
Goal Directed Multi-Finger Manipulation: Control Policies and Analysis

S. Andrews, P. G. Kry

School of Computer Science and Centre for Intelligent Machines, McGill University, Canada

Abstract

We present a method for one-handed, task-based manipulation of objects. Our approach uses a mid-level, multi-phase approach
to organize the problem into three phases. This provides an appropriate control strategy for each phase and results in cyclic finger
motions that, together, accomplish the task. The exact trajectory of the object is never specified since the goal is defined by the final
orientation and position of the object. All motion is physically based and guided by a control policy that is learned through a series
of offline simulations. We also discuss practical considerations for our learning method. Variations in the synthesized motions are
possible by tuning a scalarized multi-objective optimization. We demonstrate our method with two manipulation tasks, discussing
the performance and limitations. Additionally, we provide an analysis of the robustness of the low-level controllers used by our
framework.

Keywords: grasping, manipulation, hand animation

1. Introduction

Animation of human manipulation is a difficult and time
consuming task. It is arguably one of the most challenging
genres of human motion to synthesize due to the fact that it
involves the coordination of many degrees of freedom and mul-
tiple contacts. Furthermore, successful simulation of physically
based manipulation depends on many variables such as the
shape, size, texture, and physical properties of the object being
manipulated.

Problems related to grasping and manipulation have re-
ceived significant attention from both the computer animation
and robotics communities, with extensive work addressing the
issues of motion planning, contact placement, and grasp quality.
In this paper, we focus on physically based simulation of
one-handed manipulation. A key feature of our approach is
that we do not require a scripted path for the object. Instead,
we specify only the goal, allowing the object trajectory to be
influenced by hand geometry and finger motions. We believe
this is useful for creating plausible human-like manipulation,
and relevant to many scenarios where only the final object
configuration is important (e.g., preparing a coin for insertion
into a vending machine, rotating a small package to read its
label, or orienting small parts as part of a larger assembly task).

In contrast to high-level motion planning techniques that
solve complex problems through a sequence of actions, we
instead take a mid-level control approach that is well suited
to grasp repositioning tasks. We introduce an automata-based
controller architecture that produces cyclic finger gaiting ac-
tions, wherein contact related events trigger different low-level
controller phases. Adjusting a volume dial or removing a

Email addresses: sheldon.andrews@mail.mcgill.ca (S.
Andrews), kry@cs.mcgill.ca (P. G. Kry)

lid from a jar are simple examples that work well with this
approach; the goal can be achieved by chaining together a
number of similar turning actions with repeated releasing and
re-grasping interleaved to reposition the contacts. We term
these three phases approach, actuate, and release, and a ball-
in-hand re-orientation task as a more complicated example.

Continuous optimization is used to compute the parameters
necessary for our mid-level controller phases. The objective
is to successfully perform a manipulation task, but also to
produce a physically plausible and natural motion sequence.
Our controllers tend to work well for a collection of nearby
states, and because several cycles are often necessary to reach
farther goals, we build a policy using reinforcement learning
(RL) and interpolation of controller parameters. Unlike tradi-
tional RL, a discretized action space is not used and parameter
selection occurs in a continuous manner for each state. This
learning approach helps us tune the release phases so that
fingers are better positioned for improved progress toward the
goal in future cycles. More importantly, once the policy has
been computed, it is useful for simulation of goal directed
manipulation in real time.

Although motion capture is not used, we do use a selection
of natural hand poses to compute a reduced parameter space
for our low-level controllers. This limits the number of degrees
of freedom that we need to include in searching for solutions,
and encourages the use of natural hand poses. Despite the
reduced degrees of freedom, we still have a full simulation that
produces poses outside of the reduced pose space, with finger
joints bending to accommodate contacts.

We believe our method makes important progress toward
the development of improved virtual humans that can perform
successful goal oriented physically based interactions with
virtual objects. Our main contributions build on our previous
work [1] and include:

Preprint submitted to Computers & Graphics May 9, 2013

• A novel framework for synthesizing motions for human
manipulation problems where the generated motions ex-
hibit finger gaiting;

• A reduced search space based on natural poses to in-
crease the performance of our method while ensuring the
use of plausible hand shapes;

• Learned control policies that run in real-time;

• An analysis of the robustness of the control policies, pro-
viding insight into the selection of learning parameters,
as well as providing indications on how to improve the
low-level controllers used by our framework.

2. Related Work

A variety of control strategies can be used in object ma-
nipulation tasks, of which contact changes are a critical aspect.
Work in neurobiology observes that changes in motor control
are triggered by discrete events, with the contact information
provided by different mechanoreceptor signals [2]. When
this information is suppressed, it becomes difficult to perform
fine manipulation. For instance, imagine trying to open a
combination lock with fingers numbed by cold.

In physically based computer animation, contact changes
are also important and are included in the design of finite state
machines and automata-based controllers. Such controllers are
a natural choice for modeling virtual motor control involving
environmental interactions, such as grasping, manipulation, and
locomotion. Pollard and Zordan [3] present a physically based
grasping simulation that combines motion capture at the wrist,
key poses selected from the capture, and a finite state machine.
Their method only performs a grasp and release of an object,
but the state machine and transitions are fairly similar to the
controller we use. However, their approach uses a simple
heuristic for triggering the release of the object, as opposed to
a grasp quality metric.

In an early approach to this problem, we attempted to direct
the hand through a learned policy of optimal joint angle veloc-
ities, as in the motion fields work of Lee et al. [4]. However,
it proved difficult to generate motions that remained stable in
the contact-rich environments typical of human manipulation
tasks. Instead, we found it much more tractable to use a
mid-level control approach, whereby contact related events
trigger specific controller phases.

