Quantum alternation

Prakash Panangaden

School of Computer Science
McGill University

Amsterdam Quantum Logic Workshop
8 May 2015
Outline

1. Introduction
2. Basic background
3. Superoperators: Kraus, Choi and Stinespring
4. Classical control and quantum data
5. Quantum control: ideas
6. Quantum control: semantics
7. Conclusions
Quantum programming languages

- Quantum Turing machines: very messy!
Quantum programming languages

- Quantum Turing machines: very messy!
Quantum programming languages

- Quantum Turing machines: very messy!
- Quantum λ-calculus: hard to give semantics.
Quantum programming languages

- Quantum Turing machines: very messy!
- Quantum λ-calculus: hard to give semantics.
- Measurement calculus: low-level, close to implementation.
Quantum programming languages

- Quantum Turing machines: very messy!
- Quantum λ-calculus: hard to give semantics.
- Measurement calculus: low-level, close to implementation.
- Selinger's Quantum Programming Language: Quantum data and classical control.
Quantum programming languages

- Quantum Turing machines: very messy!
- Quantum λ-calculus: hard to give semantics.
- Measurement calculus: low-level, close to implementation.
- Selinger’s Quantum Programming Language: Quantum data and classical control.
- There are more.
Example

Simple program

```
input b: bit;
input p, q: qbit;

b := measure p;
if b then q := N(q) else p := N(p);
output p, q
```

N is the NOT operation on a qubit.

bit and qbit separate datatypes.
The conditional is based on a classical boolean.
Example

Simple program

input b::bit;
input p, q::qbit;

$b := \text{measure } p$;
if b then $q := N(q)$ else $p := N(p)$;
output p, q

- N is the **NOT** operation on a qubit.
Example

Simple program

input b:bit;
input p, q:qbit;

$b := \text{measure } p$;

if b then $q := N(q)$ else $p := N(p)$;

output p, q

- N is the NOT operation on a qubit.
- bit and qbit separate datatypes.
Simple program

```plaintext
input b: bit;
input p, q: qbit;

b := measure p;
if b then q := N(q) else p := N(p);
output p, q
```

- N is the **NOT** operation on a qubit.
- **bit** and **qbit** separate datatypes.
- The conditional is based on a classical boolean.
What about quantum alternation?

Simple program

```
input p, q:qbit;
q = |0⟩;
q := H(q);
if q then skip else p := N(p);
output p, q
```

Here H is the one-qubit Hadamard gate. q is in the state $\sqrt{2}(|0⟩ + |1⟩)$ just before the conditional. The if is producing a controlled not. Does this make sense?

Quantum alternation is problematic in general.
What about quantum alternation?

Simple program

```plaintext
input p, q: qbit;
q = |0⟩;
q := H(q);
if q then skip else p := N(p);
output p, q
```

- Here H is the one-qubit Hadamard gate.
What about quantum alternation?

Simple program

input $p, q : \texttt{qbit}$;

$q = |0\rangle$;

$q := H(q)$;

if q then skip else $p := N(p)$;

output p, q

- Here H is the one-qubit Hadamard gate.
- q is in the state $\frac{1}{\sqrt{2}} [|0\rangle + |1\rangle]$ just before the conditional.
What about quantum alternation?

Simple program

```plaintext
input p, q:qbit;
q = |0⟩;
q := H(q);
if q then skip else p := N(p);
output p, q
```

- Here H is the one-qubit Hadamard gate.
- q is in the state $\frac{1}{\sqrt{2}} [|0⟩ + |1⟩]$ just before the conditional.
- The if is producing a controlled not.
What about quantum alternation?

Simple program

input $p, q : \texttt{qbit}$;

$q = \ket{0}$;

$q := H(q)$;

if q then skip else $p := N(p)$;

output p, q

- Here H is the one-qubit Hadamard gate.
- q is in the state $\frac{1}{\sqrt{2}} [\ket{0} + \ket{1}]$ just before the conditional.
- The if is producing a controlled not.
- Does this make sense?
What about quantum alternation?

Simple program

```plaintext
input p, q:qbit;
q = |0⟩;
q := H(q);
if q then skip else p := N(p);
output p, q
```

- Here H is the one-qubit Hadamard gate.
- q is in the state $\frac{1}{\sqrt{2}}[|0⟩ + |1⟩]$ just before the conditional.
- The if is producing a controlled not.
- Does this make sense?
- Quantum alternation is problematic in general.
Cones and positive elements

- A **cone** C in a vector space V is a *subset* of V such that

 1. If $x, y \in C$ then $x + y \in C$,
 2. If $x \in C$ and $r \in \mathbb{R}^+$ then $r \cdot x \in C$,
 3. If $x \in C$ and $-x \in C$ then $x = 0$.

Given a cone we can define a notion of **positive** element by saying x is positive if $x \in C$. We induce a partial order \leq_C by $x \leq_C y$ if $y - x \in C$.

Panangaden (McGill University)
Cones and positive elements

A cone \(C \) in a vector space \(V \) is a subset of \(V \) such that
1. if \(x, y \in C \) then \(x + y \) in \(C \),
A **cone** C in a vector space V is a *subset* of V such that

1. if $x, y \in C$ then $x + y \in C$,
2. if $x \in C$ and $r \in \mathbb{R}^+$ then $r \cdot x \in C$ and
3. if $x \in C$ and $-x \in C$ then $x = 0$.

Given a cone we can define a notion of *positive* element by saying x is positive if $x \in C$. We induce a partial order \leq on C by $x \leq y$ if $y - x \in C$.

Panangaden (McGill University)
Quantum alternation
Amsterdam, 8th May 2015
Cones and positive elements

- A **cone** C in a vector space V is a *subset* of V such that
 1. if $x, y \in C$ then $x + y$ in C,
 2. if $x \in C$ and $r \in \mathbb{R}^+$ then $r \cdot x \in C$ and
 3. if $x \in C$ and $-x \in C$ then $x = 0$.
Cones and positive elements

- A **cone** C in a vector space V is a *subset* of V such that
 1. if $x, y \in C$ then $x + y \in C$,
 2. if $x \in C$ and $r \in \mathbb{R}^+$ then $r \cdot x \in C$ and
 3. if $x \in C$ and $-x \in C$ then $x = 0$.

- Given a cone we can define a notion of *positive* element by saying x is positive if $x \in C$.
Cones and positive elements

A **cone** C in a vector space V is a *subset* of V such that

1. if $x, y \in C$ then $x + y \in C$,
2. if $x \in C$ and $r \in \mathbb{R}^+$ then $r \cdot x \in C$ and
3. if $x \in C$ and $-x \in C$ then $x = 0$.

Given a cone we can define a notion of *positive* element by saying x is positive if $x \in C$.

We induce a partial order \leq_C by $x \leq_C y$ if $y - x \in C$.

Positive operators

Let \mathcal{H} be a Hilbert space. An operator $A : \mathcal{H} \to \mathcal{H}$ is **positive** if for all $x \in \mathcal{H}$ we have $(x, Ax) \geq 0$.
Positive operators

- Let \mathcal{H} be a Hilbert space. An operator $A : \mathcal{H} \to \mathcal{H}$ is **positive** if for all $x \in \mathcal{H}$ we have $(x, Ax) \geq 0$.
- The positive operators are automatically Hermitian and form a cone.
Basic background

Positive operators

- Let \mathcal{H} be a Hilbert space. An operator $A : \mathcal{H} \to \mathcal{H}$ is **positive** if for all $x \in \mathcal{H}$ we have $(x, Ax) \geq 0$.
- The positive operators are automatically Hermitian and form a cone.
- Density matrices are positive operators with trace ≤ 1.

