Causality, Order, Information and Topology

Prakash Panangaden\(^1\)

\(^1\)School of Computer Science
McGill University

5th June 2013 / Causal structure in quantum theory.
1 Introduction
Outline

1. Introduction

2. Causal Structure
Outline

1. Introduction
2. Causal Structure
3. Domain Theory
4. Domains and causal structure
5. Interval Domains
Causal structure - mathematically modelled as a partial order - can be taken to be the fundamental structure of spacetime.
Overview

- Causal structure - mathematically modelled as a partial order - can be taken to be the fundamental structure of spacetime.
- The topology can be derived from this.
Causal structure - mathematically modelled as a partial order - can be taken to be the fundamental structure of spacetime.

The topology can be derived from this.

Ordered topological spaces (domains) were used by Dana Scott to model computation as information processing.
Causal structure - mathematically modelled as a partial order - can be taken to be the fundamental structure of spacetime.

The topology can be derived from this.

Ordered topological spaces (domains) were used by Dana Scott to model computation as information processing.

Spacetime carries a natural domain structure.
Scott’s vision: computability should be continuity in some topology.
Scott’s vision: computability should be continuity in some topology.

A finite piece of information about the output should only require a finite piece of information about the input.
Scott’s vision: computability should be continuity in some topology.
A finite piece of information about the output should only require a finite piece of information about the input.
This is just what the $\epsilon - \delta$ definition says.
Scott’s vision: computability should be continuity in some topology.

A finite piece of information about the output should only require a finite piece of information about the input.

This is just what the $\epsilon - \delta$ definition says.

Data types are domains (ordered topological spaces) and computable functions are continuous.
The causal order alone determines the topology of globally hyperbolic spacetimes. [CMP Nov’06]
Summary of Results

- The causal order alone determines the topology of globally hyperbolic spacetimes. [CMP Nov’06]
- A (globally hyperbolic) spacetime can be given domain structure: approximate points. [CMP Nov’06]
The causal order alone determines the topology of globally hyperbolic spacetimes. [CMP Nov’06]

A (globally hyperbolic) spacetime can be given domain structure: approximate points. [CMP Nov’06]

The space of causal curves in the Vietoris topology is compact (cf. Sorkin-Woolgar) [GRG ’06]
The causal order alone determines the topology of globally hyperbolic spacetimes. [CMP Nov’06]

A (globally hyperbolic) spacetime can be given domain structure: approximate points. [CMP Nov’06]

The space of causal curves in the Vietoridis topology is compact (cf. Sorkin-Woolgar) [GRG ’06]

The geometry can be captured by a Martin “measurement.” [AMS Symposia in Pure and Applied Math 2012]
The layers of spacetime structure

- Set of events: no structure
The layers of spacetime structure

- Set of events: no structure
- Topology: 4 dimensional real manifold, Hausdorff, paracompact,...
The layers of spacetime structure

- Set of events: no structure
- Topology: 4 dimensional real manifold, Hausdorff, paracompact,...
- Differentiable structure: tangent spaces
The layers of spacetime structure

- Set of events: no structure
- Topology: 4 dimensional real manifold, Hausdorff, paracompact,...
- Differentiable structure: tangent spaces
- Causal structure: light cones, defines metric up to conformal transformations. This is \(\frac{9}{10} \) of the metric.
The layers of spacetime structure

- Set of events: no structure
- Topology: 4 dimensional real manifold, Hausdorff, paracompact, ...
- Differentiable structure: tangent spaces
- Causal structure: light cones, defines metric up to conformal transformations. This is $\frac{9}{10}$ of the metric.
- Parallel transport: affine structure.
The layers of spacetime structure

- Set of events: no structure
- Topology: 4 dimensional real manifold, Hausdorff, paracompact,...
- Differentiable structure: tangent spaces
- Causal structure: light cones, defines metric up to conformal transformations. This is $\frac{9}{10}$ of the metric.
- Parallel transport: affine structure.
- Lorentzian metric: gives a length scale.
The causal structure of spacetime

