Semantics of Probabilistic Languages

Prakash Panangaden1

1School of Computer Science
McGill University

Estonia Winter School March 2015
Outline

1. Introduction
2. Semantics of a language with while loops
3. Partially additive categories
4. Back to semantics
Syntax

Kozen’s Language

\[S ::= x_i := f(\vec{x}) | S_1; S_2 | \text{if } B \text{ then } S_1 \text{ else } S_2 | \text{while } B \text{ do } S. \]

- There are a fixed set of variables \(\vec{x} \) taking values in a measurable space \((X, \Sigma_X)\).
- \(f \) is a measurable function.
- \(B \) is a measurable subset.
Outline of the semantics

- State transformer semantics: distribution (measure) transformer semantics.
- Meaning of statements: Markov kernels \(i.e. \) SRel morphisms.
- The only subtle part: how to give fixed-point semantics to the while loop?
Partially additive categories

Partially additive monoids

- Back to **SRel** structure.
- Can we “add” **SRel** morphisms?
- Not always, the sum may exceed 1, but we can define *summable families* which may even be countably infinite.
- The homsets of **SRel** form *partially additive monoids*.

A partially additive monoid is a pair \((M, \sum)\) where \(M\) is a nonempty set and \(\sum\) is a partial function which maps some countable subsets of \(M\) to \(M\). We say that \(\{x_i \mid i \in I\}\) is summable if \(\sum_{i \in I} x_i\) is defined.
Partially additive categories

Axioms for partially-additive monoids

1. The sums can be rearranged at will.

2. **Partition-Associativity:** Suppose that \(\{x_i | i \in I\} \) is a countable family and \(\{I_j | j \in J\} \) is a countable partition of \(I \). Then \(\{x_i | i \in I\} \) is summable iff for every \(j \in J \) \(\{x_i | i \in I_j\} \) is summable and \(\{\sum_{i \in I_j} x_i | j \in J\} \) is summable. In this case we require

\[
\sum_{i \in I} x_i = \sum_{j \in J} \sum_{i \in I_j} x_i.
\]

3. **Unary-sum:** A singleton family is always summable.

4. **Limit:** If \(\{x_i | i \in I\} \) is countable and every finite subfamily is summable then the whole family is summable.
Zero morphisms

The sum of the empty family exists, call it 0. It is the identity for \sum.
Let C be a category. A **partially additive structure** on C is a partially additive monoid structure on the homsets of C such that if $\{f_i : X \to Y | i \in I\}$ is summable, then $\forall W, Z, g : W \to X, h : Y \to Z$, we have that $\{h \circ f_i | i \in I\}$ and $\{f_i \circ g | i \in I\}$ are summable and, furthermore, the equations

$$h \circ \sum_{i \in I} f_i = \sum_{i \in I} h \circ f_i, \quad (\sum_{i \in I} f_i) \circ g = \sum_{i \in I} f_i \circ g$$

hold.

A category has **zero morphisms** if there is a distinguished morphism in every homset – we write 0_{XY} for the distinguished member of $\text{hom}(X, Y)$ – such that $\forall W, X, Y, Z, f : W \to X, g : Z \to Y$ we have $g \circ 0_{WZ} = 0_{XY} \circ f$.

If a category has a partially additive structure it has zero morphisms.
SRel has partially additive structure

- A family \(\{ h_i : X \to Y | i \in I \} \) in **SRel** is summable if
 \[
 \forall x \in X. \sum h_i(x, Y) \leq 1.
 \]

 We define the sum by the evident pointwise formula.

- Partition associativity follows immediately from the fact that we are dealing with absolute convergence since all the values are nonnegative.

- The unary sum axiom is immediate.

- The limit axiom follows from the fact that the finite partial sums are bounded by 1.

- Countable additivity follows from the fact that each \(h_i \) is countably additive and the sums in question can be rearranged since we have only nonnegative terms.

- The verification of the two distributivity equations is by the monotone convergence theorem.
Partially additive categories

Quasi-projections

Let C be a category with countable coproducts and zero morphisms and let $\{X_i | i \in I\}$ be a countable family of objects of C.

