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Basic goals in RL

We are often dealing with large or infinite transition systems
whose behaviour is probabilistic.

The system responds to stimuli (actions) and moves to a new
state probabilistically and outputs a (possibly) random reward.
We seek optimal policies for extracting the largest possible reward
in expectation.
A plethora of algorithms and techniques, but the cost depends on
the size of the state space.
Can we learn representations of the state space that accelerate
the learning process?
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Behavioural equivalence is fundamental

When do two states have exactly the same behaviour?

What can one observe of the behaviour?
Immediate rewards.
What should be guaranteed?
An equivalence relation on states so that if the equivalence
classes are ’lumped’ together we cannot tell that anything has
changed.
Ideally we assume exact equality of real numbers.
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A bit of history

Cantor and the back-and-forth argument

Lumpability in queueing theory 1960’s
Bisimulation of nondeterministic automata 1970’s and process
algebras 1980’s: Milner and Park
Probabilistic bisimulation in probabilistic automata : Larsen and
Skou 1989
Bisimulation of Markov processes on continuous state spaces:
Desharnais, Edalat, P. 1997...
Bisimulation metrics for Markov processes Desharnais, Gupta,
Jagadeesan, P. 1999
Fixed-point version: van Breugel and Worrell 2001
Bisimulation for MDP’s : Givan and Dean 2003
Bisimulation metrics for MDP’s: Ferns, Precup, P. 2004

Panangaden (1 Google Brain, Montreal 2 McGill University 3 Montreal Institute of Learning Algorithms (Mila) 4 DeepMind, London)Representation learning June 16, 2021 5 / 34



A bit of history

Cantor and the back-and-forth argument
Lumpability in queueing theory 1960’s

Bisimulation of nondeterministic automata 1970’s and process
algebras 1980’s: Milner and Park
Probabilistic bisimulation in probabilistic automata : Larsen and
Skou 1989
Bisimulation of Markov processes on continuous state spaces:
Desharnais, Edalat, P. 1997...
Bisimulation metrics for Markov processes Desharnais, Gupta,
Jagadeesan, P. 1999
Fixed-point version: van Breugel and Worrell 2001
Bisimulation for MDP’s : Givan and Dean 2003
Bisimulation metrics for MDP’s: Ferns, Precup, P. 2004

Panangaden (1 Google Brain, Montreal 2 McGill University 3 Montreal Institute of Learning Algorithms (Mila) 4 DeepMind, London)Representation learning June 16, 2021 5 / 34



A bit of history

Cantor and the back-and-forth argument
Lumpability in queueing theory 1960’s
Bisimulation of nondeterministic automata 1970’s and process
algebras 1980’s: Milner and Park

Probabilistic bisimulation in probabilistic automata : Larsen and
Skou 1989
Bisimulation of Markov processes on continuous state spaces:
Desharnais, Edalat, P. 1997...
Bisimulation metrics for Markov processes Desharnais, Gupta,
Jagadeesan, P. 1999
Fixed-point version: van Breugel and Worrell 2001
Bisimulation for MDP’s : Givan and Dean 2003
Bisimulation metrics for MDP’s: Ferns, Precup, P. 2004

Panangaden (1 Google Brain, Montreal 2 McGill University 3 Montreal Institute of Learning Algorithms (Mila) 4 DeepMind, London)Representation learning June 16, 2021 5 / 34



A bit of history

Cantor and the back-and-forth argument
Lumpability in queueing theory 1960’s
Bisimulation of nondeterministic automata 1970’s and process
algebras 1980’s: Milner and Park
Probabilistic bisimulation in probabilistic automata : Larsen and
Skou 1989

Bisimulation of Markov processes on continuous state spaces:
Desharnais, Edalat, P. 1997...
Bisimulation metrics for Markov processes Desharnais, Gupta,
Jagadeesan, P. 1999
Fixed-point version: van Breugel and Worrell 2001
Bisimulation for MDP’s : Givan and Dean 2003
Bisimulation metrics for MDP’s: Ferns, Precup, P. 2004

Panangaden (1 Google Brain, Montreal 2 McGill University 3 Montreal Institute of Learning Algorithms (Mila) 4 DeepMind, London)Representation learning June 16, 2021 5 / 34



A bit of history

Cantor and the back-and-forth argument
Lumpability in queueing theory 1960’s
Bisimulation of nondeterministic automata 1970’s and process
algebras 1980’s: Milner and Park
Probabilistic bisimulation in probabilistic automata : Larsen and
Skou 1989
Bisimulation of Markov processes on continuous state spaces:
Desharnais, Edalat, P. 1997...

