
Conformal Field Theory 
as a Nuclear Functor

Prakash Panangaden
with

Richard Blute and Dorette Pronk

1



Overview

2



Overview

Compact-closed categories occur in “nature.”

2



Overview

Compact-closed categories occur in “nature.”

Some things are not quite categories,

2



Overview

Compact-closed categories occur in “nature.”

Some things are not quite categories,

but if they were, they would be compact 
closed: nuclear ideals.

2



Overview

Compact-closed categories occur in “nature.”

Some things are not quite categories,

but if they were, they would be compact 
closed: nuclear ideals.

Conformal field theory is an example of a 
nuclear functor.
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Why compact closure 
matters

Many mathematical objects have a notion
of “dual” object, e.g. vector spaces.
There is a notion of “matrix” representation.
If we can freely move between “input”
and “output” we have interesting “transpose”
operations.
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Typical examples: Rel, the category of sets
and relations, FDVect(C), the category
of finite-dimensional vector spaces over the
complex numbers.

Relations can be turned around at will;
we can decide what is “input” and “output.”
Abramsky exploited this in his theory of SProc,
relations extended in time.
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Relations

∃x R(x, y;x, z)
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Relations

We can view a relation as a matrix

Given a relation R(x,y;z,w) we can transpose 
at will: R(x;y,z,w) or R(x,y,z,w;) or R(x,y,z;w).

∃x R(x, y;x, z)
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Relations

We can view a relation as a matrix

Given a relation R(x,y;z,w) we can transpose 
at will: R(x;y,z,w) or R(x,y,z,w;) or R(x,y,z;w).

We can take “traces”:  R(x,y;w,z) becomes

∃x R(x, y;x, z)
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Vectors and Matrices

We can certainly view linear maps as 
(higher-order) matrices.

We can transpose at will: from 

to 
λ : V ⊗W ∗ → X

λt : V →W ⊗X
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becomes

We can take traces

λ : U ⊗ V → U ⊗W

trU (λ) : V →W
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But there are other 
examples as well.
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1

The category of Cobordisms. Objects are
circles (1D compact manifolds), morphisms
are 2 manifolds with boundary.
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i.e it is strong symmetric monoidal, commutes with ( )∗ and ( )†, and takes nuclear maps to
nuclear maps.

3.4 Examples

• The category Rel of sets and relations is a tensored ∗-category for which the entire category
forms a nuclear ideal.

• The category of Hilbert spaces and bounded linear maps maps is a well-known tensored ∗-
category, which, in fact, led to the axiomatization [10]. Then the Hilbert-Schmidt maps form a
nuclear ideal [2]

• The category DRel of tame distributions on Euclidean space [2] is a tensored ∗-category. The
ideal of test functions (viewed as distributions) is a nuclear ideal.

• We will define a subcategory of Rel called the category of locally finite relations. Let R:A → B
be a binary relation and a ∈ A. Then Ra = {b ∈ B|aRb}. Define Rb similarly for b ∈ B. Then
we say that a relation is locally finite if, for all a ∈ A, b ∈ B, Ra, Rb are finite sets.Then it is
straightforward to verify that we have a tensored ∗-category which is no longer compact closed.
It is also easy to verify that the finite relations form a nuclear ideal.

4 Topological and conformal field theory, functorially

In this section, we give a slightly informal, pictorial description of the geometric category that is
the basis of the functorial approach to field theory. We begin with the two-dimensional topological
case. Objects of the geometric category 2Cob are finite families of circles. A morphism is an
equivalence class of 2-manifolds with boundary. Such an equivalence class is called a cobordism,
and a precise definition can be found in [28] for example. Composition is obtained by gluing along
boundaries. Identities are families of cylinders. It is a property of the cobordism equivalence that
gluing a cylinder along a boundary preserves equivalence classes. More details can be found for
example in [7]. In this paper, we prefer to just exhibit the structure pictorially, as in Figure 1,
which exhibits a morphism from two circles to one. Figure 2 is a composite of two morphisms, the

Fig. 1. A sample cobordism

second morphism being a morphism from one circle to two.

The category 2Cob is symmetric monoidal, indeed it is compact closed. Then a 2-dimensional
topological quantum field theory is a symmetric monoidal functor from 2Cob to the category of
finite-dimensional Hilbert spaces. (We note that a functor between compact closed categories that
preserves the symmetric monoidal structure automatically preserves the compact closed structure.)

Segal’s notion of conformal field theory begins by replacing smooth manifolds with Riemann
surfaces with boundary. Equivalence is then an appropriate notion of conformal equivalence. He
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Composition

Fig. 2. A composite of two cobordisms

then allows the field theory functor to take as values infinite-dimensional Hilbert spaces. He further
requires the image of a morphism under the field theory functor to be trace class.

This is an extremely interesting idea with many important consequences. In particular, it
provides the basis for the elliptic cohomology of Hu and Kriz [20]. However, the resulting geometric
structure lacks identities as conformal equivalence does not allow for the attaching of cylinders.

