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Abstract 

 

While face recognition is a fairly trivial 

task for humans, much of computer vision research 

has been dedicated to finding an algorithm to teach 

a computer how to recognize faces. This paper 

discusses the robustness of the Turk and Pentland 

‘Eigenface’ algorithm [1]. The algorithm consists 

of two stages, the learning stage, which is done 

offline, and the recognition stage, which is done 

online. The learning stage consists of making a 

database of the principal components of all the 

images in the training set to which new images can 

be compared to. This database is called the “face 

space”. The recognition stage projects each new 

image of a face onto the “face space”, using 

principal component analysis, and compares it to 

known faces from the training set to find the best 

match. The algorithm has a high recognition rate 

when the images of the faces were upright and had 

similar lighting and feature conditions to the 

training images. By feature conditions, we mean 

smiling, winking, glasses, etc… However, once the 

faces were tilted, the lighting was changed or the 

face was obscured somehow, the algorithm 

suffered from a loss of recognition. 

 

 

1 Introduction 

 

For humans, recognizing faces is a 

relatively simply task. Faces can be partially 

occluded or rotated in various directions without 

too much loss of recognition. A major area of 

computer vision research is in the automation of 

video surveillance. If this automation is to be 

achieved, then finding a fast and computationally 

efficient face recognition algorithm is essential. 

Thus, there has been a plethora of papers written 

on this subject. Many of the proposed algorithms 

use a feature-based approach [2] to recognition. 

The feature-based algorithms look at major 

features of the face and compare them to the same 

features on other faces. Some of these features 

include the eyes, ears, nose and mouth. The 

approach uses the position, size and relationship of 

these facial features to perform the comparisons. 

Other algorithms use the ‘Connectionist’ approach 

[3]. This approach uses a general two-dimensional 

pattern of the face and neural networks for 

recognition. The ‘Connectionist’ approach often 

requires a large number of training faces to achieve 

decent accuracy. Finally, Kirby and Sirovich 

presented the ‘Eigenface’ approach [4], after 

which, many papers have been written on their 

basic idea. This paper will discuss the 

implementation of one such algorithm and attempt 

a critique on whether or not it is a viable solution 

for real-time applications. 

 

In [1], Turk and Pentland suggest an 

algorithm that treats the face recognition problem 

as a two-dimensional problem, which assumes that 

most faces are under similar conditions. The 

underlying idea in their algorithm is that images of 

faces are compared to those of known faces and 

whether the face matches to one of the known faces 

or if it is a new face or if it is not a face at all is 
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determined. Before these comparisons can be done, 

a database of known faces is required. Rather than 

storing all the image information of the entire set of 

known faces, the Turk and Pentland algorithm 

suggests a method which stores only the 

“eigenfaces”. These are the eigenvectors of the set 

of faces. All the “eigenfaces” combined make up a 

“face space” and each new face is projected onto 

this “face space”. A detailed explanation of the 

algorithm is found in section 2 of this paper. 

 

While under strict, uniform and artificial 

conditions, many of the aforementioned algorithms 

could produce effective results. Nonetheless, under 

real-time conditions, these algorithms may not 

produce the results that we are after. This paper 

will discuss the robustness of the Turk and 

Pentland algorithm and how it fares as a real-time 

video surveillance system. Intuitively, the 

assumption that all faces exhibit similar conditions 

is a fair assumption. However, even under similar 

conditions, there are many angles at which the head 

could be tilted or directions in which the faces 

could be turned or features that can be varied. 

While humans would still be able to recognize a 

face which is rotated, say 50º, to the right or left, 

this is not a trivial task to teach a computer. Thus, 

this paper will discuss tests which attempt to see 

how much the face could be rotated or tilted before 

the algorithm breaks down. Moreover, often it is 

difficult to obtain clear unobstructed views of the 

faces. The algorithm will be tested with images of 

known faces from the database but that are 

obscured at varying degrees to see how much, if 

any, obscurity is allowable. Changes in 

illumination, translation of images and resolution 

changes are also conditions that will be tested.

