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Québec, Canada, G1K 7P4

Radha Jagadeesan†

School of CTI

De Paul University

Chicago, Illinois 60604-2287 USA

Vineet Gupta

Google Inc.

2400 Bayshore Parkway

Mountain View CA 94043 USA

Prakash Panangaden‡

School of Computer Science

McGill University
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Abstract

We investigate weak bisimulation of probabilistic systems in the
presence of nondeterminism, i.e. labelled concurrent Markov chains
(LCMC) with silent transitions. We develop an approach based on
allowing convex combinations of computations, similar to Segala and
Lynch’s use of randomized schedulers.

The definition of weak bisimulation destroys the additivity prop-
erty of the probability distributions, yielding instead capacities. The
mathematics behind capacities naturally captures the intuition that
when we deal with nondeterminism we must work with bounds on the
possible probabilities rather than with their exact values.

Our analysis leads to three new developments:

• We identify a characterization of “image finiteness” for countable-
state systems and present a new definition of weak bisimulation
for these LCMCs. We prove that our definition coincides with
that of Philippou, Lee and Sokolsky for finite state systems.

∗Research supported by NSERC.
†Research supported by NSF.
‡Research supported in part by NSERC and MITACS.
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• We show that bisimilar states have matching computations. The
notion of matching involves convex combinations of transitions.

• We study a minor variant of the probabilistic logic pCTL∗ —
the variation arises from an extra path formula to address action
labels. We show that bisimulation is sound and complete for this
variant of pCTL∗.

This is an extended complete version of a paper that was presented at
CONCUR 2002.

1 Introduction

The main object of this paper is to study systems that combine proba-
bility, concurrency and nondeterminism. We focus in particular on weak
bisimulation. The importance of weak bisimulation comes from the need for
abstraction. In order to construct larger programs from smaller programs
one works with the composition mechanisms of the language. When doing
so it is necessary to hide internal actions and work with weak rather than
strong bisimulation.

In the purely probabilistic context, the study of strong bisimulation was
initiated by Larsen and Skou [LS91], and an equivalence notion was devel-
oped, similar to the queuing theory notion of “lumpability” [KS60]. This
theory has been extended to continuous state spaces and continuous distri-
butions [BDEP97, DEP98, DGJP02a] and, in the discrete setting, to weak
bisimulation [BH97].

The study of weak bisimulation for systems with probability and non-
determinism is sensitive to the underlying model. The two principal models
are the alternating model [Han94] - where there are two disjoint classes of
states, probabilistic states and nondeterministic states - and the nonalter-
nating model [SL94]. Weak bisimulation for finite-state systems in the al-
ternating model with distinct nondeterministic and probabilistic states was
defined by Philippou, Lee and Sokolsky [PLS00] whereas weak bisimulation
for the nonalternating model was studied by Segala and Lynch [SL94]. Our
study is set in the context of the alternating model and follows [PLS00].

We explore the subtle consequences of the benign looking definitions
of [PLS00]. The most significant change from ordinary probability theory
is that the “probabilities” no longer satisfy additivity1. In the presence of
nondeterminism, we are describing a set of probability distributions {Qi}
for a given state s and a given weak transition label a. The “probabilities”

1Additivity: P is additive if for disjoint sets A, B, P (A ∪ B) = P (A) + P (B).
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ascribed by [PLS00] arise by majorizing over this set, i.e. P (s, a,E), the
probability of reaching a set of states E from state s on weak transition
labelled a, is given by maxiQi(E) for any subset of states E.

The second important change is that the notion of matching has changed
radically. The essence of any bisimulation notion is that transitions of one
process can be matched with transitions in the bisimilar process. In order
to match computation paths on given weak labels one needs to take convex-
linear combinations of computations. The “computations” (to be defined
precisely later) now have a convex space structure. This means that the
space is closed under the formation of arbitrary convex combinations: if
{ci|i ∈ I} is a set of computations then

∑

i λici is also a computation where
0 ≤ λi ≤ 1 and

∑

i λi = 1. In example 2.9 we discuss this point in detail.
Essentially randomized schedulers allow one to take just such combinations.
This convex structure is important and allows us to use some standard ideas
of convexity: for example, the fact that the convex closure of a compact set
is compact.

The three main points that we make can be summarized as follows.

• First, we generalize the definitions of [PLS00] to a large class of infinite-
state systems satisfying a compactness property. Informally, compact-
ness is a topological formalization of finite branching. In this context,
compactness enables us to capture a robust notion of “image finite-
ness” for weak transitions that hide internal actions. The compact sys-
tems that we consider include all finite state systems including those
with cycles.