We argue in this paper that if topological quantum field theory is at the categorical level
fundamentally about compact closed categories, then conformal field theory is about nuclear ideals.
Furthermore, given a symmetric monoidal dagger category with conjugation containing a nuclear
ideal, one can reasonably define morphisms not in the ideal to be singular. This definition captures
for example the singularity of the Dirac delta as well as the failure of the identity on an infinite-
dimensional Hilbert space to have a trace. In the present context, it is saying that the circle, which
is what would act as identity in Segal’s structure, is a singular morphism. This is very much in line
with the idea that the circle is a singular point in the corresponding moduli space.

5 Segal’s definition of conformal field theory

Segal’s definition of Conformal Field Theory [31,32] actually predates TQFT, and in part inspired
Atiyah’s axioms. We begin by roughly describing the idea and then present an alternative formu-
lation due to Neretin [29].

Define a precategory to be a category, except for the requirement of the existence of identities.
Then define a precategory whose objects are of the form Cn, where n is a natural number and Cn is
a family of n parametrized circles. A morphism Cn → Cm is a Riemann surface X, with boundary
∂X and an identification:

∂X ∼= C
∗
n

∐

Cm

Here C∗
n refers to Cn, but with the parametrizations of the circles reversed. Let Cnm denote the

moduli space of all morphisms Cn → Cm. Composition is defined as in the cobordism category, and
the result is a monoidal precategory, with monoidal structure also as in the cobordism category.
Segal calls this precategory simply C. A conformal field theory is then defined to be a tensor
preserving functor to the category of Hilbert spaces such that each Hilbert morphism in the image
of the functor is trace class. (Segal actually defines a CFT as a continuous, projective functor from
C into the category of topological vector spaces. The values of a projective functor can be thought
of as depending on the Riemann surface together with a chosen metric which is compatible with
the conformal structure. For the purpose of this paper, we will not take projectivity or continuity

We can deform at will.  Thus, we are really looking 
at manifolds up to homotopy equivalence.  A 

cylinder is the identity.
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We can transpose!

1

12



We can take traces!

1
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Closed Structure

A symmetric monoidal category is closed or autonomous
if, for all objects A and B,
there is an object A ! B and an adjointness relation:

Hom(A⊗B,C) ∼= Hom(B,A ! C)
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Compact Closure

A compact closed category is a symmetric monoidal category such that
for each object A there exists a dual object A∗,
and canonical morphisms:

ν : I → A⊗A∗

ψ : A∗ ⊗A→ I

such that the usual adjunction equations hold.

Examples: Rel, FDVect, FDHilb, Cob, SProc,...
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Dagger Structure
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Dagger Structure

We often have a combination of transpose 
and complex conjugation: complex Hilbert 
spaces.
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Dagger Structure

We often have a combination of transpose 
and complex conjugation: complex Hilbert 
spaces.

Conjugation and transpose can be combined 
to give adjoints.

Sometimes, the conjugation is trivial (Rel) 
but in QM it is absolutely vital.
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Dagger Compact 
Categories

Abramsky and Coecke [LICS 2004] introduced 
strongly compact closed categories to give a 
categorical axiomatization of QM.

Selinger [2004] showed how to extend 
everything to mixed states and axiomatized 
adjointness as a “dagger” functor.
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Dagger Categories
Hilb will denote the category of Hilbert spaces and bounded linear maps. The adjoint construc-

tion endows Hilb with a contravariant involutive functor which is the identity on objects. With
this functor, Hilb becomes a symmetric monoidal dagger category. A suitable reference for basic
Hilbert space theory is [23]. In the following, we use the terminology of Selinger in [33].

Definition 3.3 A category C is a dagger category if it is equipped with a functor (−)†: Cop → C,
which is strictly involutive and the identity on objects. In such a category, a morphism f is unitary
if it is an isomorphism and f−1 = f †. An endomorphism is hermitian if f = f †. A symmetric
monoidal dagger category is one in which all of the structural morphisms in the definition of
symmetric monoidal category [25] are unitary and dagger commutes with the tensor product.

We will require further structure not necessary in [5,33]; those authors were considering compact
closed dagger categories. In a compact closed category, the duality operation A #→ A∗ can be
assumed to exist only for objects. Then, one proves that it extends to a contravariant functor. We
also note that, for our examples, the duality decomposes into a covariant functor and a contravariant
identity-on-objects functor (the already defined dagger). With this in mind, we define:

Definition 3.4 A symmetric monoidal dagger category C is said to have conjugation if equipped
with a covariant functor ( )∗: C → C (called conjugation) which is strictly involutive and commutes
with both the symmetric monoidal structure and the dagger operation. Since we have a covariant
functor, we denote its action on arrows as follows:

f :A → B #−→ f∗:A
∗ → B∗

This is in line with the notation of [33].

