e., non-occluded by the interior of any object) lines tangent
to four amongn disjoint homothetic convex polyhedra. Brönnimann et al. [4] showed
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that, under a certain general position assumption, the number of lines tangent to four
amongk bounded disjoint convex polyhedra of total complexityn is O(n2k2). For
curved objects, Devillers et al. [6] presented a simpleΩ(n2) lower bound on the num-
ber of free maximal segments tangent to four amongn unit balls, and give a bound of
Ω(n3) (due to Devillers and Ramos) forn arbitrarily sized balls. Agarwal, Aronov, and
Sharir [1] showed an upper bound ofO(n3+ε) on the complexity of the space of line
transversals ton balls; recently, with Koltun, they showed that the same upper bound
holds for the complexity of the set of lines that do not intersectn balls [2]. Durand
et al. [8] showed an upper bound ofO(n8/3) on the expected number of possibly oc-
cluded lines tangent to four amongn uniformly distributed unit balls. Under the same
model, Devillers et al. [6] recently showed a bound ofΘ(n) on the expected number
of maximal free line segments tangent to four amongn balls.

A topic closely related to line transversals is that of geometric permutations. A
geometric permutationof pairwise disjoint convex objects inRd is an ordering of the
objects (or its reverse) such that the objects are met in that order by a line transver-
sal. Worst-case bounds for general convex objects are known:2n − 2 is tight in two
dimensions [11], while in any dimension the best known bounds areΩ(n2−1) [14]
andO(n2d−2) [24]. The gap was closed for spheres by Smorodinsky et al. [22], who
showed thatn spheres inRd admit up toΘ(nd−1) geometric permutations, and the
same bound was also shown true for “fat” objects [15]. Recently, Cheong et al. [5] im-
proved the known bounds for congruent balls, by showing thatn balls of same radius
admit at most two geometric permutations ifn > 9, and three for3 6 n 6 8.

2 Our results

We say that two transversals to a collection of line segments are in the sameconnected
componentif and only if one of the transversals can be continuously moved into the
other while remaining a transversal inR3 to the collection of line segments. (For the
sets of line transversals considered here, the notions of connected and path-connected
components are equivalent since all sets are semi-algebraic.) Equivalently, the two
points in line space (e.g., in Plücker space [21]) corresponding to the two transversals
are in the same connected component of the set of points corresponding to all the
transversals inR3 to the collection of line segments.

Our main result is the following theorem.

Theorem 1 A collection ofn > 3 arbitrary line segments inR3 admits any number
from 0 ton of connected components of line transversals. More precisely, the set of
line transversals consists of at most two isolated lines unless the segments lie in one of
the following configurations:

1. then segments are all contained in lines of one ruling of (a) a hyperbolic paraboloid
or (b) a hyperboloid of one sheet, or

2. they are all concurrent, or

3. they all lie in a plane, with the possible exception of a group of one or more
segments that all meet that plane at the same point.
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In cases 1(a) and 2, the transversals form at most one connected component. In cases
1(b) and 3, the transversals can have any number from 0 ton of connected components.
Moreover, in case 3, if all segments are not coplanar, this number is at mostn − 1.

In cases 1–3, each connected component can consist of infinitely many lines or re-
duce to an isolated line. For example, three segments forming a triangle and a fourth
segment intersecting the interior of the triangle in one point have exactly three transver-
sals (Figure 2b shows a similar example with infinitely many transversals). Also, the
four segments in Figure 1 can be shortened so that the four connected components of
transversals reduce to four isolated transversals.

A trivial consequence of our theorem is the following bound on the number of
geometric permutations ofn segments inR3.

Corollary 2 A set of pariwise disjointn > 3 segments inR3 admits up ton geometric
permutations and this bound is tight.

Proof. By the theorem above,n segments inR3 admit up ton connected components
of line transversals. Within a connected component, the lines transversals must inter-
sect the segments in the same order, otherwise by the intermediate value theorem there
would exist a line in that component where two objects would intersect somewhere on
that line, a contradiction. Hence the upper bound. The lower bound is proven by the
configuration of Figure 1 generalized ton segments: then geometric permutations are
all the cyclic permutations of〈1, . . . , n〉. �

Finally, as discussed in the conclusion, anO(n log n)-time algorithm for computing
the transversals ton segments follows directly from the proof of Theorem 1.

3 Proof of Theorem 1

Every non-degenerate line segment is contained in itssupporting line. We define the
supporting line of a point to be the vertical line through that point. We prove Theo-
rem 1 by considering the following three cases which cover all possibilities but are not
exclusive.

