
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Game semantics for quantum stores

Yannick Delbecquea,1,2 Prakash Panagadena,3

a School of computer science
McGill University
Montreal, Canada

Abstract

This paper presents a game semantics for a simply-typed λ-calculus equipped with quantum stores. The quantum stores are
equipped with quantum operations as commands which give the language enough expressiveness to encode any quantum
circuits. The language uses a notion of extended variable, similar to that seen in functional languages with pattern matching,
but adapted to the needs of dealing with tensor products. These tensored variables are used to refer to quantum stores and
to keep track of the size of the states which they contain. The game semantics is constructed from classical game semantics
using intervention operators to encode the effects of the commands. A soundess result for the semantics is given.

Keywords: Game semantics, quantum programing languages, quantum games.

1 Introduction

An important problem in the development of higher-order quantum programming lan-
guages is to find an appropriate structure to define a denotational semantics. For exam-
ple, there was no denotational semantics given in the first presentations of the quantum λ-
calculus developed by Selinger and Valiron [15,13]. They proposed in [14] a denotational
semantics for the linear part of the quantum λ-calculus; their interpretation is in the cate-
gory CPM of completely positive maps on finite dimensional Hilbert spaces. Working with
this restricted language allows them to avoid the problem of finding a structure which can
model the possible interactions between the quantum data and the classical data in higher
order quantum programming languages. To address this problem, there are many structures
to choose from. One can consider for example the biproduct completion of CPM [12,14]
or the concept of classical objects [2]. These two examples share a common approach:
classical data is encoded using properties of the Hilbert space structure used to describe
quantum data. In this paper we use a different strategy: quantum data is represented by the
classical interactions used to manipulate quantum states and extract information from them
with measurements. More precisely, a quantum state is represented as a strategy which

1 This research was supported by a grant from NSERC (Canada)
2 Email: yannick@delbecque.org
3 Email: prakash@cs.mcgill.ca

c©2008 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:yannick@delbecque.org
mailto:prakash@cs.mcgill.ca

Delbecque and Panangaden

makes someone chose the actions according to the laws of quantum mechanics. Our pro-
posed model is built with ideas from game semantics augmented with a new game in which
plays describe the behavior of quantum stores.

There are important differences between the quantum λ-calculus of Valiron and Selinger
and the language presented in this paper. First, the former language does not allow quantum
states to be introduced directly: they can only be referred to using variables of type qbit.
Thus, in the type system quantum states are considered as data of type qbit which cannot
be duplicated. The quantum store language introduced below is based upon the idea that
there should be no harm in duplicating a reference to a qbit, as long as it is not possible to
duplicate the qbit itself. With this approach, it is not necessary to assume that variables are
used only linearly: each use updates the stored value.

A second difference between the quantum λ-calculus and the quantum store language is
the way tensor products of quantum states are dealt with. There is a tensor type-constructor
in the quantum λ-calculus which is complemented with a bang operation and typing rules
inspired from linear logic. The idea is that the distinction between classical types and quan-
tum types can be reduced to duplicability since quantum data is not duplicable while classi-
cal data is. When combined with abstraction, a tensor type constructor allows one to take a
program of type qbit⊗ qbit(qbit⊗ qbit to a program of type qbit(

(
qbit(qbit ⊗ qbit

)
.

This may seem problematic, since intuitively this takes a function with two input qbits,
which may be in some entangled state, to a program with should be equivalent but using
only separated qbits. This is avoided in the quantum store language since there is no tensor
type construction. Instead, the quantum stores are equipped with a preparation operation
which allows one to add qbits to the current state as necessary. To keep track of the size of
the currently held state, we introduce tensor of variables to refer to the quantum stores.

2 Quantum mechanics and quantum interventions

A quantum system A is represented as a finite-dimensional Hilbert space HA. A quantum
state is represented as a Hermitian positive operator ρ on HA of unit trace. These operators
are called density matrices. The set of density matrices on HA is denoted D(HA). The
set of positive operators of trace less than one is denoted SD(HA); we call such operators
subdensity matrices.

An important postulate of quantum mechanics is that the states of a composite quantum
system AB are described by the density matrices on the tensor product HA ⊗ HB. The
evolution of a state over time is described by unitary operation on the Hilbert space: a
state ρ is sent to U(ρ) = UρU†. The final ingredient of basic quantum mechanics is the
concept of quantum measurement by which one extracts classical information about a state
by interacting with it. The measurement gives some information m and alters the measured
state. This is usually described using projections: a projective measurement is a family
of projection operators {Pm} indexed by the measurement results such that

∑
Pm = 1 and

Pm1 Pm2 = 0 if m1 , m2. If a state ρ is measured, we get the result m with probability
pm = tr

(
PmρP†m

)
and the process leaves the system in state PmρP†m/pm. We will denote the

projection operator on the canonical basis vector |k〉 by [k]. To simplify the notation, an
operation of the form IA ⊗ M ⊗ IC on HA ⊗ HB ⊗ HC , where M is a linear operator on HB,
is denoted by MB.

Peres introduced a general description of quantum measurements called intervention

2

Delbecque and Panangaden

operators [10]. The measurement process is conceived of as a unitary interaction of a
measurement apparatus with the quantum system to be measured, followed by a projec-
tive measurement on the combined system. Mathematically, Peres proved that this process
is some described by what are commonly called superoperators. A superoperator is a
completely positive trace non-increasing map E : SD (HA) → SD (HB). Superoperators
are composed as usual, but we use a convenient convention: if the domain of E does not
match the codomain of F we put EF = 0. This convention is consistent with the quantum
mechanical interpretation of superoperators: an impossible operation is assigned probabil-
ity zero. A quantum intervention on a Hilbert space HA is a collection of superoperators
E =

{
Em : SD(HA)→ SD(HBm)

}
indexed by measurement results m, such that we have∑

m tr (Em(ρ)) = 1 for any state ρ. If the system is initially in state ρ, performing the quan-
tum intervention yields result m with probability pm = tr (Em(ρ)) and leaves the system in
state Em(ρ)/pm. Note that the space HBm may depend on the measurement outcome.

