A dual view of Markov processes

Prakash Panangaden1

1School of Computer Science
McGill University

IRIF Lecture Series Jan 2018
Overview

1. Present a “new” view of Markov processes as function transformers
2. Show a beautiful functorial presentation of expectation values
3. Make bisimulation and approximation live in the same universe
4. Minimal realization theory
5. Approximation
Collaborators

Philippe Chaput, Vincent Danos and Gordon Plotkin.
Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.

All probabilistic data is *internal* - no probabilities associated with environment behaviour.

We observe the interactions - not the internal states.

In general, the state space of a labelled Markov process may be a *continuum*.
Motivation

Model and reason about systems with *continuous* state spaces.

- hybrid control systems; e.g. flight management systems.
- telecommunication systems with spatial variation; e.g. cell phones.
- performance modelling.
- probabilistic process algebra with recursion.
Formal Definition of LMPs

- An LMP is a tuple \((S, \Sigma, L, \forall \alpha \in L. \tau_\alpha)\) where \(\tau_\alpha : S \times \Sigma \rightarrow [0, 1]\) is a transition probability function such that

\[
\forall s : S. \lambda A : \Sigma. \tau_\alpha(s, A) \text{ is a subprobability measure and}
\forall A : \Sigma. \lambda s : S. \tau_\alpha(s, A) \text{ is a measurable function.}
\]
\[L_0 ::= T \phi_1 \land \phi_2 \langle a \rangle q \phi \]

We say \(s \models \langle a \rangle q \phi \) iff

\[\exists A \in \Sigma . (\forall s' \in A . s' \models \phi) \land (\tau_a(s, A) > q) . \]

Two systems are bisimilar iff they obey the same formulas of \(L \).
[DEP 1998 LICS, I and C 2002]
A transition system \((S, \mathcal{A}, \rightarrow)\) has a natural interpretation as a state transformer.

Given \(s \in S\) and \(a \in \mathcal{A}\) we have \(F(s)(a) = \{s' \mid s \xrightarrow{a} s'\}\).

We can extend \(F\) to \(Q \subset S\) by direct image.

We can also define predicate transformers: given \(P \subset S\) we have \(wp(a)(P) = \{s' \mid s' \xrightarrow{a} s\}\).

Here the flow is backward.

There is a duality between state-transformer and predicate-transformer semantics.

Here one is thinking of a “predicate” as simply a subset of \(S\), but such a subset can be described by a logical formula.
Classical logic vs. Generalization

<table>
<thead>
<tr>
<th>Classical logic</th>
<th>Generalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truth values {0, 1}</td>
<td>Probabilities [0, 1]</td>
</tr>
<tr>
<td>Predicate</td>
<td>Random variable</td>
</tr>
<tr>
<td>State</td>
<td>Distribution</td>
</tr>
<tr>
<td>The satisfaction relation (\models)</td>
<td>Integration (\int)</td>
</tr>
</tbody>
</table>
Recall, a Markov kernel τ from (X, Σ) to (Y, Λ) is a map $\tau : X \times \Lambda \to [0, 1]$ which is measurable in its first argument and a (subprobability) measure in the second argument.

Let f be a real-valued function on Y. We define $B_{\tau}(f)(x) = \int_Y f(y)\tau(x, dy)$; this is playing the role analogous to a predicate transformer. It is in fact an expectation transformer.

$B_{\tau}(f)(x)$ is the expectation value of f after a step given that the system was at x before the step.
The general plan

- We are going to view Markov processes as function transformers rather than as state transformers.
- We will take the backward view; we could, perhaps equally well, have developed a forward view but we have not done so.
- Measure theory works much better when one deals with measurable functions rather than “points” and measures.
- We never have to worry about “almost everywhere” and other such nonsense.
- Because of our backward view, bisimulation becomes a cospan instead of a span. But this actually makes everything easier!
- We can develop a theory of bisimulation, logical characterization, approximation and minimal realization in this framework.
A norm on a vector space V is a function $\| \cdot \| : V \rightarrow \mathbb{R}^{\geq 0}$ such that:

1. $\|v\| = 0$ iff $v = 0$
2. $\|r \cdot v\| = |r| \|v\|$ and
3. $\|x + y\| \leq \|x\| + \|y\|$.

The norm induces a metric: $d(u, v) = \|u - v\|$ and, hence, a topology. This topology is called the norm topology.

If V is complete in this metric it is called a Banach space.