Positive operators

- Let \mathcal{H} be a Hilbert space. An operator $A : \mathcal{H} \to \mathcal{H}$ is **positive** if for all $x \in \mathcal{H}$ we have $(x, Ax) \geq 0$.
- The positive operators are automatically Hermitian and form a cone.
- Density matrices are positive operators with trace ≤ 1.
- Thus, we have a natural order structure on density matrices.
Positive operators

- Let \mathcal{H} be a Hilbert space. An operator $A : \mathcal{H} \rightarrow \mathcal{H}$ is **positive** if for all $x \in \mathcal{H}$ we have $(x, Ax) \geq 0$.
- The positive operators are automatically Hermitian and form a cone.
- Density matrices are positive operators with trace ≤ 1.
- Thus, we have a natural order structure on density matrices.
- We write $\mathcal{B}(\mathcal{H})$ for the bounded linear operators on \mathcal{H}.
Positive operators

Let \mathcal{H} be a Hilbert space. An operator $A : \mathcal{H} \rightarrow \mathcal{H}$ is **positive** if for all $x \in \mathcal{H}$ we have $(x, Ax) \geq 0$.

The positive operators are automatically Hermitian and form a cone.

Density matrices are positive operators with trace ≤ 1.

Thus, we have a natural order structure on density matrices.

We write $\mathcal{B}(\mathcal{H})$ for the bounded linear operators on \mathcal{H}.

A **positive map** is a map from $\mathcal{B}(\mathcal{H})$ to itself such that it takes positive operators to positive operators.
Completely positive maps

- An operator representing a physical transformation has to be positive, because it must take density matrices to density matrices.
Completely positive maps

- An operator representing a physical transformation has to be positive, because it must take density matrices to density matrices.
- It should also be trace non-increasing (trace preserving if we want normalized density matrices).
Completely positive maps

- An operator representing a physical transformation has to be positive, because it must take density matrices to density matrices.
- It should also be trace non-increasing (trace preserving if we want normalized density matrices).
- Is this enough?
Completely positive maps

- An operator representing a physical transformation has to be positive, because it must take density matrices to density matrices.
- It should also be trace non-increasing (trace preserving if we want normalized density matrices).
- Is this enough?
- It is possible to have a positive map A from $\mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$, such that $A \otimes I_K : \mathcal{B}(\mathcal{H} \otimes \mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ is not positive.
An operator representing a physical transformation has to be positive, because it must take density matrices to density matrices.

It should also be trace non-increasing (trace preserving if we want normalized density matrices).

Is this enough?

It is possible to have a positive map A from $\mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$, such that $A \otimes I_K : \mathcal{B}(\mathcal{H} \otimes \mathcal{K}) \to \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ is not positive.

This is unphysical.
An operator representing a physical transformation has to be positive, because it must take density matrices to density matrices. It should also be trace non-increasing (trace preserving if we want normalized density matrices).

Is this enough?

It is possible to have a positive map A from $\mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$, such that $A \otimes I_K : \mathcal{B}(\mathcal{H} \otimes \mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ is not positive.

This is unphysical.

A positive map such that its tensor product with any identity map is positive is called **completely positive**.
Completely positive maps

- An operator representing a physical transformation has to be positive, because it must take density matrices to density matrices.
- It should also be trace non-increasing (trace preserving if we want normalized density matrices).
- Is this enough?
- It is possible to have a positive map A from $\mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$, such that $A \otimes I_K : \mathcal{B}(\mathcal{H} \otimes \mathcal{K}) \to \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ is not positive.
- This is unphysical.
- A positive map such that its tensor product with any identity map is positive is called **completely positive**.
- Maps describing physical processes (e.g. channels) must be completely positive maps (cp maps).
Completely positive maps

- An operator representing a physical transformation has to be positive, because it must take density matrices to density matrices.
- It should also be trace non-increasing (trace preserving if we want normalized density matrices).
- Is this enough?
- It is possible to have a positive map A from $\mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$, such that $A \otimes I_K : \mathcal{B}(\mathcal{H} \otimes \mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ is not positive.
- This is unphysical.
- A positive map such that its tensor product with any identity map is positive is called completely positive.
- Maps describing physical processes (e.g. channels) must be completely positive maps (cp maps).
- A superoperator is a cp map that is also trace non-increasing.
Notation

- We write M_{nm} for n by m (complex) matrices.
Notation

- We write M_{nm} for n by m (complex) matrices.
- If $n = m$ (square matrices) we write M_n.
Notation

- We write M_{nm} for n by m (complex) matrices.
- If $n = m$ (square matrices) we write M_n.
- We write $CP(M_n, M_k)$ for completely positive maps from M_n to M_k.
C^* algebras

- A C^* algebra abstracts properties of operators.
A C^* algebra abstracts properties of operators.

An algebra is a vector space with a multiplication operation obeying obvious laws.
C* algebras

- A C* algebra abstracts properties of operators.
- An **algebra** is a vector space with a multiplication operation obeying obvious laws.
- An algebra may be equipped with a norm $\| \cdot \|$ obeying usual norm axioms. It must satisfy $\| ab \| \leq \| a \| \cdot \| b \|$.

Panangaden (McGill University)
C* algebras

- A C^* algebra abstracts properties of operators.
- An **algebra** is a vector space with a multiplication operation obeying obvious laws.
- An algebra may be equipped with a norm $\| \cdot \|$ obeying usual norm axioms. It must satisfy $\| ab \| \leq \| a \| \cdot \| b \|$.
- If it is complete in the norm we have a **Banach algebra**.
C* algebras

- A **C* algebra** abstracts properties of operators.

- An **algebra** is a vector space with a multiplication operation obeying obvious laws.

- An algebra may be equipped with a norm $\| \cdot \|$ obeying usual norm axioms. It must satisfy $\| ab \| \leq \| a \| \cdot \| b \|$. If it is complete in the norm we have a **Banach algebra**.

- A ***-algebra** is an algebra equipped with a unary operation $*$ such that: (i) $a^{**} = a$, (ii) $(ab)^* = b^*a^*$ and (iii) $(\lambda a)^* = \overline{\lambda}a^*$, where $\lambda \in \mathbb{C}$.

Panangaden (McGill University) Quantum alternation Amsterdam, 8th May 2015 10 / 38
C* algebras

- A C* algebra abstracts properties of operators.

- An **algebra** is a vector space with a multiplication operation obeying obvious laws.

- An algebra may be equipped with a norm \(|\cdot|\) obeying usual norm axioms. It must satisfy \(|ab| \leq |a| \cdot |b|\).

- If it is complete in the norm we have a **Banach algebra**.

- A ***-algebra** is an algebra equipped with a unary operation * such that: (i) \(a^{**} = a\), (ii) \((ab)^* = b^* a^*\) and (iii) \((\lambda a)^* = \overline{\lambda} a^*\), where \(\lambda \in \mathbb{C}\).

- A C*-algebra is a ***-algebra and a Banach algebra satisfying \(|a^* a| = |a|^2|\).
A C^* algebra abstracts properties of operators.

An **algebra** is a vector space with a multiplication operation obeying obvious laws.

An algebra may be equipped with a norm $\| \cdot \|$ obeying usual norm axioms. It must satisfy $\| ab \| \leq \| a \| \cdot \| b \|.$

If it is complete in the norm we have a **Banach algebra**.

A \ast-**algebra** is an algebra equipped with a unary operation \ast such that: (i) $a^{**} = a$, (ii) $(ab)^* = b^* a^*$ and (iii) $(\lambda a)^* = \overline{\lambda} a^*$, where $\lambda \in \mathbb{C}$.

A C^*-algebra is a \ast-algebra and a Banach algebra satisfying $\| a^* a \| = \| a \|^2$.

The matrix algebras M_n are all C^*-algebras with the \ast being \dagger (adjoint).
C* algebras

A C* algebra abstracts properties of operators.

An algebra is a vector space with a multiplication operation obeying obvious laws.

An algebra may be equipped with a norm \(\| \cdot \| \) obeying usual norm axioms. It must satisfy \(\| ab \| \leq \| a \| \cdot \| b \| \).

If it is complete in the norm we have a Banach algebra.

A *-algebra is an algebra equipped with a unary operation \(* \) such that: (i) \(a^{**} = a \), (ii) \((ab)^* = b^* a^* \) and (iii) \((\lambda a)^* = \overline{\lambda} a^* \), where \(\lambda \in \mathbb{C} \).

A C*-algebra is a *-algebra and a Banach algebra satisfying \(\| a^* a \| = \| a \|^2 \).

The matrix algebras \(M_n \) are all C*-algebras with the \(* \) being \(\dagger \) (adjoint).