3 Simply typed λ-calculus with quantum stores

We now introduce a λ-calculus with quantum stores language (QSL) The syntax of QSL is
built upon a simply typed λ-calculus with pairing, conditionals and sequential composition.
Quantum operations are added using quantum stores which have a syntax analogous to clas-
sical stores. In a classical higher-order programming language with stores, like idealised
ALGOL [11], stores are references to values. They are used through various operations like
dereferencing and assignment. The quantum stores we use below are defined according to
the following parallel between classical and quantum references:

Classical stores Quantum stores
Dereferencing Measurement
Assignment Preparation

Command with side effects Unitary transformation

In this picture, the quantum counterpart of dereferencing, which classically returns the
value stored, is quantum measurement. The counterpart of assignment is state prepara-
tion. Note that, while classically it is possible to assign a value to a store multiple times,
this is not the case with quantum stores, as a quantum state cannot be destroyed. Instead,
preparation expands a given state with a new known quantum state. Classical stores can be
equipped with commands with side effects, for example, an integer incrementation com-
mand. Unitary operations on the store are the quantum counterpart of classical update
operations.

3.1 Syntax

We need to introduce a new syntactic device to accommodate quantum stores. When multi-
ple quantum stores are combined, they can be measured by using a projective measurement
on the whole space. Because of this, we must be able to refer to the combined store as a
whole, while keeping the possibility to refer to a part of the system. To this end, we intro-
duce tensor of variables in the syntax. An extended variable is an expression of the form
x1 ⊗ · · · ⊗ xn, where the xi are variables such that xi , x j if i , j. Two extended variables
x1 ⊗ · · · ⊗ xn and y1 ⊗ · · · ⊗ ym are disjoint if xi , y j for all i, j. Two such extended variables
can be joined to form a new extended variable x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ ym. Note that when

3

Delbecque and Panangaden

we use x1⊗· · ·⊗ xn to refer to an arbitrary extended variable, the case n = 1 is also possible.
We use the notation x1⊗· · ·⊗ xn v y1⊗· · ·⊗ym when each of the variables x1, . . . , xn occurs
in y1 ⊗ · · · ⊗ yn and the order of the occurrences is the same in both extended variables. We
say in this case that x1 ⊗ · · · ⊗ xn is a subvariable of y1 ⊗ · · · ⊗ ym. To simplify the notation,
we use x instead of x1 ⊗ · · · ⊗ xn, leaving the number n implicit.

The terms of QSL are defined by

M,N, PF x | ∗ | 0 | 1 | skip | λx.M | MN | if M then N else P | 〈M,N〉 |
fst M | snd M | M; N | meas x | new x in M | UM | prep y with x in M

where x and y can be any extended variables and U can be any multiple-qbits unitary
transformation. All the classical operations used are standard operations: 〈M,N〉 is pairing,
fst and snd are the two associated projection operations, M; N is sequential composition,
and skip is the operation doing nothing. The quantum part of the language consists of
operations to manipulate quantum stores: measurement, qbit creation, unitary modification
and preparation of extra qbits. The measurement operation meas x measures the qbit x in
the quantum register in the canonical basis and returns a boolean value corresponding to the
measurement result. For the preparation operation, prep y with x in M means that a given
quantum store x is extended to a larger store by adding extra qbits prepared in the |0〉 state.
In M, the whole extended store is referred to as x ⊗ y.

As in any λ-calculus, the λ operation is a binder. Observe that it can be used on extended
variables, i.e. terms like λx ⊗ y.meas x are allowed. The preparation operation is also a
binder: x is not free in the term prep y with x in M. The set of free extended variables of
M is denoted by FV(M). A term M is closed if it has no free extended variables. We
use the notation M[N/x] to denote the capture-free substitution (no occurrence of a free
variable in N is bound in M) of the term N for every occurrence of x. For clarity, we
use the alternative notation let x = N in M for (λx.M)N. When multiple variables are
bound in this manner successively, we use the notation let x1 = N1, . . . , xn = Nn in M for
(λxn. . . . (λx1.M) N1 . . .) Nn.

The types of the λ-calculus with quantum stores are the following:

A, BF bool | com | > | A × B | A⇒ B | qstore.

The type bool is the type of boolean constants, A × B and A⇒ B are respectively the types
of pairs and functions. The type com is the type of commands which can be composed
using sequential composition. The type qstore is the type of a quantum store. A quantum
store does not have a fixed dimension, as the number of qbits it hold can vary in the course
of a computation if preparation operations are used.

The typing rules rules for the classical part are given in table 1. The rules for the
classical part of the language are the standard rules of a simply typed λ-calculus where
extended variables can be used. The rules for involving quantum operations encode the
idea that the content of quantum stores can be measured, modified using unitary trans-
formations and that quantum stores can be prepared or extended with an ancilla state.
Note that the unitary operation rule allows unitary operations to be applied only to part
of a quantum register. An important feature of QSL is that the typing rules do not for-
bid having multiple references to a quantum store. For example, the typing judgement
x : qstore ` 〈meas x,meas x〉 : bool × bool is valid. Copying a reference to a qbit is not the

4

Delbecque and Panangaden

Table 1
QSL typing rules

Γ, x : A ` x : A Γ ` 0: bool Γ ` 1: bool Γ ` ∗ : > Γ ` skip : com

Γ ` M : A⇒ B Γ ` N : A
Γ ` MN : B

Γ, x : A ` M : B
Γ ` λx.M : A⇒ B

Γ ` M1 : A1 Γ ` M2 : A2

Γ ` 〈M1,M2〉 : A1 × A2

Γ ` M : A × B
Γ ` fst M : A

Γ ` M : A × B
Γ ` snd M : B

Γ ` P : bool Γ ` M : A Γ ` N : A
Γ ` if P then M else N : A

Γ ` M : com Γ ` N : A
Γ ` M; N : A A = com or bool Γ, x : qstore ` meas xi : bool xi v x

Γ, x : qstore ` U y1 ⊗ · · · ⊗ ym : com
y v x
U : unitary, rank(U) = m

Γ, x : qstore ` M : A
Γ ` new x in M : A

Γ, x ⊗ y : qstore ` M : A
Γ, x : qstore ` prep y with x in M : A

same thing as duplicating the qbit. Yet the language does not allow unknown qbit duplica-
tion: to duplicate the content of a quantum store x, one would need to prepare a new qbit
y and apply an appropriate unitary transformation to the quantum store x ⊗ y. There is no
such unitary transformation.