 

 

2 Algorithm 
 

 Under the assumption that human faces 

are similar, it turns out that any face image can be 

encoded as a combination of feature images, each 

of which captures one “direction” of the variability 

of faces. The idea behind the algorithm proposed 

by Turk and Pentland is to extract only the relevant 

information of a face image, encode it as efficiently 

as possible and compare that encoding to a 

database of models encoded similarly. In 

mathematical terms, the algorithm finds the 

principle components of the distribution of faces. 

These principle components can be thought of as 

the set of features which together characterize the 

variation between the faces. They may not be 

necessarily related directly to our intuitive notion 

of features such as the eyes, lips, nose, and hair; 

but rather related to the variation of intensity in 

respective sample points of different face images. 

Each image location contributes more or less to 

each principal component, so that the latter can be 

displayed as a sort of ghostly face, called an 

“eigenface”. 

 

It is possible to represent exactly each 

image in the training set in terms of a linear 

combination of the “eigenfaces”. The number of 

possible “eigenfaces” is equal to the number of 

face images in the training set. However, using 

principle component analysis, it is possible to 

approximate the faces using only the best 

“eigenfaces”, that is, the ones that account for the 

most variation. The following steps summarize the 

recognition process: 

 

1. Initialization: Acquire the training set of face 

images and calculate the “eigenfaces”, which 

define the “face space”. 

 

2. Projection: When a new image is encountered, 

calculate the set of weights based on the input 

image and the M “eigenfaces” by projecting 

the input image onto each of the “eigenfaces”. 

 

3. Detection: Determine if the image is a face at 

all (whether known or unknown) by checking 

if the image is sufficiently close to the “face 

space”. 

 

4. Recognition: If it is a face, classify the weight 

pattern as either a known or unknown person. 

 

5. Learning (optional): If the same unknown face 

is seen several times, calculate its 

characteristic weight pattern and incorporate it 

into the known faces. 
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2.1 Calculating the ‘Eigenfaces’ 

 

Let each face image, ),( yxI , be a two-

dimensional w × h = P array of intensity values. 

Each image, written as a P × 1 vector, represents a 

point in P-dimensional space. Therefore, the 

collection of images in the training set constitutes a 

collection of points in a huge space. Again, due to 

the similarity of faces in their overall 

configuration, these points will not be randomly 

distributed in this immense space, but are likely to 

be close and occupy only a small portion of the 

space. Thus, the collection of points can be 

described by a relatively low dimensional 

subspace. 

 

Let the training set of images be 

MΓΓΓ ,...,, 21 . The average face of this set is then 

defined by 

∑
=

Γ=Γ
M

i

i
M 1

1
 

Now, let each face differ from the mean face by 

Γ−Γ=Φ ii
. For each location in an image, we 

have one sample for each of the M images. We can 

study the intensity relations between any two 

sample points by analyzing their covariance. The 

covariance between points i and j, denoted ijc , can 

be approximated by 

( ) ( )∑
=

ΦΦ=
M

k

kkij ji
M

c
1

1
 

Therefore, the covariance matrix C can be obtained 

as follows 

∑
=

ΦΦ==
M

i

T

ii

T

M
AAC

1

1
 

where [ ]MA ΦΦΦ= K21 . By using 

principle component analysis analysis on the set of 

large vectors, we have obtained a set of M 

orthonormal vectors nu
r

and their associated 

eigenvalues nλ , which best describe the spread of 

the data in the P-dimensional space. These 

orthonormal vectors, i.e. the principle components, 

turn out to be the eigenvectors of the covariance 

matrix C. 

 

The matrix C, however, is P × P and 

determining the P eigenvectors and eigenvalues is 

an intractable task for typical image sizes (usually 

greater than or equal to 256 × 256). Nevertheless, 

when M is very small compared to P, like the case 

in our experiments, a smaller M × M problem can 

be solved instead. Consider the eigenvectors iv of 

AAΤ
 such that 

iii vAvA µ=Τ
 

Multiplying each side from the right by A  yields 

iii AvAvAA µ=Τ
 

From this we see that iAv are the eigenvectors of 

C . If we let [ ]MvvvV ...21=  be the 

matrix formed from the eigenvectors of AAΤ
 and 

[ ]PuuuU ...21=  be the matrix formed 

from the eigenvectors of 
ΤAA , then AVU = . 

