
We present a novel framework for synthesizing 
motions for one-handed human manipulation 
problems [1].  All motion is physically based.  
Motion capture data is not used and the exact 
object trajectory is never specified; we only require 
the final configuration of the object. Offline 
simulations are used to build effective control 
policies that adapt to real time changes in the task. 
Additionally, finger motions exhibit human 
characteristics, such as finger gaiting, and 
manipulations use the entire geometry of the hand.
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Each controller consists 
of three reference poses   
               managed by a 
state machine.  We 
evaluate the parameters  
by running a forward 
dynamical simulation 
over a single controller 
cycle. Joint torques are 
computed by the PD 
servo equation

Optimized controller parameters for multiple 
states are used to construct a k-nearest neighbors 
function approximator Π(s).  Weighted linear 
interpolation is used to compute control  
parameters for novel states.

Each state s represents an 
optimization problem. 
Covariance matrix 
adaptation (CMA-ES) [2] 
is used to find suitable 
controller parameters by 
optimizing  phased based 
objectives:

We examine the effect of joint perturbations φ on the effectiveness of learned 
controllers. Task progress is measured by the reward R(s) at the end of a 
controller cycle (left). A shortened duration for the actuation phase (T1) suggests 
that progress is related to the grasp quality during the approach (Q0) and 
actuation phase  (Q1) (right). Grasp quality is computed similarly to [3].

Our framework for generating human  

grasping motions creates plausible, 
coordinated motions that adapt to task 
changes in real-time. We do not assume a 
pre-defined trajectory or require motion 
capture data. In future work we will 
investigate the use of linear feedback 
control to improve the robustness of the 
policies by tracking features relevant for 
successful human manipulation.

Goal: rotate the 
dial to align the 
red arrow with 
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Top row: Ball-in-hand example. Middle and bottom rows: Two variations for a 
dial turning example. The middle row enforces a short phase duration; the 
bottom row uses a longer phase duration, and only the thumb, index, and middle 
fingers are selected for participation.
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We decompose each 
manipulation task  
into sequences of  
three phases: 
approach, actuate, and 
release.  
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