1. Three supporting lines are pairwise skew.

2. Two supporting lines are coplanar.

3. All the segments are coplanar.

We can assume in what follows thatthe supporting lines are pairwise distinct.In-
deed, if disjoint segments have the same supporting line`, then` is the only transversal
to those segments, and so the set of transversals is either empty or consists of` and
the theorem is satisfied. If some non-disjoint segments have the same supporting line,
then any transversal must meet the intersection of the segments. In that case, we can
replace these overlapping segments by their common intersection and the theorem for
the smaller collection will imply the result for the original collection.
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Figure 1: Two views of a hyperboloid of one sheet containing four line segments and
their four connected components of transversals (corresponding to the shaded regions).
The four segments are symmetric under rotation about the axis of the hyperboloid.

3.1 Three supporting lines are pairwise skew

Three pairwise skew lines lie on a unique doubly-ruled hyperboloid, namely, a hyper-
bolic paraboloid or a hyperboloid of one sheet (see the discussion in [21,§3]). Further-
more, they are members of one ruling, say the “first” ruling, and their transversals are
the lines in the “second” ruling that are not parallel to any of the three given skew lines.

Consider first the case where there exists a fourth segment whose supporting line`
does not lie in the first ruling. Either` is not contained in the hyperboloid or it lies in the
second ruling. In both cases, there are at most two transversals to the four supporting
lines, which are lines of the second ruling that meet or coincide with` [13, p. 164].
Thus there are at most two transversals to then line segments.

Now suppose that all then > 3 supporting lines of the segmentssi lie in the first
ruling of a hyperbolic paraboloid. The lines in the second ruling can be parameterized
by their intersection points with any liner of the first ruling. Thus the set of lines in
the second ruling that meet a segmentsi corresponds to an interval on liner. Hence
the set of transversals to then segments corresponds to the intersection ofn intervals
on r, that is, to one interval on this line, and so the transversals form one connected
component.

Consider finally the case where then > 3 supporting lines lie in the first ruling of
a hyperboloid of one sheet (see Figure 1). The lines in the second ruling can be pa-
rameterized by points on a circle, for instance, by their intersection points with a circle
lying on the hyperboloid of one sheet. Thus the set of transversals to then segments
corresponds to the intersection ofn intervals on this circle. This intersection can have
any number of connected components from zero up ton, and any of these connected
components may consist of an isolated point on the circle. The set of transversals can
thus have any number of connected components from zero up ton, and any of these
connected components may consist of an isolated transversal. Figure 1 shows two
views of a configuration withn = 4 line segments having four connected components
of transversals.
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Figure 2: (a) Lines̀ 1 and `2 intersect at pointp, and line`3 intersects planeH in
a pointq distinct fromp. (b) Four segments having three connected components of
transversals.

3.2 Two supporting lines are coplanar

Let `1 and`2 be two (distinct) coplanar supporting lines in a planeH. First consider the
case wherè1 and`2 are parallel. Then the transversals to then segments all lie inH.
If some segment does not intersectH then there are no transversals; otherwise, we can
replace each segment by its intersection withH to obtain a set of coplanar segments, a
configuration treated in Section 3.3.

Now suppose that̀1 and`2 intersect at pointp. Consider all the supporting lines
not inH. If no such line exists then all segments are coplanar; see Section 3.3. If such
lines exist and any one of them is parallel toH then all transversals to then segments
lie in the plane containingp and that line. We can again replace each segment by its
intersection with that plane to obtain a set of coplanar segments, a configuration treated
in Section 3.3.

We can now assume that there exists a supporting line not inH. Suppose that all
the supporting lines not inH go throughp. If all the segments lying in these supporting
lines containp then we may replace all these segments by the pointp without changing
the set of transversals to then segments. Then all resulting segments are coplanar, a
configuration treated in Section 3.3. Now if some segments does not containp then
the only possible transversal to then segments is the line containings andp.

We can now assume that there exists a supporting line`3 intersectingH in exactly
one pointq distinct fromp (see Figure 2(a)). LetK be the plane containingp and`3.
Any transversal to the lines̀1, `2, and`3 lies in K and goes throughp, or lies inH
and goes throughq.

If there exists a segments that lies neither inH nor inK and goes through neither
p nor q, then there are at most two transversals to then segments, namely, at most one
line in K throughp ands and at most one line inH throughq ands.

We can thus assume that all segments lie inH or K or go throughp or q. If there
exists a segments that goes through neitherp nor q, it lies in H or K. If it lies in H
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then all the transversals to then segments lie inH (see Figure 2(b)). Indeed, no line in
K throughp intersectss except possibly the linepq which also lies inH. We can again
replace each segment by its intersection withH to obtain a set of coplanar segments;
see Section 3.3. The case wheres lies inK is similar.

We can now assume that all segments go throughp or q (or both). Letnp be the
number of segments not containingp, andnq be the number of segments not containing
q. Note thatnp + nq 6 n.