3.2 Operational semantics

The operational semantics of the classical part of the quantum store language is standard.
For the quantum part we use a quantum variant of stores. Note that we expect that the
reduction relation of this language depends on reduction order. There is nothing special in
the quantum case in this regard. For example, assuming that x is a classical integer store
holding the value 1, the term 〈x := x + 1, x〉 will reduce in a classical language to either
〈2, 2〉 or 〈2, 1〉 depending on which component is reduced first.

A quantum store Q is a function taking extended variables x1 ⊗ · · · ⊗ xn taken in a finite
domain of extended variables |Q| to a state |x1 . . . xn〉Q ∈

(
C2

)⊗n
. The domain |Q| is assumed

to contain only disjoint extended variables. A quantum store holds the state of the quantum
registers that are used in a quantum λ-calculus term. We drop the index Q when the context
makes it clear to which quantum store a state belongs.

A quantum store Q can be modified in various ways. First, it can be extended by the
addition of a new quantum register; since this is similar to the extension of a classical store
we use the notation Q[|x1 . . . xn〉 7→ |ϕ〉] to denote the extension of Q to a store with domain
|Q| ∪ {x1 ⊗ · · · ⊗ xn} and associating to the new extended variable the state |x1 . . . xn〉 = |ϕ〉.

Another important operation is preparation of extra qbits appended to a cell of a given
quantum store Q. If x1 ⊗ · · · ⊗ xn ∈ |Q|, then Q[|x1 . . . xny1 . . . ym〉 7→ |x1 . . . xn〉|0 . . . 0〉] is
the quantum store with x1⊗· · ·⊗ xn removed from |Q| and x1⊗· · ·⊗ xn⊗y1⊗· · ·⊗ym added,
and with associated state |x1 . . . xny1 . . . yn〉 = |x1 . . . xn〉|0 . . . 0〉. Note that by definition of
quantum store, {x1, . . . xn} and {y1, . . . ym} are disjoint.

The final operation that we need is the modification of one register using a unitary
operation or a projection. Given a quantum store Q and a linear map A over the Hilbert
space associated to the extended variable x1 ⊗ · · · ⊗ xn ∈ |Q|, we denote by Q[|x1 . . . xn〉 7→

A|x1 . . . xn〉] the quantum store where |x1 . . . xn〉 is replaced by A|x1 . . . xn〉.
A QSL program is a pair Q,Γ ` M : A where Q is a quantum store, Γ ` M : A is a valid

5

Delbecque and Panangaden

Table 2
Big-step reduction for the λ-calculus with quantum stores.

Q,V ⇓ Q,V
Q,M ⇓p Q′, λx. M′ Q′,M′[N/x] ⇓q Q′′,V

Q,MN ⇓pq Q′′,V

Q,M ⇓p Q′,V
Q, fst 〈M,N〉 ⇓p Q′,V

Q,N ⇓p Q′,V
Q, snd 〈M,N〉 ⇓p Q′,V

Q,M ⇓p Q′, skip Q′,N ⇓q Q′′,V
Q,M; N ⇓pq Q′′,V

Q, P ⇓p Q′, 0 Q′,N ⇓q Q′′,V
Q, if P then M else N ⇓pq Q′′,V

Q, P ⇓p Q′, 1 Q′,M ⇓q Q′′,V
Q, if P then M else N ⇓pq Q′′,V

Q,Uy1 ⊗ . . . ⊗ ym ⇓ Q[|x1 . . . xn〉 7→ U |x1 . . . xn〉], skip

Q,meas x j ⇓
‖[0]x j |x1 ...xn〉‖ Q[|x1 . . . xn〉 7→ [0]x j |x1 . . . xn〉/‖[0]x j |x1 . . . xn〉‖], 0

Q,meas x j ⇓
‖[1]x j |x1 ...xn〉‖ Q[|x1 . . . xn〉 7→ [1]x j |x1 . . . xn〉/‖[1]x j |x1 . . . xn〉‖], 1

Q[|x1 . . . xn〉 7→ |0 . . . 0〉],M ⇓p Q′,V
Q, new x1 ⊗ · · · ⊗ xn in M ⇓ Q′,V

x1 ⊗ · · · ⊗ xn < |Q|
Q[|x1 . . . xny1 . . . ym〉 7→ |ϕ〉|0〉],M ⇓p Q′,V

Q[|x1 . . . xn〉 7→ |ϕ〉], prep y with x in M ⇓p Q′,V

typing judgement such that all the qstore variables in Γ are in |Q|. We say that a program
Q,M is closed if |Γ| ⊆ |Q|. To simplify the notation, we will often leave the types implicit
and write Q,M instead of Q,Γ ` M : A.

A value for QSL is a term of the recursively defined form

V F x1 ⊗ · · · ⊗ xn | 0 | 1 | ∗ | skip | λy.M | 〈M,N〉,

where x can be any extended variable and M is any term with y ∈ FV(M).
We define the operational semantics of QSL as a big-step probabilistic reduction re-

lation between programs. The notation Q,M ⇓p Q′,V means that when M is run with a
quantum store in state Q, it reduces with probability p to the value V with the quantum
store left in state Q′. When p = 1, we omit the probability argument and write simply
Q,M ⇓ Q′,V . This relation is defined inductively by the rules in table 2. Most of these
reduction rules are the usual reduction rules for the simply typed λ-calculus, sequential
composition, conditionals and pairing. The reduction rules for the classical part of the lan-
guage do not affect the quantum stores. The rules involving measurements, preparations
or unitary transformations change the quantum stores according to quantum mechanics.
For example, the rule for measurement says that if xi is measured with a quantum store
in state Q, then the state |x1 . . . xn〉Q where x occurs is projected with the projection [0]xi

or [1]xi , depending on the measurement result, and normalised. Note that this is the only
place where there is a probabilistic branching in the reduction. For a unitary transformation
operation U, the part of the quantum store Q affected by U is updated to U |x1 . . . xn〉 and
the term reduces to the command skip.

