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Abstract. A polygonal linkage or chain is a sequence of segments of
fixed lengths, free to turn about their endpoints, which act as joints.
This paper reviews some results in chain reconfiguration and highlights
several open problems1

We consider a sequence of closed straight line segments [A0, A1], [A1, A2], . . .
[An−1, An] of fixed lengths l1, l2, . . . ln, respectively, imagining that these line
segments are mechanical objects such as rods, and that their endpoints are joints
about which these rods are free to turn. We ask how and whether such a chain
can be moved from one given configuration to another under various assumptions
or “rules of the game”. The chain may be confined to the plane throughout its
motions; it may be supposed to start and finish in the plane, with motion into
3D allowed for intermediate configurations; its motions in arbitrary dimensional
space may be considered. The chain may consist of an open or closed sequence of
segments. The links may be allowed or forbidden to cross over or to pass through
one another. All of these models are of interest to us.

When the chain consists of a closed sequence of links, we say that the chain
is polygonal, or that it is a polygon. Consequently, it is natural to use both
the language of geometry and mechanics when describing chains. The terms
node, vertex and joint are used interchangeably, as are the terms rod, link, edge,
and segment. The term “polygon” may refer either to a planar object or to a
cyclic sequence of links in arbitrary dimension. In case the links are not allowed
to intersect except at shared endpoints, we say that the polygon must remain
simple, i.e., it is not allowed to intersect itself either at rest or during motion.

Polygonal chains are interesting for several reasons. First, there are aesthetic
reasons. These very basic objects exhibit surprising behaviors and pose challeng-
ing, easily stated questions that arouse our natural curiosity as mathematicians,
algorithm designers, and problem solvers. Second, chains can model physical ob-
jects such as robot arms and molecules. Here, a word of caution is in order. In
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a “real-world” context, our geometric models are often gross simplifications of
complex systems. Mechanical robot arms have mass and inertia, they vibrate,
their joints are not universal joints, and they don’t have an arbitrary number n of
links. In 3D, mechanical links cannot pass through one another, although in 2D,
allowing links to pass over one another can model so-called 2 1

2 -D situations where
long links remain parallel to the plane, joined by short connections not parallel
to the plane. For molecules, preferred configurations (“conformations” being the
technical term in the chemistry and physics literature) depend on much more
than geometry, low energy conformations being the preferred ones. The energy
depends on contributions from bonds (modeled by links) which may stretch and
dihedral angles (angles between the two planes determined by three consecutive
bonds) which may deform. Then there are the chemical interactions between
individual pairs of atoms that are not connected by a bond and that may be
far from one another in the graph theoretic sense. While it seems unrealistic to
suppose that results about purely geometric models are likely to find immediate
and wide-spread application in other fields, it seems equally unwise to suppose
that geometric studies cannot be relevant or useful. We do not survey applica-
tion areas, or even potential application areas here, but mention a few pointers:
for connections with molecular modelling, see for example [12,13,14,33,34]; for
connections with algorithmic motion planning, see for example [24]; for connec-
tions with manufacturing, see for example [28]. In later sections, we mention
some results on chains that have connections with knot theory [4] and rigidity
theory [7,35].

This survey is a personal account, inevitably biased and incomplete. The
intent is to focus on the developments in chain reconfiguration in the last several
years, highlighting some interesting open problems. For an earlier survey, see [37].

My introduction to the subject began during 1981-82, a year which I spent
visiting the Computer Science Department at Cornell University. There, John
Hopcroft was working on robotics problems and suggested I read a preliminary
version of Schwarz and Sharir, Piano Movers II [34]. Somewhat daunted by the
length, and the fact that it was algebraic geometry, I proposed a simple problem
as an alternative way to start our discussions, a problem that we later began
calling the “ruler folding” problem, or the “carpenter’s ruler” problem. This
terminology is now used to refer to a variety of chain reconfiguration problems;
the original problem (see [15,17]) was the following.

Ruler Folding:
given: a sequence of n positive integer lengths, and a positive integer k;
question: Can a sequence of links of these lengths, hinged at their endpoints, be
folded so that they occupy a segment of length at most k? Here, each joint is to
be completely straight, or completely folded.