• Second, we adapt the ideas on randomized schedulers from Segala’s
work on probabilistic IO automata [SL95]. On the one hand, ran-
domized schedulers do not change the semantics: the sups that one
computes are the same. From the point of view of linear algebra, one
can visualize this geometrically by seeing that convex combinations do
not introduce new extremal points, thus the suprema of probabilities
used in [PLS00] are preserved. On the other hand, these schedulers
enable us to perform a fine-grained analysis of the structure of compu-
tations in bisimilar systems. This analysis permits us to establish that
bisimilar states s, t satisfy a familiar property: “for every distribution
of states induced by a resolution of non-deterministic choices from s,
there exists a resolution of non-deterministic choices from t that re-
sults in a matching distribution on states.” We show simple examples
that demonstrate that this matching property requires the presence of
convex combinations.
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• Third, we analyze the structure that arises by majorizing over a set of
probability distributions. This structure is called a capacity — for our
purposes, capacities are monotone functions from sets (with inclusion
order) to the reals (with the usual order) that preserve sups (resp. infs)
of increasing (resp. decreasing) sequences of sets. Capacities are not
necessarily additive. Indeed, the capacities induced by the definitions
of [PLS00] only satisfy: P (s, a,A) + P (s, a,B) ≥ P (s, a,A ∪ B) for
disjoint sets of states A,B.

This loss of additivity has already been recognized in various situations
in mathematics [Cho53, Del72, Mey66] and in economics [Sch84]. Eco-
nomic studies distinguish risk, the relative probabilities of the events
are known, from uncertainty, there is no unique assignment of proba-
bilities to events, this is what computer scientists call nondeterminism.
Risk is modelled using probability. The modelling of uncertainty is via
a set of probability measures that are consistent with the known infor-
mation. The structure obtained by majorizing this set of probability
measures does not satisfy additivity and is a capacity. A rich theory
of capacities was already available for our use. This theory meshes
very well with the idea that uncertainty in probability distributions
should be captured by giving upper and lower bounds on probabili-
ties and expectation values. We show that the key equations that are
demanded by this theory are met by the capacities that arise in the
context of weak bisimulation.

Soundness and Completeness of weak bisimulation for probabilis-

tic logics. A fundamental application of these ideas, and the original
impetus for these investigations, is the analysis of soundness and complete-
ness of bisimulation for probabilistic logics. We study a minor variant of
the probabilistic logic pCTL∗ [dA97] – the variation arises from an extra
path formula to address action labels – and is inspired by the variants of
probabilistic logics that deal with action labels [SL94, Han94] . We show
that bisimulation is sound and complete for this variant of pCTL∗. Our
soundness and completeness proofs rely crucially on all three developments
identified above.

Organization of this paper. The rest of this paper is organized as fol-
lows. First, in section 2, we review the basic definitions of the model (the
“alternating model”) and weak probabilistic bisimulation and associated
results to make the paper self-contained. Section 3 identifies the class of
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countable systems to which our study applies. In section 4 we show that
our definition is equivalent to that of Philippou, Lee and Sokolsky [PLS00].
In section 5 we show that the capacities defined in the development of weak
bisimulation satisfy the axioms required of capacities. Finally, in section 6,
we use the machinery that has been developed to prove soundness and com-
pleteness results for the logic.

2 Background and Definitions

We begin with a review of the underlying framework — our definitions are
adapted from [PLS00]. We work in the context of the “alternating model”
for labelled concurrent Markov chains [Han94], labelled transition systems
with non-determinism and probability.

Definition 2.1 A labelled concurrent Markov chain (henceforth LCMC), is
a tuple
K = (K, Act,−→, k0), where
(1) K = Kp∪Kn, a countable set, is partitioned into the probabilistic states,
Kp, and the nondeterministic states Kn, k0 is the start state.
(2) Act is a finite set of action symbols that contains a special action τ .
(3) The transition relation −→=−→p ∪ −→n is partitioned into probabilistic
and nondeterministic transitions. −→n⊆ Kn × Act × Kp is image-finite,

i.e. for each s ∈ Kn and a ∈ Act, the set {s′ ∈ Kp | s
a
→ s′} is finite.

−→p⊆ Kp × (0, 1] ×Kn satisfies that for each s ∈ Kp,
∑

(s,π,t)∈−→p
π ≤ 1.

A state is either probabilistic - in which case the transitions are probabilistic
and unlabelled - or nondeterministic, in which case the transitions are finite-
branching and labelled, possibly by a τ transition. We allow subprobability
distributions so the probabilities need not add up to 1. In particular, we
allow some probabilistic states to be dead states so that the transition prob-
abilities associated with such a state are zero. The probabilistic branching
can be countable at a state. In this paper, we will work with countable state
systems.

Every probabilistic state s induces a probability distribution Q on Kn

given by Q(t) =
∑

(s,π,t)∈−→p
π for every t ∈ K, and for E ⊆ K, Q(E) =

∑

t∈E Q(t). We sometimes write s→p Q to emphasize this distribution. In-
deed, one can take the view that the “real” states are the nondeterministic
states and the probabilistic states are really just names for certain proba-
bility distributions.
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The LCMC model does not need to be strictly alternating. One can work
with a model that only restricts states to be either purely nondeterministic
or purely probabilistic and does not enforce strict alternation. We discuss
this variant at the end of this section.

Every sequence, say σ, of transitions has as an associated probability
prob(σ), obtained by multiplying the probabilities occurring on the path.
We attribute 1 to a nondeterministic transition in a path, and multiply
together probabilities of all the probabilistic transitions.

Similarly, every sequence σ of transitions has an associated weak se-
quence of labels Weak(σ) ∈ (Act − {τ})∗, obtained by removing the labels
of τ -transitions. Nondeterministic transitions with label τ and probabilistic
transitions do not contribute to the weak label. We will say that a path of
τ transitions and probabilistic transitions has weak label ε.