Example 3.1 Consider the following two terms M1 and M2 defined respectively by

M1 : ∧Ux ⊗ y M2 : if meas x then (U y) else skip

where ∧U denote the controlled version of a unitary operation U. This is defined
by ∧U |b1〉|b2〉 = |b1〉|b1 ⊕ b2〉, where ⊕ is the exclusive-or operation. We have that
x ⊗ y : qstore ` M1,M2 : com. In a quantum store state Q which assign |ϕ〉 to x ⊗ y, M1

6

Delbecque and Panangaden

reduce to skip and the state Q is modified by the unitary operation:

Q,M1 ⇓ Q
[
|xy〉 7→ ∧U |xy〉

]
, skip.

The term M2 also reduce to skip but leaves the quantum store in a different state:

Q
[
|xy〉 7→ |ϕ〉

]
,M2 ⇓

p Q
[
|xy〉 7→ [0]x|xy〉

]
, skip

Q
[
|xy〉 7→ |ϕ〉

]
,M2 ⇓

1−p Q
[
|xy〉 7→ Uy[1]x|xy〉

]
, skip

where p = tr ([0]x|ϕ〉〈ϕ|).

Example 3.2 It is possible to program the quantum teleportation protocol [1] in the quan-
tum store language. It is represented as a term teleportxz which transfers an unknown state
from some quantum store x to another quantum store z:

prep y ⊗ z with x in
H x ; cnot x ⊗ y;
let bx = meas x, by = meas y in

if bx then
if by then U11 z else U10 z
else if by then U01 z else U00 z

where H is the Hadamard tranformation and U00 = I, U01 = X, U10 = Z and U11 = ZX
are the four possible correction operations, one of which must be applied to z to change its
state to that of the input quantum store x. If follows from the typing rules that

x : qstore ` teleportxz : com

The command teleportxz performs the teleportation protocol to transfer the state of the qbit
register x to the qbit register z. This can be verified using the operational semantics rules:
it is possible to derive that

Q, teleportxz ⇓ Q
[
|xyz〉 7→ Uz

bxby
[bx]x[by]ycnotxyHx|xyz〉

]
, skip,

where we label each unitary transformation and projectors by the subspace associated to
the label variables.

Note that it is possible to represent any quantum circuit as a term of QSL. The input is
fed to the circuit using a quantum store x. Some ancilla qbits can be added to the input state
using a prep . . .with . . . in command. The unitary gates of the circuit are added as unitary
commands which are composed using sequential composition. The resulting state can then
be measured using meas commands.

4 Denotational semantics

4.1 Probabilistic game semantics

The game semantics presented in this paper is constructed using the definitions of proba-
bilistic games semantics introduced by Danos and Harmer [3]. We give here an overview
of the basic definitions and facts of probabilistic game semantics.

7

Delbecque and Panangaden

Definition 4.1 An arena A is a triple (MA, λA, `A) where MA is a set of moves, the function
λA : MA → {O,P} × {Q,A} × {I,N} is a labeling which assigns moves to the two players
Opponent and Player, and tells us which moves are Questions and which are Answers, and
whether they are Initial or Noninitial moves, and finally `A⊆ MA × MA is a relation, called
the enabling relation, such that

(A1) if a `A b, then λOP
A (a) , λOP

A (b), λQA
A (a) , λQA

A (b),

(A2) if λIN
A (a) = I, then λA(a) = OQI,

(A3) if a ` b and λQA
A (b) = A then λQA

A (a) = Q,

where the functions λOP
A , λQA

A and λin
A are λA composed with the projections on the sets

{O,P}, {Q,A} and {I,N}.

We use the convention that MX
A , where X is some list of superscripts taken from the set

of move labels {O,P,Q,A, I,N} denote the set of moves labeled with these labels. Moves
in an arena are thus of various types, and the constraints on the enabling relation `A limit
the possible interactions in the arena by limiting which moves can be made at a certain
point given the past interactions. The condition (A1) forces that only Player moves to
enable Opponent moves and vice versa, (A2) asks for all initial moves to be questions by
Opponent and finally (A3) says that answers can only be enabled by questions.

A play in A is a sequence of moves s ∈ M∗A. This does not take into account the enabling
relation; we define a justified play to be a play where each occurrence of a non-initial move
b has a pointer to a previous occurrence of a move a with a `A b. We finally need to enforce
alternation of the two players. A legal play is a justified play where Opponent and Player
alternate; we denote the set of legal plays in A by LA. Note that because all initial moves
are Opponent moves, Opponent is always making the first move. The sets of odd and even
length legal plays are respectively denoted by Lodd

A and Leven
A .

Example 4.2 The bool arena is defined with Mbool = {?, 0, 1} λbool(?) = (O,Q, I) and
λbool(0) = λbool(1) = (P,A,N) and with the enabling relation ? `bool 0, 1.

Example 4.3 The empty arena I is the arena with no moves at all. The only legal play in I
is the empty play ε.

Suppose sa ∈ LA. Starting from a and following the justification pointers will always
lead to an occurrence of an initial move b, which we call the hereditary justifier of a in
sa. We can see that every legal play will be partitioned in subplays, each one consisting
of all occurrences of moves hereditarily justified by a given initial move. These subplays
are called threads. The current thread of a legal play sa ending with an opponent move,
denoted by dsae, is the thread of sa where a occurs. If sa ends with a Player move, the
current thread is then defined by dsea. We want the current thread to be a legal play, so it is
necessary to impose an extra condition on legal plays: a legal play s is well-threaded if for
every subplay ta ending with a Player move, the justifier of a is in dte. In a well-threaded
play, player always plays in the last thread where Opponent played.

Given arenas A, B, the product A � B and linear arrow A (B operations are defined
respectively as follows:

8

Delbecque and Panangaden

• MA�B = MA + MB (disjoint union)
• λA�B = [λA, λB] (copairing)
• m `A�B n iff m `A n or m `B n.

• MA(B = MA + MB

• λA(B =

[
〈λ

OP
A , λ

OP
A 〉, λB

]
• m `A(B n iff m `A n or m `B n or
λIN

B (n) = λIN
A (m) = I.

where λ
OP
A inverts the roles of the two players and λ

IN
A makes all moves of A noninitial. The

product arena A� B is intuitively understood as the arena where at each of Opponent’s turn
she can choose to play a move in either A or B, and where Player must answer in the last
component where Opponent played. In the arena A (B, after Opponent makes an initial
move in B, at each of his turns Player can choose to play either one of his moves in B or an
Opponent move in A.

Given a legal play s in an arena A, let nextA(s) = {a ∈ MA|sa ∈ LA} be the set of all
moves that can be legally made after the play s.

