! GAUSSIAN ELIMINATION DEMONSTRATION - BETTER VERSION
!
PROGRAM P142
IMPLICIT NONE
REAL :: M1(5,6),SOL(5),TOL
INTEGER :: N
INTERFACE
SUBROUTINE MATSIN(M1,N)
IMPLICIT NONE
REAL ,INTENT(IN OUT) :: M1(:,:)
INTEGER ,INTENT(IN OUT) :: N
END SUBROUTINE MATSIN
SUBROUTINE GAUSS(M1,SOL,N,TOL)
IMPLICIT NONE
REAL ,INTENT(IN OUT) :: M1(:,:),SOL(:),TOL
INTEGER ,INTENT(IN OUT) :: N
SUBROUTINE PRNMAT(M3,N)
IMPLICIT NONE
REAL ,INTENT(IN OUT) :: M3(:,:)
INTEGER ,INTENT(IN OUT) :: N
END SUBROUTINE PRNMAT
END SUBROUTINE GAUSS
END INTERFACE
!
N=5 ! NUMBER OF EQUATIONS
TOL=.001
!
PRINT *,' This is Program P142 - Gaussian elimination'
PRINT *,'PROGRAM IS READING DATA INTO ARRAYS'
CALL MATSIN(M1,N)
PRINT *,'SOLVING SYSTEM OF EQUATIONS'
CALL GAUSS(M1,SOL,N,TOL)
IF(TOL<0) THEN
PRINT *,'SYSTEM OF EQUATIONS HAS NO SINGLE SOLUTION'
STOP
ENDIF
PRINT *,'SOLUTION:'
PRINT 90,SOL
90 FORMAT(' | ',F8.3,' |')
STOP
END PROGRAM P142
SUBROUTINE MATSIN(M1,N)
IMPLICIT NONE
REAL ,INTENT(IN OUT) :: M1(:,:)
INTEGER ,INTENT(IN OUT) :: N
INTEGER :: I,J
!
! Tell program where data for READ is coming from
OPEN(UNIT=5, FILE='P142.DAT')
!
! READ IN M1
! ONE ROW PER CARD
!
L1: DO I=1,N
READ 27,(M1(I,J),J=1,N+1)
END DO L1
27 FORMAT(10(F5.2))
RETURN
END SUBROUTINE MATSIN
!
SUBROUTINE PRNMAT(M3,N)
IMPLICIT NONE
REAL ,INTENT(IN OUT) :: M3(:,:)
INTEGER ,INTENT(IN OUT) :: N
INTEGER :: I,J
!
!
L3: DO I=1,N
PRINT 202, (M3(I,J),J=1,N+1)
END DO L3
202 FORMAT(10(' ',F7.3))
!
RETURN
END SUBROUTINE PRNMAT
!
SUBROUTINE GAUSS(M1,SOL,N,TOL)
IMPLICIT NONE
REAL ,INTENT(IN OUT) :: M1(:,:),SOL(:),TOL
INTEGER ,INTENT(IN OUT) :: N
!
! THIS ROUTINE PERFORMS GAUSSIAN ELIMINATION AND BACKSUBSTITUTION.
! IN THIS VERSION, WE CONSIDER THE CASE WHERE THE SYSTEM OF EQUATIONS
! HAS NO SINGLE SOLUTION ( INFINITELY MANY OR NONE ). TO MAKE IT EASY
! TO CHECK FOR THIS POSSIBILITY, THE COMPUTER CHOOSES WHICH ROW HAS THE
! GREATEST LEADING CO-EFFICIENT, AND USES THIS ROW IN THE ELIMINATION
! PROCESS. IF IT CANNOT FIND A NON-ZERO ROW (ZERO WITHIN A TOLERANCE
! SET BY THE ROUTINE WHICH CALLS THIS SUBROUTINE), IT RETURNS TO THE
! CALLING ROUTINE WITH A TOL=-90 FLAG, AND THE USER IS TOLD THAT THE
! SYSTEM HAS NO SOLUTION.
!
REAL :: M2(:,:),TEMP,MAX
INTEGER :: SWAP,I,J,K
!
!
! INSTEAD OF MODIFYING THE ORIGINAL ARRAY, WE WILL PRODUCE A WORKING COPY
! OF IT
!
M2 = M1
!
L1: DO I=1,N
MAX=-3.0
DO K=I,N
IF(ABS(M2(K,I))>MAX) THEN
MAX=ABS(M2(K,I))
SWAP=K
ENDIF
END DO
IF(MAXI) THEN
DO M=I,N+1
TEMP=M2(I,M)
M2(I,M)=M2(SWAP,M)
M2(SWAP,M)=TEMP
ENDDO
ENDIF
!
L2: DO J=I+1,N
TEMP=M2(J,I)/M2(I,I)
L3: DO K=I,N+1
M2(J,K)= M2(J,K) - TEMP*M2(I,K)
END DO L3
END DO L2
END DO L1
!
PRINT *,'TRIANGULARIZED MATRIX'
CALL PRNMAT(M2,5)
!
! MATRIX IS NOW TRIANGULAR. USE BACKSUBSTITUTION TO SOLVE
!
SOL(N)=M2(N,N+1)/M2(N,N)
L4: DO I=N-1,1,-1
TEMP=0.0
L5: DO K=N,I+1,-1
TEMP=TEMP+M2(I,K)*SOL(K)
END DO L5
SOL(I)=(M2(I,N+1) - TEMP)/M2(I,I)
END DO L4
RETURN
END SUBROUTINE GAUSS
DATA :45.3 23.0 63.7 2.1 54.6 3.4 64.6 3.3 75.7 25.3 45.8 74.3 45.7 9.0 2.3 67.2 34.9 23.4 54.2 2.9 25.9 21.3 4.2 9.1 5.8 64.3 91.3 43.4 21.6 43.9OUTPUT :
[FTN90 Version 1.12 Copyright (c)SALFORD SOFTWARE LTD 1992 & ]
[ (c)THE NUMERICAL ALGORITHMS GROUP 1991,1992]
NO ERRORS [FTN90]
Program entered
This is Program P142 - Gaussian elimination
PROGRAM IS READING DATA INTO ARRAYS
SOLVING SYSTEM OF EQUATIONS
TRIANGULARIZED MATRIX
64.600 3.370 5.720 5.340 5.870 4.300
0.000 20.637 59.689 -1.595 0.513 -2.615
0.000 0.000 -22.873 -3.031 -3.395 -1.801
0.000 0.000 0.000 4.708 2.637 4.893
0.000 0.000 0.000 0.000 -2.945 -0.279
SOLUTION:
| -0.024 |
| 0.138 |
| -0.066 |
| 0.986 |
| 0.094 |
Fortran-90 STOP
Last modified: 25/07/97