Bisimulation metrics for Markov processes Desharnais, Gupta,
Jagadeesan, P. 1999
Fixed-point version: van Breugel and Worrell 2001
Bisimulation for MDP’s : Givan and Dean 2003
Bisimulation metrics for MDP’s: Ferns, Precup, P. 2004

Panangaden (1 Google Brain, Montreal 2 McGill University 3 Montreal Institute of Learning Algorithms (Mila) 4 DeepMind, London)Representation learning June 16, 2021 5 / 34



A bit of history

Cantor and the back-and-forth argument
Lumpability in queueing theory 1960’s
Bisimulation of nondeterministic automata 1970’s and process
algebras 1980’s: Milner and Park
Probabilistic bisimulation in probabilistic automata : Larsen and
Skou 1989
Bisimulation of Markov processes on continuous state spaces:
Desharnais, Edalat, P. 1997...
Bisimulation metrics for Markov processes Desharnais, Gupta,
Jagadeesan, P. 1999

Fixed-point version: van Breugel and Worrell 2001
Bisimulation for MDP’s : Givan and Dean 2003
Bisimulation metrics for MDP’s: Ferns, Precup, P. 2004

Panangaden (1 Google Brain, Montreal 2 McGill University 3 Montreal Institute of Learning Algorithms (Mila) 4 DeepMind, London)Representation learning June 16, 2021 5 / 34



A bit of history

Cantor and the back-and-forth argument
Lumpability in queueing theory 1960’s
Bisimulation of nondeterministic automata 1970’s and process
algebras 1980’s: Milner and Park
Probabilistic bisimulation in probabilistic automata : Larsen and
Skou 1989
Bisimulation of Markov processes on continuous state spaces:
Desharnais, Edalat, P. 1997...
Bisimulation metrics for Markov processes Desharnais, Gupta,
Jagadeesan, P. 1999
Fixed-point version: van Breugel and Worrell 2001

Bisimulation for MDP’s : Givan and Dean 2003
Bisimulation metrics for MDP’s: Ferns, Precup, P. 2004

Panangaden (1 Google Brain, Montreal 2 McGill University 3 Montreal Institute of Learning Algorithms (Mila) 4 DeepMind, London)Representation learning June 16, 2021 5 / 34



A bit of history

Cantor and the back-and-forth argument
Lumpability in queueing theory 1960’s
Bisimulation of nondeterministic automata 1970’s and process
algebras 1980’s: Milner and Park
Probabilistic bisimulation in probabilistic automata : Larsen and
Skou 1989
Bisimulation of Markov processes on continuous state spaces:
Desharnais, Edalat, P. 1997...
Bisimulation metrics for Markov processes Desharnais, Gupta,
Jagadeesan, P. 1999
Fixed-point version: van Breugel and Worrell 2001
Bisimulation for MDP’s : Givan and Dean 2003

Bisimulation metrics for MDP’s: Ferns, Precup, P. 2004

Panangaden (1 Google Brain, Montreal 2 McGill University 3 Montreal Institute of Learning Algorithms (Mila) 4 DeepMind, London)Representation learning June 16, 2021 5 / 34



A bit of history

Cantor and the back-and-forth argument
Lumpability in queueing theory 1960’s
Bisimulation of nondeterministic automata 1970’s and process
algebras 1980’s: Milner and Park
Probabilistic bisimulation in probabilistic automata : Larsen and
Skou 1989
Bisimulation of Markov processes on continuous state spaces:
Desharnais, Edalat, P. 1997...
Bisimulation metrics for Markov processes Desharnais, Gupta,
Jagadeesan, P. 1999
Fixed-point version: van Breugel and Worrell 2001
Bisimulation for MDP’s : Givan and Dean 2003
Bisimulation metrics for MDP’s: Ferns, Precup, P. 2004

Panangaden (1 Google Brain, Montreal 2 McGill University 3 Montreal Institute of Learning Algorithms (Mila) 4 DeepMind, London)Representation learning June 16, 2021 5 / 34



What are Markov decision processes?

Markov decisionprocesses are probabilistic versions of labelled
transition systems. Labelled transition systems where the final
state is governed by a probability distribution - no other
indeterminacy.

There is a reward associated with each transition.
We observe the interactions and the rewards - not the internal
states.
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Markov decision processes: formal definition

(S,A, ∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

where
S : the state space, we will take it to be a finite set.
A : the actions, a finite set
Pa : the transition function; D(S) denotes distributions over S
R : the reward, could readily make it stochastic.
Will write Pa(s,C) for Pa(s)(C).
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Policies

MDP

(S,A, ∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

We control the choice of action; it is not some external scheduler.