Definition 4.4 A probabilistic strategy for Player is a function σ : Leven
A → [0, 1] such that

σ(ε) = 1 and σ(s) ≥
∑

b∈next(sa)

σ(sab)

The set of traces of a strategy σ in A is the set of even length legal plays which are
assigned a non-zero probability by σ: it is denoted Tσ. A strategy σ is deterministic if
σ(s) = 1 for all s ∈ Tσ.

It is possible to describe a probabilistic strategy σ in conditional form. The probability
σ(b | sa) =

σ(sab)
σ(s) is the probability of Player choosing to play b after the play sa.

Composition of strategies is the way interactions between parts of a program are en-
coded in game semantics. Given two strategies σ : A (B and τ : B (C, we define a
new strategy σ; τ : A (C obtained by letting σ and τ “interact” on B. Before giving the
definition of composition, it is necessary to formalise this notion of interaction. The set of
interactions for A, B,C is

IA,B,C = {u ∈ (MA + MB + MC)∗ | u|AB ∈ LA(B, u|BC ∈ LB(C , u|AC ∈ LA(C}

where u|AB is the sub sequence of u obtained by deleting the moves of C, and similarly
for u|BC . The case of u|AC is a bit different because deleting from u the moves of B and
their associated pointers might leave the moves of A or C that are justified by B-moves
without justifiers. In this case, we define the justifiers of u|AC to be as follows: a move a
in C justified by a move b in B will be justified by the first move of either A or C we get
to by following back the justification pointers from a in u. The set of witnesses wit(s) of
s ∈ LA(C in an interaction IA,B,C is the set of interactions u ∈ IA,B,C such that u|AC = s.
The composition of two strategies σ : A(B and τ : B(C can now be defined as follows:

[σ; τ](s) =
∑

u∈wit(s)

σ(u|AB)τ(u|BC).

The identity strategy (or so-called “copycat strategy”) idA : A (A is neutral with respect
to composition. It is defined as the strategy which makes Player copy Opponent moves
between corresponding components. Formally, this is defined as the deterministic strategy

9

Delbecque and Panangaden

with trace
T (1A(s)) =

{
s ∈ LAl(Ar | ∀s′ veven s. s′|Ar = s′|Ar

}
.

Using all the structure defined so far it is possible to define a category of arenas and
probabilistic strategies. Taking arenas as objects, a morphism A → B is a strategy in
A (B. Composition of strategy is the needed composition, with the identity strategies as
identity morphisms. It is associative, and it is shown in [3] that probabilistic strategies are
closed under composition. This category is also symmetric monoidal. The operation � is a
tensor product, which acts on morphisms as follows. Given σ : A → C and τ : B→ D and
s ∈ Leven

(A�B)((A′�B′), we set [σ�τ](s) = σ(s|A(C)τ(s|C(D). All coherence isomorphisms are
easily defined using variants of the copycat strategy.

Threads have an important role in game semantics as a way to characterize the strategies
that encodes programs with side-effects, like stores. This is achieved by forcing Player to
use only the limited information available in the current thread instead of using all the
information that can be extracted from the whole previous plays, including move made in
other threads.

A strategy σ is well-threaded if Tσ consists only of well-threaded plays. Note that this
condition forces Player to answer in the last thread where Opponent played. Given two
well-threaded plays sab ∈ Leven

A and ta ∈ Lodd
A with dsae = dtae, we define match(sab, ta)

to be the unique legal play tab with b justified as in dsae. A well-threaded strategy σ is said
to be thread independent if sab ∈ Tσ, t ∈ Tσ, a ∈ next(t) and dsae = dtae implies that

σ(sab)
σ(s)

=
σ((match(sab, ta))

σ(t)
.

The meaning of this condition is that if Player plays according to σ, Player chooses his
answers with probabilities that only depend on the current thread, i.e. σ(b | sa) = σ(b | ta).

The diagonal strategy ∆A : A→ A�A is defined as the deterministic strategy with trace
set

{
s ∈ Leven

A(Al�Ar
| ∀s′ veven s.s′|Al ∈ idAl ∧s′|Ar ∈ idAr

}
. This is similar to the definition of

the identity strategy: ∆ instructs Player to use copying strategies between A and its two
copies Al and Ar. Possible conflicts in A are resolved by separating in different threads
moves made according to the left or the right copy plays. There is also a unique strategy
^A (I, namely the trivial strategy with trace {ε}.

The pairing of two thread independent strategies σ : A (B and τ : A (C is defined
by 〈σ, τ〉 = ∆A;σ� τ. Thus when Player plays using the pair strategy 〈σ, τ〉, he plays using
σ after an initial move in B, and using τ after an initial move in C.

For each arena A, (A,∆A,^A) is a comonoid. It is shown in in [7] that a strategy σ : A(
B is thread independent if and only if σ is a comonoid homomorphism. Using a known
fact in category theory[8], this implies that the restriction of the category of arena and
probabilistic strategies to thread independent strategies is a Cartesian closed category. Note
that projection strategies like πA : B⊗A(A are defined as copying strategies which makes
Player copies Opponent’s moves between the two A component arenas.

4.2 The quantum store arena

While all the classical operations of QSL have known game semantics interpretations, we
need new tools to be able to define the denotational semantics of the quantum store opera-
tions. The main idea used to describe a state ρ as a strategy is borrowed from the consistent

10

Delbecque and Panangaden

histories approach to quantum mechanics [4,9,6]: sequences of measurement results are
used to describe the evolution of quantum states.

Definition 4.5 The qstore arena is the arena with quantum interventions E? =
{
E?

m

}
as

questions and natural numbers m as answers. The question E? enables its possible mea-
surements results.

A play in this arena is a sequence of moves E?[1]m1 · · · E?[n]mn where the quantum
interventions E?[k] may all be different. We need a strategy [ρ] in qstore which describes a
quantum state ρ.

Definition 4.6 The probabilistic strategy [ρ] in qstore associated to a density matrix ρ is
defined by [ρ](ε) = 1 and [ρ](E?[1]m1 . . .E?[n]mn) = tr

(
E

?[n]
mn . . .E?[1]

m1 (ρ)
)
.