In quantum mechanics the state spaces are Hilbert spaces – hence automatically Banach spaces – but the spaces of operators are not Hilbert spaces, they are Banach spaces.
A linear map $T : U \to V$ is bounded if there exists a positive real number α such that $\forall u \in U, \|Tu\| \leq \alpha \|u\|$.

A linear map between normed spaces is continuous iff it is bounded.

Given a bounded linear map between normed spaces $T : U \to V$ we define $\|T\| = \sup \{\|Tu\| \mid u \in U, \|u\| \leq 1\}$.

This is a norm on the space of bounded linear maps and is called the operator norm.

With this norm the space of bounded linear maps between Banach spaces forms a Banach space.
Duality for Banach spaces

- The space of bounded (= continuous) linear maps from V, a Banach space, to \mathbb{R} is itself a Banach space, called the dual space, V^\ast.

- For any two vector spaces U, V we say that they are in algebraic duality if there is a bilinear form $\langle \cdot, \cdot \rangle : U \times V \rightarrow \mathbb{R}$ such that spaces of functionals $\langle \cdot, V \rangle$ and $\langle U, \cdot \rangle$ separates points of U and V.

- We say two Banach spaces are in duality if $\langle \cdot, V \rangle \subseteq U^\ast$ and $\langle U, \cdot \rangle \subseteq V^\ast$.

- For V a Banach space, the spaces V and V^\ast are in duality.

- The bilinear form is $\langle v, \phi \rangle = \phi(v)$.

- There is a canonical injection $\iota : V \rightarrow V^{\ast\ast}$; if this is an isometry we say that the Banach space V is reflexive.

- Infinite dimensional Banach spaces are not necessarily reflexive.

- Finite dimensional Banach spaces are always reflexive.
What are cones?

- Want to combine linear structure with order structure.
- If we have a vector space with an order \leq we have a natural notion of *positive* and *negative* vectors: $x \geq 0$ is positive.
- What properties do the positive vectors have? Say $P \subset V$ are the positive vectors, we include 0.
- Then for any positive $v \in P$ and positive real r, $rv \in P$. For $u, v \in P$ we have $u + v \in P$ and if $v \in P$ and $-v \in P$ then $v = 0$.
- We *define* a cone C in a vector space V to be a set with exactly these conditions.
- Any cone defines a order by $u \leq v$ if $v - u \in C$.
- Unfortunately for us, many of the structures that we want to look at are cones but are not part of any obvious vector space: *e.g.* the measures on a space.
- We could artificially embed them in a vector space, for example, by introducing signed measures.
Definition of Cones

A **cone** is a commutative monoid \((V, +, 0)\) with an action of \(\mathbb{R}^{\geq 0}\). Multiplication by reals distributes over addition and the following cancellation law holds:

\[
\forall u, v, w \in V, v + u = w + u \Rightarrow v = w.
\]

The following strictness property also holds:

\[
v + w = 0 \Rightarrow v = w = 0.
\]

Note that every cone comes with a natural order.

An order on a cone

If \(u, v \in V\), a cone, one says \(u \leq v\) if and only if there is an element \(w \in V\) such that \(u + w = v\).
Normed cones

Definition of a normed cone

A normed cone C is a cone with a function $\| \cdot \| : C \rightarrow \mathbb{R}^{\geq 0}$ satisfying the usual conditions:

- $\|v\| = 0$ if and only if $v = 0$
- $\forall r \in \mathbb{R}^{\geq 0}, v \in C, \|r \cdot v\| = r \|v\|$
- $\|u + v\| \leq \|u\| + \|v\|$
- $u \leq v \Rightarrow \|u\| \leq \|v\|$.

Normally one uses norms to talk about convergence of Cauchy sequences. But without negation how can we talk about Cauchy sequences?
Completeness

However, order-theoretic concepts can be used instead.

Complete normed cones

An \textbf{\textit{\omega-complete normed cone}} is a normed cone such that if \(\{a_i \mid i \in I\} \) is an increasing sequence with \(\{\|a_i\|\} \) bounded then the lub \(\bigvee_{i \in I} a_i \) exists and \(\bigvee_{i \in I} \|a_i\| = \| \bigvee_{i \in I} a_i \| \).

Convergence in the sense of norm and in the order theory sense match.

Selinger’s lemma

Suppose that \(u_i \) is an \(\omega \)-chain with a l.u.b. in an \(\omega \)-complete normed cone and \(u \) is an upper bound of the \(u_i \). Suppose furthermore that \(\lim_{i \to \infty} \|u - u_i\| = 0 \). Then \(u = \bigvee_i u_i \).