In robotics work, Huber and Grupen [5] demonstrate robust
finger gaits from closed-loop controllers. Their work is similar
to ours, but they do not use a latent parameter space to compute
control poses, and their technique does not result in a policy
that can be used for different scenarios with changing goals.
Other robotics work has used a multi-modal control approach
to perform motion planning for full body manipulation tasks.
Hauser et al. [6] break down the planning problem for robot
pushing tasks into a sequence of walking, reaching, and pushing
motions. These modes are high-level compared to the phases
used by our controller framework. Their approach uses shorter
phases (10-100 ms), making exploration costly for scenarios

where high branching factors exist. Our work schedules phase
transitions according to discrete events within the simulation,
resulting in longer phase durations (typically 200-1000 ms).

Other work has performed dexterous manipulation from a
grasping pose by optimizing the forces necessary to move a
manipulated object on a pre-specified trajectory [7]. These
optimized forces are then used to drive finger motions with
appropriate torques at the joints. Our work differs in that
the complete trajectory of the object is not known a priori,
and we do not require an initial grasp. In contrast, and more
recently, Ye and Liu [8] use contact sampling to animate fingers
given motion captured data for the object. Interestingly, they
note that it is important that the motion of the object come from
a captured manipulation, as opposed to a key-framed trajectory,
for finger motions to appear natural. This is not unexpected,
and is part of our motivation for using a goal based approach,
as opposed to simplifying the problem by first scripting or
planning a path for the object.

In our work, we focus on goal directed dexterous manip-
ulation. Mordatch et al. [9] present a solution to this problem
that produces impressive results. Their approach solves a
sequence of space-time constraints with a special treatment for
contact. They avoid optimizing the motion of each finger joint
by considering only end effector positions, and finger poses
are reconstructed with inverse kinematics. In our approach we
simulate all the finger joints, and our optimization takes the
form of a shooting method as opposed to encoding physics
as constraints. As a result, our solutions have better physical
plausibility and hard contacts, though we are only able to solve
well structured manipulation in comparison.

To speed up our optimization, we recognize that aspects of
the grasping problem can be described in a low dimensional
manner. Santello et al. [10] show that the variation in final
imagined grasp poses for a large number of objects is quite
small, with well over 80% of the variation explained by only
two principal components. Recently, Ben Amor et al. [11] used
a low-dimensional sub-space built from a database of recorded
human grasping postures to perform grasp optimization on a
robot. The focus of their work is complementary to ours in that
their approach synthesizes motions for “reach-and-grasp” tasks.
Also, we avoid correspondence problems between human and
robot kinematics by allowing the user to build a pose corpus
directly using the simulation model.

In other work, there has been progress in resynthesizing
human grasping motion. Kry and Pai [12] capture forces and
motion with the objective of estimating finger stiffnesses to
use in a simulation to resynthesize the captured motion. The
controller in this case is entirely feed-forward. While the resyn-
thesized interactions have a natural motion due to estimated
compliance, there is no feedback to ensure the resulting final
object position and orientation match a desired goal.

An important part of our work is that we use continuous
optimization and machine learning to compute successful con-
trollers, which produces a policy that can be used in a real time
simulation. In the context of locomotion, Coros et al. [13]
use reinforcement learning to create a policy that provides a
controller to perform a series of walking tasks (e.g., walking on

2

a line). Their controllers benefit from a learned control policy in
that they are made more robust by interpolating optimal control
parameters from nearby states. Similarly, Wang et al. [14]
perform optimization for walking controllers that anticipate
perturbation.

Finally, Okamura et al. [15] provide an overview of dexter-
ous manipulation in robotics, and discuss the idea of mid-level
control, which we use in our work.

3. Controller Structure

Approach

Actuate

Release

Figure 1: Our three phase mid-level control strategy.

Our approach is motivated by the observation that human
finger motion exhibits pseudo-cyclic characteristics, or finger
gaiting, for a broad range of hand manipulation tasks. The
fingers move in a coordinated fashion with an effort determined
by one of three distinct phases: (i) a pre-shaping and finger
planting phase wherein the hand forms a stable grasp around
the object, (ii) an actuation phase in which wrenches due to
contact forces are used to translate and rotate the object toward
some desired configuration, and (iii) a release phase wherein
the fingers adjust to a pose that is suitable for a subsequent
approach phase. We refer to these phases simply as approach,
actuation, and release (see Figure 1).

These phases represent strategies that are encompassed by
an automata-based controller architecture. Each controller uses
a set of three reference poses, (q̃0, q̃1, q̃2), to guide the hand
in order to accomplish a manipulation task. The method for
selecting these poses is discussed later, in Section 4.1.

During the ith phase, we apply joint torques, τ, computed
as

τ = K (q̃i−q)−Dq̇ , (1)

where K and D are the joint stiffness and damping matrices,
respectively. The hand model used in our experiments is shown
in Figure 2. Each pose consists of 20 joint angles corresponding
to the degrees of freedom of the hand.

Figure 2: Our hand model showing the associated number of degrees of
freedom at each of the joints.

Throughout the rest of this paper we use the integer sub-
scripts 0,1,2 on scalar and vector parameters to denote a cor-
respondence with each of the approach, actuation, and release
phases, respectively.

3.1. Phase Transitions

Phase transitions occur asynchronously and are tied to
contact and joint limit events occurring within the simulation.
In this section, we describe the conditions used to trigger
transitions between phases.