Note that since we use the convention that impossible composition of superoperators
yields the zero operator, the above definition assigns probability zero to plays which in-
volve domain inconsistencies. For example, if Opponent asks another question E?[2] after
receiving an answer to E?[1], all possible Player answers will have probability zero when
the domain of E?[2] is different than SD(Hm1). When the domain and SD(Hm) match, the
question E?[2] is answered using the normalised state E?[1]

m1 (ρ)/ tr
(
E

?[1]
m1 (ρ)

)
.

It is easy to verify this satisfies the definition of probabilistic strategies. Note that the
strategy [ρ] is thread dependent: the first question is answered using the probabilities given
by pm1 = tr

(
E

?[1]
m1 (ρ)

)
, but a second question in a new thread will be answered with the prob-

ability distribution given by tr
(
E

?[2]
m2 E

?[1]
m1 (ρ)

)
/pm1 , i.e. using the updated state E?[1]

m1 (ρ)/pm1 .
Thus in general the probability distribution used is different in different threads, and is
updated according to the laws of quantum mechanics.

Example 4.7 We can define a strategy which describes a unitary operation. This is a strat-
egy [U] in the arena qstore 7→ com. Suppose that the superoperator corresponding to U is
U. A typical play using [U] is “run {U0}? 0 done”. The {U0}? question in the qstore arena
change the state used to answers future questions in the arena. Notice that Player does not
learn anything about the state in this interaction with Opponent because there is only one
possible measurement result. The strategy [U] really describe the effect of U since one can
verify that [ρ]; [U] = [U(ρ)] using the definition of composition of strategies.

Example 4.8 We define a strategy which represents performing a projective measurement
of the state of a quantum store as follows.

qstore meas
◦bool

?

{[0]0, [1]1}?

m
m

The measurement strategy makes Player answer the first question in the output Boolean
component by asking about the result of a measurement in the computational basis of the
input qbit and copying the answer m to the output component. In contrast to the case of
unitary transformations, Player does learn some information about the input state in the

11

Delbecque and Panangaden

part of the exchange happening in the qstore arena, and this information is used to provide
an answer in the bool arena.

4.3 Definition of the denotational semantics

We now use quantum strategies to construct a denotational semantics for the quantum store
language. For each type A, we want to define an arena [[A]], and given a term Γ ` M : A,
we want a strategy [[M]] : [[Γ]]→ [[A]].

For types, the definition is given by the following inductive construction :

[[bool]] = bool [[com]] = com [[>]] = >
[[
qstore

]]
= qstore

[[A × B]] = [[A]] � [[B]] [[A⇒ B]] = [[A]]([[B]]

The arena > has one possible even-length play: ?∗, and there is thus only one possible
strategy aside from the empty one. We denote this strategy ∗. The arena com is defined
similarly, but with the moves “run” and “done” instead. Intuitively, in the com arena Op-
ponent asks Player to run a command, and Player confirms when it is done. The quantum
store type is interpreted using the arena qstore.

Given a context Γ = x1 : A1, . . . , xn : An, we set [[Γ]] to be [[A1]] � · · · � [[An]]. The
interpretation [[Γ ` M : A]] is defined by induction on the derivation of Γ ` M : A in what
follows.

We begin the definition of [[Γ ` M : A]] with the base cases of variables and constant
terms. The interpretation of Γ, x : A ` x : A using the projection strategy πA. The Boolean
constants 0, 1 are interpreted as their corresponding deterministic strategies in bool. The
denotation of ∗ is the unique non-trivial deterministic strategy ∗ : [[Γ]] (>. Similarly, the
constant skip is interpreted as the unique non-trivial deterministic strategy skip in com.

The strategy
[[
U y1 ⊗ · · · ⊗ ym

]]
corresponding to unitary transformation is defined as

the strategy [U] : qstore(com. In the case of measurements, [[meas xi]] is interpreted as
the meas strategy.

We now turn to the inductive cases. The definition of [[M1; M2]] follows the standard
idea in game semantics: it is defined as the composition 〈[[M1]] , [[M2]]〉; seq, where seq is
the strategy com � com(com defined with the following typical play:

com � com seqcom
◦com

run
run

done
run

done

done

Using this scheme, the commands M1 and M2 are successively ran when seq is composed
with 〈[[M1]] , [[M2]]〉. The other classical operations are also interpreted using the usual
game semantics ideas. We refer the reader to [7] for a detailed account.

For quantum store creation using new, suppose that the denotation of Γ, x1 ⊗ · · · ⊗

xn : qstore ` M : A is already defined. The term new x1 ⊗ · · · ⊗ xn in M is interpreted as the

12

Delbecque and Panangaden

composition id� [|0〉〈0|] ; [[M]]. The strategy [|0〉〈0|] is used to initiate the state of the new
quantum store.

The last case is for the preparation typing rule. The strategy
[[
prep y with x in M

]]
is

defined as the strategy prep ([[M]]) : [[Γ]] � qstore (A defined with the following idea.
Let F0 be the preparation superoperator taking ρ to ρ⊗|0〉〈0|. Player plays using prep ([[M]])
by making the moves prescribed by [[M]] except that before playing his first move in the
qstore arena, he must initiate an exchange in this arena which forces Opponent to add the
|0 · · · 0〉 state to the state ρ she uses to answer Player’s questions about the state of the
quantum store. This is achieved by playing a {F0}? quantum intervention question in the
qstore arena before any other move is played there.

This completes the definition of the denotational semantics.

5 Soundness

To study the relation between the operational and denotational semantics, we need to take
quantum stores into account. We use the standard approach used in game semantics of
classical stores, described in the last chapter for the language MCdata: we define a strategy
[[Q,M]] for each pair Q,M. This strategy is defined as the composition of [[M]] with a
strategy [[Q]] representing the state of the quantum registers in Q. For each extended vari-
able x1 ⊗ · · · ⊗ xn ∈ |Q|, the state |x1 . . . xn〉Q can be described as a strategy [|x1 . . . xn〉] in
I (qstore. The strategy [[Q]] associated to the quantum store Q is defined as the �-product
of all the strategies [|x1 . . . xn〉], x1 ⊗ · · · ⊗ xn ∈ |Q|.

Lemma 5.1 (Substitution) For any QSL terms Γ, x : A ` M : B and Γ ` N : A with x ∈
FV(M), we have that Γ ` M [N/x] : B and [[M[N/x]]] = 〈id[[Γ]], [[N]]〉; [[M]].