This problem, and the corresponding optimization problem of finding the
minimum folding length, make excellent undergraduate student exercises. While
the carpenter’s ruler is an easy-to-grasp object of study, to determine its proper-
ties raises in a simple setting a variety of issues in algorithm analysis and design.
Clearly the answer may be determined by trying all the 2n−1 ways of folding the
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Fig. 1. Ruler Folding

ruler. However, the problem turns out to be NP-complete, by an easy reduction
from the Set Partition problem. On the other hand, a simple greedy strategy
gives an approximation algorithm to within a factor of 2 for the corresponding
optimization version (finding the minimum folding length), and the problem can
be solved in O(n) time by dynamic programming when the lengths of the links
are bounded above. There is more than one natural way to do this, and designing
a second way having seen a first way makes an excellent exercise for students,
as does analysing the running time on a Turing machine model of computation
when link lengths are unbounded integers.

While the optimization version of the problem can be solved by creating a ta-
ble or series of tables, some subproblems of a problem instance may not be solved
optimally in any optimal solution of that instance. Hence the table solution is
not, strictly speaking, dynamic programming as it is sometimes described [8].
Finding such examples makes a nice exercise, as does finding examples that show
that, for n a power of 2, a simple divide-and-conquer approach doesn’t work.

The dynamic programming solutions can be regarded as fixed parameter
tractability results, in the sense of Downey and Fellows [9]. The idea is to confine
the exponential growth in running time to a parameter of the problem that is
likely to remain small for typical applications. For Ruler Folding, the dynamic
programming solutions allow us to “blame” exponential running time growth on
long links; if no links are very long, the solution grows linearly with the length
of the input string. To sketch how this goes, let M denote the length of the
longest link, let x denote the number of bits in the input data, and let n denote
the number of links in the ruler. One dynamic programming method builds a
series of roughly M tables, trying all possible folding lengths in the range M to
2M . Each table has O(n) rows (one for each joint) and O(M) columns (one for
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each possible integer coordinate for a joint in the range 0 to the folding length
being tried). Computing each table entry takes O(lgM) bit operations, giving
an overall running time of O(xM2lgM). Note that the integer M is no greater
than 2x, since M must be given by at most x bits. Hence the running time is
indeed exponential in x. Now consider all rulers that have n links but no link
longer than 1000, say. For this restricted set of very reasonable instances, there
is a running time upper bound that is linear in the length of the input x (and
linear in the number n of links). Thus the exponential behaviour of the algorithm
is the “fault” of the possibility of very long links in the general case.

The NP-completeness of Ruler Folding has some consequences for the com-
plexity of related problems, such as determining whether or not a polygonal
chain (allowed to cross or not) can be moved from one configuration to another
in an environment containing polygonal obstacles. Here, one may design an in-
stance containing a narrow gap such that the chain must folded, or nearly so,
into length at most some given amount in order to fit through a narrow passage
(see [15]). Furthermore, the NP-completeness of Ruler Folding can be used to
show the hardness of the placement of graphs, even trees, having edges of speci-
fied lengths so that certain vertices are placed at certain points (see [39,37,38]).
This type of problem is sometimes stated in terms of the realizability of distance
matrices, where the entries in the matrix give the desired Euclidean distances
between certain pairs of vertices in the graph.

In our first investigations of movement properties of chains, we required one
end of the chain to be fixed to the plane, and we allowed links to cross over one
another as this so-called “arm” moved. Determining what points of the plane
can be reached by the opposite end of the chain makes a nice easy exercise
for students, as does proving that any point that can be reached at all can be
reached by a configuration of the arm that has at most two non-straight joints.
This can be seen by thinking in terms of the polar coordinates of the point to
be reached relative to an origin at the fixed point of the arm: first find a way to
achieve the correct distance between the free end and the fixed end, and then
rotate the arm about the origin to move the tip to the desired point. Textbooks
that have included some of these problems as exercises include [21,27].