Here we are writing \(u - u_i \) informally. We really mean \(w_i \) where \(u_i + w_i = u \).
Maps between cones

Continuous maps

An \(\omega \)-**continuous** linear map between two cones is one that preserves least upper bounds of countable chains.

Bounded maps

A **bounded** linear map of normed cones \(f : C \to D \) is one such that for all \(u \) in \(C \), \(\|f(u)\| \leq K\|u\| \) for some real number \(K \). Any linear continuous map of complete normed cones is bounded.

Norm of a bounded map

The norm of a bounded linear map \(f : C \to D \) is defined as \(\|f\| = \sup\{\|f(u)\| : u \in C, \|u\| \leq 1\} \).
A category of normed cones

The ambient category
The ω-complete normed cones, along with ω-continuous linear maps, form a category which we shall denote ωCC.

The subcategory of interest
we define the subcategory ωCC_1: the norms of the maps are all bounded by 1. Isomorphisms in this category are always isometries.
Dual cones

Dual cone
Given an ω-complete normed cone C, its dual C^* is the set of all ω-continuous linear maps from C to \mathbb{R}_+. We define the norm on C^* to be the operator norm.

Basic facts
C^* is an ω-complete normed cone as well, and the cone order corresponds to the point wise order.
The duality functor

In $\omega\mathbf{CC}$, the dual operation becomes a contravariant functor.
If $f : C \rightarrow D$ is a map of cones, we define $f^* : D^* \rightarrow C^*$ as follows: given a map L in D^*, we define a map f^*L in C^* as $f^*L(u) = L(f(u))$.
How does this compare with Banach spaces?

This dual is stronger than the dual in usual Banach spaces, where we only require the maps to be bounded. For instance, it turns out that the dual to $L^+_\infty(X)$ (to be defined later) is isomorphic to $L^+_1(X)$, which is not the case with the Banach space $L_\infty(X)$.
If μ is a measure on X, then one has the well-known Banach spaces L_1 and L_∞.

These can be restricted to cones by considering the μ-almost everywhere positive functions.

We will denote these cones by $L_1^+(X, \Sigma, \mu)$ and $L_\infty^+(X, \Sigma)$.

These are complete normed cones.
Let \((X, \Sigma, p)\) be a measure space with finite measure \(p\). We denote by \(\mathcal{M} \ll p(X)\), the cone of all measures on \((X, \Sigma, p)\) that are absolutely continuous with respect to \(p\).

If \(q\) is such a measure, we define its norm to be \(q(X)\).

\(\mathcal{M} \ll p(X)\) is also an \(\omega\)-complete normed cone.

The cones \(\mathcal{M} \ll p(X)\) and \(L_1^+(X, \Sigma, p)\) are isometrically isomorphic in \(\omega \mathbf{CC}\).

We write \(\mathcal{M}_{UB}^p(X)\) for the cone of all measures on \((X, \Sigma)\) that are uniformly less than a multiple of the measure \(p\): \(q \in \mathcal{M}_{UB}^p\) means that for some real constant \(K > 0\) we have \(q \leq Kp\).

The cones \(\mathcal{M}_{UB}^p(X)\) and \(L_\infty^+(X, \Sigma, p)\) are isomorphic.
Duality for cones

A Reisz-like theorem

The dual of the cone $L^+_\infty(X, \Sigma, p)$ is isometrically isomorphic to $\mathcal{M} \ll^p (X)$.

Corollary

Since $\mathcal{M} \ll^p (X)$ is isometrically isomorphic to $L^+_1(X)$, an immediate corollary is that $L^+_{\infty,*}(X)$ is isometrically isomorphic to $L^+_1(X)$, which is of course false in general in the context of Banach spaces.
Another Reisz-like theorem

The dual of the cone $L_1^+(X, \Sigma, p)$ is isometrically isomorphic to $\mathcal{M}^p_{UB}(X)$.