At every point a pair of “cones” is defined in the tangent space: future and past light cone. A vector on the cone is called null or lightlike and one inside the cone is called timelike.
The causal structure of spacetime

- At every point a pair of “cones” is defined in the tangent space: future and past light cone. A vector on the cone is called null or lightlike and one inside the cone is called timelike.
- We assume that spacetime is time-orientable: there is a global notion of future and past.
The causal structure of spacetime

- At every point a pair of "cones" is defined in the tangent space: future and past light cone. A vector on the cone is called null or lightlike and one inside the cone is called timelike.
- We assume that spacetime is time-orientable: there is a global notion of future and past.
- A timelike curve from x to y has a tangent vector that is everywhere timelike: we write $x \preceq y$. (We avoid $x \ll y$ for now.) A causal curve has a tangent that, at every point, is either timelike or null: we write $x \leq y$.
Penrose and Kronheimer axiomatize causal spaces as sets with two orders, written $<$ and \prec (and a third relation derived from them, the “horismos”).
Penrose and Kronheimer axiomatize causal spaces as sets with two orders, written $<$ and \prec (and a third relation derived from them, the “horismos”).

A fundamental axiom is that $<$ is a partial order.
Penrose and Kronheimer axiomatize causal spaces as sets with two orders, written $<$ and \prec (and a third relation derived from them, the “horismos”).

A fundamental axiom is that $<$ is a partial order.

Other axioms describe the interaction of $<$ and \prec.
Penrose and Kronheimer axiomatize causal spaces as sets with two orders, written $<$ and \preceq (and a third relation derived from them, the “horismos”).

A fundamental axiom is that $<$ is a partial order.

Other axioms describe the interaction of $<$ and \preceq.

The \leq and \ll orders satisfy all the axioms of a causal space.
$I^+(x) := \{ y \in M | x \preceq y \}$; similarly I^-

Chronology: $x \preceq y \Rightarrow y \not\preceq x$.

Causality: $x \leq y$ and $y \leq x$ implies $x = y$.

I^+ and I^- are always open sets in the manifold topology; J^+ and J^- are not always closed sets.
Causal Structure of Spacetime II

- $I^+(x) := \{ y \in M \mid x \preceq y \}$; similarly I^-
- $J^+(x) := \{ y \in M \mid x \preceq y \}$; similarly J^-.

Chronology: $x \preceq y \Rightarrow y \not\preceq x$.

Causality: $x \leq y$ and $y \leq x$ implies $x = y$.
Causal Structure of Spacetime II

- $I^+(x) := \{ y \in M | x \preceq y \}$; similarly I^-
- $J^+(x) := \{ y \in M | x \preceq y \}$; similarly J^-.
- I^\pm are always open sets in the manifold topology; J^\pm are not always closed sets.
\begin{itemize}
 \item $I^+(x) := \{ y \in M \mid x \preceq y \}$; similarly I^-.
 \item $J^+(x) := \{ y \in M \mid x \leq y \}$; similarly J^-.
 \item I^\pm are always open sets in the manifold topology; J^\pm are not always closed sets.
 \item Chronology: $x \preceq y \Rightarrow y \npreceq x$.
\end{itemize}
\[I^+(x) := \{ y \in M| x \preceq y \}; \text{ similarly } I^- \]
\[J^+(x) := \{ y \in M| x \preceq y \}; \text{ similarly } J^- . \]
\[J^\pm \text{ are always open sets in the manifold topology}; J^\pm \text{ are not always closed sets}. \]
\[\text{Chronology: } x \preceq y \Rightarrow y \not\preceq x . \]
\[\text{Causality: } x \preceq y \text{ and } y \preceq x \text{ implies } x = y . \]
Causality Conditions

\[I^{\pm}(p) = I^{\pm}(q) \implies p = q. \]
Causality Conditions

\[I^\pm(p) = I^\pm(q) \Rightarrow p = q. \]