The bounded operators on a Hilbert space form a C*-algebra.
About C^*-algebras

- A **homomorphism** of C^*-algebras is a linear map $\psi : \mathcal{A} \rightarrow \mathcal{D}$ such that the operations (\ast and product) are preserved.
About C^*-algebras

- A **homomorphism** of C^*-algebras is a linear map $\psi : \mathcal{A} \to \mathcal{D}$ such that the operations ($*$ and product) are preserved.
- A **positive** element is an element of the form a^*a.
About \mathbb{C}^*-algebras

- A **homomorphism** of \mathbb{C}^*-algebras is a linear map $\psi : \mathcal{A} \to \mathcal{D}$ such that the operations ($*$ and product) are preserved.
- A **positive** element is an element of the form $a^* a$.
- There is a unique norm on a \mathbb{C}^*-algebra.
About C^*-algebras

- A **homomorphism** of C^*-algebras is a linear map $\psi : \mathcal{A} \to \mathcal{D}$ such that the operations (\ast and product) are preserved.

- A **positive** element is an element of the form a^*a.

- There is a unique norm on a C^*-algebra.

- One can define completely positive maps between C^*-algebras just as between spaces of operators or matrices.
About C^*-algebras

- A **homomorphism** of C^*-algebras is a linear map $\psi : \mathcal{A} \rightarrow \mathcal{D}$ such that the operations ($*$ and product) are preserved.
- A **positive** element is an element of the form a^*a.
- There is a unique norm on a C^*-algebra.
- One can define completely positive maps between C^*-algebras just as between spaces of operators or matrices.
- Every commutative unital C^*-algebra is isomorphic to the set of continuous functions on a compact Hausdorff space (Gelfand duality).
Representations

- C^*-algebras seem like a very abstract concept.
Representations

- C^*-algebras seem like a very abstract concept.
- However, abstract C^*-algebras can be represented in a concrete way as a subalgebra of $\mathcal{B}(\mathcal{H})$.
Representations

- C^*-algebras seem like a very abstract concept.
- However, abstract C^*-algebras can be represented in a concrete way as a subalgebra of $\mathcal{B}(\mathcal{H})$.
- A representation of a C^*-algebra \mathcal{A} is a homomorphism $\pi : \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ for some Hilbert space.
Three ways to understand CP maps

Let us consider maps on spaces of matrices. Suppose that ϕ is a CP map and A is a matrix:

$$
\phi(A) = \sum_i K_i^\dagger AK_i
$$

where K_i are matrices satisfying

$$
\sum_i K_i K_i^\dagger \leq I.
$$

This decomposition is not unique. If ϕ is $M_n \rightarrow M_k$ then K_i are all $n \times k$ and there are fewer than $n \cdot k$ of them.

Choi: The action of $\phi \in \text{CP}(M_n, M_k)$ can be given explicitly as a matrix in M_{nk} depending on the particular Kraus decomposition.

Stinespring: For any completely positive map $\theta: A \rightarrow B$ (H) there is a triple (π, V, K) where K is a Hilbert space, $\pi: A \rightarrow B (K)$ is a representation and $V: H \rightarrow K$ such that

$$
\theta(a) = V^\dagger \pi(a) V.
$$
Three ways to understand CP maps

Let us consider maps on spaces of matrices. Suppose that ϕ is a CP map and A is a matrix:

- **Kraus:** $\phi(A) = \sum_i K_i^\dagger AK_i$ where K_i are matrices satisfying $\sum_i K_iK_i^\dagger \leq I$.

}$ Panangaden (McGill University)
Quantum alternation
Amsterdam, 8th May 2015
Three ways to understand CP maps

Let us consider maps on spaces of matrices. Suppose that ϕ is a CP map and A is a matrix:

- **Kraus:** $\phi(A) = \sum_i K_i^\dagger AK_i$ where K_i are matrices satisfying
 \[\sum_i K_iK_i^\dagger \leq I. \]

 This decomposition is not unique. If ϕ is $M_n \rightarrow M_k$ then K_i are all $n \times k$ and there are fewer than $n \cdot k$ of them.
Three ways to understand CP maps

Let us consider maps on spaces of matrices. Suppose that ϕ is a CP map and A is a matrix:

- **Kraus:** $\phi(A) = \sum_i K_i^\dagger AK_i$ where K_i are matrices satisfying
 \[\sum_i K_i K_i^\dagger \leq I. \]

- This decomposition is not unique. If ϕ is $M_n \rightarrow M_k$ then K_i are all $n \times k$ and there are fewer than $n \cdot k$ of them.

- **Choi:** The action of $\phi \in CP(M_n, M_k)$ can be given explicitly as a matrix in M_{nk} depending on the particular Kraus decomposition.
Three ways to understand CP maps

Let us consider maps on spaces of matrices. Suppose that ϕ is a CP map and A is a matrix:

- **Kraus**: $\phi(A) = \sum_i K_i^\dagger A K_i$ where K_i are matrices satisfying
 \[\sum_i K_i K_i^\dagger \leq I. \]

- This decomposition is not unique. If ϕ is $M_n \to M_k$ then K_i are all $n \times k$ and there are fewer than $n \cdot k$ of them.

- **Choi**: The action of $\phi \in CP(M_n, M_k)$ can be given explicitly as a matrix in M_{nk} depending on the particular Kraus decomposition.

- **Stinespring**: For any completely positive map $\theta : A \to B(\mathcal{H})$ there is a triple (π, V, K) where K is a Hilbert space, $\pi : A \to B(K)$ is a representation and $V : \mathcal{H} \to K$ such that
 \[\theta(a) = V^\dagger \pi(a) V. \]
Any completely positive map can be realized as a “twisted” homomorphism.
Stinespring

- Any completely positive map can be realized as a “twisted” homomorphism.
- There is even a special minimal such Stinespring representation.
Stinespring

- Any completely positive map can be realized as a “twisted” homomorphism.
- There is even a special minimal such Stinespring representation.
- For quantum information theory this tells one that any completely positive map can be realized as a unitary on an expanded space: purification.
Any completely positive map can be realized as a “twisted” homomorphism.

There is even a special minimal such Stinespring representation.

For quantum information theory this tells one that any completely positive map can be realized as a unitary on an expanded space: purification.

If $\theta \in CP(M_n, M_k)$ then the minimal Stinespring representation is in M_m where $m \leq n^2 k$.
Let \mathcal{H} and \mathcal{K} be two finite-dimensional Hilbert spaces and $\mathcal{B}(\mathcal{H}), \mathcal{B}(\mathcal{K})$ the Banach algebras of bounded linear operators.
Stinespring to Kraus

- Let \mathcal{H} and \mathcal{K} be two finite-dimensional Hilbert spaces and $\mathcal{B}(\mathcal{H}), \mathcal{B}(\mathcal{K})$ the Banach algebras of bounded linear operators.
- Let $\mathcal{E} : \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ be a superoperator.
Stinespring to Kraus

- Let \mathcal{H} and \mathcal{K} be two finite-dimensional Hilbert spaces and $\mathcal{B}(\mathcal{H}), \mathcal{B}(\mathcal{K})$ the Banach algebras of bounded linear operators.
- Let $\mathcal{E} : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K})$ be a superoperator.
- By Stinespring, there exists an ancilla \mathcal{A} and an operator $V : \mathcal{K} \to \mathcal{H} \otimes \mathcal{A}$ such that

$$\mathcal{E}(\rho) = V^*(\rho \otimes I_\mathcal{A})V.$$
Let \mathcal{H} and \mathcal{K} be two finite-dimensional Hilbert spaces and $\mathcal{B}(\mathcal{H}), \mathcal{B}(\mathcal{K})$ the Banach algebras of bounded linear operators.

Let $\mathcal{E} : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K})$ be a superoperator.