The initial obstacle faced in many grasping problems is
determining where to form finger-object contacts so that ma-
nipulation may be performed. This is the main objective of
the approach phase, wherein pre-shaping occurs and finger
end-effectors ultimately make contact. It is most beneficial
to end in a configuration that results in a stable grasp and
good dexterous potential for manipulating the object. The
subsequent phase involves actuating the object using contact
forces, typically until further actuation is no longer possible
(i.e., due to joint limits) and some or all fingers break contact.
The hand then moves toward a recovery pose where pre-shaping
and approach can begin again, repeating the cycle.

The approach phase ends once the fingers have planted and
the desired grasp quality, Q̃, has been achieved. Quality here
means that some stable, dexterous manipulation is possible, and
there are several possibilities for measuring this quantitatively.
We use a metric that is computationally inexpensive, but
effective. Details about estimating grasp quality are provided
in Section 4.2.1. Once the grasp quality condition is met, the
approach phase transitions to the actuation phase.

At this point, the fingers are ready to manipulate the object.
The direction of manipulation is a result of contact with the
object and the accumulation of joint torques as computed by
the proportional-derivative (PD) control given in Equation 1.

3

During actuation, joint torques are applied until the grasp
quality drops below an acceptable threshold, indicating that
dexterous manipulability is no longer possible and the con-
troller transitions to the release phase.

The transition between release and approach occurs when
the total joint velocity of the fingers becomes small, indicating
that the desired pose has been reached, or that motion is
hindered due to contact forces; there is also a transition when
the allotted time for the phase has elapsed. The controller state
is set to the approach phase and the cycle repeats. Contact
information is not used to trigger a transition out of the release
phase.

Note that there is no assurance that a stable grasp is
maintained during the release phase. However, it is assumed
that “good” trajectories ultimately lead to the goal state; this
information is encoded in the value function, V (s). We include
the value function as part of the selection process for controller
parameters. This a subtle, but important, aspect of our approach
and further details are provided in Section 4.4.

For all phases, we force a transition to the next phase if
the joint velocities of the hand become small or the duration of
a phase exceeds a maximum value, Tmax. The one exception
is when the goal has been reached, in which case the hand
holds in either the actuate or release phase, waiting for the goal
to change. The choice here is to let the hand remain in the
actuation phase, ready to apply forces to achieve a new goal, or
to remain in the release phase, allowing the hand to be moved
between objects as part of a higher level control.

4. Control Policy Creation

In this section, we provide details on how to build a
control policy for object manipulation tasks, beginning with a
description of the simulation environment.

Since our work focuses on single-handed manipulation
tasks, state information regarding a full character skeleton
is ignored; only the wrist and fingers joints are considered.
Therefore, each state vector, s, contains the joint angles of the
hand, q, the orientation of the object, θ, and its 3D position,
x. The object orientation is stored as a quaternion, and both
the position and orientation use a coordinate frame affixed to
the wrist of the hand model. A homogeneous transformation
matrix is used to transform the object’s position and orientation
from a global coordinate frame to a hand centric frame. The
state vector is updated at each time step.

Other components of the simulation state, such as the
the linear and angular velocity of the object and hand joint
velocities, are used to initialize the dynamics simulation when
evaluating control parameters. However, we found these state
components had little effect on the results when querying
the control policy for optimal control parameters. This can
be partly explained by the quasi-static nature of the hand
based on the stiffness and damping control parameters we use.
Therefore, we exclude all velocity level quantities from the state
when building our control policy function.

An action, a, is represented by the tri-phase controller
described in the previous section. Each action is composed of

a sequence of three desired hand poses, (q̃0, q̃1, q̃2), which are
determined during the offline continuous optimization stage, as
described in Section 4.1. The control policy, Π(s), provides a
mapping from the environment state to an optimal action, a∗,
whose control parameters are used to bring the environment to
a higher valued state by making progress on the task. Progress
occurs by means of a forward dynamics simulation, and the
value of being in state s is stored in the value function, V (s).

The value and control policy functions are represented by
a k-nearest neighbor (k-NN) function approximator. Distance
between neighboring states is computed as a combination of
state components. The distance between states sa and sb is
computed as

d(sa,sb) = βq ‖qa−qb‖+βx ‖xa− xb‖+βθ ‖ log(θ−1
a θb)‖.

Of these components, the distance between hand postures is
most critical for selecting the most appropriate action. Our
implementation represents the object’s position in centimeters.
The range of values for this component is similar in magnitude
to the angular component, which is measured in radians and
computed by the logarithm of quaternions. Hence, the distance
between hand postures tends to dominate the function d(sa,sb).
The scalar values βq, βx, βθ are used to weight contributions
of the pose, object position, and orientation components, re-
spectively. Through empirical evaluation we determined that
βq = βx = βθ = 1.0 gave good results, and this is coincidentally
equivalent to an unweighted metric.

The interpolation weight for the ith neighboring state is
computed using an inverse distance-squared kernel,

wi =
1
σ

1

(d(s,si))
2 .

Convexity is ensured by computing a normalizing factor 1
σ

such
that ∑

k
i=1 wi = 1. The optimal action for an arbitrary state is

estimated by interpolating the actions for the k closest states in
the policy,

a∗ =
k

∑
i=1

wi ai .

4.1. Value Iteration
A control policy is learned using the value iteration method

[16]. The collection of states, S, that make up the instance-
based functions Π(s) and V (s) is bootstrapped with random
states that are chosen uniformly across variations of pose and
task.

Controller parameters are determined by performing a multi-
objective optimization. For each state s ∈ S, candidate actions
are evaluated using a forward dynamics simulation. This means
that the parameter search occurs across a non-linear, rugged
landscape.