- Strong causality at \(p \): Every neighbourhood \(\mathcal{O} \) of \(p \) contains a neighbourhood \(\mathcal{U} \subset \mathcal{O} \) such that no causal curve can enter \(\mathcal{U} \), leave it and then re-enter it.
Causality Conditions

\[I^\pm(p) = I^\pm(q) \Rightarrow p = q. \]

- Strong causality at \(p \): Every neighbourhood \(\mathcal{O} \) of \(p \) contains a neighbourhood \(\mathcal{U} \subset \mathcal{O} \) such that no causal curve can enter \(\mathcal{U} \), leave it and then re-enter it.

- In such a spacetime a future directed causal curve cannot get trapped in a compact set.
Causality Conditions

\[I^\pm(p) = I^\pm(q) \Rightarrow p = q. \]

- Strong causality at \(p \): Every neighbourhood \(\mathcal{O} \) of \(p \) contains a neighbourhood \(\mathcal{U} \subset \mathcal{O} \) such that no causal curve can enter \(\mathcal{U} \), leave it and then re-enter it.

- In such a spacetime a future directed causal curve cannot get trapped in a compact set.

- Stable causality: perturbations of the metric do not cause violations of causality.
Causality Conditions

\[I^\pm(p) = I^\pm(q) \Rightarrow p = q. \]

- Strong causality at \(p \): Every neighbourhood \(\mathcal{O} \) of \(p \) contains a neighbourhood \(\mathcal{U} \subset \mathcal{O} \) such that no causal curve can enter \(\mathcal{U} \), leave it and then re-enter it.
- In such a spacetime a future directed causal curve cannot get trapped in a compact set.
- Stable causality: perturbations of the metric do not cause violations of causality.
- Causal simplicity: for all \(x \in M \), \(J^\pm(x) \) are closed.
Global Hyperbolicity

- Spacetime has good initial data surfaces for global solutions to hyperbolic partial differential equations (wave equations). [Leray]
Global Hyperbolicity

- Spacetime has good initial data surfaces for global solutions to hyperbolic partial differential equations (wave equations). [Leray]
- Global hyperbolicity: M is strongly causal and for each p, q in M, $[p, q] := J^+(p) \cap J^-(q)$ is compact.
The Alexandrov Topology

Define

\[\langle x, y \rangle := I^+(x) \cap I^-(y). \]

The sets of the form \(\langle x, y \rangle \) form a base for a topology on \(M \) called the Alexandrov topology.

Theorem (Penrose): TFAE:

1. \((M, g) \) is strongly causal.
The Alexandrov Topology

Define

\[\langle x, y \rangle := I^+(x) \cap I^-(y). \]

The sets of the form \(\langle x, y \rangle \) form a base for a topology on \(M \) called the Alexandrov topology.

Theorem (Penrose): TFAE:

1. \((M, g)\) is strongly causal.
2. The Alexandrov topology agrees with the manifold topology.
The Alexandrov Topology

Define

\[\langle x, y \rangle := I^+(x) \cap I^-(y). \]

The sets of the form \(\langle x, y \rangle \) form a base for a topology on \(M \) called the Alexandrov topology.

Theorem (Penrose): TFAE:

1. \((M, g)\) is strongly causal.
2. The Alexandrov topology agrees with the manifold topology.
3. The Alexandrov topology is Hausdorff.
Scott’s “domain” theory

- Order as (qualitative) information content
Scott’s “domain” theory

- Order as (qualitative) information content
- Data types are organized into so-called “domains”: directed-complete (directed sets have least upper bounds) posets
Scott’s “domain” theory

- Order as (qualitative) information content
- Data types are organized into so-called “domains”: directed-complete (directed sets have least upper bounds) posets
- For “directed set” think “chain.”
Scott’s “domain” theory