We define computations of an LCMC as transition trees obtained by
unfolding the LCMC from the root, resolving the nondeterministic choices
(i.e. each nondeterministic state has at most one transition coming out of
it) and taking either all probabilistic choices at a probabilistic state or none.
A computation can thus be viewed as a purely (sub)probabilistic labelled
Markov chain. We refer to the set of all the probabilistic transitions from a
probabilistic state as a fan.

Definition 2.2 A computation of an LCMC is a (possibly infinite) subtree
of the tree obtained by partially unfolding the LCMC. In a computation every
nondeterministic state has at most one transition coming out of it and if a
probabilistic transition is included then the entire fan of that probabilistic
transition is included.

We are interested in transitions with particular weak labels.

Definition 2.3 Let K be a LCMC, a ∈ Act. An a-computation from s ∈ K
is a computation such that every path from the root has weak label a or ε.

It may seem peculiar to allow an a-computation to have paths labelled by
ε. This is done to allow for a computation where the a transition has not
happened yet (or may never happen). For example, any a-computation of
state s of Figure 1(b) must include the infinite path (sw)ω which has label
ε. However, when we associate probability distributions with computations
we will not count the paths labelled with ε, we insist that the paths that
contribute to the distribution have weak label a.

Each computation induces a distribution on its leaf states in the standard
way — the probability of a leaf node is the probability of the (unique) path
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going to it. We actually use a somewhat looser correspondence between
computations and distributions. We allow many distributions to be induced
by a given computation; the requirement of matching is weakened to an
inequality.

Definition 2.4 Let K be a LCMC, s ∈ K, and let Q be a distribution on
states.
We write s

a
⇒ Q, and we call it a basic transition, if there is an a-computation

such that for all si ∈ K, Q(si) ≤
∑

σ prob(σ) where the summation is taken
over paths σ with weak label a that start in s and end in the leaf si.

Note that we have not required equality here. We are saying that a weak
transition s

a
⇒ Q means that the a-computation starting from s produces a

distribution than dominates Q rather than exactly matching Q. This will
allow greater flexibility with manipulating weak transitions especially when
we form convex combinations, for example, in the proof of Lemma 3.3 below.

We extend this notation to convex2 combinations of distributions.

Definition 2.5 Let si
a
⇒ Qi and let

∑

i λi ≤ 1, where all λi ≥ 0. We define

the notation: si
a
⇒ (

∑

i λiQi) to stand for the transition to the convex sum
of distributions.

Such a transition can be viewed as the “weighted superposition” of the
transitions si

a
⇒ Qi. Note that s

a
⇒ [λ × Q1 + (1 − λ) × Q2] is reminiscent

of the randomized schedulers [SL95].
Transitions from states to distributions as above are one way to the

definition of bisimulation. Another way is through transitions from states
to sets of states, which is how strong bisimulation is defined for labelled
Markov processes in [BDEP97, DGJP02a]. The “probability” from a state
s to a subset of states via a path with weak label a is defined by taking the
supremum over all possible a-computations.

Definition 2.6 Let K be a LCMC, s ∈ K,E ⊆ K. Then, the probability of
going from s to E ⊆ K via a, denoted by P (s, a,E), is defined as:

P (s, a,E) = sup{Q(E) | s
a
⇒ Q}.

The supremum in this definition is the source of the subtlety of weak bisim-
ulation: P (s, a, .) does not satisfy additivity. The two following examples
show the importance of taking the supremum.

2Strictly speaking, these are not convex combinations since we have
P

i
λi ≤ 1 rather

than = 1.
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Figure 1: (a) Additivity Fails (b) Matching with linear combinations

Example 2.7 Consider the transition system in Figure 1(a), where unnec-
essary probabilistic transitions have been elided. We have P (s, a, {t1}) =
0.5, P (s, a, {t2}) = 0.6, P (s, a, {t1, t2}) = 0.6. Thus additivity does not
hold, and we must take the sup over all computations in the definition of
P (s, a,E).

Example 2.8 Consider the transition system on the left of Figure 1(b).
Then

P (s, a, {u}) =
∑

i≥1

(
1

3
)i = 1/2.

The next example shows the importance of allowing linear combinations
when matching computations with given weak labels.

Example 2.9 Consider the transition systems of Figure 1(b). Intuitively
we would like to say that the states s and t are weakly bisimilar. We would
also like to say p, p′ and q, q′ are weakly bisimilar.

The probability of starting from s and reaching u on a weak a label is
1/2 and the same is true for reaching u′ from t. Note that we need to sum
over all possible paths that include the τ -loop if we want to get the answer
1/2 starting from s. Thus the a-computation from t that includes u′ gives
a probability of 1/2 to u′ and can be matched by the infinite computation
from s that loops infinitely through w and gives probability 1/2 to u. How-
ever, we have absolutely no way of matching the distribution induced by
the computation including only one step from s. Indeed, this computation
induces the distribution that gives probability 1/3 to each one of u, w and
v. The only way to match it is to take a linear combination, namely the
distribution δt induced by the trivial computation consisting only of state t,
and the distribution P induced by the one-step computation. The required
combination is thus 1/3 × δt + 2/3 × P .
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We are now ready to define weak bisimulation. Given an equivalence rela-
tion R, we say a set E is R-closed if E = R(E) := {s | ∃t ∈ E such that tRs}
and we use [u]R to stand for the equivalence class of a state u.