By Stinespring, there exists an ancilla \mathcal{A} and an operator $\mathcal{V} : \mathcal{K} \to \mathcal{H} \otimes \mathcal{A}$ such that

$$\mathcal{E}(\rho) = \mathcal{V}^*(\rho \otimes I_\mathcal{A}) \mathcal{V}.$$

Choose a basis $\{e_i\}_{i=1}^k$ for \mathcal{A} and define $V_i : \mathcal{K} \to \mathcal{H}$ by

$$\forall \psi \in \mathcal{K}, \quad V\psi = \sum_{i=1}^k (V_i\psi) \otimes e_i.$$
Let \mathcal{H} and \mathcal{K} be two finite-dimensional Hilbert spaces and $\mathcal{B}(\mathcal{H}), \mathcal{B}(\mathcal{K})$ the Banach algebras of bounded linear operators.

Let $\mathcal{E} : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K})$ be a superoperator.

By Stinespring, there exists an ancilla \mathcal{A} and an operator $V : \mathcal{K} \to \mathcal{H} \otimes \mathcal{A}$ such that

$$\mathcal{E}(\rho) = V^* (\rho \otimes \mathbb{I}_\mathcal{A}) V.$$

Choose a basis $\{e_i\}_{i=1}^k$ for \mathcal{A} and define $V_i : \mathcal{K} \to \mathcal{H}$ by

$$\forall \psi \in \mathcal{K}, \quad V\psi = \sum_{i=1}^k (V_i \psi) \otimes e_i.$$

Easy to check $\mathcal{E}(\rho) = \sum_{i=1}^k V_i^* \rho V_i.$
Let \mathcal{H} and \mathcal{K} be two finite-dimensional Hilbert spaces and $B(\mathcal{H}), B(\mathcal{K})$ the Banach algebras of bounded linear operators.

Let $\mathcal{E} : B(\mathcal{H}) \rightarrow B(\mathcal{K})$ be a superoperator.

By Stinespring, there exists an ancilla \mathcal{A} and an operator $V : \mathcal{K} \rightarrow \mathcal{H} \otimes \mathcal{A}$ such that

$$\mathcal{E}(\rho) = V^* (\rho \otimes I_{\mathcal{A}}) V.$$

Choose a basis $\{e_i\}_{i=1}^k$ for \mathcal{A} and define $V_i : \mathcal{K} \rightarrow \mathcal{H}$ by

$$\forall \psi \in \mathcal{K}, \quad V\psi = \sum_{i=1}^k (V_i \psi) \otimes e_i.$$

Easy to check $\mathcal{E}(\rho) = \sum_{i=1}^k V_i^* \rho V_i$.

The V_i give a Kraus representation for \mathcal{E}.

Stinespring to Kraus

- Let \mathcal{H} and \mathcal{K} be two finite-dimensional Hilbert spaces and $B(\mathcal{H}), B(\mathcal{K})$ the Banach algebras of bounded linear operators.
- Let $\mathcal{E} : B(\mathcal{H}) \rightarrow B(\mathcal{K})$ be a superoperator.
- By Stinespring, there exists an ancilla \mathcal{A} and an operator $V : \mathcal{K} \rightarrow \mathcal{H} \otimes \mathcal{A}$ such that
 $$\mathcal{E}(\rho) = V^* (\rho \otimes I_{\mathcal{A}}) V.$$
- Choose a basis $\{e_i\}_{i=1}^k$ for \mathcal{A} and define $V_i : \mathcal{K} \rightarrow \mathcal{H}$ by
 $$\forall \psi \in \mathcal{K}, \quad V\psi = \sum_{i=1}^k (V_i \psi) \otimes e_i.$$
- Easy to check $\mathcal{E}(\rho) = \sum_{i=1}^k V_i^* \rho V_i$.
- The V_i give a Kraus representation for \mathcal{E}.

Panangaden (McGill University)
Quantum alternation
Amsterdam, 8th May 2015
15 / 38
Löwner order on density matrices

- Recall that the positive operators form a cone, hence define a partial order: the Löwner order.
Löwner order on density matrices

- Recall that the positive operators form a cone, hence define a partial order: the Löwner order.
- $A \sqsubseteq B$ if $B - A$ is positive.
Recall that the positive operators form a cone, hence define a partial order: the Löwner order. $A \sqsubseteq B$ if $B - A$ is positive. Recall density matrices are defined to have trace ≤ 1, so the zero matrix is the smallest element in this order.
Löwner order on density matrices

- Recall that the positive operators form a cone, hence define a partial order: the Löwner order.
- \(A \sqsubseteq B \) if \(B - A \) is positive.
- Recall density matrices are defined to have trace \(\leq 1 \), so the zero matrix is the smallest element in this order.
- In this order, every increasing sequence has a least upper bound (lub). Such a structure is called a directed-complete partial order (dcpo).
Löwner order on density matrices

- Recall that the positive operators form a cone, hence define a partial order: the Löwner order.
- \(A \sqsubseteq B \) if \(B - A \) is positive.
- Recall density matrices are defined to have trace \(\leq 1 \), so the zero matrix is the smallest element in this order.
- In this order, every increasing sequence has a least upper bound (lub). Such a structure is called a \textbf{directed-complete} partial order (dcpo).
- Note it is not a lattice.
Löwner order on density matrices

- Recall that the positive operators form a cone, hence define a partial order: the Löwner order.
- \(A \sqsubseteq B \) if \(B - A \) is positive.
- Recall density matrices are defined to have trace \(\leq 1 \), so the zero matrix is the smallest element in this order.
- In this order, every increasing sequence has a least upper bound (lub). Such a structure is called a directed-complete partial order (dcpo).
- Note it is not a lattice.
- Least upper bounds of increasing sequences co-incide with topological limits in the euclidean topology.
Löwner order on density matrices

- Recall that the positive operators form a cone, hence define a partial order: the Löwner order.
- \(A \subseteq B \) if \(B - A \) is positive.
- Recall density matrices are defined to have trace \(\leq 1 \), so the zero matrix is the smallest element in this order.
- In this order, every increasing sequence has a least upper bound (lub). Such a structure is called a \textit{directed-complete} partial order (dcpo).
- Note it is not a lattice.
- Least upper bounds of increasing sequences co-incide with topological limits in the euclidean topology.
- Any order preserving function on the operators will preserve lubs of increasing sequences if it is topologically continuous.
Löwner order on density matrices

- Recall that the positive operators form a cone, hence define a partial order: the Löwner order.
- $A \sqsubseteq B$ if $B - A$ is positive.
- Recall density matrices are defined to have trace ≤ 1, so the zero matrix is the smallest element in this order.
- In this order, every increasing sequence has a least upper bound (lub). Such a structure is called a **directed-complete** partial order (dcpo).
- Note it is not a lattice.
- Least upper bounds of increasing sequences co-incide with topological limits in the euclidean topology.
- Any order preserving function on the operators will preserve lubs of increasing sequences if it is topologically continuous.
- A function from a dcpo to another dcpo is called **Scott continuous** if it preserves lubs of increasing sequences.
Iteration

- Loop in the flowchart.
Iteration

- Loop in the flowchart.
- When the loop is unwound one gets “formally” an infinite flowchart.
Iteration

- Loop in the flowchart.
- When the loop is unwound one gets “formally” an infinite flowchart.
- The meaning of this is given by an infinite sum.
Iteration

- Loop in the flowchart.
- When the loop is unwound one gets “formally” an infinite flowchart.
- The meaning of this is given by an infinite sum.
- This sum can be proven to converge yielding a density matrix with trace ≤ 1.
Recursion

- Part of the program can call itself.
Recursion

- Part of the program can call itself.
- The recursive call may allocate new qubits.
Recursion

- Part of the program can call itself.
- The recursive call may allocate new qubits.
- The recursion can be partially unwound.
Recursion

- Part of the program can call itself.
- The recursive call may allocate new qubits.
- The recursion can be partially unwound.
- The successive unw windings are given by $F(0), F^2(0), \ldots$
Recursion

- Part of the program can call itself.
- The recursive call may allocate new qubits.
- The recursion can be partially unwound.
- The successive windings are given by \(F(0), F^2(0), \ldots \)
- Each unwinding is less than the next in the Löwner order, because \(F \) is monotone.
Recursion

- Part of the program can call itself.
- The recursive call may allocate new qubits.
- The recursion can be partially unwound.
- The successive unwindings are given by $F(0), F^2(0), \ldots$.
- Each unwinding is less than the next in the Löwner order, because F is monotone.
- The meaning is given by a least upper bound of the increasing sequence.
Recursion

- Part of the program can call itself.
- The recursive call may allocate new qubits.
- The recursion can be partially unwound.
- The successive unw windings are given by $F(0), F^2(0), \ldots$
- Each unwinding is less than the next in the L"owner order, because F is monotone.
- The meaning is given by a least upper bound of the increasing sequence.
- Because the density matrices form a dcpo we are sure that the lubs exist.
Recursion

- Part of the program can call itself.
- The recursive call may allocate new qubits.
- The recursion can be partially unwound.
- The successive unwindings are given by $F(0), F^2(0), \ldots$
- Each unwinding is less than the next in the Löwner order, because F is monotone.
- The meaning is given by a least upper bound of the increasing sequence.
- Because the density matrices form a dcpo we are sure that the lubs exist.
- Recursion can implement iteration but not the other way around.
What do we want?

