
COMP-566 Rohan Shah (1)

Support Vector Machines for Regression

Provided with n training data points

{(x1, y1), (x2, y2), · · · , (xn, yn)} ⊆ R
s × R we seek a function f for a

fixed ε > 0 such that:

|f(xi) − yi| ≤ ε (1)

Let us consider the space of linear functions for now and take

f(xi) = 〈w · xi〉 + b with w ∈ R
s and b ∈ R. In order to avoid

generalisation errors (over-fitting of the regression surface) we will

require the function f to be as flat as possible so we want to

minimise w. We define a convex quadratic optimisation:

min 1
2ww

T

subject to: yi − 〈w · xi〉 − b ≤ ε

〈w · xi〉 + b− yi ≤ ε (2)

COMP-566 Rohan Shah (2)

Feasibility

We assumed the existence of a function f satisfying the constraints. It is

possible that for a given ε no function satisfying the constraint

|f(xi) − yi| ≤ ε exists. So we define slack varibles ψi > 0 and φi > 0 and

re-write the optimization as:

minimise 1

2
wwT + ζ

P

n

i
(ψi + φi)

subject to:

yi − 〈w · xi〉 − b ≤ ε+ ψi

〈w · xi〉 + b− yi ≤ ε+ φi

ψi ≥ 0, φi ≥ 0,∀n (3)

The constant ζ maintains the trade-off between how much deviation

greater than ε is permitted versus the generalisation or in this case the

flatness of the regression function.

COMP-566 Rohan Shah (3)

We define the Lagrangian; the objective function plus a linear

combination of the constraints:

L(w, b,φ,ψ|α,β,η,η∗) =
1

2
‖w‖2 + ζ

n
∑

i

(ψi + φi)

−
n

∑

i=1

αi(ε+ ψi − yi + 〈w,xi〉 + b)

−
n

∑

i=1

βi(ε+ φi + yi − 〈w,xi〉 − b)

−
n

∑

i=1

(ηiψi + η∗i φi) (4)

where αi, βi, ηi and η∗i are non-negative dual variables or lagrange

multipliers.

COMP-566 Rohan Shah (4)

Lagrangian Dual Problem

The dual of the lagrangian is defined as:

Ldual(α,β,η,η
∗) = inf

w,b,φ,ψ
L(w, b,φ,ψ|α,β,η,η∗) (5)

The Lagrangian Dual Problem is then:

maxLdual(α,β,η,η
∗)

subject to: α ≥ 0 and β ≥ 0 and η ≥ 0 and η∗ ≥ 0 (6)

COMP-566 Rohan Shah (5)

Lagrangian Weak Duality Theorem

The primal objective function f and its dual Ldual satisfy

f(w, b,ψ,φ) ≥ Ldual(α,β,η,η
∗) (7)

Proof:

Ldual(α,β,η,η
∗) = inf

w,b,φ,ψ
L(w, b,φ,ψ|α,β,η,η∗)

≤ L(w, b,φ,ψ|α,β,η,η∗)

≤ f(w, b,ψ,φ) (8)

COMP-566 Rohan Shah (6)

Lagrangian Strong Duality Theorem

1. A real valued function is said to be convex if ∀w,u ∈ R
s and for

any θ ∈ (0, 1) we have: f(θw + (1 − θ)u) ≤ θf(w) + (1 − θ)f(u)

2. Every strictly convex constrained optimisation problem has a

unique solution.

3. An affine function can be expressed in the form f(w) = Aw + b.

4. Affine functions are convex.

5. A convex optimisation problem has a convex objective function

and affine constraints.

Strong Duality Theorem: For a convex optimisation problem the

duality gap is zero at primal optimality.

COMP-566 Rohan Shah (7)

Karush-Kuhn-Tucker Complementary Conditions

Let (αo,βo,ηo,η
∗

o) and (wo, b,ψo,φo) be optimal solutions of the

dual and primal respectively, then Ldual(αo,βo,ηo,η
∗

o) =

f(wo, b,ψo,φo). From (4) and (8) we then derive the KKT

conditions:

αi(ε+ ψi − yi + 〈w,xi〉 + b) = 0

βi(ε+ φi + yi − 〈w,xi〉 − b) = 0

ηiψi = 0

η∗i φi = 0

i = 1, · · · , n (9)

A constraint ct(w) is said to be tight or active if the solution wo

satisfies ct(wo) = 0 and is otherwise said to be inactive.