So in particular, our ∗-functor satisfies

(f∗)
† = (f †)∗:B

∗ → A∗

3.2 Hilbert-Schmidt maps

While the tensor in Hilb does not have an adjoint, the category Hilb does contain a large class of
morphisms which have something like an adjointness structure with respect to the tensor. These
are the Hilbert-Schmidt maps. The material in this section can be found in [23].

Definition 3.5 If f :H → K is a bounded linear map, we call f a Hilbert-Schmidt map if the sum
∑

i∈I

||f(ei)||
2

is finite for an orthonormal basis {ei}i∈I . The sum is independent of the basis chosen.

One can easily verify that the Hilbert-Schmidt operators on a space form a 2-sided ideal in the
set of all bounded linear operators. Furthermore, if HSO(H,K) denotes the set of Hilbert-Schmidt
maps from H to K, then HSO(H,K) is a Hilbert space, when endowed with an appropriate norm.

We now discuss the adjointness properties that Hilbert-Schmidt maps satisfy:

Theorem 3.6 Define a linear mapping U :H∗ ⊗K → HSO(H,K) by U(x ⊗ y)(u) = 〈x, u〉y, where
x ⊗ y ∈ H∗ ⊗ K. Then U is a unitary transformation of H∗ ⊗ K onto HSO(H,K). In particular,
we note that the morphism U is a linear bijection.

Expressed more categorically, there is a bijective correspondence:

HSO(H,K) ∼= Hom(I,H∗ ⊗K)

Hilb will denote the category of Hilbert spaces and bounded linear maps. The adjoint construc-
tion endows Hilb with a contravariant involutive functor which is the identity on objects. With
this functor, Hilb becomes a symmetric monoidal dagger category. A suitable reference for basic
Hilbert space theory is [23]. In the following, we use the terminology of Selinger in [33].

Definition 3.3 A category C is a dagger category if it is equipped with a functor (−)†: Cop → C,
which is strictly involutive and the identity on objects. In such a category, a morphism f is unitary
if it is an isomorphism and f−1 = f †. An endomorphism is hermitian if f = f †. A symmetric
monoidal dagger category is one in which all of the structural morphisms in the definition of
symmetric monoidal category [25] are unitary and dagger commutes with the tensor product.

We will require further structure not necessary in [5,33]; those authors were considering compact
closed dagger categories. In a compact closed category, the duality operation A #→ A∗ can be
assumed to exist only for objects. Then, one proves that it extends to a contravariant functor. We
also note that, for our examples, the duality decomposes into a covariant functor and a contravariant
identity-on-objects functor (the already defined dagger). With this in mind, we define:

Definition 3.4 A symmetric monoidal dagger category C is said to have conjugation if equipped
with a covariant functor ( )∗: C → C (called conjugation) which is strictly involutive and commutes
with both the symmetric monoidal structure and the dagger operation. Since we have a covariant
functor, we denote its action on arrows as follows:

f :A → B #−→ f∗:A
∗ → B∗

This is in line with the notation of [33].

So in particular, our ∗-functor satisfies

(f∗)
† = (f †)∗:B

∗ → A∗

3.2 Hilbert-Schmidt maps

While the tensor in Hilb does not have an adjoint, the category Hilb does contain a large class of
morphisms which have something like an adjointness structure with respect to the tensor. These
are the Hilbert-Schmidt maps. The material in this section can be found in [23].

Definition 3.5 If f :H → K is a bounded linear map, we call f a Hilbert-Schmidt map if the sum
∑

i∈I

||f(ei)||
2

is finite for an orthonormal basis {ei}i∈I . The sum is independent of the basis chosen.

One can easily verify that the Hilbert-Schmidt operators on a space form a 2-sided ideal in the
set of all bounded linear operators. Furthermore, if HSO(H,K) denotes the set of Hilbert-Schmidt
maps from H to K, then HSO(H,K) is a Hilbert space, when endowed with an appropriate norm.

We now discuss the adjointness properties that Hilbert-Schmidt maps satisfy:

Theorem 3.6 Define a linear mapping U :H∗ ⊗K → HSO(H,K) by U(x ⊗ y)(u) = 〈x, u〉y, where
x ⊗ y ∈ H∗ ⊗ K. Then U is a unitary transformation of H∗ ⊗ K onto HSO(H,K). In particular,
we note that the morphism U is a linear bijection.

Expressed more categorically, there is a bijective correspondence:

HSO(H,K) ∼= Hom(I,H∗ ⊗K)
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What about infinite 
dimensions?

Even a single free electron has an infinite 
dimensional state space.

Unfortunately, infinite-dimensional Hilbert 
spaces are not compact closed.

But they really want to be!
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Hilbert-Schmidt Maps

Hilb will denote the category of Hilbert spaces and bounded linear maps. The adjoint construc-
tion endows Hilb with a contravariant involutive functor which is the identity on objects. With
this functor, Hilb becomes a symmetric monoidal dagger category. A suitable reference for basic
Hilbert space theory is [23]. In the following, we use the terminology of Selinger in [33].