Corollary

$\mathcal{M}^p_{UB}(X)$ is isometrically isomorphic to $L_1^+(X)$, hence immediate corollary is that $L_1^{+,*}(X)$ is isometrically isomorphic to $L_\infty^+(X)$.
The pairing

Pairing function

There is a map from the product of the cones $L_\infty^+(X, p)$ and $L_1^+(X, p)$ to \mathbb{R}^+ defined as follows:

$$\forall f \in L_\infty^+(X, p), g \in L_1^+(X, p) \quad \langle f, g \rangle = \int fg dp.$$

This map is bilinear and is continuous and ω-continuous in both arguments; we refer to it as the pairing.
This pairing allows one to express the dualities in a very convenient way. For example, the isomorphism between $L_\infty^+(X, p)$ and $L_1^+(X, p)$ sends $f \in L_\infty^+(X, p)$ to $\lambda g. \langle f, g \rangle = \lambda g. \int f g dp$.
We fix a probability triple \((X, \Sigma, p)\) and focus on six spaces of cones that are based on them. They break into two natural groups of three isomorphic spaces. The first three spaces are:

A1 \(\mathcal{M}^{<p}(X)\) - the cone of all measures on \((X, \Sigma, p)\) that are absolutely continuous with respect to \(p\),

A2 \(L_1^+(X, p)\) - the cone of integrable almost-everywhere positive functions,

A3 \(L_\infty^+,(X, p)\) - the dual cone of the cone of almost-everywhere positive bounded measurable functions.
The next group of three isomorphic spaces are:

B1 $\mathcal{M}_p^{UB}(X)$ - the cone of all measures that are uniformly less than a multiple of the measure p,

B2 $L_{\infty}^+(X, p)$ - the cone of almost-everywhere positive functions in the normed vector space $L_{\infty}(X, p)$,

B3 $L_{1}^+,(X, p)$ - the dual of the cone of almost-everywhere positive functions in the normed vector space $L_{1}(X, p)$.
Duality is the Key

\[M^{\ll p} (X) \sim L_1^+ (X, p) \sim L_\infty^* (X, p) \]

\[M_{UB}^p \sim L_\infty^+ (X, p) \sim L_1^* (X, p) \]

where the vertical arrows represent dualities and the horizontal arrows represent isomorphisms.

Pairing function

There is a map from the product of the cones \(L_\infty^+ (X, p) \) and \(L_1^+ (X, p) \) to \(\mathbb{R}^+ \) defined as follows:

\[\forall f \in L_\infty^+ (X, p), g \in L_1^+ (X, p) \quad \langle f, g \rangle = \int fg dp. \]
Some notation

1. Given (X, Σ, p) and (Y, Λ) and a measurable function $f : X \rightarrow Y$ we obtain a measure q on Y by $q(B) = p(f^{-1}(B))$. This is written $M_f(p)$ and is called the image measure of p under f.

2. We say that a measure ν is absolutely continuous with respect to another measure μ if for any measurable set A, $\mu(A) = 0$ implies that $\nu(A) = 0$. We write $\nu \ll \mu$.
The Radon-Nikodym theorem is a central result in measure theory allowing one to define a “derivative” of a measure with respect to another measure.

Radon-Nikodym

If $\nu \ll \mu$, where ν, μ are finite measures on a measurable space (X, Σ) there is a positive measurable function h on X such that for every measurable set B

$$\nu(B) = \int_B h \, d\mu.$$

The function h is defined uniquely up to a set of μ-measure 0. The function h is called the Radon-Nikodym derivative of ν with respect to μ; we denote it by $\frac{d\nu}{d\mu}$. Since ν is finite, $\frac{d\nu}{d\mu} \in L^+_1(X, \mu)$.

Panangaden (McGill University)
Given an (almost-everywhere) positive function \(f \in L_1(X, p) \), we let \(f \cdot p \) be the measure which has density \(f \) with respect to \(p \).

Two identities that we get from the Radon-Nikodym theorem are:

- given \(q \ll p \), we have \(\frac{dq}{dp} \cdot p = q \).
- given \(f \in L_1^+(X, p) \), \(\frac{df \cdot p}{dp} = f \).

These two identities just say that the operations \((-) \cdot p\) and \(\frac{d(-)}{dp}\) are inverses of each other as maps between \(L_1^+(X, p) \) and \(\mathcal{M} \ll p \) \((X)\) the space of finite measures on \(X \) that are absolutely continuous with respect to \(p \).
1. The expectation $E_p(f)$ of a measurable function f is the average computed by $\int f \, dp$ and therefore it is just a number.

2. The conditional expectation is not a mere number but a random variable.

3. It is meant to measure the expected value in the presence of additional information.

4. The additional information takes the form of a sub-σ algebra, say Λ, of Σ. The experimenter knows, for every $B \in \Lambda$, whether the outcome is in B or not.