Problems for the reconfiguration of a chain (or an arm, as we call a chain
with the location of one end fixed) get decidedly more interesting in the presence
of obstacles or other constraints. Our first effort to deal with obstacles in the
“workspace” of a robot “arm” was to consider the problem of moving an arm
confined to a closed disk from one given configuration to another. Links were
allowed to cross, and we found a polynomial time algorithm for detrmining if the
desired configuration could be reached from the initial one, and, when this was
possible, for designing a specific motion. Here we made a distinction between the
running time for computing the motion, and the length of the description of the
motion, which we gave in terms of simple motion primitives. These primitives
were described, for example, in terms of rotating a link about a fixed endpoint
while other joints were fixed in position or joint angles were frozen and dragged
along. The basic idea was simple: find a way to move the arm to a “canonical”
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position in which all joints at and beyond some joint Ai are placed on the
boundary of the circle, regard the initial portion of the chain as a kind of leash
whose length can be adjusted by adding or removing links, and then, by adjusting
the length of the leash, rotate the remainder of the chain around the circle. A
sequence of links in the tail can then, one hopes, be formed and lifted up to
reach points in the disk. Kantabutra and Kosaraju [20] pushed this technique
and improved the running time of our algorithm.

We studied chains and arms in other confining regions such as convex poly-
gons. We were not able to answer the reconfiguration question even for a triangle,
a problem that remains open.

Problem (chain in polygon): Given two configurations of a chain confined to
a convex polygonal region, with edge crossings allowed, determine whether the
chain can be moved inside the polygon from one configuration to the other.

Kantabutra then went on to explore the use of this general strategy inside
other shapes, in particular, a square [18,19]. Here, the links do not rotate around
the boundary so conveniently as is the case for the circle. He was able to obtain
reconfiguration and reachability results for arms and chains satisfying a bound
on the link lengths in terms of the length of a side of the square.

Inspired by Kantabutra’s success with squares, the case of arms and chains
confined inside triangles seemed interesting to try again. In 1991, Peter Eades
and I tried an even simpler version of this case: an arm confined to a wedge.
Here, we asked whether and how an arm could be straighted, with links allowed
to cross, and were able to solve this problem when the internal wedge angle is
Π/2 or greater (the proof, which remains unpublished, was given at AWOCA
’92). The case of the acute wedge still remains unsolved. Perhaps the problem
is NP-hard. The version of the problem in which links are not allowed to cross
may also be interesting.

Problem (arm in a wedge): Given a chain with one extreme end fixed to the
plane, and confined to move inside a wedge whose vertex angle is less than Π/2,
design an algorithm to decide whether the arm can be straightened, and to move
it to such a position when this is possible.

In March 1991, Bill Lenhart came to visit McGill, and we became fascinated
with a different problem, which we came to call “turning a polygon inside-out”.
We decided to drop the idea of exploring the motion of chains or arms confined
inside polygonal environments. Instead, we would get rid of the obstacles, but
pin down both the endpoints. We quickly noticed that the motions of a chain
with both endpoints fixed down correspond to the motions of a closed polygonal
linkage.

When this linkage takes the form of a simple polygon, it has a natural ori-
entation, as traversing the boundary in the clockwise sense visits the vertices
either in increasing or decreasing order of their indices. Obviously, a triangle
whose vertices are indexed cannot be moved in the plane so that its orientation
changes (disallowing flips out of the plane). Hence the inside-out problem: given
a simple polygon lying in the plane, when can it be moved in the plane to its
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mirror image? More generally, given two configurations of a polygonal linkage
in the plane, when can the linkage be moved from the one configuration to the
other? We called two configurations equivalent if it is possible to move the link-
age between the two configurations, and asked for the number of equivalence
classes of polygonal linkages in the plane. The answer turned out to be pretty.
The number of classes is either two or one, depending on whether the second and
third largest link lengths sum to more than the length of the longest link. Thus
a triangle has two equivalence classes, as its longest side has length less than the
sum of the lengths of the other two sides. Furthermore, as is the case for the
triangle, each configuration in one class has a mirror image in the other class.
We designed algorithms for reconfiguring when possible, and eventually noticed
that our reconfiguration strategy in 2D always worked in dimension 3 and above,
so we obtained a little bonus: polygonal linkages have one equivalence class of
configurations in dimension 3 and above.