Definition 3.3 A category C is a dagger category if it is equipped with a functor (−)†: Cop → C,
which is strictly involutive and the identity on objects. In such a category, a morphism f is unitary
if it is an isomorphism and f−1 = f †. An endomorphism is hermitian if f = f †. A symmetric
monoidal dagger category is one in which all of the structural morphisms in the definition of
symmetric monoidal category [25] are unitary and dagger commutes with the tensor product.

We will require further structure not necessary in [5,33]; those authors were considering compact
closed dagger categories. In a compact closed category, the duality operation A #→ A∗ can be
assumed to exist only for objects. Then, one proves that it extends to a contravariant functor. We
also note that, for our examples, the duality decomposes into a covariant functor and a contravariant
identity-on-objects functor (the already defined dagger). With this in mind, we define:

Definition 3.4 A symmetric monoidal dagger category C is said to have conjugation if equipped
with a covariant functor ( )∗: C → C (called conjugation) which is strictly involutive and commutes
with both the symmetric monoidal structure and the dagger operation. Since we have a covariant
functor, we denote its action on arrows as follows:

f :A → B #−→ f∗:A
∗ → B∗

This is in line with the notation of [33].

So in particular, our ∗-functor satisfies

(f∗)
† = (f †)∗:B

∗ → A∗

3.2 Hilbert-Schmidt maps

While the tensor in Hilb does not have an adjoint, the category Hilb does contain a large class of
morphisms which have something like an adjointness structure with respect to the tensor. These
are the Hilbert-Schmidt maps. The material in this section can be found in [23].

If f :H → K is a bounded linear map,
we call f a Hilbert-Schmidt map if the sum
∑

i∈I ||f(ei)||2

is finite for an orthonormal basis {ei}i∈I .
The sum is independent of the basis chosen.

One can easily verify that the Hilbert-Schmidt operators on a space form a 2-sided ideal in the
set of all bounded linear operators. Furthermore, if HSO(H,K) denotes the set of Hilbert-Schmidt
maps from H to K, then HSO(H,K) is a Hilbert space, when endowed with an appropriate norm.

We now discuss the adjointness properties that Hilbert-Schmidt maps satisfy:

Theorem 3.5 Define a linear mapping U :H∗ ⊗K → HSO(H,K) by U(x ⊗ y)(u) = 〈x, u〉y, where
x ⊗ y ∈ H∗ ⊗ K. Then U is a unitary transformation of H∗ ⊗ K onto HSO(H,K). In particular,
we note that the morphism U is a linear bijection.

Expressed more categorically, there is a bijective correspondence:

HSO(H,K) ∼= Hom(I,H∗ ⊗K)
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Towards Nuclearity

Hilb will denote the category of Hilbert spaces and bounded linear maps. The adjoint construc-
tion endows Hilb with a contravariant involutive functor which is the identity on objects. With
this functor, Hilb becomes a symmetric monoidal dagger category. A suitable reference for basic
Hilbert space theory is [23]. In the following, we use the terminology of Selinger in [33].

Definition 3.3 A category C is a dagger category if it is equipped with a functor (−)†: Cop → C,
which is strictly involutive and the identity on objects. In such a category, a morphism f is unitary
if it is an isomorphism and f−1 = f †. An endomorphism is hermitian if f = f †. A symmetric
monoidal dagger category is one in which all of the structural morphisms in the definition of
symmetric monoidal category [25] are unitary and dagger commutes with the tensor product.

We will require further structure not necessary in [5,33]; those authors were considering compact
closed dagger categories. In a compact closed category, the duality operation A #→ A∗ can be
assumed to exist only for objects. Then, one proves that it extends to a contravariant functor. We
also note that, for our examples, the duality decomposes into a covariant functor and a contravariant
identity-on-objects functor (the already defined dagger). With this in mind, we define:

Definition 3.4 A symmetric monoidal dagger category C is said to have conjugation if equipped
with a covariant functor ( )∗: C → C (called conjugation) which is strictly involutive and commutes
with both the symmetric monoidal structure and the dagger operation. Since we have a covariant
functor, we denote its action on arrows as follows:

f :A → B #−→ f∗:A
∗ → B∗

This is in line with the notation of [33].

So in particular, our ∗-functor satisfies

(f∗)
† = (f †)∗:B

∗ → A∗

3.2 Hilbert-Schmidt maps

While the tensor in Hilb does not have an adjoint, the category Hilb does contain a large class of
morphisms which have something like an adjointness structure with respect to the tensor. These
are the Hilbert-Schmidt maps. The material in this section can be found in [23].

Definition 3.5 If f :H → K is a bounded linear map, we call f a Hilbert-Schmidt map if the sum
∑

i∈I

||f(ei)||
2

is finite for an orthonormal basis {ei}i∈I . The sum is independent of the basis chosen.