- Order as (qualitative) information content
- Data types are organized into so-called “domains”: directed-complete (directed sets have least upper bounds) posets
- For “directed set” think “chain.”
- Computable functions are viewed as continuous with respect to a suitable topology: the Scott topology.
Scott’s “domain” theory

- Order as (qualitative) information content
- Data types are organized into so-called “domains”: directed-complete (directed sets have least upper bounds) posets
- For “directed set” think “chain.”
- Computable functions are viewed as continuous with respect to a suitable topology: the Scott topology.
- Ideal (infinite) elements are limits of their (finite) approximations.
Examples of domains

- The integers with no relation between them and a special element \(\bot \) below all the integers: a flat domain.
Examples of domains

- The integers with no relation between them and a special element \(\perp \) below all the integers: a flat domain.
- Sequences of elements from \(\{a, b\} \) ordered by prefix: the domain of streams.
Examples of domains

- The integers with no relation between them and a special element \bot below all the integers: a flat domain.
- Sequences of elements from $\{a, b\}$ ordered by prefix: the domain of streams.
- Compact non-empty intervals of real numbers ordered by *reverse* inclusion (with \mathbb{R} thrown in).
Examples of domains

- The integers with no relation between them and a special element \(\bot \) below all the integers: a flat domain.
- Sequences of elements from \(\{a, b\} \) ordered by prefix: the domain of streams.
- Compact non-empty intervals of real numbers ordered by reverse inclusion (with \(\mathbb{R} \) thrown in).
- \(X \) a locally compact space with \(K(X) \) the collection of compact subsets ordered by reverse inclusion.
In addition to \leq there is an additional, (often) irreflexive, transitive relation written \ll: $x \ll y$ means that x has a “finite” piece of information about y or x is a “finite approximation” to y. If $x \ll x$ we say that x is finite.

In addition to \leq there is an additional, (often) irreflexive, transitive relation written \ll: $x \ll y$ means that x has a “finite” piece of information about y or x is a “finite approximation” to y. If $x \ll x$ we say that x is finite.

The relation $x \ll y$ - pronounced x is “way below” y - is directly defined from \leq.
The Way-below relation

In addition to \leq there is an additional, (often) irreflexive, transitive relation written \ll: $x \ll y$ means that x has a “finite” piece of information about y or x is a “finite approximation” to y. If $x \ll x$ we say that x is finite.

The relation $x \ll y$ - pronounced x is “way below” y - is directly defined from \leq.

Official definition of $x \ll y$: If $X \subset D$ is directed and $y \leq (\bigvee X)$ then there exists $u \in X$ such that $x \leq u$. If a limit gets past y then some finite stage of the limiting process already got past x.
A continuous domain D has a basis of elements $B \subset D$ such that for every x in D the set $x \downarrow := \{ u \in B | u \ll x \}$ is directed and $\bigvee (x \downarrow) = x$.

A continuous function between domains is order monotone and preserves lubs (sups) of directed sets.

Why are directed sets so important? They are collecting consistent pieces of information. Surely the words "continuous function" should have something to do with topology?
A continuous domain D has a basis of elements $B \subset D$ such that for every x in D the set $x \downarrow := \{ u \in B | u \ll x \}$ is directed and $\bigvee (x \downarrow) = x$.

A *continuous* function between domains is order monotone and preserves lubs (sups) of directed sets.
Domain theory continued

- A continuous domain D has a basis of elements $B \subset D$ such that for every x in D the set $x \downarrow := \{ u \in B | u \ll x \}$ is directed and $\bigvee (x \downarrow) = x$.

- A continuous function between domains is order monotone and preserves lubs (suprs) of directed sets.

- Why are directed sets so important? They are collecting consistent pieces of information.
A continuous domain D has a basis of elements $B \subseteq D$ such that for every x in D the set $x \ll \{ u \in B \mid u \ll x \}$ is directed and $\bigvee (x \ll) = x$.