Among the lines inH throughq, the transversals to then segments are the transver-
sals to thenq segments not containingq. We can replace thesenq segments by their
intersections withH to obtain a set ofnq coplanar segments inH. The transversals
to these segments inH throughq can form up tonq connected components. Indeed,
the lines inH throughq can be parameterized by a point on a circle, for instance, by
their polar angle inR/πZ. Thus the set of lines inH throughq and through a segment
in H corresponds to an interval ofR/πZ. Hence the set of transversals to thenq seg-
ments corresponds to the intersection ofnq intervals inR/πZ which can have up tonq

connected components.
Similarly, the lines inK throughp that are transversals to then segments can form

up tonp connected components. Note furthermore that the linepq is a transversal to
all segments and that the connected component of transversals that contains the linepq
is counted twice. Hence there are at mostnp + nq − 1 6 n− 1 connected components
of transversals to then segments.

To see that the bound ofn − 1 connected components is reached, first consider
bn/2c lines in H throughp, but not throughq. Their transversals throughq are all
the lines inH throughq, except for the lines that are parallel to any of thebn/2c
given lines. This givesbn/2c connected components. Shrinking thebn/2c lines to
sufficiently long segments still givesbn/2c connected components of transversals in
H throughq. The same construction withdn/2e line segments in planeK givesdn/2e
connected components of transversals inK throughp. This givesn − 1 connected
components of transversals to then segments since the component containing the line
pq is counted twice. Figure 3(a) shows an example of four segments having three
connected components of transversals.

3.3 All the segments are coplanar

Let H be the plane containing all then segments. There exists a transversal not inH if
and only if all segments are concurrent at a pointp. In this case, the transversals consist
of the lines throughp together with the transversals lying inH. To see that they form
only one connected component, notice that any transversal inH can be translated to
p while remaining a transversal throughout the translation. We thus can assume in the
following that all transversals lie inH, and we consider the problem inR2.

We consider the usual geometric transform (see e.g. [10]) where a line inR2 with
equationy = ax + b is mapped to the point(a, b) in the dual space. The transversals
to a segment are transformed to a double wedge; the double wedge degenerates to a
line when the segment is a point. The apex of the double wedge is the dual of the line
containing the segment.
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Figure 3: (a) Four segments having three connected components of transversals.
(b) Four coplanar segments having four connected components of transversals.

A transversal to then segments is represented in the dual by a point in the inter-
section of all the double wedges. There are at mostn + 1 connected components of
such points [10] (see also [9, Lemma 15.3]). Indeed, each double wedge consists of
two wedges separated by the vertical line through the apex. The intersection of all
the double wedges thus consists of at mostn + 1 convex regions whose interiors are
separated by at mostn vertical lines.

Notice that if there are exactlyn + 1 convex regions then two of these regions are
connected at infinity by the dual of some vertical line, in which case the segments have
a vertical transversal. Thus the number of connected components of transversals is at
mostn.

To see that this bound is sharp consider the configuration in Figure 3(b) of four
segments having four components of transversals. Three of the components consist
of isolated lines and one consists of a connected set of lines throughp (shaded in the
figure). Observe that the line segmentab meets the three isolated lines. Thus the set
of transversals to the four initial segments and segmentab consists of the three previ-
ously mentioned isolated transversals, the linepb which is isolated, and a connected
set of lines throughp. This may be repeated for any number of additional segments,
giving configurations ofn coplanar line segments withn connected components of
transversals.

4 Algorithmic considerations and conclusion

While algorithmic issues have not been the main concern of the paper, we note that the
proof of Theorem 1 leads to anO(n log n)-time algorithm in the real RAM model of
computation. First reduce inO(n log n) time the set of segments to the case of pairwise
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distinct supporting lines. Choose any three of these lines. Either they are pairwise skew
or two of them are coplanar. If they are pairwise skew (see Section 3.1), their transver-
sals, and hence the transversals to alln segments, lie in one ruling of a hyperboloid.
Any segment that intersects the hyperboloid in at most two points admits at most two
transversals that lie in that ruling. Checking whether these lines are transversals to the
n segments can be done in linear time. Consider now the case of a segment that lies
on the hyperboloid. Its set of transversals, lying in the ruling, can be parameterized
in constant time by an interval on a line or a circle depending on the type of the hy-
perboloid. Computing the transversals to then segments thus reduces in linear time to
intersectingn intervals on a line or on a circle, which can be done inO(n log n) time.
If two supporting lines are coplanar (see Section 3.2), computing the transversals to the
n segments reduces in linear time to computing transversals to at mostn segments in
one or two planes, which can be done inO(n log n) time [10].

Finally, note that we did not consider in this paper, for simplicity, segments that
can extend to lines or half-lines inR3 although our theorem holds in those situations as
well. For example, inR3, the transversals ton > 3 lines of one ruling of a hyperboloid
of one sheet are all the lines of the other ruling with the exception of the lines parallel to
then given lines. Thus, inR3, the transversals formn connected components. Notice
however that our theorem does not hold for lines in projective spaceP3; in this case,
our proof directly yields that, if a set of lines admit infinitely many transversals, they
form one connected component.
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