Equational reasoning for probabilistic programming
Part I: (a) Basic equational logic (b) Metrics

Prakash Panangaden

School of Computer Science
McGill University

Probabilistic Programming Languages 29th May - 2nd June 2017
Basic ideas

- Equations are at the heart of mathematical reasoning.
- Reasoning about programs is also based on program equivalences.
- A trinity of ideas: Equationally given algebras, Lawvere theories, Monads on Set
- The dawning of the age of quantitative reasoning.
- We want quantitative analogues of algebraic reasoning.
- (Pseudo)metrics instead of equivalence relations.
- Equality indexed by a real number $=_{\epsilon}$.
- Monads on Met.
- Enriched Lawvere theories?
Outline

- Summary of equational logic
- Monads
- Monads and computation
- Metrics for probabilistic systems
Finitary equational theories

- **Signature** \(\Omega = \{ (Op_i, n_i) | i = 1 \ldots k \} \)
- **Terms** \(t ::= x | Op(t_1, \ldots, t_n) \)
- **Equations** \(s = t \)
- **Axioms, sets of equations** \(Ax \)
- **Deduction** \(Ax \vdash s = t \)
- **Usual rules for deduction**: equivalence relation, congruence, ...
- **Theories**: set of equations closed under deduction.
Equational deduction rules

- Axiom: $Ax \vdash s = t$ if $s = t \in Ax$

- Equivalence

 $Ax \vdash t = t$

 $Ax \vdash s = t, Ax \vdash t = u$

 $Ax \vdash s = u$

 $Ax \vdash s = t$

 $Ax \vdash t = s$

- Congruence

 $Ax \vdash t_1 = s_1, \ldots, Ax \vdash t_n = s_n$

 $Ax \vdash Op(t_1, \ldots, t_n) = Op(s_1, \ldots, s_n)$

- Substitution

 $Ax \vdash t = s$

 $Ax \vdash t[u/x] = s[u/x]$
We assume that there is one set of “basic things” – one-sorted algebras.

Fix a set Ω of operations, each with a fixed arity $n \in \mathbb{N}$. These include constants as arity zero “operations.” Such an Ω is called a signature.

Everything has finite arity.

As Ω-algebra \mathcal{A} is a set A to interpret the basic sort and, for each operation f of arity n a function $f_\mathcal{A} : A^n \to A$.
Can define homomorphisms and subalgebras easily.

What about equations that are required to hold?

Given a set X we define the *term algebra generated by X*, TX

The elements of X are in TX.

If t_1, \ldots, t_n are in TX and f has arity n then $f(t_1, \ldots, t_n)$ is in TX.
Want to write things like $\forall x, y, z; f(x, f(y, z)) = f(f(x, y), z)$.

X, set of variables.

Let s, t be terms in TX, we say the equation $s = t$ holds in an Ω-algebra A if for every homomorphism $h : TX \to A$ we have $h(s) = h(t)$ where, in the latter, $=$ means identity.

Let S be a set of equations between pairs of terms in TX. We define a congruence relation \sim_S on TX in the evident way.
Easy to check that if \(t_1 \sim_S s_1, \ldots, t_n \sim_S s_n \) then
\[f(t_1, \ldots, t_n) \sim_S f(s_1, \ldots, s_n) \]
we can define \(f \sim_S \) on \(TX/\sim_S \).

Let \([t]\) be an equivalence class of \(\sim_S \); \(f \sim_S ([t_1], \ldots, [t_n]) \) is well defined by \([f(t_1, \ldots, t_n)]\).

A class of \(\Omega \)-algebras satisfying a set of equations is called a
variety of algebras (not the same as an algebraic variety!).

When are a set of equations bad? If we can derive \(x = y \) from \(S \)
then the only algebras have one element.
Monoids, groups, rings, lattices, boolean algebras are all examples.

Vector spaces have two sorts.

Fields are annoying because we have to say $x \neq 0$ implies x^{-1} exists. Fields do not form an equational variety.

Sometimes we need to state conditional equations; these are called Horn clauses. Example: cancellative monoids, $x \cdot y = x \cdot z \vdash y = z$.

Stacks are equationally definable but queues are not.
Example: barycentric algebras (Stone 1949)

- **Signature:**
 \[\{ +\epsilon | \epsilon \in [0, 1] \} \]

- **Axioms:**
 \[(B_1) \vdash t +_1 t' = t\]
 \[(B_2) \vdash t +_\epsilon t = t\]
 \[(SC) \vdash t +_\epsilon t' = t' +_1 -\epsilon t\]
 \[(SA) \vdash (t +_\epsilon t') +_\epsilon' t'' = t +_\epsilon\epsilon' (t' + \frac{\epsilon' - \epsilon\epsilon'}{1 - \epsilon\epsilon'} t'')\]
Universal properties

Let $\mathbb{K}(\Omega, S)$ be the collection of algebras satisfying the equations in S. $\mathbb{K}(\Omega, S)$ becomes a category if we take the morphisms to be Ω-homomorphisms.