A *continuous* function between domains is order monotone and preserves lubs (sups) of directed sets.

Why are directed sets so important? They are collecting consistent pieces of information.

Surely the words “continuous function” should have something to do with topology?
The dream

Find a topology so that Turing computability is precisely continuity.
The dream

- Find a topology so that Turing computability is precisely continuity.
- Scott’s topology comes close.
The dream

- Find a topology so that Turing computability is precisely continuity.
- Scott’s topology comes close.
- All computable functions are Scott continuous but one still needs some recursion theoretic machinery to pin down exactly what computable means.
the open sets of D are upwards closed and if \mathcal{O} is open, then if $X \subset D$ is directed and $\bigvee X \in \mathcal{O}$ it must be the case that some $x \in X$ is in \mathcal{O}.
the open sets of D are upwards closed and if O is open, then if $X \subset D$ is directed and $\bigsqcup X \in O$ it must be the case that some $x \in X$ is in O.

The effectively checkable properties.
the open sets of D are upwards closed and if \mathcal{O} is open, then if $X \subset D$ is directed and $\bigvee X \in \mathcal{O}$ it must be the case that some $x \in X$ is in \mathcal{O}.

The effectively checkable properties.

This topology is T_0 but not T_1.
basis of the form

\[\mathcal{O} \setminus \bigcup_i (x_i \uparrow) \].
Topologies of Domains 2: The Lawson topology

- basis of the form \(\mathcal{O} \setminus \bigcup_i (x_i \uparrow) \).
- Says something about negative information.
Topologies of Domains 2: The Lawson topology

- basis of the form \[\mathcal{O} \setminus \bigcup_i (x_i \uparrow) \].
- Says something about negative information.
- This topology is metrizable.
Topologies of Domains 2: The Lawson topology

- basis of the form $\mathcal{O} \setminus \bigcup_i (x_i \uparrow)$.
- Says something about negative information.
- This topology is metrizable.
- It has the same Borel algebra as the Scott topology.
Topologies of Domains 3: The interval topology

Basis sets of the form \([x, y] := \{u | x \ll u \ll y\}\).
Basis sets of the form $[x, y] := \{u | x \ll u \ll y\}$.

The domain theoretic analogue of the Alexandrov topology.
Topologies of Domains 3: The interval topology

- Basis sets of the form \([x, y] := \{u | x \ll u \ll y\}\).
- The domain theoretic analogue of the Alexandrov topology.
- Caveat: the “Alexandrov topology” means something else in the theory of topological lattices.
The role of way below in spacetime structure

Theorem: Let \((M, g)\) be a spacetime with Lorentzian signature. Define \(x \ll y\) as the way-below relation of the causal order. If \((M, g)\) is globally hyperbolic then \(x \ll y\) iff \(y \in I^+(x)\).
The role of way below in spacetime structure

Theorem: Let \((M, g)\) be a spacetime with Lorentzian signature. Define \(x \ll y\) as the way-below relation of the causal order. If \((M, g)\) is globally hyperbolic then \(x \ll y\) iff \(y \in I^+(x)\).

One can recover \(I\) from \(J\) without knowing what smooth or timelike means.
Theorem: Let (M, g) be a spacetime with Lorentzian signature. Define $x \ll y$ as the way-below relation of the causal order. If (M, g) is globally hyperbolic then $x \ll y$ iff $y \in I^+(x)$.

One can recover I from J without knowing what smooth or timelike means.

Intuition: any way of approaching y must involve getting into the timelike future of x.

We can stop being coy about notational clashes: henceforth \ll is way-below and the timelike order.
The definition of continuous domain - or poset - is biased towards approximation from below. If we symmetrize the definitions we get bicontinuity (details in the paper).
The definition of continuous domain - or poset - is biased towards approximation from below. If we symmetrize the definitions we get bicontinuity (details in the paper).