One can easily verify that the Hilbert-Schmidt operators on a space form a 2-sided ideal in the
set of all bounded linear operators. Furthermore, if HSO(H,K) denotes the set of Hilbert-Schmidt
maps from H to K, then HSO(H,K) is a Hilbert space, when endowed with an appropriate norm.

We now discuss the adjointness properties that Hilbert-Schmidt maps satisfy:

Theorem 3.6 Define a linear mapping U :H∗ ⊗K → HSO(H,K) by U(x ⊗ y)(u) = 〈x, u〉y, where
x ⊗ y ∈ H∗ ⊗ K. Then U is a unitary transformation of H∗ ⊗ K onto HSO(H,K). In particular,
we note that the morphism U is a linear bijection.

Expressed more categorically, there is a bijective correspondence:

HSO(H,K) ∼= Hom(I,H∗ ⊗K)

Hilb will denote the category of Hilbert spaces and bounded linear maps. The adjoint construc-
tion endows Hilb with a contravariant involutive functor which is the identity on objects. With
this functor, Hilb becomes a symmetric monoidal dagger category. A suitable reference for basic
Hilbert space theory is [23]. In the following, we use the terminology of Selinger in [33].

Definition 3.3 A category C is a dagger category if it is equipped with a functor (−)†: Cop → C,
which is strictly involutive and the identity on objects. In such a category, a morphism f is unitary
if it is an isomorphism and f−1 = f †. An endomorphism is hermitian if f = f †. A symmetric
monoidal dagger category is one in which all of the structural morphisms in the definition of
symmetric monoidal category [25] are unitary and dagger commutes with the tensor product.

We will require further structure not necessary in [5,33]; those authors were considering compact
closed dagger categories. In a compact closed category, the duality operation A #→ A∗ can be
assumed to exist only for objects. Then, one proves that it extends to a contravariant functor. We
also note that, for our examples, the duality decomposes into a covariant functor and a contravariant
identity-on-objects functor (the already defined dagger). With this in mind, we define:

Definition 3.4 A symmetric monoidal dagger category C is said to have conjugation if equipped
with a covariant functor ( )∗: C → C (called conjugation) which is strictly involutive and commutes
with both the symmetric monoidal structure and the dagger operation. Since we have a covariant
functor, we denote its action on arrows as follows:

f :A → B #−→ f∗:A
∗ → B∗

This is in line with the notation of [33].

So in particular, our ∗-functor satisfies

(f∗)
† = (f †)∗:B

∗ → A∗

3.2 Hilbert-Schmidt maps

While the tensor in Hilb does not have an adjoint, the category Hilb does contain a large class of
morphisms which have something like an adjointness structure with respect to the tensor. These
are the Hilbert-Schmidt maps. The material in this section can be found in [23].

Definition 3.5 If f :H → K is a bounded linear map, we call f a Hilbert-Schmidt map if the sum
∑

i∈I

||f(ei)||
2

is finite for an orthonormal basis {ei}i∈I . The sum is independent of the basis chosen.

One can easily verify that the Hilbert-Schmidt operators on a space form a 2-sided ideal in the
set of all bounded linear operators. Furthermore, if HSO(H,K) denotes the set of Hilbert-Schmidt
maps from H to K, then HSO(H,K) is a Hilbert space, when endowed with an appropriate norm.

We now discuss the adjointness properties that Hilbert-Schmidt maps satisfy:

Theorem 3.6 Define a linear mapping U :H∗ ⊗K → HSO(H,K) by U(x ⊗ y)(u) = 〈x, u〉y, where
x ⊗ y ∈ H∗ ⊗ K. Then U is a unitary transformation of H∗ ⊗ K onto HSO(H,K). In particular,
we note that the morphism U is a linear bijection.

Expressed more categorically, there is a bijective correspondence:

HSO(H,K) ∼= Hom(I,H∗ ⊗K)
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Why not Hilbert-
Schmidt?
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Why not Hilbert-
Schmidt?

We can transpose the Hilbert-Schmidt maps 
but not any old linear maps.

HS maps form a two-sided ideal and interact 
well with the monoidal structure.

Why not make a compact-closed category 
out of the Hilbert-Schmidt maps?
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Identity Crisis?
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The identity maps are not Hilbert-Schmidt 
unless the space is finite dimensional!
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Identity Crisis?

The identity maps are not Hilbert-Schmidt 
unless the space is finite dimensional!

They are too singular to be members of the 
putative category of Hilbert-Schmidt maps. 
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Nuclearity

We look for an “ambient” category that has 
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compact closed category.”
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Nuclearity

We look for an “ambient” category that has 
monoidal and dagger structure and include 
all the morphisms that are “dying to be in a 
compact closed category.”