For any $J \subset I$ we define the **quasi-projection** $PR_J : \bigsqcup_{i \in I} X_i \rightarrow \bigsqcup_{j \in J} X_j$ by

$$PR_J \circ \iota_i = \begin{cases} \iota_i & i \in J \\ 0 & i \notin J \end{cases}$$
We write $I \cdot X$ for the coproduct of $|I|$ copies of X. We define the **diagonal-injection** \triangle by couniversality:

\[
\coprod (X_i | i \in I) \xrightarrow{\triangle} I \cdot \coprod (X_i | i \in I)
\]

We have a morphism σ from $I \cdot X$ to X given by:

\[
I \cdot X \xrightarrow{\sigma} X
\]
These maps in \mathbf{SRel}

\[PR_J \left((x, k), \bigsqcup_{j \in J} \right) = \begin{cases}
\delta(x, A_k) & k \in J \\
0 & k \notin J
\end{cases}. \]

The Δ morphism in \mathbf{SRel} is

\[\Delta \left((x, k), \bigsqcup_{i \in I} (\bigsqcup_{j \in I} A^i_j) \right) = \delta(x, A^k_k). \]

The analogous map in \mathbf{Set} is $\Delta((x, k)) = ((x, k), k)$.

Finally

\[\sigma((x, k), A) = \delta(x, A) \]

in \mathbf{SRel} while in \mathbf{Set} we have $\sigma((x, k)) = x$.
A **partially additive category**, \mathcal{C}, is a category with countable coproducts and a partially additive structure satisfying the following two axioms.

1. **Compatible sum axiom**: If $\{f_i | i \in I\}$ is a countable set of morphisms in $\mathcal{C}(X, Y)$ and there is a morphism $f : X \rightarrow I \cdot Y$ with $PR_i \circ f = f_i$ then $\{f_i | i \in I\}$ is summable.

2. **Untying axiom**: If $f, g : X \rightarrow Y$ are summable then $\iota_1 \circ f$ and $\iota_2 \circ g$ are summable as morphisms from X to $Y + Y$.
SRel is a PAC

The category **SRel** is a partially additive category.

All verifications are routine.
Iteration in a PAC

Arbib-Manes

Given \(f : X \to X + Y \) in a partially additive category, we can find a unique \(f_1 : X \to X \) and \(f_2 : X \to Y \) such that \(f = \iota_1 \circ f_1 + \iota_2 \circ f_2 \). Furthermore there is a morphism \(\dagger f = df \sum_{n=0}^{\infty} f_2 \circ f_1^n : X \to Y \). The morphism \(\dagger f \) is called the iterate of \(f \).

- First claim is trivial.
- The second is about the summability of a specific family.
- Can prove easily by induction that the finite subfamilies are summable.
- The limit axiom then guarantees that the whole family is summable.
Statements are \(\mathbf{SRel} \) morphisms of type \((X^n, \Sigma^n) \to (X^n, \Sigma^n) \).

Assignment: \(x := f(\vec{x}) \)

\[
[x_i := f(\vec{x})](\vec{x}, \vec{A}) = \delta(x_1, A_1) \cdots \delta(x_{i-1}, A_{i-1}) \delta(f(\vec{x}), A_i) \delta(x_{i+1}, A_{i+1}) \cdots
\]

Sequential Composition: \(S_1; S_2 \)

\[
[S_1; S_2] = [S_2] \circ [S_1]
\]

where the composition on the right hand side is the composition in \(\mathbf{SRel} \).

Conditionals: \(\text{if } B \text{ then } S_1 \text{ else } S_2 \)

\[
[\text{if } B \text{ then } S_1 \text{ else } S_2](\vec{x}, \vec{A}) = \delta(\vec{x}, B)[S_1](\vec{x}, \vec{A}) + \delta(\vec{x}, B^c)[S_2](\vec{x}, \vec{A})
\]
While Loops: \texttt{while B do S}

\[
[\texttt{while B do S}] = h^*
\]

where we are using the \(*\) in \texttt{SRel} and the morphism

\[
h : (X^n, \Sigma^n) \rightarrow (X^n, \Sigma^n) + (X^n, \Sigma^n)
\]

is given by

\[
h(\vec{x}, \vec{A}_1 \cup \vec{A}_2) = \delta(\vec{x}, \texttt{B})[S](\vec{x}, \vec{A}_1) + \delta(\vec{x}, \texttt{B}^c)\delta(\vec{x}, \vec{A}_2).
\]
We can construct a category of probabilistic predicate transformers: SPT. Objects are measurable spaces.

Given (X, Σ_X) we can construct the (Banach) space of bounded measurable functions on X (the “predicates”) $\mathcal{F}(X)$.

A morphism $X \rightarrow Y$ in SPT is a bounded (continuous) linear map from $\mathcal{F}(X)$ to $\mathcal{F}(Y)$.

$\text{SPT} \simeq \text{SRel}^{op}$.

This gives us the structure needed for a wp semantics.