Suppose we have a qubit q and two superoperators $S, T : \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ then the quantum alternation $(q\text{Alt})(q; S, T)$ should be a superoperator from $\mathcal{B}(\mathcal{Q} \otimes \mathcal{H}) \rightarrow \mathcal{B}(\mathcal{Q} \otimes \mathcal{K})$.
What do we want?

- Suppose we have a qubit q and two superoperators $S, T : \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ then the quantum alternation $(q\text{Alt})(q; S, T)$ should be a superoperator from $\mathcal{B}(Q \otimes \mathcal{H}) \rightarrow \mathcal{B}(Q \otimes \mathcal{K})$.

- We want this to be compositional, so we can then use this new superoperator in any context without looking inside it.
What do we want?

- Suppose we have a qubit q and two superoperators $S, T : \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ then the quantum alternation $(qAlt)(q; S, T)$ should be a superoperator from $\mathcal{B}(Q \otimes \mathcal{H}) \rightarrow \mathcal{B}(Q \otimes \mathcal{K})$.

- We want this to be compositional, so we can then use this new superoperator in any context without looking inside it.

- We want it to only depend on the superoperator and not on how the superoperator is described, e.g. through a specific Kraus form.
What do we want?

Suppose we have a qubit q and two superoperators $S, T : \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ then the quantum alternation $(q\text{Alt})(q; S, T)$ should be a superoperator from $\mathcal{B}(Q \otimes \mathcal{H}) \rightarrow \mathcal{B}(Q \otimes \mathcal{K})$.

We want this to be compositional, so we can then use this new superoperator in any context without looking inside it.

We want it to only depend on the superoperator and not on how the superoperator is described, e.g. through a specific Kraus form.

We want the operation to be monotone so we can use this inside recursions.
Can we really do all this?

- No!
Can we really do all this?

- No!
- It is not possible to make it compositional and stick with superoperators.

Panangaden (McGill University)
Can we really do all this?

- No!
- It is not possible to make it compositional and stick with superoperators.
- Can we define it in a monotone way?
Can we really do all this?

- No!
- It is not possible to make it compositional and stick with superoperators.
- Can we define it in a monotone way?
- I am *almost* sure this is impossible.
Basic scheme

- \mathcal{H} Hilbert space with orthonormal basis $\{e_i\}_{i=1}^n$, \mathcal{K} another Hilbert space.
Basic scheme

- \mathcal{H} Hilbert space with orthonormal basis $\{e_i\}_{i=1}^n$, \mathcal{K} another Hilbert space.
- Let Π_i be the projection onto the subspace spanned by e_i.

Panangaden (McGill University)
Basic scheme

- \mathcal{H} Hilbert space with orthonormal basis $\{e_i\}_{i=1}^n$, \mathcal{K} another Hilbert space.
- Let Π_i be the projection onto the subspace spanned by e_i.
- For each $i \in \{1, 2, \ldots, k - 1, k\}$ we have a unitary U_i acting on \mathcal{K}.
Basic scheme

- \mathcal{H} Hilbert space with orthonormal basis $\{e_i\}_{i=1}^n$, \mathcal{K} another Hilbert space.
- Let Π_i be the projection onto the subspace spanned by e_i.
- For each $i \in \{1, 2, \ldots, k - 1, k\}$ we have a unitary U_i acting on \mathcal{K}.
- The quantum alternation of the U_i controlled by a state in \mathcal{H} is defined to be the following unitary:
Basic scheme

- \mathcal{H} Hilbert space with orthonormal basis $\{e_i\}_{i=1}^n$, \mathcal{K} another Hilbert space.

- Let Π_i be the projection onto the subspace spanned by e_i.

- For each $i \in \{1, 2, \ldots, k - 1, k\}$ we have a unitary U_i acting on \mathcal{K}.

- The quantum alternation of the U_i controlled by a state in \mathcal{H} is defined to be the following unitary:

$$\sum_{i=1}^{k} \Pi_i U_i : \mathcal{H} \otimes \mathcal{K} \rightarrow \mathcal{H} \otimes \mathcal{K}.$$
Basic scheme

- \mathcal{H} Hilbert space with orthonormal basis $\{e_i\}_{i=1}^n$, \mathcal{K} another Hilbert space.

- Let Π_i be the projection onto the subspace spanned by e_i.

- For each $i \in \{1, 2, \ldots, k - 1, k\}$ we have a unitary U_i acting on \mathcal{K}.

- The quantum alternation of the U_i controlled by a state in \mathcal{H} is defined to be the following unitary:

$$\sum_{i=1}^k \Pi_i U_i : \mathcal{H} \otimes \mathcal{K} \to \mathcal{H} \otimes \mathcal{K}.$$

- If \mathcal{H} is a qubit then we have $(|0\rangle \langle 0| \otimes U_0) + (|1\rangle \langle 1| \otimes U_1)$.
Basic scheme

- \mathcal{H} Hilbert space with orthonormal basis $\{e_i\}_{i=1}^n$, \mathcal{K} another Hilbert space.
- Let Π_i be the projection onto the subspace spanned by e_i.
- For each $i \in \{1, 2, \ldots, k - 1, k\}$ we have a unitary U_i acting on \mathcal{K}.
- The quantum alternation of the U_i controlled by a state in \mathcal{H} is defined to be the following unitary:

$$
\sum_{i=1}^{k} \Pi_i U_i : \mathcal{H} \otimes \mathcal{K} \to \mathcal{H} \otimes \mathcal{K}.
$$

- If \mathcal{H} is a qubit then we have $\left(|0\rangle \langle 0| \otimes U_0 \right) + \left(|1\rangle \langle 1| \otimes U_1 \right)$.
- Action: $\left(\sum_i e_i \otimes \psi_i \right) \mapsto \left(\sum_i e_i \otimes U_i \psi_i \right)$.
Examples I

Syntax: if q then U_0 else U_1.
Examples I

- Syntax: if \(q \) then \(U_0 \) else \(U_1 \).
- Controlled NOT: if \(q \) then skip else \(q_1^* = N \).
Examples I

- Syntax: if q then U_0 else U_1.
- Controlled NOT: if q then skip else $q_1^* = N$.
- Controlled Hadamard: if q then skip else $q_1^* = H$.