 

Although M eigenvectors (“eigenfaces”) 

are necessary to encode each image of the training 

set without loss of information, M’ < M are 

sufficient enough for recognition. Therefore, from 

the M eigenvectors of V, we pick the M’ 

eigenvectors that account for the most variation, 

i.e. the M’ eigenvectors having the highest 

eigenvalues. 

 

The number of significant “eigenfaces” to 

consider can be picked arbitrarily. Several 

criterions have been established in the past as 

solutions to the “number-of-factors” problem. The 

Kaiser criterion [5] for instance, which selects only 

eigenvectors whose values are above 1, seems to be 

the most widely used. Instead, for our tests, we 

have determined M’ with a threshold λΘ . This is a 

ratio of the summations of the eigenvalues, 

computed as follows 




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2.2 Identifying Faces 

 

Once the basis vectors for the “face 

space” have been constructed, all that remains is to 

project all the images in the training set onto the 

“face space”. Any image Γ  can be expressed in 

terms of the M’ “eigenfaces”, using M’ weights 

calculated as follows 

( )Γ−Γ= Τ

kk uω  

These M’ weights form a vector 

[ ]'21 ... M

T ωωω=Ω , quantifying the 

contribution of each of the “eigenfaces” in 

representing the input face image, treating the 

“eigenfaces” as a basis set for the face images. The 

weight vector is then used to determine which of 

the predetermined number of faces matches best 

the query image. The easiest method to identify an 

image in the training set that provides the best 

description of the input image is to choose the face 

image that minimizes the Euclidean distance 

between weight vectors, that is 

( ) 22

kk Ω−Ω=ε  

where kΩ  is the vector describing the k
th

 image in 

the training set. The algorithm proposed by Turk 

and Pentland makes the distinction between a “face 

class” and a face image. A “face class” consists of 

the collection of face images belonging to an 

individual, and in the case where a “face class” 

contains more than one image, kΩ  is calculated as 

the average of the weights obtained when 

projecting each image of a class k. For reasons that 

we will explain soon, we chose to have only one 

image per “face class”. The query image belongs to 

an individual k in the training set only when the 

minimum kε  is below a threshold εΘ . On the 

other hand, if the minimum distance is above this 

fixed threshold, then the queried face is classified 

as unknown to the system. 

 

The validity of the threshold relies on the 

assumption that faces from the same person map 

close to each other in the “face space”. In other 

words, it relies on the assumption that the “face 

space” consists of a series of small clusters distant 

from each other, with each cluster representing 

faces from one individual, and where each cluster 

approximately has the same dimensions. 

 

However, several times in our 

experiments, two sample faces from two different 

people mapped closer onto the “face space” than 

two faces from the same person, thus breaking the 

cluster assumption. Therefore, we could not 

establish the face identification threshold as 

proposed originally. Images from the same 

individual seemed scattered across the “face 

space”, hence we chose to only put one image per 

face class. We fixed the value of the threshold 

“instinctively” so as to get a reasonable ratio of 

correct/incorrect positive identifications. 

 

Any image, given it has the right 

dimensions, can be projected onto the “face space”. 

More specifically, any input image can be more or 

less approximated as a linear combination of the 

“eigenfaces”. Since the M’ largest eigenvectors 

were chosen to span the M’-dimensional “face 

space”, they capture the most variation for the face 

images. This implies that projecting any non-face 

image onto this M’ subspace is likely to yield 

weights for which no face would have mapped to. 