One of our discussions about unconfined chains led us to some interesting
reconfiguration problems for chains not allowed to intersect themselves. And
what about 3D? We had a simple plan: project the 3D chain to 2D, and recon-
figure the shadow in 2D to guide the reconfiguration of the 3D object. There
were some difficulties with this, however. Suppose you tie a knot in your shoe
lace, and attach a long knitting needle to each end of the lace. You won’t be able
to undo the “knot”, even though it’s not a knot in the mathematical sense. It’s
easy to imagine that a chain of links could be configured like such a knot, with
very long links attached at the ends, to give a configuration of an open chain of
links in 3D that cannot be straightened. Worse, we realized that even if a chain
in 3D had a simple projection onto a plane, we didn’t see how to straighten a
simple chain in the plane. This led us to several chain straightening and polygon
convexifying problems for linkages in the plane, with links not allowed to cross.
My colleague Godfried Toussaint at McGill was very enthusiastic about these
problems and suggested that we try to convexify star-shaped polygons, that is,
polygons containing a non-empty “kernel” of points that can “see” all the points
in the polygon.

Encouraged by Godfried’s enthusiasm, we began describing these problems
at every opportunity, beginning with Bill’s seminar at McGill in March 1991,
and later in August 1991 in our talk at the Canadian Computational Geometry
Conference (CCCG ’91) in Vancouver, for example, and at my AWOCA ’92 ses-
sions, where the chain straightening problem was on the handout of problems
given in the problem session, and again in our talk at CCCG ’92. We also de-
scribed these problems in our 1993 McGill technical report. When our journal
article based on turning a polygon inside-out ([25]) finally appeared in 1995, we
mentioned at the very end that these problems still had not been solved.

Bill and I were not aware in 1991 that this kind of problem had been posed by
topologists in the 1970’s (see the discussion of the history of the problem in [7]).
However, as far as we know, our 1993 McGill University technical report [25]
was the first written, publicly accessible statement of these problems. In the
computational geometry community, the chain-straightening problem was again
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independently rediscovered by Joe Mitchell in 1992, in the context of a tube
manufacturability problem. Joe was active in generating possibilities of chains
that might not be straightenable in the plane, and discussed these with a number
of geometers.

In the spirit of Paul Erdős, I offered a prize of one bottle of Bintang, the
local beer, for AWOCA ’92 participants who solved the open problems about
linkages on the handout. One of the participants who took this offer seriously
was Heiko Schröder, who was then at the University of Queensland, where I
visited later, in December 1992. In fact, I rented Heiko’s apartment, as he was on
sabbatical, travelling in Europe. We started corresponding via the fax machine in
his apartment about the star-shaped polygon problem. He would propose an idea
and fax it to me, with pictures. I would fax back a reply. The difference in time
zones made life interesting. Sometimes I would hear the fax machine grinding
away at 3 a.m. Brisbane time, and leap out of bed to see what Heiko’s latest
idea was for winning a Bintang. Always there was some little problem. We tried
hard to do a proof by induction: straighten some joint and continue on a simple
polygon with fewer vertices. We tried drawing rays through every other vertex,
hoping to move some pair of rays apart so that the 2-link sub-chain contained in
the wedge bounded by the rays would straighten. All these efforts led to technical
difficulties, such as degenerate cases to handle, or problems keeping the chain
simple or the polygon star-shaped.

Eventually, Heiko proposed moving the vertices on the rays simultaneously
outward along their rays at constant speed. This was quite a novel idea, since
it moved an unbounded number of vertices at the same time and had a dis-
tinctly different flavor than that of chain reconfiguration algorithms whose mo-
tion primitives were localized. Surely such an expansive motion would convexify
the linkage, and it had the intuitive appeal that the algorithm sort of “inflated”
the polygon. We outlined a formal proof, whose details we never completed. Still,
what we had seemed fairly convincing, and I promised Heiko a Bintang.