Theorem: If \((M, g)\) is globally hyperbolic then \((M, \leq)\) is a bicontinuous poset. In this case the interval topology is the manifold topology.
An “abstract” version of globally hyperbolic

We define a globally hyperbolic poset \((X, \leq)\) to be bicontinuous and,
An “abstract” version of globally hyperbolic

We define a globally hyperbolic poset \((X, \leq)\) to be

1. bicontinuous and,
2. all segments \([a, b] := \{x : a \leq x \leq b\}\) are compact in the interval topology on \(X\).
An Important Example of a Domain: $\mathbb{I} \mathbb{R}$

- The collection of compact intervals of the real line
 \[\mathbb{I} \mathbb{R} = \{ [a, b] : a, b \in \mathbb{R} \land a \leq b \} \]
 ordered under reverse inclusion
 \[[a, b] \sqsubseteq [c, d] \iff [c, d] \subseteq [a, b] \]
 is an ω-continuous dcpo.
An Important Example of a Domain: $\mathbb{I}\mathbb{R}$

- The collection of compact intervals of the real line

 \[\mathbb{I}\mathbb{R} = \{ [a, b] : a, b \in \mathbb{R} \& a \leq b \} \]

 ordered under reverse inclusion

 \[[a, b] \sqsubseteq [c, d] \iff [c, d] \subseteq [a, b] \]

 is an ω-continuous dcpo.

- For directed $S \subseteq \mathbb{I}\mathbb{R}$, $\bigsqcup S = \bigcap S$.
Interval Domains

\[\mathbb{I}\mathbb{R} \text{ continued}. \]

- \(I \ll J \iff J \subseteq \text{int}(I) \), and

\[\{ [p, q] : p, q \in \mathbb{Q} \land p \leq q \} \] is a countable basis for \(\mathbb{I}\mathbb{R} \).
$I \ll J \iff J \subseteq \text{int}(I)$, and

$\{[p, q] : p, q \in \mathbb{Q} \& p \leq q\}$ is a countable basis for \mathbb{IR}.
The domain \mathbb{IR} is called the interval domain.
The domain $\mathbb{I}\mathbb{R}$ is called the interval domain.
We have $\max(\mathbb{I}\mathbb{R}) \sim \mathbb{R}$ in the Scott topology.
The domain $\mathbb{I}\mathbb{R}$ is called the interval domain.

We have $\text{max}(\mathbb{I}\mathbb{R}) \sim \mathbb{R}$ in the Scott topology.

The “classical” structure lives on top - ideal points,
The domain $\mathbb{I}\mathbb{R}$ is called the interval domain.

We have $\text{max}(\mathbb{I}\mathbb{R}) \sim \mathbb{R}$ in the Scott topology.

The “classical” structure lives on top - ideal points,

there is now a substrate of “approximate” elements.
The closed segments of a globally hyperbolic poset X

$\mathcal{I}X := \{[a, b] : a \leq b \& a, b \in X\}$

directed by reverse inclusion form a continuous domain with
The closed segments of a globally hyperbolic poset X

$$IX := \{ [a, b] : a \leq b \land a, b \in X \}$$

ordered by reverse inclusion form a continuous domain with

$$[a, b] \ll [c, d] \equiv a \ll c \land d \ll b.$$
The closed segments of a globally hyperbolic poset X

$$IX := \{[a, b] : a \leq b \land a, b \in X\}$$

ordered by reverse inclusion form a continuous domain with

$$[a, b] \ll [c, d] \equiv a \ll c \land d \ll b.$$

X has a countable basis iff IX is ω-continuous.
\[
\max(IX) \simeq X
\]

where the set of maximal elements has the relative Scott topology from IX.
If we have a countable dense subset C of \mathcal{M}, a globally hyperbolic spacetime, then we can view the induced causal order on C as defining a discrete poset. An ideal completion construction in domain theory, applied to a poset constructed from C yields a domain \mathbf{IC} with

$$\text{max}(\mathbf{IC}) \cong \mathcal{M}$$

where the set of maximal elements have the Scott topology. Thus from a countable subset of the manifold we can reconstruct the whole manifold.
One can define categories of globally hyperbolic posets and an abstract notion of “interval domain”: these can also be organized into a category.
One can define categories of globally hyperbolic posets and an abstract notion of “interval domain”: these can also be organized into a category.