The value function is updated using the reward and value
of the proceeding state, s′, at the end of the simulation.
The method ISNOVEL(s′) uses a threshold, ε, to determine
if the state is sufficiently novel and the method returns true
if dist(s,s′) > ε for all s ∈ S. Novel states are added to S.

4

V(s)

Π(s)

∀s , s∈S

min L0+ L1+ L2+ L g {s ' , a*}

V (s)←R(s , a*)+γV (s ')

Value Iteration

Π(s)←a*

s

Forward Dynamics
Simulationa s '

CMA-ES

if (isNovel (s '))S ← S∪s '

while not converged do
for s ∈ S do

a∗ = OPTIMIZE(s)
s′← FORWARD_DYNAMICS_SIMULATION(s,a)
Ṽ (s) = R(s,a∗)+ γV (s′)
V (s)← α ˜V (s)+(1−α)V (s)
Π(s) = a∗

if ISNOVEL(s′) then
S← S∪ s′

end if
end for

end while

Figure 3: A block diagram visualizing our method (left) and the value iteration algorithm used to build the control policy (right).

Pseudo-code for the value iteration algorithm is provided in
Figure 3.

Covariance matrix adaptation (CMA-ES) [17] is used to
determine the optimal controller parameters at each state s. The
phases are not optimized in isolation, and instead CMA-ES
optimization is performed over one complete cycle of the state
machine. The coupling between phases is key to our approach,
since evaluation of the success of a controller is determined not
only by the minimization of a set of objective terms for each
phase independently, but by their performance as a sequence.

Each objective term is a function of the simulation and task
state across all controller phases, leading to the formulation of
a composite objective function

min
a∗

L0 +L1 +L2 +Lg .

Here, L0,L1,L2 pertain to the approach, actuation, and release
phases, respectively; Lg is an aggregation of global terms
pertaining to all phases. The contents of the phase specific
and global objective functions are discussed in the following
sections.

The terms of the composite objective function are denoted
by the symbol L, and subscripts are used to distinguish indi-
vidual quantities pertaining to phase-specific features. These
features are quantities accumulated throughout a phase, or
computed at phase transitions. The notation ∑t∈Ti is used to
indicate a term that is accumulated over period Ti, with its value
being sampled at each time step.

Scaling is used to bring the range of values across ob-
jective terms to within an order of magnitude. The scaling
factors, which are determined empirically by data collected
from manually defined manipulation sequences, are computed
once for each task. By scaling each objective term in this way,
it simplifies the process of the tuning the weights, l, for the
multi-objective optimization problem. The scaling factors are
omitted from the equations in order to improve readability.

4.2. Approach

The approach is a pre-shaping phase, wherein the agent
makes contact with the object in preparation for actuation. The

objective function for this phase is simply

L0 = l0 max
(
0, Q̃−QT0

)
,

which ensures a penalty if the grasp quality at the end of the
phase, QT0 , is below the desired grasp quality, Q̃. As such,
the duration of the approach phase T0 can equal the time out
T if the grasp quality was not achieved, in which case L0 will
be some positive value to penalize this action. Alternatively,
if grasp quality is achieved, then T0 is the time at which the
approach phase transitions into activation, and the objective L0
will simply be zero. Overall, this encourages the optimization
method to find solutions where the fingers are planted and ready
to actuate the object.

4.2.1. Grasp Quality
In this section, we describe our method for computing the

grasp quality. A common metric for determining grasp quality
is by computing the force closure of the grasp wrench space
(GWS) [18]. If the convex hull of the GWS contains the origin,
it has closure, and any external wrench acting on the object
can be resisted by a convex combination of the grasp wrenches.
However, computing the convex hull at each simulation step is
a computational bottleneck, and instead we estimate the grasp
quality with an ellipsoid, similar to the method outlined by
Klein and Baho [19].

b
1

b
4

b
3

b
2

n⃗

Figure 4: Discretized friction cone
showing the contact normal, ~n, and the
frictional basis vectors, b1...4.

The matrix G ∈R6×(mN)

is assembled from a set
of representative vectors,
accounting for N finger-
object contacts and m basis
vectors at each contact that
approximate the Coulomb
friction cone (as shown in
Figure 4). The positive
linear span of the friction
cone represents the set of
potential forces a contact
may apply to the object.
For our experiments m = 4, and the basis for the ith contact
is denoted by

(
bi1 ,bi2 ,bi3 ,bi4

)
.

5

The matrix, Γi ∈ R6×3, is used to map contacts forces in the
global coordinate frame to wrenches in the object’s local frame.
This matrix has the block form Γ =

[
RT − p̂RT

]T , where R is a
rotation matrix transforming vectors in the global coordinate
frame to the object’s coordinate frame, and p is the contact
location used to form the skew symmetric cross product matrix
p̂. This gives the set of wrench vectors

Wi =
[
Γibi1 Γibi2 Γibi3 Γibi4

]
, (2)

and G becomes the block row matrix G = [W1 . . . WN].
We compute the singular value decomposition G =UΣV T ,

and estimate grasp quality, Q, as the smallest singular value of
G. By avoiding poses where the singular value is equal or close
to zero, the optimization is more likely to select non-singular
grasp configurations. The columns of U provide the axes of
the wrench ellipsoid, and the axis corresponding to the smallest
singular value provides a direction in which the least amount of
force and torque is needed to break the grasp. Informally, the
smallest singular value corresponds to a GWS direction that is
“weakest”.