Proof. A standard structural induction on the construction of M. �

Proposition 5.2 (Consistency for QSL) Let M and V be two terms of ground type. If
Q,M ⇓p Q′,V, then for all well-opened sab ∈ T ([[Q′,V]]) we have that

[[Q,M]] (b | sa) = p [[Q,V]] (b | sa).

Proof. The proof is a structural induction on the derivation of Q,M ⇓p Q′,V . We show
how to deal with the most interesting cases. In the case of a unitary transformation oper-
ation U, suppose that Q,U x1 ⊗ · · · ⊗ xn ⇓ Q [|x1 . . . xn〉 7→ U |x1 . . . xn〉] , skip holds. By
definition of the denotational semantics, we have that [[Q,U x1 ⊗ · · · ⊗ xn]] is the composi-
tion

I
[[Q]]

◦[[Γ]] [[x1⊗···⊗xn]]
◦qstore [U]

◦com

A run move in the final com arena is answered with the question {U0}? in the qstore
arena and then copied by the projection strategy to the [[Γ]] arena, where an interac-
tion begins with [[Q]] in which the unitary transformation move {U0}? is made, affect-
ing all subsequent interactions in the qstore component. The 0 answers that Opponent
gives back to Player is copied back to the initial qstore arena, and then a “done′′ move
is made in the com arena. In any further interaction with the quantum store strategy
[[Q]] Player will behave as if he is using the strategy [[Q[|x1 . . . xn〉 7→ U |x1 . . . xn〉]]]. If
Player uses the strategy [[Q[|x1 . . . xn〉 7→ U |x1 . . . xn〉], skip]], then the behaviour is the

13

Delbecque and Panangaden

same: the initial “run” move is answered with “done” without interacting with the strat-
egy

[[
Q

[
|x′1 . . . x′n′〉 7→ U |x′1 . . . x′n′〉

]]]
.

The two rules for quantum measurement operations are dealt with similarly. Sup-
pose that Q,meas xi ⇓

tr([0]xi [x1...xn]) Q [|x1 . . . xn〉 7→ [0]xi |x1 . . . xn〉/‖[0]xi |x1 . . . xn〉] , 0. By
definition we have that [[Q,meas xi]] is the strategy [[Q]] ; [[xi]] ; meas in I ([[Γ]] (
qstore (bool. Any interaction starting with the question ? in bool is answered by
measuring in the canonical basis the qbit of the arena qstore. The answer to this is
given according to [[Q]] and is 0 with probability ‖[0]xi |x1 . . . xn〉. Any further interac-
tion with [[Q]] will be made according to [[Q[|x1 . . . xn〉 7→ [0]xi |x1 . . . xn〉]]], and the answer
to the initial question in bool is 0. This amounts to saying that [[Q,meas xi]] behaves like[[

Q
[
|x1 . . . xn〉 7→ [0]0|x1 . . . xn〉

]
, 0

]]
with probability ‖[0]xi |x1 . . . xn〉‖. The other measure-

ment case is similar.
The most interesting induction case is the preparation case. Suppose that

the proposition holds when Q
[
|x1 . . . xn〉|y1 . . . ym〉 7→ |ϕ〉|0 . . . 0〉

]
⇓p Q′,V . As-

sume that Q
[
|x1 . . . xn〉 7→ |ϕ〉

]
, prep y with x in M ⇓p Q′,V . By definition of[[

Γ, x : qstore ` prep y with x in M : A
]]
, any play in [[Γ]] � qstore ([[A]] will be played

with player using the strategy [[M]], except that a preparation move is made in qstore.
This preparation move is answered by Opponent using the

[[
Q

[
|x1 . . . xn〉 7→ |ϕ〉

]]]
strat-

egy, which make her pick her answers using the strategy
[
|ϕ〉〈ϕ|

]
. After the preparation

move, Opponent will play as if she is using the strategy
[
|ϕ〉〈ϕ||0 . . . 0〉〈0 . . . 0|

]
, which is[[

Q
[
|x1 . . . xn〉|y1 . . . ym〉 7→ |ϕ〉|0 . . . 0〉

]]]
. The overall play is thus just like what would hap-

pen if Player uses [[M]] composed with this last strategy. We get the desired result because
the induction hypothesis implies that composed strategy dictates the same moves to Players
as the strategy [[Q′,V]]. �

A term Γ ` M : A is said to be semi-closed if FV(M) contains only variables of type
qstore.

Proposition 5.3 (Adequacy for QSL) Let M be a semi-closed term of ground type. If for
all well opened sab ∈ T ([[Q′,V]]) we have that [[Q,M]] (b | sa) = p [[Q,V]] (b | sa), then
we must also have that Q,M ⇓p Q′,V.

We use the standard proof technique that uses a computability predicate. The usual
definition of computability predicate is adapted to quantum stores as follows.

Definition 5.4 (Computability for QSL) Let Γ1,Γ2 ` M : A, with Γ1 containing only vari-
able of type qstore. We say M is computable if

(i) Γ1 ` M : A, A = bool, qstore, > or com and if for all sab ∈ T ([[Q′,V]]) we have that
[[Q,M]] (b | sa) = p [[Q′,V]] (b | sa), then Q,M ⇓p Q′,V ,

(ii) Γ1, x1 : A1, . . . , xn : An ` M : A is Γ1 ` M[N1/x1, . . . ,Nn/xn] : A is computable for all
computable semi-closed terms Γ1 ` N1 : A1, . . . , Γ1 ` Nn : An,

(iii) Γ1 ` M : A (B, M semi-closed and for all semi-closed Γ1 ` N : A we have that
Γ1 ` MN : B is computable,

(iv) M = x with Γ1 ` x : qstore and both Γ1 ` meas xi : bool and Γ1 ` Uy : com with y v x
are computable.

Proposition 5.3 is a direct consequence of the following lemma.

14

Delbecque and Panangaden

Lemma 5.5 All QSL terms are computable.

Proof. By induction on the construction of M. By the second and third clauses of the
definition of computability, we can assume that M is constructed out of semi-closed terms.
We explain the most interesting part of the proof, leaving out the cases which are standard
classical cases.