Definition 2.10 An equivalence relation R on K is a weak bisimulation if
for all s, t ∈ K such that s R t and all R-closed E ⊆ K, we have:

(∀a ∈ Act) [P (s, a,E) = P (t, a,E)].

There is a maximum weak bisimulation, denoted by ≈. We write [u] for the
bisimulation class of the state u.

A LCMC K is bisimulation collapsed if each bisimulation equivalence class
is a singleton.

The equational laws supported by this definition extend the usual ones
for nondeterministic labelled transition systems or purely probabilistic tran-
sition systems. Indeed, the usual relations that witness the bisimulation are
carried over essentially unchanged, for example, τ.K ≈ K, and unfolding a
LCMC yields a weakly bisimilar system. See [BS01] for a full axiomatiza-
tion of equational laws for finite processes (without loops, so the transition
system is a tree).

We present a second definition of bisimulation which is similar to the
one found in the non-probabilistic setting. It will be shown to be equivalent
to the one above in Section 4 for compact LCMCs.

Proposition 2.11 An equivalence relation R on K is a weak bisimulation
iff for all s, t ∈ K such that s R t we have:
if s

a
⇒ Q, there exists t

a
⇒ Q′ such that for all states u: Q([u]R) = Q′([u]R).

2.1 Minor extensions to the model

The LCMC model does not need to be strictly alternating. One can work
with a model that restricts states to be either purely nondeterministic or
purely probabilistic but with no transitions from probabilistic states to
probabilistic states. Any such transition system U = (U, Act,−→, u0) has
a (weak) bisimulation-preserving translation into K = (K, Act,−→, k0), a
strictly alternating transition system as follows. The states K = Up ∪ Un

are a disjoint union of two copies of the states of U . For all s ∈ U such

that s has only nondeterministic transitions, define sp 1
→ sn and sn a

→ tp

if s
a
→ t in U . Similarly, for all s ∈ U such that s has only probabilistic

transitions, define sn τ
→ sp and sp π

→ tn if s
π
→ t in U . There is clearly a

weak bisimulation relating U and K.
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3 The compactness condition

Image finiteness plays a crucial role in the study of bisimulation in non-
deterministic systems [HM85]. In the case of fully probabilistic systems
and strong bisimulation it turns out – rather surprisingly – not to play a
role [DEP02] despite the fact that the initial results in this subject used a
strong finite branching condition [LS91].

However, here we have a combination of probability and nondeterminism
and we need to control the branching. We consider countable-state LCMCs
that satisfy a compactness condition. Intuitively speaking, the compactness
condition can be viewed as the right generalization of “image-finiteness”
for countable state LCMCs in the context of weak transitions that hide τ -
labels. This compactness condition allows us to show the coincidence with
the definitions of Philippou, Lee and Sokolsky [PLS00].

We first consider some preliminary motivation for considering such a
condition. In general, it is not the case – even for finitely branching sys-
tems – that there is a single computation that attains the supremum of
definition 2.6.

Example 3.1 Let K be the LCMC described by the following diagram.

s0
τ //

a
��

u0
1 // s1

a
��

τ // u1 · · ·
1 // si

a
��

τ // ui · · ·

t0
1− 1

20

((PPPPPPPPPPPPPPP t1

1− 1

21

��

ti

1− 1

2iuullllllllllllllllll · · ·

sa

Let K be an LCMC with nondeterministic states {sa} ∪ {si | i ∈ N} and
probabilistic states {ui, ti | i ∈ N}. s0 is its start state. The state sa has
no transitions. The state si has two transitions, one is labelled τ to ui, the
other is labelled a to ti. ti has a probability 1− 1

2i transition to sa while ui

has a probability 1 transition to si+1. Clearly, P (s0, a, {sa}) = 1, but there
is no single computation to witness this.

We diagnose the reason as the infinite (weak) branching at the state s0. We
now identify a large class of countable systems the class of systems that we
will work with. Intuitively, this is a “compactness” condition that captures
the essence of a “finite weak branching” requirement.

We begin by recalling some basic definitions from topology which can
be skipped by a knowledgeable reader. In a metric space (X, d) we say that
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a sequence {xi|i ∈ N} converges to x if for every ǫ > 0 there is an n such
that for every k ≥ n, d(xk, x) < ǫ. We say that p is a limit point (or
cluster point or accumulation point) of a subset S if for every ǫ > 0 there
is an x ∈ S such that x 6= p and d(x, p) < ǫ. In other words, every open
set containing p intersects S at some point other than p itself3. A space is
said to be sequentially compact if every infinite sequence has a convergent
subsequence. A space is said to be limit-point compact if every infinite set
has a limit point. A topological space is compact if every open cover has
a finite subcover. In a metric space all three notions: compact, limit-point
compact and sequentially compact, coincide.

The following definition of a metric d on distributions of states is the key
to getting a handle on finite-branching.

Definition 3.2 The metric d on distributions of the states of a LCMC K
is defined by d(Q1, Q2) = supA⊆K |Q1(A) −Q2(A)|.