The example illustrated in Figure 5 shows the convex hull
computed for a grasp in a 3D wrench space. The grasp
lacks closure since the hull does not contain the origin yet
the wrench ellipsoid is not degenerate and does contain the
origin. Therefore, as an additional check, we ensure that the
cone spanned by the contact wrenches is at least π, otherwise
Q = 0. Although this approximated metric often leads to grasps
which have the force closure property, there is no assurance of
stable grasps throughout a manipulation. Rather, this heuristic
sufficiently guides the optimization towards manipulable and
plausible grasps.

We justify the use of the wrench ellipsoid heuristic by
considering computational performance. For complex scenar-
ios involving ∼ 10 contacts, the time required to compute the
wrench hull with an Intel 3.2 GHz processor is 15 ms compared
to 0.1 ms for the wrench ellipsoid based quality metric. In our
experiments, there was little difference in the motions generated
using these two quality metrics, so we choose the one that is less
expensive to compute.

4.3. Actuation
It is during the actuation phase that most of the progress

is made on the task. Wrenches acting on the object change its
position and orientation such that it moves toward the goal state.
Based on this assumption, it is necessary that the predominant
objective for this phase is to minimize the task-based objective
function

LT = lx‖x̃− x‖+ lθ‖ log(θ̃−1
θ)‖.

Note that LT ≥ 0, and the minimal value occurs when the goal
state is reached.

The value function should reflect the optimality of the task
state. By using the reward function

R(s) = −
(
‖x̃− x‖+ ‖ log(θ̃−1

θ)‖
)
,

this results in a V (s) that is non-positive for any state s.
Choosing an action that minimizes the objective term LT will

Figure 5: The wrench convex hull (left) of a 2D grasp, with two linear force
(fx, fy) components and an angular torque (τ) component; the 3D wrenches are
drawn in red. The grasp does not have form closure (the hull does not contain
the origin), yet the wrench ellipsoid (right) is not degenerate. An additional
check is performed to ensure that the grasp wrench space spans a cone of at
least π.

maximize the return of the reward function, meaning that in
a greedy sense progress is made on the task. This duality is
also exploited during the release phase for choosing a recovery
posture by incorporating V (s) as an objective term, maximizing
future rewards.

During manipulation, it is also a requirement that the fingers
maintain a certain degree of stability with the object. Using
the same metric from the approach phase, a minimum level of
grasp quality is maintained throughout the actuation phase by
the objective

LQ = lQ
1
T1

∑
t∈T1

max
(
0, Q̃−Qt

)
.

Here, T1 is the duration of the actuation phase and Qt is the
quality at time t of the actuation phase.

Additionally, we include a penalty term allowing the user
to specify which of the M fingers participate in the actuation.
An array of boolean values, p, contains an entry for each finger,
indicating if it should participate– true if participating, false
otherwise. The summed magnitude of contact forces affecting
each finger is computed as

Fj =
N j

∑
k
‖ f j,k‖,

where f j,k is the kth of N j contact forces between the object and
finger j.

If the value of Fj for a non-participating finger exceeds
a threshold, η, a penalty proportional to the contact force is
added. Conversely, if Fj for a participating finger falls below
η, a penalty is also added. The penalty is accumulated at each
time step of the phase as

LP = lP ∑
t∈T1

M

∑
j

 η−Fj if Fj < η and p j
Fj −η if Fj > η and not p j
0 otherwise

.

For the results shown in this paper, η = 2.0.

6

Assembling each of the task, quality, and non-participating
finger penalty terms, the total objective function for the actua-
tion phase is

L1 = LT +LQ +LP.

4.4. Release

The primary objective of the release phase is to let the
fingers break contact and move them in preparation for another
approach. Since the types of tasks with which we are concerned
focus on re-orientating and re-positioning an object, any spatial
velocity of the object during this phase is penalized in order
to ensure that progress made during the actuation phase is not
undone. We introduce objective terms that penalize any spatial
velocity throughout this phase:

Lω = lω ∑
t∈T2

‖ωt‖2

Lv = lv ∑
t∈T2

‖vt‖2 .

Here, ωt and vt are the angular and linear velocities of the object
at time t.

However, simply minimizing the spatial velocity of the
object will not ensure successful manipulation, since the hand
must recover to a pose where it can make progress during the
subsequent approach phase. Upon transitioning to this phase, if
the object has reached the target configuration, the hand simply
maintains a static posture to hold the object. However, consider
the case where the configuration of the object is not the goal
state. Progress must be made in subsequent phases. Given the
control policy, Π(s), states corresponding to future progress are
considered high value states. High value states are discerned
using the value function, V (s), and we include it as part of the
optimization for the release phase to determine a good recovery
posture.

Conveniently, like the reward function, the value function
has an upper bound of 0 and lower bound of −∞. Therefore,
we can use its value directly as a penalty term in the controller
optimization problem as

LV = −lV V (sT2) ,

where sT2 is the state of the simulation at the end of the
release phase. Note that a negative scalar is used to weight
this objective term. By minimizing LV , postures that result
in good finger planting at the subsequent approach phase are
encouraged.

At the beginning of each inner loop, the covariance matrix
entries pertaining to the release phase are reset. This is
necessary because the value function changes at each iteration
of the algorithm. Thus, the solution found for the release pose
in a previous iteration may no longer minimize V (sT2).

Combining the wrench penalty and value function terms,
the objective function for the release phase is

L2 = Lω +Lv +LV .