 

Hence another distance measure is 

employed to determine whether the input image is 

a face or not. We can calculate the distance ε  

between the projection Ω  of a query image and 

the average projection Ω  of all images in the 

training set. Mathematically, 
22 Ω−Ω=ε  

The projection weight vectors of the training set 

can be seen as a set of points in M'-space forming 

an M' “sphere”, in which Ω  is the center. The 

radius of that “sphere” corresponds to the largest 

distance between a point and the center, 

( )Ω−Ω= i
i

r ¸max  

where i = 1, 2, …, N. We use this radius as a 

determining factor for the limits of the “face 

space”. Any projection farther than r from the 

center is classified as not a face. Therefore, if the 

distance ε  is smaller than the radius, we assume 

that the input image is a face. Otherwise, we 

assume that the image is something else.
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3 Results and discussion 

 

Our biological vision system seamlessly 

recognizes faces, whether they are partially 

occluded, tilted or rotated a certain amount of 

degrees or in various lighting conditions. Even if 

the background is noisy or the human visual 

system hasn’t encountered a specific face in a very 

long time (i.e. the face has changed drastically over 

time), we can still distinguish and match the “query 

image”, so to speak, to the vast database of images 

stored in our memory system, specifically in our 

long-term memory, involving the hippocampus and 

the temporal lobes of the brain. On the other hand, 

not only does a computer not have enough physical 

memory to compete with that of the brain, it 

doesn’t even come close to the capacity and 

efficiency of face recognition as the brain. Here, 

we shall discuss the actual implementation of the 

‘Eigenface’ approach. We show what happens if 

this approach was taken and implemented into a 

real-time system. Though the following query 

images aren’t taken from a real-time system, the 

properties of these images are comparable to those 

of real-time system. Increases in brightness, 

occlusions of the face and noisy backgrounds are 

all part of real-time systems. We simulate these 

conditions in our images and run the images as 

queries. We present concrete examples to back up 

our findings. We use specific test cases, as 

discussed above, to break the proposed algorithm. 

 

 

3.1 Brightness 

 

Our first example focuses on brightness. 

In everyday life, we encounter faces in the bright 

sun or in the dark night and yet, we recognize 

without effort who it is that we see. Yet, slight 

changes in brightness give the computer a very 

hard time to match and recognize images. The 

main reason for this is that for a computer, an 

image is just an array of intensity values. Once 

these values are altered, the comparison is 

compromised greatly. Following are four images of 

varying brightness, of which the top left one is 

included in the training set, thus it are in the 

database of images. We try to match the other three 

to the top left one. 

 
Of these, the top left image returns the proper 

answer, itself. The other three return as “not-a-

face”. The brightness is too high for the images to 

be mapped to the “face space”. 

 

 

3.2 Varying conditions 

 

 The second example looks at what the 

outcome is if one training image in the database is 

taken under very different conditions. For example, 

the size of the face is too big with respect to the 

size of the image or lighting conditions aren’t the 

same as every other training image. To the right are 

some images of such examples. If we train the 

database with these irregular images, as well as the 

regular images, the “face space” becomes very 

large, to the point where non-faces are mapped to 

the “face space”. For example, a soft-drink can or 

an animal (with proper orientation so as to 

resemble a face) will be mapped and a 

corresponding face returned. This results in a very 

different “face space”. To mathematically show 

that the distance between the average face and the  

 
farthest face when including the irregular images is 

much larger than when the irregular images aren’t 

included, we calculate the Euclidean distance. This 

Euclidean distance depicts the radius (and the 

variation) of the “face space”. Since there is an 
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irregular face with much more variability than the 

average face, the Euclidean distance becomes 

drastically large between the two. Thus, the 

learning process for this algorithm must be strongly 

controlled. Images taken for training must be taken 

under static conditions and outliers must be 

discarded or re-photographed. Otherwise, the 

algorithm runs very poorly. This is a very 

important concept for the Artificial Intelligence 

community who are in the works of face 

recognition robotics and automated machinery for 

this task. 