5. Now she can recompute the expectation values given this information.
It is an immediate consequence of the Radon-Nikodym theorem that such conditional expectations exist.

Kolmogorov

Let \((X, \Sigma, p)\) be a measure space with \(p\) a finite measure, \(f\) be in \(L_1(X, \Sigma, p)\) and \(\Lambda\) be a sub-\(\sigma\)-algebra of \(\Sigma\), then there exists a \(g \in L_1(X, \Lambda, p)\) such that for all \(B \in \Lambda\)

\[
\int_B fdp = \int_B gdp.
\]

This function \(g\) is usually denoted by \(\mathbb{E}(f | \Lambda)\).

We clearly have \(f \cdot p \ll p\) so the required \(g\) is simply \(\frac{df \cdot p}{dp|_{\Lambda}}\), where \(p|_{\Lambda}\) is the restriction of \(p\) to the sub-\(\sigma\)-algebra \(\Lambda\).
1. The point of requiring Λ-measurability is that it “smooths out” variations that are too rapid to show up in Λ.

2. The conditional expectation is *linear, increasing* with respect to the pointwise order.

3. It is defined uniquely p-almost everywhere.
Where the action happens

- We define two categories Rad_∞ and Rad_1 that will be needed for the functorial definition of conditional expectation.
- This will allow for L_∞ and L_1 versions of the theory.
- Going between these versions by duality will be very useful.
The “infinity” category

\mathbf{Rad}_∞

<table>
<thead>
<tr>
<th>Rad∞</th>
<th>The category $\mathbf{Rad}\infty$ has as objects probability spaces, and as arrows $\alpha : (X, p) \to (Y, q)$, measurable maps such that $M\alpha(p) \leq Kq$ for some real number K.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The reason for choosing the name $\mathbf{Rad}\infty$ is that $\alpha \in \mathbf{Rad}\infty$ maps to $d/dqM_\alpha(p) \in L^+_\infty(Y, q)$.</td>
</tr>
</tbody>
</table>
The category Rad_1 has as objects probability spaces and as arrows $\alpha : (X, p) \to (Y, q)$, measurable maps such that $M_\alpha(p) \ll q$.

1. The reason for choosing the name Rad_1 is that $\alpha \in \text{Rad}_1$ maps to $d/dqM_\alpha(p) \in L_1^+(Y, q)$.

2. The fact that the category Rad_∞ embeds in Rad_1 reflects the fact that L_∞^+ embeds in L_1^+.
Recall the isomorphism between $L^+_\infty(X,p)$ and $L^+_1(X,p)$ mediated by the pairing function:

$$f \in L^+_\infty(X,p) \leftrightarrow \lambda g : L^+_1(X,p). \langle f, g \rangle = \int fgdp.$$
Now, precomposition with α in Rad_∞ gives a map $P_1(\alpha)$ from $L_1^+(Y, q)$ to $L_1^+(X, p)$.

Dually, given $\alpha \in \text{Rad}_1 : (X, p) \rightarrow (Y, q)$ and $g \in L_\infty^+(Y, q)$ we have that $P_\infty(\alpha)(g) \in L_\infty^+(X, p)$.

Thus the subscripts on the two precomposition functors describe the target categories.

Using the \ast-functor we get a map $(P_1(\alpha))^\ast$ from $L_1^+,\ast(X, p)$ to $L_1^+,\ast(Y, q)$ in the first case and
dually we get $(P_\infty(\alpha))^\ast$ from $L_\infty^+,\ast(X, p)$ to $L_\infty^+,\ast(Y, q)$.
The **functor** $\mathbb{E}_{\infty}(\cdot)$ is a functor from Rad_{∞} to ωCC which, on objects, maps (X, p) to $L^+_{\infty}(X, p)$ and on maps is given as follows:

Given $\alpha : (X, p) \rightarrow (Y, q)$ in Rad_{∞} the action of the functor is to produce the map $\mathbb{E}_{\infty}(\alpha) : L^+_{\infty}(X, p) \rightarrow L^+_{\infty}(Y, q)$ obtained by composing $(P_1(\alpha))^*$ with the isomorphisms between $L^+_1,*$ and L^+_∞.
Consequences

1. It is an immediate consequence of the definitions that for any $f \in L^+_\infty(X, p)$ and $g \in L_1(Y, q)$

 $\langle E_\infty(\alpha)(f), g \rangle_Y = \langle f, P_1(\alpha)(g) \rangle_X$.