Policy

π : S −→ D(A)

The goal is choose the best policy. We do not know it in advance; we
must learn it.
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Bellman equations

Given an MDP (S,A,Pa : S −→ D(S),R : S×A −→ R≥0)

we define a policy π : S −→ D(A), a strategy for choosing an
action in a state.
The value function Vπ : S −→ R associated with the policy π is
given by:

Vπ(s) =
∑
a∈A

π(s)(a)[R(s, a) + γ
∑
s′∈S

Pa(s, s′)Vπ(s′)]

γ ∈ (0, 1) is a contraction factor.
There is a version for the optimal value function V∗

V∗(s) = max
a∈A

[R(s, a) + γ
∑
s′∈S

Pa(s, s′)V∗(s′)]

we can extract a Bellman operator as
Tπ(V) =

∑
a∈A π(s)(a)[r(s, a) + γ

∑
s′∈S Pa(s, s′)V(s′)]

Tπ(Vπ) = Vπ.
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Policy evaluation by iteration

Given a policy π we have the associated Bellman operator Tπ on
the space of value functions.

If Vπ is the value function we write Vn for its nth iterate:
Vn+1 = Tπ(Vn).

The Banach fixed-point theorem says that Vn converges to Vπ.
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Policy iteration

Start with some policy π0 and compute Vπ0

Inductive step: evaluate Vπn , then set πn+1 to be equal to the
greedy policy based on Vπn and repeat.
This converges to π∗ the optimal policy, but not by the Banach
fixed point theorem.
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Representation learning

For large state spaces, learning value functions S×A −→ R is not
feasible.

Instead we define a new space of features M and try to come up
with an embedding φ : S −→ RM.
Then we can try to use this to predict values associated with
state,action pairs.
Representation learning means learning such a φ.
The elements of M are the “features” that are chosen. They can
be based on any kind of knowledge or experience about the task
at hand.
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Bisimulation

Let R be an equivalence relation. R is a bisimulation if: s R t if (∀ a)
and all equivalence classes C of R:

(i) R(a, s) = R(a, t)
(ii) Pa(s,C) = Pa(t,C)

s, t are bisimilar if there is a bisimulation relation R with sRt them.
Basic pattern: immediate rewards match (initiation), stay related
after the transition (coinduction).
Bisimulation can be defined as the greatest fixed point of a
relation transformer.
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A metric-based approximate viewpoint

Move from equality between processes to distances between
processes (Jou and Smolka 1990).

Quantitative measurement of the distinction between processes.
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The basic setting: metric spaces

A pseudometric on a set X is a function d : X×X −→ R≥0 such that

1 ∀x ∈ X, d(x, x) = 0
2 ∀x, y ∈ X, d(x, y) = d(y, x)
3 ∀x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y)
4 If d(x, y) = 0 implies x = y we say that it is a metric

The setup
A set M equipped with a metric d obeying the above axioms (unlike,
for example, KL-divergence which is not a metric). A metric space is
complete if every Cauchy sequence has a limit point to which it
converges.
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The setup

We will assume that we have an underlying metric space—the
state space—and we are looking at probability distributions on top
of this space.

We will then look at ways to define a metric on the space of
probability distributions.
It should be, somehow, related to the metric of the underlying
space.
I will elide all measure theory issues in this discussion, but they
are there, and one cannot really work on this topic without
knowing basic measure theory on metric spaces.
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The Kantorovitch metric

What is the observable aspect of a probability distribution?

Expectation values.
κ(P,Q) = supf∈?? |

∫
f dP−

∫
f dQ|

But what kind of functions should we allow? Not just continuous
ones.
Nonexpansive or Lipschitz-1 functions: d(f (x), f (y)) ≤ d(x, y).

Such functions are always continuous but, clearly, continuous
functions are not necessarily Lipschitz-1.
κ(P,Q) = supf∈Lip1

|
∫

f dP−
∫

f dQ|
It is easy to verify all the metric conditions.
But this definition is only half the story.
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Couplings

How to relate two distributions? Think of a distribution as a pile of
sand.

We need to move some sand around to make the pile P look like
Q.
There are many different ways to do it. Each way is a “transport
plan.”
A coupling of two distributions P,Q defined on X is a joint
distribution γ on X × X such that the marginals of γ are P and Q.
There is always the independent coupling: γ(A× B) = P(A)Q(B).
But there are many others: the convex combinations of couplings
are couplings.
We write C(P,Q) for the set of couplings of P and Q.
We can also define a coupling to be a pair of random variables
R, S with distributions P,Q respectively.
We can also define couplings easily between two different
underlying spaces X and Y.
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The W metrics

A coupling γ defines a transport plan, how much does it cost?

If we measure the cost by a metric d we get
cost =

∫
X×X d(x, y)dγ

We define a metric: W1(P,Q) = infγ∈C(P,Q)

∫
X×X d(x, y)dγ.

Kantorovich-Rubinstein duality: κ = W1.

Wp(P,Q) = infγ∈C(P,Q)[
∫

X×X[d(x, y)]
pdγ]

1
p .