We show that the morphisms of interest 
form an ideal and have many of the 
properties of a dagger compact category.
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Trace Ideals
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Trace Ideals

However, we cannot take traces of all 
nuclear maps.

There is a smaller ideal called the “trace 
class” maps which do have traces.

Some nuclear maps are too singular to be 
traced.  

However, the composite of any two nuclear 
maps is always traced.
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1 0 0 . . .
0 1

2 0 . . .
0 0 1

3 . . .
. . . . . . . . . . . .





This is Hilbert-Schmidt because
∑∞

i=1 i2 <∞ but∑∞
i=1 i =∞.

26



i.e it is strong symmetric monoidal, commutes with ( )∗ and ( )†, and takes nuclear maps to
nuclear maps.

3.4 Examples

• The category Rel of sets and relations is a tensored ∗-category for which the entire category
forms a nuclear ideal.

• The category of Hilbert spaces and bounded linear maps maps is a well-known tensored ∗-
category, which, in fact, led to the axiomatization [10]. Then the Hilbert-Schmidt maps form a
nuclear ideal [2]

• The category DRel of tame distributions on Euclidean space [2] is a tensored ∗-category. The
ideal of test functions (viewed as distributions) is a nuclear ideal.

• We will define a subcategory of Rel called the category of locally finite relations. Let R:A → B
be a binary relation and a ∈ A. Then Ra = {b ∈ B|aRb}. Define Rb similarly for b ∈ B. Then
we say that a relation is locally finite if, for all a ∈ A, b ∈ B, Ra, Rb are finite sets.Then it is
straightforward to verify that we have a tensored ∗-category which is no longer compact closed.
It is also easy to verify that the finite relations form a nuclear ideal.

4 Topological and conformal field theory, functorially

In this section, we give a slightly informal, pictorial description of the geometric category that is
the basis of the functorial approach to field theory. We begin with the two-dimensional topological
case. Objects of the geometric category 2Cob are finite families of circles. A morphism is an
equivalence class of 2-manifolds with boundary. Such an equivalence class is called a cobordism,
and a precise definition can be found in [28] for example. Composition is obtained by gluing along
boundaries. Identities are families of cylinders. It is a property of the cobordism equivalence that
gluing a cylinder along a boundary preserves equivalence classes. More details can be found for
example in [7]. In this paper, we prefer to just exhibit the structure pictorially, as in Figure 1,
which exhibits a morphism from two circles to one. Figure 2 is a composite of two morphisms, the

Fig. 1. A sample cobordism

second morphism being a morphism from one circle to two.

The category 2Cob is symmetric monoidal, indeed it is compact closed. Then a 2-dimensional
topological quantum field theory is a symmetric monoidal functor from 2Cob to the category of
finite-dimensional Hilbert spaces. (We note that a functor between compact closed categories that
preserves the symmetric monoidal structure automatically preserves the compact closed structure.)

Segal’s notion of conformal field theory begins by replacing smooth manifolds with Riemann
surfaces with boundary. Equivalence is then an appropriate notion of conformal equivalence. He
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The category of Cobordisms is in fact dagger 
compact.

The identities are cylinders; nothing singular 
about them.
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TQFT

Think of the circles as “space” and the 
manifold as “space-time.”

We want to describe the evolution of 
quantum “matter” on this space-time: define 
a functor from Cob to FDHilb so that all the 
compact-closed structure is preserved.  

Note that everything is trace class in FDHilb.

Think of this as zero-energy physics.
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Conformal Field Theory

Want to define field theories that 
correspond to more realisitic physics than 
TQFT.  [Actually CFT is older than TQFT].

Interested in phenomena that are scale 
invariant. These arise in statistical mechanics 
especially in the study of phase transitions.
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Conformal Field Theory 
II

Want to study transformations that leave 
the angles invariant but vary the length 
scales locally!  These are called conformal 
transformations.

These are closely connected to complex 
analysis because these transformations are 
precisely the ones that leave the complex 
structure invariant.
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It is magnificent but is 
it Physics?

Segal’s definition captures the essential ideas 
of conformal transformations in a 2D setting.

The infinitesimal conformal transformations in 
2D form an infinite dimensional Lie algebra 
(which physicists call the conformal group)

which can be identified with the functions 
that leave the complex analytic structure 
invariant.
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Complex Structures

We need an abstract analogue of i.

Given a vector space V (not necessarily finite 
dimensional) we define J: V --> V so that 

J2 = −I.

33



J2 = −I.

Taking determinants:

(det(J))2 = (−1)n.

So n better be even.
Thus complex structures can only be

defined on even-dimensional manifolds.

34



Riemann Surfaces

A Riemann surface is a topological space X
with an open cover U , together with
homeomorphisms φi : Ui → O,
where O is an open subset of C
and on the overlap regions Ui ∩ Uj the
composites (restricted appropriately)
φi ◦ φ−1

j are holomorphic.
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Segal’s definition

Instead of using cobordisms, the morphisms 
are required to be manifolds admitting 
complex structures, Riemann surfaces.

they can only be squashed by conformal 
transformations, i.e. transformations that 
preserve the complex structure. 
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Is this more 
complicated?