These two categories are equivalent.
One can define categories of globally hyperbolic posets and an abstract notion of “interval domain”: these can also be organized into a category.

These two categories are equivalent.

Thus globally hyperbolic spacetimes are domains - not just posets - but
One can define categories of globally hyperbolic posets and an abstract notion of “interval domain”: these can also be organized into a category.

These two categories are equivalent.

Thus globally hyperbolic spacetimes are domains - not just posets - but

not with the causal order but, rather, with the order coming from the notion of intervals; i.e. from notions of approximation.
The domain consists of intervals \([x, y] = J^+(x) \cap J^-(y)\).
Spacetime as a domain

- The domain consists of intervals $[x, y] = J^+(x) \cap J^-(y)$.
- For globally hyperbolic spacetimes these are all compact.
Spacetime as a domain

- The domain consists of intervals \([x, y] = J^+(x) \cap J^-(y)\).
- For globally hyperbolic spacetimes these are all compact.
- The order is inclusion.
Spacetime as a domain

- The domain consists of intervals $[x, y] = J^+(x) \cap J^-(y)$.
- For globally hyperbolic spacetimes these are all compact.
- The order is inclusion.
- The maximal elements are the usual points $x = J^+(x) \cap J^-(x)$.
The domain consists of intervals $[x, y] = J^+(x) \cap J^-(y)$. For globally hyperbolic spacetimes these are all compact. The order is inclusion. The maximal elements are the usual points $x = J^+(x) \cap J^-(x)$. The other elements are “approximate points.”
Other layers of structure

- We would like to put differential structure on the domain and
Other layers of structure

- We would like to put differential structure on the domain and
- metric structure as well.
Other layers of structure

- We would like to put differential structure on the domain and metric structure as well.
- There are derivative concepts for domains – not yet explored in this context.
Other layers of structure

- We would like to put differential structure on the domain and metric structure as well.
- There are derivative concepts for domains – not yet explored in this context.
- Keye Martin defined a concept called a “measurement.” This is designed to capture quantitative notions on domains.
We would like to put differential structure on the domain and metric structure as well.

There are derivative concepts for domains – not yet explored in this context.

Keye Martin defined a concept called a “measurement.” This is designed to capture quantitative notions on domains.

Metric notions can be related to these measurements.
Keye’s measurements

A measurement on D is a function $\mu : D \rightarrow (\infty, 0]$ (reverse ordered) that is Scott continuous and satisfies some extra conditions.
A measurement on D is a function $\mu : D \rightarrow (\infty, 0]$ (reverse ordered) that is Scott continuous and satisfies some extra conditions.

We write $\ker(\mu)$ for $\{x | \mu(x) = 0\}$ and $\mu_\epsilon(x) = \{y | y \sqsubseteq x \text{ and } |\mu(x) - \mu(y)| \leq \epsilon\}$.
Keye’s measurements

- A *measurement* on D is a function $\mu : D \to (\infty, 0]$ (reverse ordered) that is Scott continuous and satisfies some extra conditions.
- We write $\ker(\mu)$ for $\{x | \mu(x) = 0\}$ and $\mu_\epsilon(x) = \{y | y \subseteq x \text{ and } |\mu(x) - \mu(y)| \leq \epsilon\}$.
- For any Scott open set U and any $x \in \ker(\mu)$

\[x \in U \Rightarrow (\exists \epsilon > 0) x \in \mu_\epsilon \subseteq U. \]
Idea: $\mu(x)$ measures the “uncertainty” in x.