In this metric, any computation is the limit of finite depth computations.

Lemma 3.3 Given any weak transition s
a
⇒ Q, one can find a sequence of

finite-depth computations with corresponding weak transitions s
a
⇒ Qi with

the Qi distributions converging to Q in the metric d.

Proof. Let Q =
∑

i λi × Qi, where Qi are distributions induced by basic
computation trees Ci respectively. If Ck

i is a truncation of Ci, let Lk be the
set of states that are leaves of both Ci and Ck

i , and define

• Qk
i (u) = Qi(u) if u is in Lk

• For all leaves u in Ck
i that are not leaves of Ci, assign to Qk

i (u) a
probability equal to the sum of the leaves of Ci that are descendants.
Since Ci is a computation, this number is guaranteed to be at most
the probability of the path from s to u in Ck

i (and in Ci).

Now let Ck
i be a truncation of Ci at large enough depth so that Q(K) −

∑

u∈Lk Qk
i (u) ≤

1
2k . It is clear that d(Qi, Q

k
i ) ≤

1
2k . Defining Qk =

∑

i λi ×

Qk
i , we get Qk such that: d(Q,Qk) ≤ 1

2k .

3For this definition p may or may not be in S.
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Definition 3.4 Let K be an LCMC and s be a state and a any label. We
say s is a-compact if the set {Q | s

a
⇒ Q} is compact under metric d.

A bisimulation collapsed LCMC K is compact if all states s are a-
compact for all labels a (including τ). A LCMC is compact if its bisim-
ulation collapse is compact.

The following lemma simply restates the definition of compactness for
LCMCs in terms of the existence of convergent subsequences; this is by far
the most useful form.

Lemma 3.5 In a compact LCMC, for any sequence of distributions Qi such
that s

a
⇒ Qi, there exists s

a
⇒ Q and a subsequence Q′

j of Qj such that:

(∀ǫ) (∃j) (∀i ≥ j) (∀E ⊆ K)|Q(E) −Q′
i(E)| < ǫ

The point is that the limiting distribution is actually attained by some
computation. This is typically how compactness is used.

For labelled transition systems, the compactness condition is an image-
finiteness condition. Here the probability of all paths is 1 and d is the
discrete metric. So, an LTS is compact iff for all states s and all labels a,
the set of states reachable on a weak transition labelled a is finite.

The definition is general enough to include all finite state LCMCs, as
stated in the following theorem. The proof relies crucially on weighted
combinations of computations. It builds on the idea of Example 2.9 and
shows that for any state s, there is a finite set of computations rooted
at s such that any computation rooted at s can be built as a weighted
combination of the elements of this set. This finite set is identified using the
concept of simple computations; a similar property is used in [PLS00].

Theorem 3.6 All finite-state systems are compact.

In order to prove this theorem we need a standard lemma about com-
pactness of convex closures.

Lemma 3.7 [[Sch66], page 71] Let S be a compact subset of a locally convex
topological vector space. Then, the convex closure of S is also compact4.

Our use of this lemma is as follows. We view a distribution on n-states as an
element of the Euclidean space R

2n

of dimension 2n, i.e. each distribution is
treated as a 2n vector that contains the probability numbers of each subset

4We actually need a minor variant of this lemma since our combinations are not exactly
convex combinations since we allow

P

i
λi ≤ 1.
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of states. Indeed, under this embedding, the metric d is the standard l1
norm. Since R

2n

is locally convex, this lemma applies.
Proof.(Of the theorem) By Lemma 3.7, it suffices to show that the set

of a-computations at a state s is the convex closure of a finite set F .
Using the notation of [PLS00], we say that a basic a-computation rooted

at u is simple if the transition chosen at a nondeterministic state depends
only on the weak label of the transition from the root to the occurrence of
the state. For example, suppose that we have two occurrences of a state s,
say s1, s2, in the computation such that the weak labels of the paths from the
root u to s1 and to s2 are the same. In this case either both have a successor
or neither does, and the successors of s1 and s2 in the computation are the
same state.

For a finite state system with finitely many labels, clearly there are only
finitely many simple computations. We define:

Fu = the set of simple computations from u

F = ∪u∈K [Fu ∪ {u⇒ Zero}]

where (∀u) Zero(u) = 0. Because of the presence of the zero distributions,
the set of convex combinations of F of computations rooted at u is given by
{u⇒

∑

i(λiQi) : Qi ∈ Fu, λi ≥ 0,
∑

i λi ≤ 1}.
We now show that any basic computation rooted at a state s can be

built as a weighted combination of computations from F . We proceed by
induction on the number of states. For each state u, we show how to elimi-
nate “non-simple” occurrences of u. We say that a computation is “simple
relative to u” if all occurrences of u in the computation make the same
nondeterministic choices. We proceed in two phases.

1. We first show how to make the sub-trees rooted at an occurrence of
state u “simple relative to u”, i.e. all occurrences of u in this subtree
make the same nondeterministic choice as the occurrence of u at the
root of the subtree.