In the topological case (TQFT) there is one 
morphism from 0 to 1, namely a disc.

In CFT the set of discs with different 
conformal structures itself has the structure 
of a complex manifold.
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Where is the identity?

The identity morphism cannot be a cylinder 
anymore.  

We cannot attach a cylinder and conformally 
squash it down to a circle.  A circle has no 
complex structure!

The thing that wants to be the identity is 
too “singular”!
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Nuclear Ideal?

Want to make Segal’s “category” live inside a 
*-tensor category.  This involves adding the 
circles in some principled way.

There is a way of adding “singular” objects 
to the collection of curves (Mumford 
compactification) but this is more fancy than 
needed.
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Enter Neretin

Neretin defined a category by “collaring” the 
Riemann surfaces and then allowing the 
circles to show up as thin collars.  This is a 
symmetric-monoidal dagger category called 
Pants.

He defined a “volume” in such a way that 
Riemann surfaces had positive volume and 
the circles had zero volume. 

40



1

Positive Volume Surface; collars do not intersect.
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The collared regions are conformal
images of the regions

D+ = {z : |z| ≤ 1}

and

D− = {z : |z| ≥ 1}.
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A Nuclear Ideal

A morphism where the collars do not 
intersect is said to have “positive volume.”

The collection of positive volume morphisms 
forms a nuclear ideal in Pants.
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CFT Revisited

A Conformal Field Theory is just a nuclear 
functor from Pants to Hilb.  

In this case it follows that the nuclear maps 
in Pants go to trace-class maps in Hilb.

This gives Segal’s definition.

A generalized CFT is a nuclear functor from 
Pants to any category with a nuclear ideal.
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Correct Linear Relations

Neretin gives a construction that turns out 
to be an example of a generalized CFT based 
on what he calls Correct Linear Relations 
(CLR).

The bulk of the paper is taken up by 
checking that this example really gives a 
generalized CFT.
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CLR and G of I

CLRs are matrices of operators which 
compose according to a formula which is

exactly the G of I execution formula.
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(ii) A linear relation P is called correct if it is the graph of an operator

ΩP :V+ ⊕ W− → V− ⊕ W+

where the matrix

ΩP =





K L

Lt M





has the following properties:
(a) K = −Kt and M = −M t;
(b) ||ΩP || ≤ 1;
(c) ||K|| < 1 and ||M || < 1;
(d) K and M are Hilbert-Schmidt operators.

We say that the matrix ΩP is associated with the relation P .

Lemma 6.3 Condition (a) in Definition 6.2 is equivalent to requiring that the subspace P is La-
grange with respect to {·, ·}′.

Proof. We show first that P is isotropic with respect to {·, ·}′ if and only if K = −Kt and

M = −M t. Note that {v, v′} = −i{v, v′}. So {Ltv1, w2} = {v1, Lw2}. We use this to calculate:

{(v1 + Kv1 + Lw2, L
tv1 + Mw2 + w2), (v

′
1 + Kv′1 + Lw′

2, L
tv′1 + Mw′

2 + w′
2)}

′ =

= {v1 + Kv1 + Lw2, v
′
1 + Kv′1 + Lw′

2}− {Ltv1 + Mw2 + w2, L
tv′1 + Mw′

2 + w′
2}

= {v1,Kv′1} + {v1, Lw′
2} + {Kv1, v

′
1} + {Lw2, v

′
1}− {Ltv1, w

′
2}−

−{w2, L
tv′1}− {Mw2, w

′
2}− {w2,Mw′

2}

= {v1,Kv′1} + {Kv1, v
′
1}− {Mw2, w

′
2}− {w2,Mw′

2}

This is equal to zero for all v1, v′1, w2, w′
2 only when {v1,Kv1} = −{Kv1, v′1} for all v1, v′1 and

{Mw2, w′
2} = −{w2,Mw′

2} for all w2, w′
2, i.e., when K = −Kt and M = −M t.

It remains to show that P is maximally isotropic under these conditions. Let (v,w) = (v1 +
v2, w1 + w2) ∈ V+ ⊕ V− ⊕ W+ ⊕ W−. Suppose that {(v,w), (v′, w′)}′ = 0 for all (v′, w′) = (v′1 +
Kv′1 + Lw′

2, L
tv′1 + Mw′

2 + w′
2) ∈ P . Note that

{(v,w), (v′ , w′)}′ = {v1,Kv′1} + {v1, Lw′
2} + {v2, v

′
1}− {w1, w

′
2}−

− {w2, L
tv′1}− {w2,Mw′

2}

= {Ktv1 + v2 − Lw2, v
′
1} + {Ltv1 − w1 − M tw2, w

′
2}

So {(v,w), (v′, w′)}′ = 0 for all v′1 and w′
2 if and only if Ktv1+v2−Lw2 = 0 and Ltv1−w1−M tw2 = 0,

i.e., (v,w) ∈ P . !