Examples I

- Syntax: \(\text{if } q \text{ then } U_0 \text{ else } U_1. \)
- Controlled NOT: \(\text{if } q \text{ then skip else } q_1^\ast = N. \)
- Controlled Hadamard: \(\text{if } q \text{ then skip else } q_1^\ast = H. \)
- Controlled phase \(\text{if } q \text{ then } U_0 \text{ else } q_1^\ast = e^{i\theta}. \)
Examples I

- Syntax: \(\text{if } q \text{ then } U_0 \text{ else } U_1 \).
- Controlled NOT: \(\text{if } q \text{ then skip else } q_1^* = N \).
- Controlled Hadamard: \(\text{if } q \text{ then skip else } q_1^* = H \).
- Controlled phase \(\text{if } q \text{ then } U_0 \text{ else } q_1^* = e^{i\theta} \).
- Toffoli gate uses nested if: \(\text{if } q_0 \text{ then skip else if } q_1 \text{ then skip else } q_2^* = N \).
Examples I

- Syntax: **if** q **then** U_0 **else** U_1.
- Controlled NOT: **if** q **then** skip **else** $q_1^* = N$.
- Controlled Hadamard: **if** q **then** skip **else** $q_1^* = H$.
- Controlled phase **if** q **then** U_0 **else** $q_1^* = e^{i\theta}$.
- Toffoli gate uses nested if:
 if q_0 **then** skip **else** **if** q_1 **then** skip **else** $q_2^* = N$.
- Very useful for describing algorithms especially if there are only unitaries.
Examples II: Deutsch’s algorithm

Given a function $f : \{0, 1\} \rightarrow \{0, 1\}$ we can determine if f is a constant function or not, $f(0) = f(1)$ or not using only one computation of f.
Examples II: Deutsch’s algorithm

- Given a function \(f : \{0, 1\} \to \{0, 1\} \) we can determine if \(f \) is a constant function or not, \(f(0) = f(1) \) or not using only one computation of \(f \).
- Use qubits \(|0\rangle, |1\rangle\) and build quantum circuit to compute \(f(0) \oplus f(1) \) using one call to \(f \). Measure the output.
Examples II: Deutsch’s algorithm

- Given a function \(f : \{0, 1\} \rightarrow \{0, 1\} \) we can determine if \(f \) is a constant function or not, \(f(0) = f(1) \) or not using only one computation of \(f \).
- Use qubits \(|0\rangle, |1\rangle\) and build quantum circuit to compute \(f(0) \oplus f(1) \) using one call to \(f \). Measure the output.
- Let \(U_i, i = 1, 2 \) be unitaries mapping \(|0\rangle\) to \(|f(i)\rangle\).
Examples II: Deutsch’s algorithm

- Given a function \(f : \{0, 1\} \rightarrow \{0, 1\} \) we can determine if \(f \) is a constant function or not, \(f(0) = f(1) \) or not using only one computation of \(f \).
- Use qubits \(|0\rangle, |1\rangle \) and build quantum circuit to compute \(f(0) \oplus f(1) \) using one call to \(f \). Measure the output.
- Let \(U_i, i = 1, 2 \) be unitaries mapping \(|0\rangle \) to \(|f(i)\rangle \).

```plaintext
new qbit x, y
x* = H
y* = N; H
if x then y* = U_0 else y* = U_1
x* = H
```
Example III: Quantum Fourier transform

for $i = 1$ to n do
 $q_i := H$

for $k = 2$ to $n - i + 1$ do
 if q_{k+i-1} then skip else $q_i := R_k$

Here R_k is the phase shift gate defined by $R_k = \Pi_0 + e^{i\theta} \Pi_1$ with $\theta = \frac{2\pi}{2^k}$.
Example III: Quantum Fourier transform

\[\text{for } i = 1 \text{ to } n \text{ do} \]
\[q_i \leftarrow H \]
\[\text{for } k = 2 \text{ to } n - i + 1 \text{ do} \]
\[\text{if } q_{k+i-1} \text{ then skip else } q_i \leftarrow R_k \]

Here R_k is the phase shift gate defined by $R_k = \Pi_0 + e^{i\theta} \Pi_1$ with $\theta = \frac{2\pi}{2^k}$.

- Simple and intuitive, but
Example III: Quantum Fourier transform

for $i = 1$ to n do
 $q_i \triangleright= H$
 for $k = 2$ to $n - i + 1$ do
 if q_{k+i-1} then skip else $q_i \triangleright= R_k$

Here R_k is the phase shift gate defined by $R_k = \Pi_0 + e^{i\theta}\Pi_1$ with $\theta = \frac{2\pi}{2^k}$.

- Simple and intuitive, but
- can we extend it to quantum operations that are not unitaries?
What is a Kraus form?

- A superoperator describes the most general physical transformation of a system.
What is a Kraus form?

- A superoperator describes the most general physical transformation of a system.
- According to Stinespring, every transformation can be regarded as a unitary acting on an enlarged space followed by a partial trace.
What is a Kraus form?

- A superoperator describes the most general physical transformation of a system.
- According to Stinespring, every transformation can be regarded as a unitary acting on an enlarged space followed by a partial trace.
- This extra space is the environment which interacts with the system.
What is a Kraus form?

- A superoperator describes the most general physical transformation of a system.
- According to Stinespring, every transformation can be regarded as a unitary acting on an enlarged space followed by a partial trace.
- This extra space is the environment which interacts with the system.
- A superoperator is always represented by a Kraus form, but this is not unique.
What is a Kraus form?

- A superoperator describes the most general physical transformation of a system.
- According to Stinespring, every transformation can be regarded as a unitary acting on an enlarged space followed by a partial trace.
- This extra space is the environment which interacts with the system.
- A superoperator is always represented by a Kraus form, but this is not unique.
- A particular Kraus form comes from a particular choice of basis of the environment, as we saw.
What is a Kraus form?

- A superoperator describes the most general physical transformation of a system.
- According to Stinespring, every transformation can be regarded as a unitary acting on an enlarged space followed by a partial trace.
- This extra space is the environment which interacts with the system.
- A superoperator is always represented by a Kraus form, but this is not unique.
- A particular Kraus form comes from a particular choice of basis of the environment, as we saw.
- A basis corresponds to a particular choice of measurement. Thus the particular Kraus representation is dictated by how the experimenter chooses to describe the environment.
Semantics in terms of Kraus forms

Our position: Do not try to give semantics in terms of superoperators, give the semantics in terms of the Kraus forms.
Semantics in terms of Kraus forms

- Our position: Do not try to give semantics in terms of superoperators, give the semantics in terms of the Kraus forms.
- Basic idea: we can form quantum alternation of the Kraus operators just as we did for unitaries; details on the next slide.
Semantics in terms of Kraus forms

- Our position: Do not try to give semantics in terms of superoperators, give the semantics in terms of the Kraus forms.
- Basic idea: we can form quantum alternation of the Kraus operators just as we did for unitaries; details on the next slide.
- Idea (Mingsheng Ying): Define quantum alternation by using all possible Kraus forms for a superoperator and define the meaning of quantum alternation to be the set of all possible combinations of quantum alternations of Kraus forms.
Semantics in terms of Kraus forms

- Our position: Do not try to give semantics in terms of superoperators, give the semantics in terms of the Kraus forms.
- Basic idea: we can form quantum alternation of the Kraus operators just as we did for unitaries; details on the next slide.
- Idea (Mingsheng Ying): Define quantum alternation by using all possible Kraus forms for a superoperator and define the meaning of quantum alternation to be the set of all possible combinations of quantum alternations of Kraus forms.
- Not compositional, already noted by M. Ying.
Semantics in terms of Kraus forms

- Our position: Do not try to give semantics in terms of superoperators, give the semantics in terms of the Kraus forms.
- Basic idea: we can form quantum alternation of the Kraus operators just as we did for unitaries; details on the next slide.
- Idea (Mingsheng Ying): Define quantum alternation by using *all possible* Kraus forms for a superoperator and define the meaning of quantum alternation to be the set of all possible combinations of quantum alternations of Kraus forms.
- Not compositional, already noted by M. Ying.
- Our claim: No compositional semantics in terms of superoperators is possible.
Semantics in terms of Kraus forms

- Our position: Do not try to give semantics in terms of superoperators, give the semantics in terms of the Kraus forms.
- Basic idea: we can form quantum alternation of the Kraus operators just as we did for unitaries; details on the next slide.
- Idea (Mingsheng Ying): Define quantum alternation by using all possible Kraus forms for a superoperator and define the meaning of quantum alternation to be the set of all possible combinations of quantum alternations of Kraus forms.
- Not compositional, already noted by M. Ying.
- Our claim: No compositional semantics in terms of superoperators is possible.
- We give compositional semantics but in terms of specific choices of Kraus operators, we do not try to give compositional superoperator semantics.
Given unitary operators U, V on \mathcal{H} and a qubit q (space Q) we define

$$|0\rangle\langle0| \otimes U + |1\rangle\langle1| \otimes V = \begin{pmatrix} U & 0 \\ 0 & V \end{pmatrix}$$

as the quantum alternation of U and V.
Alternation of Kraus forms

- Given superoperators \mathcal{E}, \mathcal{F} with Kraus forms

$$
\mathcal{E} \rho = \sum_{i=1}^{m} \mathcal{E}^* i \rho \mathcal{E}^i \\
\mathcal{F} \rho = \sum_{j=1}^{n} \mathcal{F}^* j \rho \mathcal{F}^j
$$

We define a family of operators $K_{i,j}$ by

$$
K_{i,j} = |0\rangle\langle 0| \otimes (1/\sqrt{m} \mathcal{E}^i 0 0 1/\sqrt{n} \mathcal{F}^j)
$$

This defines a superoperator $S(\rho) = \sum_{i,j} K^*_{i,j} \rho K_{i,j}$.
Given superoperators \mathcal{E}, \mathcal{F} with Kraus forms

$\mathcal{E} \rho = \sum_{i=1}^{m} E_i^* \rho E_i$ and $\mathcal{F} \rho = \sum_{j=1}^{n} F_j^* \rho F_j$,

This defines a superoperator $S(\rho) = \sum_{i,j} K_{i,j}^* \rho K_{i,j}$.