In 1992-93, Mark van Kreveld of the University of Utrecht, The Netherlands,
came to McGill for a postdoc. He sportingly took a look at some chain recon-
figuration problems in the plane, with links allowed to cross; in particular, he
looked at problems for chains confined to polygons and/or the wedge problem.
When these seemingly simple problems proved surprisingly difficult, he called on
a heavy-duty weapon, Jack Snoeyink, then of the University of British Columbia.
Mark and Jack proposed a new, related problem, that of folding a chain whose
links all have the same length, an equilateral chain. If one could fold the entire
chain onto a single link, one could then hope to move this link around in a con-
taining environment to a position where it could be unfolded to give the desired
configuration for the whole chain. Thus, instead of using a completely straight-
ened configuration as an intermediate configuration between initial and desired
final configurations, one would use a completely folded intermediate configura-
tion, which seemed sensible in the context of a containing environment. Studying
a polygonal environment consisting of an equilateral triangle of side length 1, we
found a surprising alternation property for the foldability of equilateral chains
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of link-length l < 1. Whether or not every configuration of such a chain can
be folded to a single link is a property that changes three times as l increases
from 0 to 1. For very small links with l close to 0, every configuration can be
folded to a segment of length l, and for chains with l close to 1, not all configu-
rations can be folded. Surprisingly, as l increases from 0 to 1, the foldability of
equilateral n-link chains changes from always foldable, to not always foldable, to
always foldable, and finally back to not always foldable. See [22] and for another
example of alternation, [30].

Recalling Kantabutra’s success with reconfiguring chains in squares, my stu-
dent Naixan Pei and I decided to push farther the strategy of moving the chain
to the boundary, and rotating it around the boundary to a position that would
enable one end to reach out to touch a desired point. We were able to generalize
some of Kantabutra’s results to the case of convex obtuse polygons. These are
convex polygons, not necessarily regular, such that each internal vertex angle is
equal to or greater than Π/2. See [29,30,31,32].

In 1998, Anna Lubiw of the University of Waterloo and I led a small workshop
on “Wrapping and Folding” (or, alternatively, “Unwrapping and Unfolding”) at
McGill’s Bellairs Research Institute in Barbados. She and her collaborators,
including Joe O’Rourke and Erik Demaine, who was her doctoral student, had
obtained some interesting results having a flavor of origami. Her view was that
chain reconfiguration was a kind of origami for a lower dimensional object, a line
instead of a piece of paper. At this workshop, we revisited chain reconfiguration
problems, this time insisting that links not be allowed to cross.

Our first result [1], produced by all the workshop participants in a real group
effort, was inspired by a chain configuration that Joe Mitchell had proposed as
being possibly unstraightenable in the plane. It seemed to us that this particular
example could, however, be straightened, so instead, we explored the possibility
that a tree linkage based on Joe’s chain pattern could not be straightened. Here,
straightening a tree means to choose some node as a root and then to move
the linkage so that all root-leaf paths form essentially straight lines emanating
from the root. Indeed, we found that there are tree linkages that cannot be
straightened in the plane and that can exhibit exponentially many equivalence
classes of configurations [1]. Here are some questions arising from this work.

Problems (tree linkages): What is the complexity of deciding whether or not
a tree configuration can be straightened? Design an algorithm to do this when
possible. Can every configuration of a tree linkage whose links all have length 1
be straightened in the plane?

Another idea that our 1998 Folding and Wrapping workshop explored was
a line of thought suggested by Godfried Toussaint: suppose the configuration
of a chain initially lies in the plane, but that to straighten it without edge
crossings, we allow ourselves to lift it into 3D. Eventually, the workshop designed
an algorithm that convexifies planar polygons, with intersections forbidden, by
lifting one link after another to a subchain that forms a convex arch and that
lies in a plane parallel to the original plane, joined to it by a connecting link at
each end of the arch. We came to call this the St. Louis arch algorithm, since
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the idea of storing the partial solution out of the way of the unprocessed links
reminded us of the huge arch that towers over the city of St. Louis, Missouri.
For this and other chain straightening and convexification results obtained by
this workshop, see [2].

One of the workshop participants, Ileana Streinu, suggested an intriguing
approach to the polygon convexification problem. As long as we were willing to
use 3D to move an initially flat polygonal linkage to a convex shape, why not
simply “flip out” the pockets? A pocket of a polygon is a connected component of
the convex hull of the polygon with the polygon itself removed. The pockets are
thus polygons whose boundaries consist of one convex hull edge [vi, vj ] together
with one of the two chains of edges of the polygon between vi and vj . To “flip out”
a pocket, one would rotate the pocket about the convex hull edge, and return it
to the plane outside the original convex hull. Clearly the entire polygonal linkage
would not intersect itself during or after this flipping motion, since the links in
the pocket would land outside the convex hull of the remaining links. There are
some dfficulties to work out. If all the pockets are flipped at the same time, they
may intersect one another. Also, the polygon formed by flipping out a pocket is
not in general convex, so the process must be continued; it is not even clear it
terminates. We eventually found that the process does terminate after a finite
number of flips, but that this number cannot be bounded by n. Worse yet, we
eventually found that Ileana had independently rediscovered a question posed
by Erdős in the 1930’s and answered by several people in the mean time.