Let X be a set of generators. We write $T[X]$ for TX / \sim_S. There is a map $\eta_X : X \to T[X]$ given by $\eta_X(x) = [x]$.

Universal property.

\[
\begin{array}{ccc}
Set & \xrightarrow{\eta_X} & \mathbb{K}(\Omega, S) \\
X & \xrightarrow{\alpha} & T[X] \\
& \xrightarrow{h} & T[X] \\
& \xrightarrow{\eta_X} & \mathbb{K}(\Omega, S) \\
& \xrightarrow{h} & \mathbb{K}(\Omega, S) \\
& \xrightarrow{\eta_X} & \mathbb{K}(\Omega, S) \\
A & \xrightarrow{h} & A
\end{array}
\]
Variety theorem

Birkhoff

A collection of algebras is a variety of algebras if and only if it is closed under homomorphic images, subalgebras and products.

There are analogous results for algebras defined by Horn clauses: quasivariety theorems.

Example

Consider $\mathbb{Z}_2 \times \mathbb{Z}_2$. It’s not a field because, e.g. $(1, 0) \times (0, 1) = (0, 0)$. Hence fields cannot be described by equations!
Monads

- Capturing universal algebra categorically.
- Data: (i) Endofunctor $T : C \rightarrow C$, (ii) $\eta : I \rightarrow T$ natural, and (iii) $\mu : T^2 \rightarrow T$ also natural.
- Some diagrams are required to commute.

\[
\begin{align*}
T^3A & \xrightarrow{\muTA} T^2A \\
T \mu_A & \downarrow \\
T^2A & \xrightarrow{\mu_A} TA
\end{align*}
\]

\[
\begin{align*}
TA & \xrightarrow{\eta_TA} T^2A \xleftarrow{T\eta_A} TA \\
\mu_A & \\
TA & \xrightarrow{T\eta_A} TA
\end{align*}
\]

- Examples: powerset, “free” constructions e.g. monoid, group, the Giry monad.
The Kleisli construction

- From a monad $T : C \rightarrow C$ make a new category: the Kleisli category C_T.
- Objects, the same as those of C.
- Morphisms $f : A \rightarrow B$ in C_T are $f : A \rightarrow TB$ in C.
- Composition? $f : A \rightarrow TB$ and $g : B \rightarrow TC$ don’t match.
 - $f : A \rightarrow TB$ and $Tg : TB \rightarrow T^2C$ to match but we are in T^2C.
 - Compose with $\mu_C : T^2C \rightarrow TC$ to get $A \rightarrow TC$.
- The Kleisli category of the powerset monad is the category of sets and relations.
Mes: objects are sets equipped with a σ-algebra (X, Σ), morphisms $f : (X, \Sigma) \rightarrow (Y, \Lambda)$ are functions $f : X \rightarrow Y$ such that $\forall B \in \Lambda, f^{-1}(B) \in \Sigma$.

$G : \text{Mes} \rightarrow \text{Mes}$, $G(X, \Sigma) = \{p | p \text{ is a probability measure on } \Sigma\}$.

For each $A \in \Sigma$, define $e_A : G(X) \rightarrow [0, 1]$ by $e_A(p) = p(A)$. Equip $G(X)$ with the smallest σ-algebra making all the e_A measurable.

$f : X \rightarrow Y$, $G(f) : G(X) \rightarrow G(Y)$ given by $G(f)(p)(B \in \Lambda) = p(f^{-1}(B))$.
\(\eta_X : X \to \mathcal{G}(X) \) given by \(\eta_X(x) = \delta_x \), where \(\delta_x(A) = 1 \) if \(x \in A \) and 0 if \(x \notin A \).

\(\mu_X(Q \in \mathcal{G}^2(X))(A) = \int e_A \, dQ \). Averaging over \(\mathcal{G} \) using \(Q \).

Probabilistic analogue of the powerset.
The Kleisli category of \mathcal{G}

- Objects: Same as Mes, morphisms from X to Y are measurable functions from X to $\mathcal{G}(Y)$.

- Compose: $h : X \to \mathcal{G}(Y)$, $k : Y \to \mathcal{G}(Z)$ by the formula:

 $$(k\tilde{\circ} h) = (\mu_Z) \circ (\mathcal{G}(k)) \circ h$$

 where $\tilde{\circ}$ is the Kleisli composition and \circ is composition in Mes.