4.5. Global Terms

In addition to the individual objectives for each phase, a
global penalty term was added to minimize the energy used to
perform the action, and to discourage contacts that use surfaces
on the back of the fingers. The global component of the
objective function is

Lg = lτ ∑
t∈T ′
‖K (q̃−q(t))‖+ lh ∑

t∈T ′

M

∑
j

h j(t),

where h j(t) is equal to 1 if there is contact on the back of finger
j at time t, or 0 otherwise. This is determined by comparing
the contact force with a vector defining the backhand direction
of each finger segment. We use T ′ to denote the time interval
necessary to complete a full controller cycle.

4.6. Tractability and Implementation

In addition to using a grasp quality metric which is simpler
and faster to compute, we have made a few other technical
choices which greatly reduce the computing time of the CMA-
ES optimization required for controller selection. For instance,
we use a parallelized implementation of the OPTIMIZE(s)
method. On a modern multi-core CPU, this reduced the time
required to compute an optimal action by nearly an order of
magnitude.

Rather than performing optimization in the full coordinate
space, we were inspired by the work of Santello et al. [10],
which suggests human hand postures, when interacting with
tools and everyday objects, may be represented using just a few
principal component vectors.

Figure 6: A sample of the poses used
to build a reduced basis for the control
parameter search.

Using a set of ap-
prox. 20 grasp poses,
from which the user may
select some or all, a re-
duced pose basis is con-
structed. Figure 6 shows
examples of the poses we
use for building our re-
duced pose space. Prin-
cipal component analysis
(PCA) is used to gener-
ate a set of orthogonal
basis vectors in which to
perform the controller op-
timization. Basis vec-
tors are selected accord-
ing to their component
scores and the set of vec-
tors remains the same for
all phases. For the tasks
shown in this paper, the parameter space for controlling the
joints of the hand is reduced from 20 per phase to just 3−5 per
phase, depending on the task, giving a total of 9−15 parameters
for each tri-phase controller. This significantly improves the
performance of our optimization algorithm.

7

4.7. Implicit Joint Torques

Constraint force mixing (CFM) is a feature of several
off-the-shelf rigid body physics engines and is often a required,
practical consideration for building stable simulations of com-
plex systems. We use CFM to implicitize the joint torques
needed in Equation 1. This permits taking large time steps
(∆t = 1/60 s) while remaining stable. For the range of values of
the stiffness and damping coefficients used by our experiments,
it would require advancing the simulation at sub-millisecond
time steps if PD control torques were computed explicitly [3].
This gives a significant speedup in the time required perform
the CMA-ES optimization.

This approach is similar in spirit to the work of Tan et al.
[20], and although the formulation is different, the results are
equivalent. They correctly identify the analogy between PD
controllers and penalty based constrained dynamics.

Consider that a hinge constraint has 5 constrained degrees
of freedom and 1 controllable degree of freedom– about the
hinge axis. However, the controllable DOF may be considered
a “soft” constraint, and some violation of its position is allowed.
We refer readers to the related literature for more information
on CFM (see Erleben et al. [21]).

5. Results and Discussion

In this section, we provide some results for two exam-
ples: dial turning and ball-in-hand manipulation. The tasks
involve re-positioning and re-orienting an object to match a
desired configuration. A collection of capsule and box collision
geometries is used to model the hand, with finger segments
being actuated by joints with 1 and 2 degrees of freedom (see
Figure 2), for a total of 20 joint angles.

The Vortex toolkit [22] is used to simulate the forward
dynamics, including contact and gravity forces. All results were
obtained using a 6-core Intel i7 3.2 GHz processor and running
12 simulation threads for the CMA-ES optimization. Conve-
niently, Vortex supports the method of PD control discussed in
Section 4.7 for hinge and universal joints; stiffness and damping
coefficients may be assigned directly through the API. For all
results presented in this section, the RL parameters α = 0.8 and
γ = 0.9 were used.

Although learning times are long, the result is a policy that
runs in real time. Individual iterations of our algorithm work
like a space-time constraints optimization problem, giving a
partial solution for performing the overall task.

Figure 7 shows a temporal sequence of hand poses gener-
ated for our two examples. Complete animations are available
in the accompanying video.

5.1. Dial Turning

For the dial turning (DT) example, a cylindrical object is
constrained using a hinge joint, similar to a mounted dial or
volume knob. Since the object is constrained to rotate about a
single axis and no linear motion is allowed, the reward function
simplifies to

R(s) = −
∣∣θ̃hinge−θhinge

∣∣

l0 lQ lx lθ lω lv lh lV lP lτ Tmax

DT 0.4 0.4 1.0 1.0 0.5 0.5 10 0.6 0.2 0.1 0.6 s
BIH 0.4 0.4 1.0 1.0 0.5 0.5 10 0.6 0.0 0.1 1.0 s

Table 1: Parameter values used to learn the example tasks.

where θ̃hinge and θhinge are the desired and current angle of ro-
tation about the hinge axis, respectively. One of the trajectories
generated by the learned policy is shown in the bottom row of
Figure 7.

The mean wall clock time to perform the controller opti-
mization for a single state s is approximately 18 seconds. For
the example shown in Figure 7 (bottom row), the policy was
bootstrapped with 16 states, finally growing to 32 states after
23 minutes of running our algorithm.

The CMA-ES parameters used by this example are σ = 0.2,
λ= 30. The multi-objective weights and other parameter values
are provided in Table 1.

5.2. Ball-in-hand
The ball-in-hand (BIH) example involves re-orienting and

re-positioning an unconstrained ball. The task state consists of
the 3D position and orientation of the object in the hand frame.
There is special consideration for states s′ where, at the end of
the controller optimization, the ball is no longer in contact with
the hand. These are not added to S.