Crucial point: if I find any coupling it gives an upper bound on W1.
We can define a map from a metric space (M, d) to the space
(P(M),W1) by x 7→ δx. This map is an isometry.
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Bisimulation via couplings

Recall MDP’s

(S,A, ∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

An equivalence relation R on S is a bisimulation if sRt implies that
∀a ∈ A there is a coupling ω of Pa(s) and Pa(t) such that the
support of ω is contained in R.
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Computing the bisimulation metric

LetM be the space of 1-bounded pseudometrics over S, ordered
by d1 ≤ d2 if ∀x, y; d2(x, y) ≤ d1(x, y).

This is a complete lattice.
We define TK :M−→M by
TK(d)(x, y) = maxa[|R(x, a)R(y, a)|+ γWd(Pa(x),Pa(y))]

This is a monotone function onM.
We can find the bisimulation as the fixed point of TK by iteration:
d∼.
An important bound proved by Ferns et al.
|V∗(x)− V∗(y)| ≤ d∼(x, y).
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Computational complexity

Iteration of TK to obtain an ε-approximation to the metric requires
O(log(ε)/ log(γ)) iterations.

Each iteration requires the computation of |S|2|A| distances.
Each Wd distance computation is O(|S|3).
So the overall cost is O(|S|5|A| log(ε)/ log(γ).
Too high in practice!
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Bias

Computating TK requires access to Pa(x) for each x and a;
typically not available.

So we use sampling to estimate these quantities.
Unfortunately it is not easy to obtain these samples and in
particular most methods used give biased samples.
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Non-optimal policies

We have |V∗(x)− V∗(y)| ≤ d∼(x, y).

But if we have a fixed policy π, which may not be optimal, we do
not have the inequality |Vπ(x)− Vπ(y)| ≤ d∼(x, y).

We often need Vπ for non-optimal policies and the bismulation
metric does not help us bound it.
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The MICo distance

MICo: matching under independent couplings.

Do not try to find the optimal coupling use a simple known
coupling, the independent coupling.
We define a new update TM : RS×S −→ RS×S instead of TK .
We define rπ(x) := Ea∼π(s)[R(x, a)] and
Pπ(x) =

∑
a π(x)(a)P

a(x)

(TπMU)(x, y) = |rπ(x)− rπ(y)|+ γEx′∼Pπ(x),y′∼ Pπ(y)[U(x′, y′)].
If we use the L∞ norm, TM is a contraction so we have a fixed
point by Banach’s fixed point theorem.
Call the fixed point Uπ.
Of course this will not give us a metric!
But who knows, maybe it tells us something good.
Complexity is O(|S|4) still not good but Google has fancy hardware!
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What good is MICo?

Computational complexity down to O(|S|4), a bit better. Also no
factor of |A| since we are sticking to a particular policy.

We can use online updates rather than iterating the actual TM

operator.
If stepsizes (εt(x, y)) decrease according to some specific
conditions (Robbins-Munro) then we get convergence for the
following sequence of updates

Ut+1(x, y)→ (1− εt(x, y))Ut(x, y) + εt(x, y)(|r − r̃|+ γUt(x′, y′))

where we are updating using a pair of transitions (xt, at, rt, x′t) and
(yt, bt, r̃t, y′t).
|Vπ(x)− Vπ(y)| ≤ Uπ(x,y).
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A new type of distance

Diffuse metric

1 d(x, y) ≥ 0
2 d(x, y) = d(y, x)
3 d(x, y) ≤ d(x, z) + d(z, y)
4 Do not require d(x, x) = 0
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What is MICo?

Similar to, but not the same as, partial metrics (Matthews) or weak
partial pseudometrics (Heckmann). They require stronger conditions
than our triangle and they can then extract a real metric and something
like a “norm”. Our examples violate their conditions.

MICo distance is a diffuse metric.
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MICo loss

Nearly all machine learning algorithms are optimization
algorithms.

One often introduces extra terms into the objective function that
push the solution in a desired direction.
We defined a loss term based on the fixed point of the MICo
update operator.
We assume a value-based agent learning as estimate based on
two function approximators ψ, φ with their own sets of parameters.
We then define a loss term based on the MICo distance.
For details read
https://psc-g.github.io/posts/research/rl/mico/
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Experimental setup

Panangaden (1 Google Brain, Montreal 2 McGill University 3 Montreal Institute of Learning Algorithms (Mila) 4 DeepMind, London)Representation learning June 16, 2021 30 / 34



Experiments

Added the MICo loss term to a variety of existing agents: all those
available in the Dopamine Library; 5 in all.

Hyperparamemters settings were taken from the Library.
The learning algorithms tried to learn good strategies for Atari
games. We tried each agent with and without the MICo loss term
on 60 different Atari games.
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Results for Rainbow
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Results for DQN
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Conclusions

Explored the use of state-similarity metrics in improving
representation learning.

Variations of the concept of metric seem to be important.
Connections to Reproducing Kernel Hilbert Space theory is being
explored.
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