 

 

3.3 Partial Occlusion 
 

Imagine playing hide’n’seek with many 

people. You are looking for one of your friends and 

you spot him/her while he/she is looking away 

from you. In a split second, you know which friend 

it is, even though the majority, if not all, of your 

friend’s face is occluded from your vision. Better 

yet, get a picture of your favourite get-together and 

look at the face that is occluded the most. Again, in 

a split second, you can recognize who it is that is 

occluded in the picture. These, among others, are 

great examples of how the human visual system 

handles occlusion so well. To a certain degree of 

occlusion, we recognize with ease. The following 

example shows how well the algorithm handles 

occlusion. Consider the following pictures. The 

first picture on the top is the original picture in the 

database of known faces. We added rectangles to 

the images following the original one to test how 

the algorithm handles occlusion. Surprisingly, the 

top left, top right, and bottom right pictures 

involving occlusion map to the original image. 

 

 
This is a very impressive result. The fourth, bottom 

left image fails to map to the right person. This is 

directly related to the amount of occlusion 

introduced in the image. The more occlusion, the 

more information about the face is lost. 

 

 

3.4 Tilting of the face 
 

Now we shall test how orientation of the 

face affects the algorithm. We take an image and 

simply rotate it clockwise or counter clockwise. 

We see that the algorithm also performs 

remarkably well on this variation. As above with 

partial occlusion, there is a certain amount of 

variation that one can introduce before the 

algorithm breaks down. Consider the following 

images. Once again, the first picture on the top is 

the original image in the database of known faces. 

We rotate the image clockwise in increments of 5
0
 

in every successive image, clockwise from the top 

left to the bottom right. Again, the top left, top 

right and bottom right images which were rotated 

mapped to the original image. The last, bottom left 

image failed to map to the right person. This is also 

directly related to the amount of rotation 

introduced in the image. 

 

 
The algorithm expects the face at a certain position 

in the image. If the face is rotated enough, the 

computer won’t be able to compare image 

intensities properly. 
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3.5 Image noise 

 

This is a particularly important concept. 

Imagine you wear glasses to see the blackboard 

while in class (as I do!). You take off your glasses 

to clean your eyes and notice the entire blackboard 

is a blur. The white chalk has become a gray blur 

blended into the black background of the board. 

The world just blurred. You can barely make of 

anything visually unless those glasses go back on. 

Well, amazingly so, the computer’s mapping of 

intensities between corresponding pixels helps it 

immensely to match blurred, noisy images to their 

respective originals. The following images were 

blurred with a general filter, increasing the amount 

of blur from the top left (the original) clockwise to 

the middle left. Surprisingly, all images output the 

correct recognition. But nonetheless, if we blur the  

 

 

  
image to the point where the image and the 

background become one, the algorithm will fail. 

 

 

3.6 Implementation of the algorithm 
 

Now we discuss one very important 

implementation variation, the determination of M’. 

We tried the algorithm with M’ = 36 and then M’ = 

100. There was a drastic change in the 

reconstruction of an image. The more “eigenfaces” 

used, the more blurred the reconstruction gets since 

more “eigenfaces” are included in the 

reconstruction. Following are two reconstructions, 

with M’ = 36 on the top and M’ = 100 on the 

bottom. Mathematically, we also calculated the 

distance between the weight representation and the 

distance between intensity values of corresponding 

pixels of the two farthest images. As we grow the 

number of “eigenfaces” used, the distance between 

the weight representations of images gets very 

close to the actual distance as calculated between 

intensity values, they almost become equal. 

 
This is because the more “eigenfaces” used implies 

the more variation among faces is covered, thus the 

accuracy of recognizing any variant of a face 

increases.

 

 

4 Conclusion 
 

While under regular “laboratory 

conditions” the algorithm fared quite well, after 

testing the algorithm under various conditions that 

are seen in everyday situations such as occlusion, 

head position, different lighting we have concluded 

that the algorithm is highly sensitive to these 

changes.  A possible solution would be to increase 

the number of images in the database to include 

these changes.  Also, the algorithm could adopt the 

Murase and Nayer approach [8] which uses a 

universal space to identify objects and then uses an 

object space to identify the object more 

specifically.   

While face recognition is a relatively 

simple task for humans to perform, a robust 

algorithm which could perform as well as human 

brains has yet to be found. 
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