2. One can informally view this functor as a “left adjoint” in view of this proposition.

3. Note that since we started with α in Rad_∞ we get the expectation value as a map between the L^+_∞ cones.
Given \(\tau \) a Markov kernel from \((X, \Sigma)\) to \((Y, \Lambda)\), we define

\[T_\tau : \mathcal{L}^+(Y) \rightarrow \mathcal{L}^+(X), \text{ for } f \in \mathcal{L}^+(Y), \ x \in X, \text{ as} \]

\[T_\tau(f)(x) = \int_Y f(z) \tau(x, dz). \]

This map is well-defined, linear and \(\omega \)-continuous.

If we write \(1_B \) for the indicator function of the measurable set \(B \) we have that

\[T_\tau(1_B)(x) = \tau(x, B). \]

It encodes all the transition probability information.
Conversely, any ω-continuous morphism L with $L(1_Y) \leq 1_X$ can be cast as a Markov kernel by reversing the process on the last slide.

The interpretation of L is that $L(1_B)$ is a measurable function on X such that $L(1_B)(x)$ is the probability of jumping from x to B.
1. We can also define an operator on $\mathcal{M}(X)$ by using τ the other way.

2. We define $\bar{T}_\tau : \mathcal{M}(X) \to \mathcal{M}(Y)$, for $\mu \in \mathcal{M}(X)$ and $B \in \Lambda$, as
 \[\bar{T}_\tau(\mu)(B) = \int_X \tau(x, B) \, d\mu(x). \]

3. It is easy to show that this map is linear and ω-continuous.
The operator \bar{T}_τ transforms measures “forwards in time”; if μ is a measure on X representing the current state of the system, $\bar{T}_\tau(\mu)$ is the resulting measure on Y after a transition through τ.

The operator T_τ may be interpreted as a likelihood transformer which propagates information “backwards”, just as we expect from predicate transformers.

$T_\tau(f)(x)$ is just the expected value of f after one τ-step given that one is at x.
The definition

An **abstract Markov kernel** from \((X, \Sigma, p)\) to \((Y, \Lambda, q)\) is an \(\omega\)-continuous linear map \(\tau : L_\infty^+(Y) \to L_\infty^+(X)\) with \(\|\tau\| \leq 1\).

LAMPS

A **labelled abstract Markov process** on a probability space \((X, \Sigma, p)\) with a set of labels (or actions) \(\mathcal{A}\) is a family of abstract Markov kernels \(\tau_a : L_\infty^+(X, p) \to L_\infty^+(X, p)\) indexed by elements \(a\) of \(\mathcal{A}\).
The approximation map

The expectation value functors project a probability space onto another one with a possibly coarser σ-algebra.

Given an AMP on (X, p) and a map $\alpha : (X, p) \rightarrow (Y, q)$ in Rad_∞, we have the following approximation scheme:

Approximation scheme

\[
\begin{align*}
L^+_\infty(X, p) & \xrightarrow{\tau_a} L^+_\infty(X, p) \\
\uparrow P_\infty(\alpha) & \quad \quad \downarrow \mathbb{E}_\infty(\alpha) \\
L^+_\infty(Y, q) & \xrightarrow{\alpha(\tau_a)} L^+_\infty(Y, q)
\end{align*}
\]
A special case

- Take \((X, \Sigma)\) and \((X, \Lambda)\) with \(\lambda \subset \Sigma\) and use the measurable function \(id : (X, \Sigma) \rightarrow (X, \Lambda)\) as \(\alpha\).

Coarsening the \(\sigma\)-algebra

\[
\begin{align*}
L^+_\infty(X, \Sigma, p) & \xrightarrow{\tau_a} L^+_\infty(X, \Sigma, p) \\
P_\infty(\alpha) & \quad \quad \quad \quad \quad \quad E_\infty(\alpha) \\
L^+_\infty(X, \Lambda, p) & \xrightarrow{id(\tau_a)} L^+_\infty(X, \Lambda, p)
\end{align*}
\]

- Thus \(id(\tau_a)\) is the approximation of \(\tau_a\) obtained by averaging over the sets of the coarser \(\sigma\)-algebra \(\Lambda\).

- We now have the machinery to consider approximating along arbitrary maps \(\alpha\).
Conclusions

- We have dualized the notion of LMPs
- We have made conditional expectation a functor
- We have shown how to approximate along a morphism
- We can give a logical characterization of bisimulation easily
- We can prove a minimal realization result
- We can construct finite approximants to an abstract Markov process.