On average, it takes approximately 45 seconds to perform
the controller optimization for each state s ∈ S. For the example
shown in Figure 7 (top row), the policy was bootstrapped with
40 states, finally growing to 320 states after 4 hours 21 minutes
of running our algorithm.

The CMA-ES parameters used by this example are σ = 0.4,
λ= 60. The multi-objective weights and other parameter values
are provided in Table 1.

5.3. Variation
It is possible to synthesize variations of motion for a task

by changing the weights of the multi-objective optimization
problem and the maximum phase duration, Tmax. Figure 8
shows two styles of motion generated for the dial turning
task. For the controllers with shorter phase duration (top row),
multiple cycles are required to reach the goal. The controller
with a longer phase duration reaches the goal in one cycle,
but only the thumb, index and middle fingers are flagged as
participating.

5.4. Robustness of Controllers
To evaluate the robustness of the control policy and indi-

vidual controllers, we performed a series of experiments on the
success of performing a task as a function of perturbations to s.
A control policy was built using a small number of states (≈ 12)
with the value of θ and θ̃ remaining fixed. The states were
carefully selected so that the learned controllers were capable
of reaching the goal state at the end of the release phase, or
R(s′) = 0. For this experiment, ε =∞ to avoid updates to the
control policy.

8

Figure 7: Showing hand motion sequences for the ball-in-hand example (top) and dial turning example (bottom). The desired (yellow) and current (red) configuration
are shown.

The state of the simulation is initialized to sδ = s+(δ(φ),0,0),
where s ∈ S, and δ(φ) is a function used to generate a ran-
domized perturbation to the joints of the hand. Specifically,
δ(φ) = [g(φ), · · · ,g(φ)]T . The function g(φ) generates a random
number with a uniform distribution in the range [−φ,φ].

Figure 9 shows the R̄(s′) as a was increased from 0.05 to
0.35 radians. Each data point in the plot represents the mean
value of R over 100 trials. As expected, when φ is small, the
controllers perform well. However, as φ increases, performance
decreases. Increasing k for the nearest neighbor interpolation
mitigated this problem.

These experiments provide insight into the selection of
learning parameters for the instance-based function approxima-
tors. For our experiments, k = 6 and ε = 0.22, giving a good
trade-off of performance versus learning times.

Further analysis gives additional insight as to why the
performance drops as φ grows. Figure 10 shows the duration
of the approach and actuation phase as φ is increased. In the
same graph, the average grasp quality, Q̄, is plotted. Recall that,
during the actuation phase, when the grasp quality drops below
a minimum value, it triggers a transition to the subsequent
phase. This indicates that the controller phases are transitioning
early due to an insufficient grasp on the object. The controllers
used by our framework are feed forward in nature, and ignores
aggregate features of the simulation, such as grasp quality,
throughout the duration of the controller cycle. We speculate
that incorporating some feedback about these features will not
only improve the performance of our controllers, but also lead
to sparser control policies.

5.5. Limitations

The results we have shown involve the manipulation of
convex and symmetric objects. Generating control policies that
perform well across variations in object size, shape, and mass
is a challenge for our framework. Although our method does

not exploit these properties for successful manipulation, and
no examples involving non-convex or asymmetric objects are
provided, there is no evidence indicating that control policies
cannot be learned for other classes of objects. This is mainly
attributed to the robustness of the CMA-ES method and its
ability to find solutions that successfully achieve task objec-
tives. However, properties such as complex object geometry
may void the smoothness assumption we make by interpolating
controller parameters for a k-NN representation of Π(s). This
is also true for scenarios where object momentum must be
exploited in order for successful manipulation to occur (e.g.,
contact juggling). One solution may be to increase the density
of the function approximator, albeit with the consequence of
protracted learning times.

Large-scale motion planning is not considered by our work,
since we focus only on single-handed manipulation. In all of
our examples, the wrist is immobile, which may be unrealistic
for some tasks where motion of the arm, elbow, shoulder, and
other body joints may be useful. Note that for the examples
shown in Figure 8, additional control parameters (2 joint angles
per phase) are used to allow motion of the wrist. However,
providing additional degrees of freedom to control other body
joints is not appropriate given the restrictions of our phase-
based controller architecture. Furthermore, aperiodic finger
gaiting styles may not be synthesized without modifications to
the controller framework.

6. Conclusion

We have introduced a framework for generating human
grasping motion. By building a policy of phase based con-
trollers and performing optimization of control parameters
using a forward dynamics simulation, we synthesize motions
for a variety of manipulation tasks. Not only are the motions
plausible, but since our approach does not assume a pre-defined

9

Q̃ = 0.4
Tmax = 0.25s

Q̃ = 0.2
Tmax = 0.7s
p = {1,1,1,0,0}

Figure 8: Variations in the synthesized motion may be achieved by changing parameters of the multi-objective optimization.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−1.5

−1

−0.5

0

φ (radians)

R
(s

′)

k = 1
k = 4
k = 6

Figure 9: The effect of perturbation, φ, on the effectiveness of the controller.
Random joint perturbations in the range [−φ,φ] are applied to the hand joints.
Effectiveness is measured as the reward at the end of the controller cycle, R(s′).

trajectory and the focus is to achieve a given goal state, the
agent is capable of adapting to task changes in real-time.
The use of a multi-phase controller architecture also generates
motion sequences that exhibit periodic finger gaiting.

As future work, we intend to investigate the use of linear
feedback control to improve the robustness of the learned
policies. This type of approach has been successfully applied to
character locomotion tasks [23] and we intend to investigate its
use in the grasping domain. By performing feedback control on
grasping features such as grasp quality, net wrench, and contact
distribution, it may be possible to not only produce a larger
variety of finger motions, but to improve the overall robustness
and stability of the control policy.