COMP-566 Rohan Shah (8)

Lagrangian Saddlepoint Equivalence Theorem

When we have an optimal primal solution (so the duality gap is zero)

it is a saddle point of the lagrangian function of the primal problem

and so we have:

∂L

∂b
=

∑n

i=1(βi − αi) = 0 (10)

∂L

∂w
= w∗ − ∑n

i=1(αi − βi)xi = 0 (11)

∂L

∂φi
= ζ − βi − η∗i = 0 (12)

∂L

∂ψi
= ζ − αi − ηi = 0 (13)

(11) can be written as w =
∑n

i (αi − βi)xi and so

f(xa) = 〈w · xa〉 + b =
∑n

i=1(αi − βi)〈xi · xa〉 + b

COMP-566 Rohan Shah (9)

Dual Formulation

To remove the dependance on the primal variables we explicitly compute

(5) by differentiating L(w, b,φ,ψ|α,β,η,η∗) with respect to the primal

variables which leaves us with (10) to (13) which we substitute into (4):

maximise −1

2

n
∑

i=1

n
∑

j=1

(αi − βi)(αj − βj)〈xi · xj〉

−ε
n

∑

i=1

(αi + βi) +

n
∑

i=1

yi(αi − βi)

subject to:
∑n

i=1(αi − βi) = 0

αi, βi ∈ [0, ζ] (14)

So the dual of our quadratic program (3) is another quadratic program but

with simpler constraints.

COMP-566 Rohan Shah (10)

Support Vectors

The Karush-Kuhn-Tucker complementary conditions state that only

the active constraints will have non-zero dual variables.

ε+ φi − yi + f(xi) > 0 implies αi = 0

ε+ φi − yi + f(xi) = 0 implies αi 6= 0

ε+ ψi + yi − f(xi) > 0 implies βi = 0

ε+ ψi + yi − f(xi) = 0 implies βi 6= 0

∀i : 1 ≤ i ≤ n (15)

The xi with non-zero αi or βi are the support vectors; if we were to

train the SVM on only these xi, ignoring all the examples for which

αi = 0 and βi = 0, we would still induce the same regression surface.

COMP-566 Rohan Shah (11)

Sparse Support Vector Expansion

We see that the vector w can be written as a linear combination of

the input training data points

{(x1, y1), (x2, y2), · · · , (xn, yn)} ⊆ R
s × R and so:

f(xa) = 〈w · xa〉 + b =
n

∑

i=1

(αi − βi)〈xi · xa〉 + b (16)

Let Λ ⊆ {1, 2, · · · , n} such that ∀i ∈ Λ we have both αi 6= 0 and

βi 6= 0. Then we can rewrite our regression function as:

f(xa) =
∑

i∈Λ

(αi − βi)〈xi · xa〉 + b (17)

We have a sparse expansion of f(xa).

COMP-566 Rohan Shah (12)

Non-linear SVM Regression - Φ : R
s → F

Our machine is linear. Our data might be non-linear.

We will apply a mapping function Φ to our input data, essentially

projecting it into a higher dimensional feature space F .

f(xi) = 〈w · Φ(xi)〉 + b (18)

Then apply our linear machinery to find a linear regression in this

new feature space. The corresponding regression surface in the input

space will be non-linear, specifically Φ−1(f(x)).

COMP-566 Rohan Shah (13)

Example: Quadratic Map

(u1, u2) → φ(u1, u2) = (u2
1, u

2
2,
√

2u1u2) (19)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Input Space: circular data in R
2

COMP-566 Rohan Shah (14)

Input data mapped into Feature Space

0

0.5

1

1.5

2 0

0.5

1

1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Data is linearly separable in feature space

COMP-566 Rohan Shah (15)

Computational Feasibility

W hat computations are we performing in the feature space?

Since we are projecting only our input data xi - the dual form (14)

has slightly changed; instead of computing the dot product between

training examples in the input space 〈xi · xj〉, we compute a a dot

product in the feature space F :

〈Φ(xi) · Φ(xj)〉 (20)

If the dimension of F is large then our problem might be

computationally infeasible. We need to avoid computing in the

feature space and hence projecting data points into the feature space.

But we still have to compute the dot product of the features efficiently.

COMP-566 Rohan Shah (16)

Kernel Functions

What is a kernel: a function K such that for all x, z in some

input space:

K(x, z) = 〈φ(x) · φ(z)〉 (21)

where φ is a mapping from the input space to a feature space.

Mercer’s Theorem: characterises what constitutes a valid kernel

and how they can be built.

So the dimension of the feature space does not affect the

computational complexity!

COMP-566 Rohan Shah (17)

Inverse Multiquadric Kernel

k(x,y) =
1

√

‖x− y‖2 + c2
(22)

COMP-566 Rohan Shah (18)

Quadratic Optimization using a Kernel Function

maximise −1

2

n
∑

i=1

n
∑

j=1

(αi − βi)(αj − βj)K(xi,xj)

−ε
n

∑

i=1

(αi + βi) +

n
∑

i=1

yi(αi − βi)

subject to:
∑n

i=1(αi − βi) = 0

αi, βi ∈ [0, ζ] (23)

So using the dual representation helps us in two ways:

1. we can operate in high dimensional spaces with the help of kernel

functions which replace the dot product in the dual

2. lets us make use of optimisation algortihms designed for the dual form