Some of the workshop participants revisited the problem of convexifying a
star-shaped polygon and worked out the details and special cases [11]. The work-
shop also revisited the knitting needles example that Bill and I had suggested as
evidence that chains cannot always be straightened in 3D; a concrete example
was made and a simple proof of its nonstraightenability was given (see [2]).

The 1998 workshop served to kindle a lot of interest on reconfiguration prob-
lems for chains whose links are not allowed to cross. One of the participants,
Joe O’Rourke, together with his student R. Cocan, proved that every polygonal
linkage in dimension D > 3 can be convexified [6]. For chains whose links are
allowed to cross in dimension D > 2, Bill Lenhart and I had proved this as a
by-product of the our techniques for turning a polygon inside-out in the plane.

A subset of participants, together with Michael Soss, a student of Toussaint,
found a convexification procedure for monotone polygons in the plane, whose
links are not allowed to cross [3].

Toussaint has written a history of Erdős’ pocket-flipping problem and its
solutions and has given a proof combining elements of various ones of these
solutions [36]. He has also led his own workshops on various aspects of motion
planning for polygonal linkages, which became the topic of Michael Soss’s Ph.D.
thesis at McGill.

A fascinating recent development in the area is the following. One of the 1998
workshop participants, Eric Demaine, together with Robert Connelly and Günter
Rote has answered the planar chain straightening problem in the affirmative:
every simple configuration of an open chain (or a closed polygon) in the plane
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can be straightened (or convexified) in the plane while keeping the linkage simple
during the entire motion. See [7]. Their proof uses techniques from rigidity theory
and linear programming, combined. They inflate the polygon by moving vertices
so that the distance between non-adjacent vertices never decreases. Meanwhile,
another one of the 1998 workshop participants, Ileana Streinu, has come up with
an elegant, more “concrete” proof method [35], based on the notion of pseudo-
triangulations. The flavour is discrete, combinatorial, and mechanical.

Problems (non-crossing planar chain straightening and polygon con-
vexifying): With edges not allowed to cross, are there more simple ways to
straighten a chain or convexify a polygon in the plane? Here, one may consider
special classes of polygons, as done in [11,3].

Of course, tastes vary about what constitutes a “simple method”. Note that
there is a distinction to be made between the running time of an algorithm that
computes the description of a motion, and number of “mechanical steps” one
makes in physically carrying out a motion, or the length of the description of the
motion. Then there is the question of practical implementability, both electronic
and mechanical. Another consideration is whether to allow more than a constant
number of joints to be active at the same time, where “active” refers to a change
in the angle between two adjacent links or a change in the dihedral angle between
the two planes determined three consecutive links.

Problems (3D non-crossing chain straightening and polygon convexi-
fication): In 3D, with edges not allowed to cross, when can an open or closed
chain be straightened or convexified? What is the complexity of this problem?
Are there interesting, nontrivial special situations for which a convexifying strat-
egy be given? (One of the papers from the 1998 workshop [2] gives some easy
examples.)

Problems (toleranced reconfiguration): What can be said about reconfig-
uring chains with a clearance constraint? For example, suppose that one must
move a chain from one configuration to another while respecting a safety zone
of some fixed radius around each link?

Finally, as mentioned earlier, chains and polygons are special cases of tree-
like linkages, which themselves are special cases of graph-like linkages. For trees,
even in the plane with edges allowed to cross, it is NP-hard to decide if a tree-
linkage can be positioned so that its leaves are located at given points in the
plane. See [37] and, for algorithms for placing trees see [38,39].

Problems (tree-like linkages): What can be said about the configurations
and motions of tree-like (and more generally, graph-like) linkages?

In view of the piece-wise linear knot theoretic flavor of these problems, and
their connection with rigidity theory, the subject of linkage reconfiguration offers
much fertile ground to be explored.
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