Let this subtree be called C and let u0 be the occurrence of the state
u at the root of this subtree. Let ui be the occurrences of u in this
subtree, such that the path from u0 to ui has weak label ε; note that
this includes u0 itself. We will construct several basic computations Ci

as follows. Let Ci be the computation rooted at ui that (recursively)
replaces the subtree at all u-descendants reachable by a ε-transition
sequence by the subtree at ui. One can visualize this by considering
the result of redirecting into ui, the incoming transition into the uk
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that are descendants of ui with no occurrence of u on the path between
ui, uk and then unfolding the resulting graph.

Now we construct the required computation with all the non simple
nodes eliminated by taking a linear combination of the Ci. We have to
combine them in such a way that the relevant probability distributions
are preserved by the tree surgery just defined. Let pi be the probability
of reaching the leaves in the subtree rooted at ui in the original com-
putation. Then, C =

∑

λiCi, where λi = pi −
∑

k{pk | k 6= i}; where
the k in the sum satisfies the following conditions: uk is a descendant
of ui and there is no occurrence of u on the path between ui and uk.
The coefficients λi have been adjusted to account for the leaves that
have been removed in the surgery that produced the Ci from C.

2. In phase 1 we dealt with weak τ transitions. After finishing phase 1, we
are left with a weighted combination of basic computations rooted at
s such that all sub-trees rooted at an occurrence of state u are “simple
relative to u”. Consider one such basic computation C. We now show
how to convert C to a weighted combination of basic computations
rooted at s that are “simple relative to u”.

We perform the following for each possible non-ε weak label. Let ui

be the occurrences of u with the same weak label on the path from s
to ui and let pi be the probability of the leaves in the subtree rooted
at ui. Let Ci be the result of replacing all the subtrees rooted at uj

by the subtree at ui in C. Then, C =
∑

λiCi, where λi = pi
P

i pi
.

For compact countable-state systems, there is a single computation yield-
ing the maximum probability, thus resolving the issue raised by Example 3.1.

Proposition 3.8 In a compact LCMC, for any state s and action a we
have P (s, a,E) =

∑

s∈E Q(s) for some s
a
⇒ Q.

More explicitly, if P (s, a,E) = p then, there exists a computation C such
that: PC(s, a,E) = p.
Proof. Let {Qi} be such that s

a
⇒ Qi and P (s, a,E) − Qi(E) < 1

2i .
In a compact metric space every sequence has a convergent subsequence.
Thus there is a Q such that s

a
⇒ Q and a subsequence Q′

i of Qi such
that (∀ǫ) (∃i) (∀j ≥ i) (∀E′ ⊆ K)[|Q(E′) − Q′

j(E
′)| < ǫ. This Q satisfies

Q(E) = P (s, a,E).
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Example 3.9 We can modify the system of Example 3.1 by changing the
transition probability from t0 to sa to be 1 instead of 0. This system is now
compact. Note that it is not a finite-state system nor indeed weakly bisim-
ilar to a finite-state system. Not only that, there are infinitely many differ-
ent transition probabilities appearing, so it does not satisfy the minimum-
deviation assumption of Larsen and Skou [LS91].

4 Coincidence with the definition of Philippou,

Lee and Sokolsky

Our definition of bisimulation (Definition 2.10) is different from the defini-
tion in [PLS00]. However, the two definitions are equivalent.

We begin by presenting their definition below – we have recast it in
terms of computations rather than schedulers. For any C, that is, an a-
computation from s, we write PC for the induced distribution on the leaves.
Recall that [u]R stands for the equivalence class of a state u for an equiva-
lence relation R.

Definition 4.1 An equivalence relation R on K is a PLS-weak bisimulation
iff whenever sRt:

• if s ∈ Kn, α ∈ Act and (s, α, s′) ∈−→, then there exists a computation
C such that PC(t, α, [s′]R) = 1.

• if s ∈ Kp, there exists a computation C such that for all M ∈ K/R −
[s]R, QR(s,M) = PC(t, ε,M).

QR is the probability distribution from s ∈ Kp “normalized” by weighting by
the probability of exiting [s]R. Let s→p Q. Then:

QR(s,M) =

{

Q(M), if Q([s]R) = 1
Q(M)

1−Q([s]R) , otherwise.

There is a maximum weak bisimulation, denoted by ≈PLS.

For compact LCMCs (and hence all finite state LCMCs), ≈ and ≈PLS

coincide. This theorem requires weighted combinations of computations, as
illustrated by Example 2.9 and the following example.

Example 4.2 Let s be a state with no transition. Let t be a nondeter-
ministic state with a single τ -transition to a probabilistic state tp that has a
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probability 1 transition back to t. Clearly, s ≈ t. Consider the computation
from t that is the infinite chain of alternating tp, t. This computation is
matched by the weighted combination 0C where C is the computation from
s that consists only of s.

The role of these weighted linear combinations is seen in the case (2) ⇒
(3) in the following proof.

Theorem 4.3 The following are equivalent for compact LCMCs.

1. s ≈ t.

2. s ≈PLS t.

3. Let s
a
⇒ Q. Then, there exists t

a
⇒ Q′ such that for all states u:

Q([u]PLS) = Q′([u]PLS). The reverse also holds with t and s inter-
changed.

Proof. We sketch the main ideas below, the complete proof appears in
Appendix A.