Additionally, we intend to incorporate contact force and
joint data, captured from human subjects, into the framework.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

φ (radians)

du
ra

tio
n

(s
)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1
T

0

T
1

Q
0

Q
1

Figure 10: The effect of perturbation, φ, on the duration of controller cycles
and the grasp quality. The duration of the approach phase, T0, is lengthened
and the duration of the actuation phase, T1, is shortened. Similarly, the average
grasp quality at the end of the approach phase, Q0, and throughout the actuation
phase, Q1, drops, indicating poor progress on the task.

A straightforward extension to the work presented in this
paper is to use a motion capture corpus to compute the latent
parameter space for our low-level controllers. We believe that
investigating the force-joint synergies of human grasping is key
to building more complex control strategies that correspond to
phase transitions that occur in actual manipulation tasks.

Lastly, another potentially interesting avenue of research is
in building control policies for coordinated manipulation with
two or more hands. One possibility is to treat control policies
learned for single-handed tasks as abstract actions within a
hierarchical reinforcement learning framework, as in the work
by Huber and Grupen [24]. Such strategies remain relatively
unexplored in computer animation applications.

10

Acknowledgments:
We thank the anonymous reviewers for their suggestions for
improving the paper. This work was supported by funding from
NSERC and GRAND NCE.

References

[1] Andrews S, Kry PG. Policies for goal directed multi-finger manipulation.
In: The 9th Workshop on Virtual Reality Interaction and Physical
Simulation (VRIPHYS). 2012, p. 137–45.

[2] Flanagan JR, Bowman MC, Johansson RS. Control strategies in object
manipulation tasks. Current Opinion in Neurobiology 2006;16:1–10.

[3] Pollard NS, Zordan VB. Physically based grasping control from example.
In: SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation. 2005, p. 311–8.

[4] Lee Y, Wampler K, Bernstein G, Popović J, Popović Z. Motion fields for
interactive character animation. ACM Transactions on Graphics (Proc of
SIGGRAPH Asia) 2010;29(5):1–8.

[5] Huber M, Grupen R. Robust finger gaits from closed-loop controllers.
In: IROS ’02: Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems; vol. 2. 2002, p. 1578–84.

[6] Hauser K, Ng-Thow-Hing V, Gonzalez-Banos H. Multi-modal motion
planning for a humanoid robot manipulation task. Proceedings of
International Symposium on Robotics Research (ISRR); 2007.

[7] Liu CK. Dextrous manipulation from a grasping pose. ACM Transactions
on Graphics (Proc of SIGGRAPH) 2009;28(3):1–6.

[8] Ye Y, Liu CK. Synthesis of detailed hand manipulations using con-
tact sampling. ACM Transactions on Graphics (Proc of SIGGRAPH)
2012;31(4).

[9] Mordatch I, Popovic Z, Todorov E. Contact-invariant optimization for
hand manipulation. In: ACM SIGGRAPH / Eurographics Symposium on
Computer Animation. 2012, p. 137–44.

[10] Santello M, Flanders M, Soechting JF. Postural hand synergies for tool
use. The Journal of Neuroscience 1998;18(23):2123–42.

[11] Ben Amor H, Kroemer O, Hillenbrand U, Neumann G, Peters J. General-
ization of human grasping for multi-fingered robot hands. In: Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on. 2012, p. 2043–50.

[12] Kry PG, Pai DK. Interaction capture and synthesis. ACM Transactions
on Graphics (Proc of SIGGRAPH) 2006;25(3):872–80.

[13] Coros S, Beaudoin P, van de Panne M. Robust task-based control policies
for physics-based characters. ACM Transactions on Graphics (Proc
SIGGRAPH Asia) 2009;28(5):1–9.

[14] Wang JM, Fleet DJ, Hertzmann A. Optimizing walking controllers. ACM
Transactions on Graphics (Proc of SIGGRAPH Asia) 2009;28(5):1–8.

[15] Okamura AM, Smaby N, Cutkosky MR. An overview of dexterous
manipulation. In: Proceedings of IEEE International Conference on
Robotics and Automation. IEEE; 2000, p. 255–62.

[16] Sutton RS, Barto AG. Reinforcement Learning I: Introduction. The MIT
Press; 1998.

[17] Hansen N. The CMA evolution strategy: A comparing review. Towards a
New Evolutionary Computation: Advanceson Estimation of Distribution
Algorithms 2006;:75–102.

[18] Murray RM, Sastry SS, Li Z. A Mathematical Introduction to Robotic
Manipulation. CRC Press; 1994.

[19] Klein CA, Baho BE. Dexterity measures for the design and control
of kinematically redundant manipulators. The International Journal of
Robotics Research 1987;6(2):72–83.

[20] Tan J, Liu K, Turk G. Stable proportional-derivative controllers. Com-
puter Graphics and Applications, IEEE 2011;31(4):34–44.

[21] Erleben K, Sporring J, Henriksen K, Dohlmann H. Physics-based
Animation. Charles River Media; 2005.

[22] Vortex . version 5.2. Montreal, QC: CMLabs Simulations Inc.; 2012.
URL http://www.vxsim.com/.

[23] Yin K, Loken K, van de Panne M. Simbicon: Simple biped locomo-
tion control. ACM Transactions on Graphics (Proc of SIGGRAPH)
2007;26(3).

[24] Huber M, Grupen RA. Learning robot control – using control policies
as abstract actions. NIPS Workshop on Abstraction and Hierarchy in
Reinforcement Learning; 1998.

11