Panangaden (McGill University)
Alternation of Kraus forms

- Given superoperators E, F with Kraus forms

$$E \rho = \sum_{i=1}^{m} E_i^{*} \rho E_i \quad \text{and} \quad F \rho = \sum_{j=1}^{n} F_j^{*} \rho F_j,$$

- we define a family of operators $K_{i,j}$ by

$$K_{i,j} = |0 \otimes \frac{1}{\sqrt{n}} E_i \rangle + |1 \otimes \frac{1}{\sqrt{m}} F_j \rangle = \begin{pmatrix} \frac{1}{\sqrt{n}} E_i & 0 \\ 0 & \frac{1}{\sqrt{m}} F_j \end{pmatrix}.$$
Alternation of Kraus forms

- Given superoperators \mathcal{E}, \mathcal{F} with Kraus forms

 \[
 \mathcal{E}\rho = \sum_{i=1}^{m} E_i^* \rho E_i \quad \text{and} \quad \mathcal{F}\rho = \sum_{j=1}^{n} F_j^* \rho F_j,
 \]

- we define a family of operators $K_{i,j}$ by

 \[
 K_{i,j} = |0 \otimes \frac{1}{\sqrt{n}}E_i + 1 \otimes \frac{1}{\sqrt{m}}F_j\rangle = \begin{pmatrix}
 \frac{1}{\sqrt{n}}E_i & 0 \\
 0 & \frac{1}{\sqrt{m}}F_j
 \end{pmatrix}.
 \]

- This defines a superoperator

 \[
 S(\rho) = \sum_{i,j} K_{i,j}^* \rho K_{i,j}.
 \]
What Stinespring says

If one looks at the Stinespring dilation corresponding to the above construction we see that the ancilla spaces (environments) of the two Kraus forms are tensored together.
Kraus semantics

We think of a superoperator as being given by a specific Kraus form.
Kraus semantics

- We think of a superoperator as being given by a specific Kraus form.
- We write the composition of Kraus forms as $S \bullet T$ where S and T are specific Kraus forms for the superoperators.
Kraus semantics

- We think of a superoperator as being given by a specific Kraus form.
- We write the composition of Kraus forms as $S \circ T$ where S and T are specific Kraus forms for the superoperators.
- We interpret commands in the quantum programming language as specific Kraus forms. So we can think of a superoperator as a set of Kraus operators.
Kraus semantics

- We think of a superoperator as being given by a specific Kraus form.
- We write the composition of Kraus forms as $S \circ T$ where S and T are specific Kraus forms for the superoperators.
- We interpret commands in the quantum programming language as specific Kraus forms. So we can think of a superoperator as a set of Kraus operators.
- The meaning of a construct will be given by a set of Kraus operators.
Kraus semantics

- We think of a superoperator as being given by a specific Kraus form.
- We write the composition of Kraus forms as $S \circ T$ where S and T are specific Kraus forms for the superoperators.
- We interpret commands in the quantum programming language as specific Kraus forms. So we can think of a superoperator as a set of Kraus operators.
- The meaning of a construct will be given by a set of Kraus operators.
- Sequential composition

\[
[P; Q] = [Q] \circ [P] = \{E_i \circ F_j \mid E_i \in [P], F_j \in [Q]\}.
\]
Kraus semantics

- We think of a superoperator as being given by a specific Kraus form.
- We write the composition of Kraus forms as $S \bullet T$ where S and T are specific Kraus forms for the superoperators.
- We interpret commands in the quantum programming language as specific Kraus forms. So we can think of a superoperator as a set of Kraus operators.
- The meaning of a construct will be given by a set of Kraus operators.
- Sequential composition

\[
[P; Q] = [Q] \circ [P] = \{E_i \circ F_j \mid E_i \in [P], F_j \in [Q]\}.
\]

- Applying a unitary

\[
[\star = U] = \{U\}.
\]
More semantics

- Measure q, this has type $\tau \rightarrow \tau \oplus \tau$

 \[
 \llbracket \text{measure } q \rrbracket = \{ \text{in}_0 \circ \Pi_0, \text{in}_1 \circ \Pi_1 \}.\]
Measure q, this has type $\tau \rightarrow \tau \oplus \tau$

$$\llbracket \text{measure } q \rrbracket = \{\text{in}_0 \circ \Pi_0, \text{in}_1 \circ \Pi_1\}.$$

Quantum alternation $\llbracket \text{if } q \text{ then } P \text{ else } Q \rrbracket = \llbracket P \rrbracket \bullet \llbracket Q \rrbracket.$
More semantics

- Measure q, this has type $\tau \rightarrow \tau \oplus \tau$

 $\llbracket\text{measure } q\rrbracket = \{\text{in}_0 \circ \Pi_0, \text{in}_1 \circ \Pi_1\}$.

- Quantum alternation $\llbracket\text{if } q \text{ then } P \text{ else } Q\rrbracket = \llbracket P\rrbracket \bullet \llbracket Q\rrbracket$.

- We do not give semantics for loops and conditionals.
Quantum alternation cannot be compositional

- More precisely: If the semantics is based on superoperators it cannot be compositional.

Consider $P \equiv e^{i\theta}I$ and I, as superoperators these are identical. But if q then I else P is definitely not the same as if q then I else I; the latter is clearly the same as I and the first is the controlled-phase gate.

This example arose from discussions with Mingsheng Ying and Yuan Feng at UTS Sydney based on an example due to Nengkun Yu.

One can think of quantum alternation as an algorithmic notation, it is not clear what it means physically.
Quantum alternation cannot be compositional

- More precisely: If the semantics is based on superoperators it cannot be compositional.
- Consider $P = e^{i\theta}I$ and I, as superoperators these are identical.

This example arose from discussions with Mingsheng Ying and Yuan Feng at UTS Sydney based on an example due to Nengkun Yu.
Quantum alternation cannot be compositional

- More precisely: If the semantics is based on superoperators it cannot be compositional.
- Consider $P = e^{i\theta}I$ and I, as superoperators these are identical.
- But if q then I else P is definitely not the same as if q then I else I; the latter is clearly the same as I and the first is the controlled-phase gate.
Quantum alternation cannot be compositional

- More precisely: If the semantics is based on superoperators it cannot be compositional.
- Consider $P \equiv e^{i\theta}I$ and I, as superoperators these are identical.
- But if q then I else P is definitely not the same as if q then I else I; the latter is clearly the same as I and the first is the controlled-phase gate.
- This example arose from discussions with Mingsheng Ying and Yuan Feng at UTS Sydney based on an example due to Nengkun Yu.
Quantum alternation cannot be compositional

- More precisely: If the semantics is based on superoperators it cannot be compositional.
- Consider $P \equiv e^{i\theta}I$ and I, as superoperators these are identical.
- But if q then I else P is definitely not the same as if q then I else I; the latter is clearly the same as I and the first is the controlled-phase gate.
- This example arose from discussions with Mingsheng Ying and Yuan Feng at UTS Sydney based on an example due to Nengkun Yu.
- One can think of quantum alternation as an algorithmic notation, it is not clear what it means *physically*.
Non-monotonicity

Theorem
Quantum control even with just unitary operators, is not monotone with respect to the Löwner order.
Non-monotonicity

Theorem

Quantum control even with just unitary operators, is not monotone with respect to the Löwner order.
Quantum control even with just unitary operators, is not monotone with respect to the Löwner order.