• (1) ⇒ (2): The key structural properties exploited in the proof are:

– If t is a nondeterministic state, and s is a probabilistic state, such
that t is weakly bisimilar to s, then there is a τ -transition from t
to some t′ such that t′ is weakly bisimilar to s.

– A linear programming argument is used to show that ≈-bisimilar
probabilistic states have identical (up to ≈) probabilistic fans.

• (2) ⇒ (3): Using Lemma 3.3, it suffices to prove the result for finite-
depth computations Q. In this case, the proof proceeds by induction
on the number of transitions of computations.

– Let C extend s
a
⇒ Q by a nondeterministic transition u

b
→ u′

at a leaf u. In this case, consider t
a
⇒ Q′, the extension of Q

by matching transitions v
b
⇒ Qi from all the v ≈PLS u that are

leaves.

– The case when C extends s
a
⇒ Q by adding a one-step probabilis-

tic transition u→ Q at a leaf u uses the ideas from example 2.9.
There are two cases depending on whether Q([u]) = 0 or not.

If Q([u]) = 0, u → Q can be matched by computations from all
the v ≈PLS u. If Q([u]) = r > 0, consider the transition from u to
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Q′ where: Q′[v] = Q[v]
1−r , if u 6∈ [v] andQ′([u]) = 0. For any v ≈PLS

u, this computation reaches its leaves with label ε and assign
probabilities in accordance with Q′. The required transition to Q
from v is given by a linear combination (with coefficient 1− r) of
this computation with the computation consisting only of v (with
coefficient r).

Consider t
a
⇒ Q′, the extension of Q by matching transitions

v
b
⇒ Qi from all the v ≈PLS u that are leaves.

In either case, the required transition from t is obtained by a linear
combination t⇒ [λ×Q′ + (1 − λ) ×Q], where λ = p/Q([u]).

• (3) ⇒ (1): This is immediate.

5 Capacities from sets of measures

In this section we first review the basic theory of capacities [Cho53]. The
original context that Choquet was interested in led him to impose several
conditions that need not concern us here. We will present a simplified treat-
ment and omit proofs of any results available in the literature.

We begin by recalling that the basic example 1(a) shows that we lose
the additivity property crucial to the definition of a measure.

Definition 5.1 Let S be a set and let Σ be a σ-algebra of subsets of S. A
capacity on Σ is a non-negative real-valued set function ν : Σ → R such
that

• ν(∅) = 0

• if A ⊆ B in Σ then ν(A) ≤ ν(B),

• if E1 ⊆ E2 ⊆ . . . ⊆ En ⊆ . . . with ∪iEi = E then limi→∞ ν(Ei) =
ν(E),

• if E1 ⊇ E2 ⊇ . . . ⊇ En ⊇ . . . with ∩iEi = E then limi→∞ ν(Ei) =
ν(E).

If, in addition, it satisfies ν(A ∪B) ≤ ν(A) + ν(B), it is said to be subad-

ditive.
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For measures the two continuity properties are consequences of countable
additivity. If we have a family of measures µi defined on Σ we can get
subadditive capacities as follows5.

ν(A) := sup
i
µi(A).

It is easy to see that ν defined this way is indeed a capacity. Later we
will use these properties of capacities to prove the logical characterization
theorem.

We establish the key properties of the functions ν(E) = P (s, a,E) show-
ing that they are capacities.

Lemma 5.2 Let s ∈ K, a ∈ Act. Then the function ν on the ≈-closed
subsets of K defined as above is a subadditive capacity as per definition 5.1.

Proof. Recall that for any a-computation C from s, we write PC for the
induced distribution on the leaves. The first property ν(∅) = 0 is immediate.
We have from the definitions that:

• E1 ⊆ E2 ⇒ PC(s, a,E1) ⊆ PC(s, a,E2). Since ν is the sup over
all C of the PC we get that ν(E1) = P (s, a,E1) = supC P

C(E1) ≤
supC P

C(E2) = ν(E2).

• Let {Ei} be an increasing sequence of ≈-closed sets of states. Then
PC(s, a,∪iEi) = supi P

C(s, a,Ei) because the PCs are distributions
(measures). Now taking sups over C we get the result ν(E) = supC P

C(E) =
supC supi P

C(Ei) = supi supC P
C(Ei) = supi ν(Ei).

• If E1∩E2 = ∅, PC(s, a,E1∪E2) = PC(s, a,E1)+PC(s, a,E2). Taking
sups over C we get that

ν(E1∪E2) = sup
C
PC(E1∪E2) ≤ sup

C
PC(E1)+sup

C
PC(E2) = ν(E1)+ν(E2).

Thus, the first three properties and sub-additivity follow from basic proper-
ties of sup.

The proof of the fourth property crucially uses compactness. Let E1 ⊇
E2 . . . be a decreasing sequence of ≈-closed sets of states. Let E = ∩kEk.
Since ∀k,E ⊆ Ek we have ν(E) ≤ infk ν(Ek) using monotonicity and the
definition of inf.

5There are examples showing that not all capacities arise in this way.
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We prove ν(E) ≥ infk ν(Ek) as follows. It suffices to show that

(∀ǫ > 0) (∃s
a
⇒ Q) (∃i) [Q(E) ≥ ν(Ei) − ǫ].