For the base case, M must be a constant or a quantum store variable x. If M = x is
a quantum store variable, we must apply the last clause of the definition of computability.
We need to check that both Γ1 ` meas xi : bool and Γ1 ` U y : com, y v x are com-
putable. In the first case, suppose that [[Q,meas xi]] makes Player behave as [[Q′,V]]
for some boolean value V . This means that measuring the qbit i of the quantum store
x with the quantum register in some state Q gives the boolean result V (without loss of
generality, suppose that V = 0) with probability p and a quantum register left in state
Q [|x1 . . . xn〉 7→ [0]xi |x1 . . . xn〉]. This implies that Q,meas xi ⇓

p Q′,V . A similar argu-
ment is used to show that Γ1 ` U y : com is computable.

For the induction step, we assume that M is constructed out of semi-closed computable
terms. In the case of local preparation, consider that M = prep y with x in N is a semi-closed
term. Assume that [[Q,M]] makes Player behave as if he was using the strategy [[Q′,V]],
with probability p. Since in the definition of [[Q,M]] Player plays a preparation move before
the first question about the state held by x ⊗ y in Q, the answer to this question is given
using

[[
Q

[
|x1 . . . xny1 . . . ym〉 7→ |x1 . . . xn〉|0 . . . 0〉

]]]
. Thus the strategy [[Q′,V]] make player

behave as
[[

Q
[
|x1 . . . xny1 . . . ym〉 7→ |x1 . . . xn〉|0 . . . 0〉

]
,M

]]
. By induction hypothesis, this

implies that Q
[
|x1 . . . xny1 . . . ym〉 7→ |x1 . . . xn〉|0 . . . 0〉

]
,M ⇓p Q′,V . Using the operational

semantics derivations rules, we get that Q,M ⇓p Q′,V , which is the desired result. �

To state the soundness result, we need a few extra definitions. A context with a hole
of type B is a term C[−] with a special free variable “−” of type B, i.e. it is possible
to derive that Γ,− : B ` C[−] : A. Capture-free substitution of a term Γ ` M : B in the
context C[−] is denoted by C[M]. Two semi-closed terms Γ ` M1 : A and Γ ` M2 : A are
contextually equivalent if for all quantum stores Q,Q′ and ground type context C[−] we
have Q,C[M1] ⇓p Q′,V if and only if Q,C[M2] ⇓p Q′,V . This relation is denoted by
M1∼M2.

Proposition 5.6 Let M1 and M2 be two semi-closed terms. If [[M1]] = [[M1]], then M1∼M2.

The proof is a standard argument using consistency and adequacy.

6 Conclusion and future work

Usually game semantics is used to get full-abstraction results by putting appropriate re-
strictions on the strategies. Here the main goal was instead to introduce a new kind of
model for quantum programming languages. While the soundness result we obtained con-
firms the usefulness of using quantum games to model quantum types, it is a natural next
step to seek a full-abstraction result for QSL. The main difficulty is that there is no known
characterisation of the probabilistic strategies which can be defined as quantum strategies
where the weight assigned to a play is given using the quantum intervention formalism.
Gleason’s theorem [5] is one result in this spirit: it gives conditions which allow one to
know when weights assigned to projection operators P can be described as those computed

15

Delbecque and Panangaden

using a density matrix ρ with the formula tr(ρ). There is no similar result for quantum in-
terventions. Thus, a full abstraction result here would be a major advance in understanding
how to characterize quantum processes. In this case the obstacle has nothing to do with the
usual subtleties associated with higher-type languages.

We did not explore fully the categorical properties of the quantum store arenas. For
example, one could consider the subcategory of the category of arenas and probabilistic
strategies that consist of quantum store arenas and the quantum strategies between them.
This category is very different from the other categories which were studied to understand
quantum information flow since the qstore arena does not have a fixed dimension while the
objects in these other categories are finite dimensional Hilbert space.

References
[1] Bennett, C. H., G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, Teleporting an unknown quantum state

via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters (1993), pp. 1895–1899.

[2] Coecke, B. and D. Pavlovic, Quantum measurements without sums (2006).

[3] Danos, V. and R. Harmer, Probabilistic game semantics, in: ACM Transactions On Computational Logic, Special Issue
for LICS’00, Association For Computing Machinery (2002), pp. 359–382.

[4] Gell-Mann, M. and J. Hartle, Classical equations for quantum systems, Physical Review D 47 (1993), pp. 3345–3382.

[5] Gleason, A. M., Measures on the closed subspaces of a hilbert space, Journal of Mathematics and Mechanics (1957),
pp. 885–893.

[6] Griffiths, R., Consistent histories and quantum reasoning, Physical Review A 54 (1996), pp. 2759–2774.

[7] Harmer, R., “Games and Full Abstraction For Nondeterministic Languages,” Ph.D. thesis, Imperial College (1999).

[8] Jacobs, B., Semantics of weakening and contraction, Annals of Pure and Applied Logic (1994), pp. 73–106.

[9] Omnès, R., “The Interpretation of Quantum Mechanics,” Princeton Univ. Press, 1994.

[10] Peres, A., Classical interventions in quantum systems. I. The measuring process, Physical Review A 61 (2000).

[11] Reynolds, J. C., The essence of ALGOL, in: J. W. de Bakker and J. C. van Vliet, editors, Algorithmic Languages,
Proceedings of the International Symposium on Algorithmic Languages (1981), pp. 345–372.

[12] Selinger, P., Towards a quantum programming language, Mathematical Structures in Computer Science 14 (2004),
pp. 527–586.

[13] Selinger, P. and B. Valiron, A lambda calculus for quantum computation with classical control, Mathematical Structures
in Computer Science 16 (2006), pp. 527–552.

[14] Selinger, P. and B. Valiron, On a fully abstract model for a quantum linear functional language, in: Proceedings of the
4th International Workshop on Quantum i Programming Languages, Oxford, July 17-19, 2006.

[15] Valiron, B., “A functional programming language for quantum computation with classical control,” Master’s thesis,
Departement of Mathematics, University of Ottawa (2004).

16

	Introduction
	Quantum mechanics and quantum interventions
	Simply typed -calculus with quantum stores
	Syntax
	Operational semantics

	Denotational semantics
	Probabilistic game semantics
	The quantum store arena
	Definition of the denotational semantics

	Soundness
	Conclusion and future work
	References