Idea: $\mu(x)$ measures the "uncertainty" in x.
Maximal elements have zero uncertainty.
Idea: $\mu(x)$ measures the “uncertainty” in x.
Maximal elements have zero uncertainty.
On a suitable domain of probability distributions Shannon entropy is a measurement.
Does the volume of an interval or the length of the longest geodesic give a measurement on the domain of spacetime intervals?
Does the volume of an interval or the length of the longest geodesic give a measurement on the domain of spacetime intervals?

Unfortunately not! If a and b are null related then you get a nontrivial interval with zero volume.
Does the volume of an interval or the length of the longest geodesic give a measurement on the domain of spacetime intervals?

Unfortunately not! If a and b are null related then you get a nontrivial interval with zero volume.

However, any globally hyperbolic spacetime (in fact any stably causal one) has a *global time function*. The difference in the global time function does give a measurement.
Does the volume of an interval or the length of the longest geodesic give a measurement on the domain of spacetime intervals?

Unfortunately not! If a and b are null related then you get a nontrivial interval with zero volume.

However, any globally hyperbolic spacetime (in fact any stably causal one) has a \textit{global time function}. The difference in the global time function does give a measurement.

Knowing the global time function effectively gives the rest of the metric.
Keye Martin and Bob Coecke showed that on a suitable domain of quantum states the entropy is a measurement (also works for classical states).

Channel capacity as geometry?

In spacetime I want to be able to view a path from p to q as a “channel” and to measure its capacity. If we transmit messages from p to q the Hawking radiation produces noise and thus limits the capacity. The same thing happens in the Rindler wedge and we can use this to help with encrypting. Details in Bradler, Hayden, P. CMP 2012.

Can we think of spacetime geometry in terms of its capacity to convey information?
Reconstructing spacetime

Channel capacity as geometry?

- Keye Martin and Bob Coecke showed that on a suitable domain of quantum states the entropy is a measurement (also works for classical states).
- In spacetime I want to be able to view a path from p to q as a “channel” and to measure its capacity.
Keye Martin and Bob Coecke showed that on a suitable domain of quantum states the entropy is a measurement (also works for classical states).

In spacetime I want to be able to view a path from \(p \) to \(q \) as a “channel” and to measure its capacity.

If we transmit messages from \(p \) to \(q \) the Hawking radiation produces noise and thus limits the capacity.
Channel capacity as geometry?

- Keye Martin and Bob Coecke showed that on a suitable domain of quantum states the entropy is a measurement (also works for classical states).
- In spacetime I want to be able to view a path from p to q as a “channel” and to measure its capacity.
- If we transmit messages from p to q the Hawking radiation produces noise and thus limits the capacity.
- The same thing happens in the Rindler wedge and we can use this to help with encrypting.
Keye Martin and Bob Coecke showed that on a suitable domain of quantum states the entropy is a measurement (also works for classical states).

In spacetime I want to be able to view a path from \(p \) to \(q \) as a “channel” and to measure its capacity.

If we transmit messages from \(p \) to \(q \) the Hawking radiation produces noise and thus limits the capacity.

The same thing happens in the Rindler wedge and we can use this to help with encrypting.

Details in Bradler, Hayden, P. CMP 2012.
Reconstructing spacetime

Channel capacity as geometry?

- Keye Martin and Bob Coecke showed that on a suitable domain of quantum states the entropy is a measurement (also works for classical states).
- In spacetime I want to be able to view a path from p to q as a “channel” and to measure its capacity.
- If we transmit messages from p to q the Hawking radiation produces noise and thus limits the capacity.
- The same thing happens in the Rindler wedge and we can use this to help with encrypting.
- Details in Bradler, Hayden, P. CMP 2012.
- Can we think of spacetime geometry in terms of its capacity to convey information?