Let U, V be one-qubit unitaries and $\lambda, \mu \in [0, 1]$.
Non-monotonicity

Theorem

Quantum control even with just unitary operators, is not monotone with respect to the Löwner order.

- Let U, V be one-qubit unitaries and $\lambda, \mu \in [0, 1]$.
- Let $S(\rho) = U\rho U^\dagger$, $T(\rho) = V\rho V^\dagger$ be associated superoperators.
Quantum control: semantics

Non-monotonicity

Theorem

Quantum control even with just unitary operators, is not monotone with respect to the Löwner order.

- Let U, V be one-qubit unitaries and $\lambda, \mu \in [0, 1]$.
- Let $S(\rho) = U\rho U^\dagger$, $T(\rho) = V\rho V^\dagger$ be associated superoperators.
- We have $\lambda^2 S \leq S$ and $\mu^2 T \leq T$ in the Löwner order.
Non-monotonicity

Theorem

Quantum control even with just unitary operators, is not monotone with respect to the Löwner order.

- Let U, V be one-qubit unitaries and $\lambda, \mu \in [0, 1]$.
- Let $S(\rho) = U\rho U^\dagger$, $T(\rho) = V\rho V^\dagger$ be associated superoperators.
- We have $\lambda^2 S \leq S$ and $\mu^2 T \leq T$ in the Löwner order.
- Define $R(\sigma) = W\sigma W^\dagger$ where

$$W = \begin{pmatrix} U & 0 \\ 0 & V \end{pmatrix}$$
Non-monotonicity

Theorem

Quantum control even with just unitary operators, is not monotone with respect to the Löwner order.

- Let U, V be one-qubit unitaries and $\lambda, \mu \in [0, 1]$.
- Let $S(\rho) = U\rho U^\dagger$, $T(\rho) = V\rho V^\dagger$ be associated superoperators.
- We have $\lambda^2 S \preceq S$ and $\mu^2 T \preceq T$ in the Löwner order.
- Define $R(\sigma) = W\sigma W^\dagger$ where
 \[
 W = \begin{pmatrix} U & 0 \\ 0 & V \end{pmatrix}
 \]
- Define $R'(\sigma) = W'\sigma W'^\dagger$ where
 \[
 W = \begin{pmatrix} \lambda U & 0 \\ 0 & \mu V \end{pmatrix}
 \]
Non-monotonicity

Theorem
Quantum control even with just unitary operators, is not monotone with respect to the Löwner order.

- Let U, V be one-qubit unitaries and $\lambda, \mu \in [0, 1]$.
- Let $S(\rho) = U\rho U^\dagger$, $T(\rho) = V\rho V^\dagger$ be associated superoperators.
- We have $\lambda^2 S \preceq S$ and $\mu^2 T \preceq T$ in the Löwner order.
- Define $R(\sigma) = W\sigma W^\dagger$ where
 \[
 W = \begin{pmatrix}
 U & 0 \\
 0 & V
 \end{pmatrix}
 \]

- Define $R'(\sigma) = W'\sigma W'^\dagger$ where
 \[
 W = \begin{pmatrix}
 \lambda U & 0 \\
 0 & \mu V
 \end{pmatrix}
 \]

- By explicit calculation we can show that $R' \not\preceq R$.
Is there any way to choose a canonical Kraus form?

Yes, mathematically there is, but does it mean anything physically?

There is an operator-algebra version of the Radon-Nikodym theorem due to Belavkin and Arveson (BARN).

One can show that every CP map is uniformly dominated by the tracial map from \mathcal{M}_n to \mathcal{M}_k:

$$\text{trmap}(C) = \frac{1}{n} \text{tr}(C) I_k.$$

The BARN then gives a Kraus decomposition.

One can give a denotational semantics based on these "canonical" Kraus forms but there is little reason to think that this has physical significance.
Canonica Kraus form?

- Is there any way to choose a canonical Kraus form?
- Yes, mathematically there is, but does it mean anything physically?
Is there any way to choose a canonical Kraus form?
Yes, mathematically there is, but does it mean anything physically?
There is an operator-algebra version of the Radon-Nikodym theorem due to Belavkin and Arveson (BARN).
Is there any way to choose a canonical Kraus form?
Yes, mathematically there is, but does it mean anything physically?
There is an operator-algebra version of the Radon-Nikodym theorem due to Belavkin and Arveson (BARN).

One can show that every CP map is uniformly dominated by the tracial map from M_n to M_k: $\text{trmap}(C) = \frac{1}{n} \text{tr}(C)I_k$.

Canonical Kraus form?
Is there any way to choose a canonical Kraus form? Yes, mathematically there is, but does it mean anything physically? There is an operator-algebra version of the Radon-Nikodym theorem due to Belavkin and Arveson (BARN). One can show that every CP map is uniformly dominated by the tracial map from M_n to M_k: $\text{trmap}(C) = \frac{1}{n} \text{tr}(C)I_k$. The BARN then gives a Kraus decomposition.
Is there any way to choose a canonical Kraus form?

Yes, mathematically there is, but does it mean anything physically?

There is an operator-algebra version of the Radon-Nikodym theorem due to Belavkin and Arveson (BARN).

One can show that every CP map is uniformly dominated by the tracial map from M_n to M_k: $\text{trmap}(C) = \frac{1}{n} \text{tr}(C)I_k$.

The BARN then gives a Kraus decomposition.

One can give a denotational semantics based on these “canonical” Kraus forms but there is little reason to think that this has physical significance.
Grattage-Altenkirch 2005

- Defined a language and type system for quantum alternation.
Grattage-Altenkirch 2005

- Defined a language and type system for quantum alternation.
- They used a notion of “orthogonality” and only allow orthogonal terms to be put in quantum alternation.
Grattage-Altenkirch 2005

- Defined a language and type system for quantum alternation.
- They used a notion of “orthogonality” and only allow orthogonal terms to be put in quantum alternation.
- However, they did not give complete rules. For example, one cannot nest quantum conditionals.
Ying-Yu-Feng 2014

- Inspired by quantum random walks.
Ying-Yu-Feng 2014

- Inspired by quantum random walks.
- Defined a superoperator semantics and noted lack of compositionality.
Ying-Yu-Feng 2014

- Inspired by quantum random walks.
- Defined a superoperator semantics and noted lack of compositionality.
- Implicit in their superoperator semantics is our Kraus semantics.
Ying-Yu-Feng 2014

- Inspired by quantum random walks.
- Defined a superoperator semantics and noted lack of compositionality.
- Implicit in their superoperator semantics is our Kraus semantics.
- Perhaps one should view the superoperator semantics as an *abstract interpretation* of the Kraus semantics.
Ying-Yu-Feng 2014

- Inspired by quantum random walks.
- Defined a superoperator semantics and noted lack of compositionality.
- Implicit in their superoperator semantics is our Kraus semantics.
- Perhaps one should view the superoperator semantics as an *abstract interpretation* of the Kraus semantics.
- Did not note non-monotonicity but had a different approach to recursion based on Fock space [Ying 2015].
Quantum alternation is troublesome: non-compositional and non-monotone.
Quantum alternation is troublesome: non-compositional and non-monotone.

Is it a sensible thing to even consider? It came from programming languages without thinking about physics.
Quantum alternation is troublesome: non-compositional and non-monotone.

Is it a sensible thing to even consider? It came from programming languages without thinking about physics.

One should look at real physical situations, e.g. Mach-Zehnder interferometers and extract a notion of quantum alternation. Hines-Scott develop a notion of conditional iteration along these lines.
Quantum alternation is troublesome: non-compositional and non-monotone.

Is it a sensible thing to even consider? It came from programming languages without thinking about physics.

One should look at real physical situations, e.g. Mach-Zehnder interferometers and extract a notion of quantum alternation. Hines-Scott develop a notion of conditional iteration along these lines.

Perhaps quantum alternation and recursion is not allowed in nature!
Thank you!