Lemma 6.4 Condition (b) in Definition 6.2 implies that Λ′ is nonnegative on P .

Proof. Let (v,w) = (v1+ΩP (v1, w2)1,ΩP (v1, w2)2+w2) ∈ P . One easily verifies that Λ(u, u′) = 0
when u ∈ V+ and u′ ∈ V−. We use this together with Lemma 6.1 to calculate

Λ′((v,w), (v,w)) = Λ(v, v) − Λ(w,w)

= Λ(v1, v1) + Λ(ΩP (v1, w2)1,ΩP (v1, w2)1) −

−Λ(ΩP (v1, w2)2,ΩP (v1, w2)2) − Λ(w2, w2)
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= 〈v1, v1〉 + 〈w2, w2〉 − 〈ΩP (v1, w2)1,ΩP (v1, w2)1〉

−〈ΩP (v1, w2)2,ΩP (v1, w2)2〉

= ||(v1, w2)||
2 − ||(ΩP (v1, w2)||

2

So Λ′ is nonnegative on P precisely when ||ΩP || ≤ 1. !

Lemma 6.5 Condition (c) in Definition 6.2 means that Λ is positive definite on P ∩V and P ∩W .

Proof. Recall that

P ∩ V = {(v1,Kv1, 0, 0)|L
tv1 = 0} and P ∩ W = {(0, 0,Mw2, w2)|Lw2 = 0}.

For P ∩ V , we calculate

Λ′(v1,Kv1, 0, 0) = Λ(v1, v1) + Λ(Kv1,Kv1)

= ||v1||
2 − ||Kv1||

2.

For P ∩ W we calculate

Λ′(0, 0,Mw2, w2) =−Λ(Mw2,Mw2) − Λ(w2, w2)

=−||Mw2||
2 + ||w2||

2,

by Lemma 6.1. It is obvious that Λ′ is positive definite on these subspaces precisely when ||K|| < 1
and ||M || < 1. !

6.2 The category CLR

We now define a composition for correct linear relations. We will see that composition in this
category is closely related to Girard’s execution formula in his geometry of interaction.

Let P :U → V and Q:V → W be correct linear relations with associated matrices ΩP :U+⊕V− →
U− ⊕ V+ and ΩQ:V+ ⊕ W− → V− ⊕ W+, say

ΩP =





A B

Bt C



 and ΩQ =





K L

Lt M



 .(9)

Then the composition Q◦P corresponds to the product of linear relations and the associated matrix
ΩP ∗ ΩQ:U+ ⊕ W− → U− ⊕ W+ is





A B

Bt C



 ∗





K L

Lt M



 =(10)





A + BK(1 − CK)−1Bt B(1 − KC)−1L

Lt(1 − CK)−1Bt M + Lt(1 − CK)−1CL





(Note that since ||C|| < 1, and ||K|| < 1, the operators 1 − CK and 1 − KC are invertible.)

Lemma 6.6 Let P and Q be correct linear relations as above. If (u1, u2, v1, v2) ∈ P and
(v1, v2, w1, w2) ∈ Q, then ΩP ∗ ΩQ(u1, w2) = (u2, w1).
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Fig. 3. Connecting Processes

In Girard’s original formulation, a proof was represented as an operator on a Hilbert space, and
cut-elimination was an operation on this space of operators. The operation was defined iteratively
as an infinite sum, and convergence of the sum corresponded precisely to normalization of the proof.
This sum is known as the execution formula. Subsequent work abstracted away from the original
Hilbert space framework. See for example [3,4] for one line of development.

We will demonstrate a version of the execution formula using matrices as suggested by the
INT -construction of [22], and show that it is precisely the composition of Neretin’s category of
correct linear relations.

Consider the matrices ΩP and ΩQ of section 6.2.

ΩP =





A B

Bt C



 and ΩQ =





K L

Lt M



 .(19)

For the purposes of this exposition, it is a sound intuition to think of the matrices as two-input,
two-output processes, P and Q, and the entries as probabilities. If we were interpreting proofs, the
input/outputs would be labeled by logical formulas.

For example, the entry A would represent the probability that a token entered the process P
via the first (upper) left port and left via the first right port, and so on. Now suppose we allow
these processes to interact as in Figure 3.

A straightforward calculation reveals that the probability of a token entering this composite
process via the left upper port and leaving via the right upper port is given by A+BK(1−CK)−1Bt.
Similarly one can verify that with this intuition, one precisely recovers Neretin’s definition of
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Conclusions

Nuclear and Trace ideals play an important 
role in mathematics, physics and computation. 

The generalized version of CFT could allow 
one to explore entirely new kinds of CFT, for 
example, by looking at nuclear functors into 
the category of Stochastic Relations.
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