- Curry the definition of morphism: $h : X \times \Sigma_Y \to [0, 1]$. Markov kernels. We call this category Ker. Probabilistic relations.

- Composition in terms of kernels:

 $$(k\tilde{\circ} h)(x, C \subset Z) = \int k(y, C)h(x, \cdot).$$

 Relational composition, matrix multiplication.
The Eilenberg-Moore category

- From T we can construct a category of algebras: objects $a : TA \rightarrow A$
- and morphisms $f : A \rightarrow B$ such that

$$
\begin{array}{ccc}
TA & \xrightarrow{a} & A \\
\downarrow Tf & & \downarrow f \\
TB & \xrightarrow{b} & B
\end{array}
$$

commute.

- Many categories of algebras (monoids, groups, rings, lattices) can be reconstructed this way.
- The Kleisli category = the category of “free” algebras.
- We get a monad on Set from $X \mapsto T[X]$. The Eilenberg-Moore category for this monad is isomorphic to $K(\Omega, S)$.
- Algebras for a monad \Leftrightarrow Algebras given by equations and operations.
Pseudometrics

- Quantitative analogue of an equivalence relation.
- Space M, (pseudo)metric $d : M \times M \rightarrow \mathbb{R}^{\geq 0}$
- $d(x, x) = 0$, $d(x, y) = d(y, x)$ and $d(x, z) \leq d(x, y) + d(y, z)$.
- If $d(x, y) = 0$ implies $x = y$ we say d is a **metric**.
- We can define usual notions of convergence, completeness, topology, continuity etc.
- Maps: $f(X, d) \rightarrow (Y, d')$ are **nonexpansive** $d'(f(x), f(y)) \leq d(x, y)$; automatically continuous
- We define **Met**: objects metric spaces, morphisms are nonexpansive functions.
- Quantitative equations give monads on **Met**.
Let p, q be probability distributions on (X, d, Σ).

- **Total variation** $tv(p, q) = \sup_{E \in \Sigma} |p(E) - q(E)|$.

- **Kantorovich** $\kappa(p, q) = \sup_f \left| \int f \, dp - \int f \, dq \right|$ where f is nonexpansive.

- A **coupling** π between p, q is a distribution on $X \times X$ such that the marginals of π are p, q. Write $C(p, q)$ for the space of couplings.

- **Kantorovich** $\kappa(p, q) = \inf_{C(p,q)} \int_{X \times X} d(x, y) \, d\pi(x, y)$.

 Kantorovich-Rubinshtein duality.

- **Wasserstein** $W^{(l)}(p, q) = \inf_{C(p,q)} \left[\int_{X \times X} d(x, y)^l \, d\pi(x, y) \right]^{1/l}$. $l = 1$ gives Kantorovich.

- $W^{(l)}(\delta_x, \delta_y) = d(x, y)$.
Markov processes

- Basic operational semantics for probabilistic programming languages.
- \((S, \Sigma, \mathcal{A}, \forall a \in \mathcal{A} \tau_a : X \times \Sigma \rightarrow [0, 1])\).
- \(\tau_a\) are Markov kernels.
Let R be an equivalence relation. R is a bisimulation if: $s R t$ if $(\forall a)$:

$$\tau_a(s, C) = \tau_a(t, C)$$

where C is a measurable union of R-equivalence classes.

We say R is a bisimulation relation.

s, t are bisimilar if there is a bisimulation relating them.

There is a maximum bisimulation relation.
A metric-based approximate viewpoint

- Move from equality between processes to distances between processes (Jou and Smolka 1990).
- There is a logical characterization of bisimulation.
- If two states are not bisimilar then some formula distinguishes them.
- If the *smallest* formula separating two states is “big” the states are “close.”
- We can define a pseudometric such that distance is zero iff the states are bisimilar.
Metric “bisimulation”

- d is a metric-bisimulation if: $d(s, t) < \epsilon \Rightarrow$

 \[\kappa(\tau(s, \cdot), \tau(t, \cdot)) < \epsilon \]

- The required canonical metric on processes is the least such: ie. the distances are the least possible.

- Thm: *Canonical least metric exists.*

- Uses basic fixed-point theory on the complete lattice of pseudometrics.
Real-valued modal logic I

- Develop a real-valued “modal logic” based on the analogy:

<table>
<thead>
<tr>
<th>Kozen’s analogy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Logic</td>
</tr>
<tr>
<td>State s</td>
</tr>
<tr>
<td>Formula ϕ</td>
</tr>
<tr>
<td>Satisfaction $s \models \phi$</td>
</tr>
</tbody>
</table>

- Define a metric based on how closely the random variables agree.
- Thm: d coincides with the fixed-point definition of metric-bisimulation.