2007 Schools Wikipedia Selection. Related subjects: Chemical elements

50 indiumtinantimony


Periodic Table - Extended Periodic Table
Name, Symbol, Number tin, Sn, 50
Chemical series poor metals
Group, Period, Block 14, 5, p
Appearance silvery lustrous gray
Atomic mass 118.710 (7) g/mol
Electron configuration [Kr] 4d10 5s2 5p2
Electrons per shell 2, 8, 18, 18, 4
Physical properties
Phase solid
Density (near r.t.) (white) 7.265 g·cm−3
Density (near r.t.) (gray) 5.769 g·cm−3
Liquid density at m.p. 6.99 g·cm−3
Melting point 505.08  K
(231.93 ° C, 449.47 ° F)
Boiling point 2875 K
(2602 ° C, 4716 ° F)
Heat of fusion (white) 7.03 kJ·mol−1
Heat of vaporization (white) 296.1 kJ·mol−1
Heat capacity (25 °C) (white)
27.112 J·mol−1·K−1
Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1497 1657 1855 2107 2438 2893
Atomic properties
Crystal structure tetragonal
Oxidation states 4, 2
( amphoteric oxide)
Electronegativity 1.96 (Pauling scale)
Ionization energies
( more)
1st: 708.6 kJ·mol−1
2nd: 1411.8 kJ·mol−1
3rd: 2943.0 kJ·mol−1
Atomic radius 145 pm
Atomic radius (calc.) 145 pm
Covalent radius 141 pm
Van der Waals radius 217 pm
Magnetic ordering no data
Electrical resistivity (0 °C) 115 nΩ·m
Thermal conductivity (300 K) 66.8 W·m−1·K−1
Thermal expansion (25 °C) 22.0 µm·m−1·K−1
Speed of sound (thin rod) ( r.t.) (rolled) 2730   m·s−1
Young's modulus 50 GPa
Shear modulus 18 GPa
Bulk modulus 58 GPa
Poisson ratio 0.36
Mohs hardness 1.5
Brinell hardness 51 MPa
CAS registry number 7440-31-5
Selected isotopes
Main article: Isotopes of tin
iso NA half-life DM DE ( MeV) DP
112Sn 0.97% Sn is stable with 62 neutrons
114Sn 0.65% Sn is stable with 64 neutrons
115Sn 0.34% Sn is stable with 65 neutrons
116Sn 14.54% Sn is stable with 66 neutrons
117Sn 7.68% Sn is stable with 67 neutrons
118Sn 24.23% Sn is stable with 68 neutrons
119Sn 8.59% Sn is stable with 69 neutrons
120Sn 32.59% Sn is stable with 70 neutrons
122Sn 4.63% Sn is stable with 72 neutrons
124Sn 5.79% Sn is stable with 74 neutrons
126Sn syn ~1 E5 y Beta- 0.380 126Sb
The alchemical symbol for tin
The alchemical symbol for tin
Tin ore
Tin ore

Tin ( IPA: /ˈtɪn/) is a chemical element in the periodic table that has the symbol Sn ( Latin: stannum) and atomic number 50. This silvery, malleable poor metal that is not easily oxidized in air and resists corrosion, is found in many alloys and is used to coat other metals to prevent corrosion. Tin is obtained chiefly from the mineral cassiterite, where it occurs as an oxide.

Notable characteristics

Tin is a malleable, ductile, highly crystalline, silvery-white metal; when a bar of tin is bent, a strange crackling sound known as the "tin cry" can be heard due to the breaking of the crystals. This metal resists corrosion from distilled, sea and soft tap water, but can be attacked by strong acids, alkalis, and by acid salts. Tin acts as a catalyst when oxygen is in solution and helps accelerate chemical attack.

Tin forms the dioxide SnO2 when it is heated in the presence of air. SnO2, in turn, is feebly acidic and forms stannate (SnO3-2) salts with basic oxides. Tin can be highly polished and is used as a protective coat for other metals in order to prevent corrosion or other chemical action. This metal combines directly with chlorine and oxygen and displaces hydrogen from dilute acids. Tin is malleable at ordinary temperatures but is brittle when it is heated.


Chemically tin shows properties intermediate between those of metals and non-metals, just as the semi-conductors silicon and germanium do. Tin has two allotropes at normal pressure and temperature, gray tin, and white tin.

Below 13.2 ° C it exists as gray or alpha tin, which has a cubic crystal structure similar to silicon and germanium. Gray tin has no metallic properties at all, is a dull-gray powdery material, and has no known uses.

When warmed above 13.2 ° C tin changes into white or beta tin, which is metallic and has a tetragonal structure. Converting gray tin power into white tin produces white tin powder. To convert powdery gray tin into solid white tin the temperature must be raised above the melting point of tim.

Gray tin can be a real problem, since metallic white tin will slowly convert to gray tin if it is held for a long time below 13.2 ° C. The metallic surface of white tin becomes covered with a gray powder which is easily rubbed off. The gray patches slowly expand until all of the tin in the object is converted from the metal to the powder, at which point it totally loses its structural integrity and falls to pieces. This process is know as tin disease or tin pest. Tin pest was a particular problem in nothern Europe in the 18th century as organ pipes made of tin would sometime completly disintergrate during long cold winters. The transformation can be prevented by the the addition of antimony or bismuth.


Tin bonds readily to iron, and has been used for coating lead or zinc and steel to prevent corrosion. Tin-plated steel containers are widely used for food preservation, and this forms a large part of the market for metallic tin. Speakers of British English call them "tins"; Americans call them " cans" or "tin cans". One thus-derived use of the slang term " tinnie" or "tinny" means "can of beer". The tin whistle is so called because it was first mass-produced in tin-plated steel.

Other uses:

  • Some important tin alloys are: bronze, bell metal, Babbitt metal, die casting alloy, pewter, phosphor bronze, soft solder, and White metal.
  • The most important salt formed is stannous chloride, which has found use as a reducing agent and as a mordant in the calico printing process. Electrically conductive coatings are produced when tin salts are sprayed onto glass. These coatings have been used in panel lighting and in the production of frost-free windshields.
  • Most metal pipes in a pipe organ are made of varying amounts of a tin/lead alloy, with 50% / 50% being the most common. When this alloy cools, the lead cools slightly faster and makes a mottled or spotted effect. This metal alloy is referred to as spotted metal.
  • Window glass is most often made via floating molten glass on top of molten tin (creating float glass) in order to make a flat surface (this is called the " Pilkington process").
  • Tin is one of the two basic elements used since the Rennaisance in the manufacture of organ pipes (the other being lead). The amount of tin in the pipe defines the pipe's tone, tin being the most tonally resonant of all metals.
  • Tin is also used in solders for joining pipes or electric circuits, in bearing alloys, in glass-making, and in a wide range of tin chemical applications. Although of higher melting point than a lead-tin alloy, the use of pure tin or tin alloyed with other metals in these applications is rapidly supplanting the use of the previously common lead–containing alloys in order to eliminate the problems of toxicity caused by lead.
  • Tin foil was once a common wrapping material for foods and drugs; replaced in the early 20th century by the use of aluminium foil, which is now commonly referred to as tin foil. Hence one use of the slang term " tinnie" or "tinny" for a small retail package of a drug such as cannabis or for a can of beer.

Tin becomes a superconductor below 3.72 K. In fact, tin was one of the first superconductors to be studied; the Meissner effect, one of the characteristic features of superconductors, was first discovered in superconducting tin crystals. The niobium-tin compound Nb3Sn is commercially used as wires for superconducting magnets, due to the material's high critical temperature (18 K) and critical magnetic field (25 T). A superconducting magnet weighing only a couple of kilograms is capable of producing magnetic fields comparable to a conventional electromagnet weighing tons.


Tin ( Anglo-Saxon, tin, Latin stannum) is one of the earliest metals known and was used as a component of bronze from antiquity. Because of its hardening effect on copper, tin was used in bronze implements as early as 3,500 BC. Tin mining is believed to have started in Cornwall and Devon ( esp Dartmoor) in Classical times, and a thriving tin trade developed with the civilizations of the Mediterranean. However the pure metal was not used until about 600 BC. The last Cornish Tin Mine, at South Crofty near Camborne closed in 1998 bringing 4000 years of mining in Cornwall to an end.

The word "tin" has cognates in many Germanic and Celtic languages. The American Heritage Dictionary speculates that the word was borrowed from a pre-Indo-European language.

In modern times, the word "tin" is often (improperly) used as a generic phrase for any silvery metal that comes in thin sheets. Most everyday objects that are commonly called tin, such as aluminium foil, beverage cans, and tin cans, are actually made of steel or aluminium, although tin cans do contain a thin coating of tin to inhibit rust. Likewise, so-called "tin toys" are usually made of steel, and may or may not have a thin coating of tin to inhibit rust.


About 35 countries mine tin throughout the world. Nearly every continent has an important tin-mining country. Tin is produced by reducing the ore with coal in a reverberatory furnace. This metal is a relatively scarce element with an abundance in the Earth's crust of about 2 ppm, compared with 94 ppm for zinc, 63 ppm for copper, and 12 ppm for lead. Most of the world's tin is produced from placer deposits; at least one-half comes from Southeast Asia. The only mineral of commercial importance as a source of tin is cassiterite (SnO2), although small quantities of tin are recovered from complex sulfides such as stannite, cylindrite, franckeite, canfieldite, and teallite. Secondary, or scrap, tin is also an important source of the metal.

Tasmania hosts some important deposits of historical importance, most importantly Mount Bischoff and Renison Bell.


Tin is the element with the greatest number of stable isotopes (ten). 28 additional unstable isotopes are known.


For discussion of Stannate compounds (SnO32-) see Stannate. For Stannite (SnO2-) see Stannite. See also Stannous hydroxide (Sn(OH)2), Stannic acid (Stannic Hydroxide - Sn(OH)4), Tin dioxide (Stannic Oxide - SnO2), Tin(II) oxide (Stannous Oxide - SnO), Tin(II) chloride (SnCl2), Tin(IV) chloride (SnCl4)

Biologic effects of organic tin compounds

The small amount of tin that is found in canned foods is not harmful to humans. Certain organic tin compounds, organotin, such as triorganotins (see tributyltin oxide) are toxic and are used as industrial fungicides and bactericides.

Retrieved from " http://en.wikipedia.org/wiki/Tin"