Let ǫ > 0. For each Ek there exists s
a
⇒ Pk such that Pk(Ek) ≥ ν(Ek) −

ǫ
3 .

By compactness every sequence has a limit point. Thus there exists s
a
⇒ Q

and a subsequence Qk′ of Pk such that:

(∀δ) (∃j) (∀i ≥ j) (∀A ⊆ K)[|Q(A) −Qi(A)| < δ].

Since Q is a distribution, there exists j1 such that (∀i > j1) Q(E) ≥
[Q(Ei) −

ǫ
3 ]. Using δ = ǫ

3 in the above equation relating Q and the subse-
quence Qk′ , we get j2 such that :

(∀i ≥ j2) (∀A ⊆ K)[|Q(A) −Qi(A)| < δ].

In particular, Q(Ei) ≥ Qi(Ei) −
ǫ
3 . Choosing i = max(j1, j2), we have:

Q(E) ≥ Q(Ei) −
ǫ

3
≥ Qi(Ei) −

ǫ

3
−
ǫ

3
≥ ν(Ei) −

ǫ

3
−
ǫ

3
−
ǫ

3
.

6 pCTL∗

We now examine the relation between our processes and a minor variant of
pCTL∗ [ASB+95, dA97], a standard modal logic used for expressing proper-
ties of probabilistic systems. We will largely elide formal definitions, instead
focusing on explaining the key differences from the treatment of de Al-
faro [dA97] for Markov decision processes (that lack τ and associate unique
probability distributions with each label at a state). It will turn out that a
very small fragment of this logic suffices to characterize weak bisimulation
so the completeness is achieved with a very parsimonious logic. However,
it is useful to know that the truth of all pCTL∗ formulas is invariant un-
der bisimulation since this logic is actually used for specification. So for
soundness we want as rich a logic as possible whereas for completeness we
would like as simple a logic as possible in order to make clear what is really
essential to characterize bisimulation.
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The logic. There are two kinds of formulas: state formulas, denoted
φ, φ′, . . ., and path formulas, denoted ψ,ψ′, . . .. These are generated by
the following grammar:

φ ::= ⊥ | ¬φ | φ ∧ φ′ | P⊲⊳qψ
ψ ::= a | φ | ¬ψ | ψ ∧ ψ′ | ©ψ | 3ψ | ψUψ′

In the above, ⊲⊳ is drawn from {=,≤,≥, <,>}, q is a rational in [0, 1],
and a ∈ Act.

We ignore atomic formulas which are first-order logic formulas over some
fixed sets of variables, functions and predicate symbols. One can assume that
bisimilar states satisfy the same atomic formulas.

Policies A policy on an LCMC disambiguates all nondeterminism. The
operational scheduling idea underlying a policy is that for a given history, at
each nondeterministic node, the scheduler chooses exactly one labeled tran-
sition. Weak transitions are accommodated by two extensions: (a) “stutter-
ing” is facilitated by permitting a τ transition back to the same state even if
such a transition is not available explicitly; and (b) skipping of intermediate
states in a ε transition is permitted; this is sometimes called “mumbling.”

The use of stuttering and mumbling is quite common in treatments
of fully abstract semantics for concurrent programming languages [Bro96,
HdBR94]. The key point is that the computations really talk about the
fringe rather than about the paths that were taken to reach the fringe. Of
course, the paths do arise but the whole point of the closure conditions is
to abstract away from the inessential details of the paths.

Rather than formalize these operational intuitions directly, using defini-
tion 2.2, we formalize a local snapshot of the purely probabilistic chain that
results from the use of such a scheduler.

Definition 6.1 Let K be a LCMC.

• A behaviour is a finite sequence of states and labels s = s0, l0, s1, l1, s2, . . .
obtained from the transitions of the LCMC with possible stuttering
and mumbling as described above. In other words: either si makes
an li labelled transition to si+1 according to the transition relation of
the LCMC and possibly sequences of τ transitions before and after li
(mumbling), or si and si+1 are the same and the label is a ε (stutter-
ing).

• A basic policy is a map from behaviours to S ⊆ K × Act× (0, 1] such
that

∑

S π3(S) = 1; here the notation π3 means that we project out the
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third component of the triples (the actual probabilities), thus the sum
is over the probabilities of the triples in S.

A basic policy η is valid for an LCMC K if for all behaviors s0, l0, s1, l1, s2, . . . , si

there is a computation (as per definition 2.2) rooted at si validating

η(s0, l0, s1, l1, s2, . . . , si),

i.e.
∀(s, a, r) ∈ η(s0, l0, s1, l1, s2, . . . , si),

r equals the sum of the probabilities of the paths from root si with weak label
a that end in leaf s in the computation6. A behavior s0, l0, s1, l1, s2, . . . sj

satisfies the basic policy η if for all 0 ≤ i < j, there exists an r > 0 such
that (si+1, li, r) ∈ η(s0, l0, . . . si).

General policies are constructed as linear combinations of basic policies:
∑

i λiηi (where λi > 0,
∑

i λi = 1. A linear combination of basic policies
valid for K is defined to be valid for K.

When we interpret formulas over an LCMC K, we will only consider
policies valid for K. Any policy η valid for K defines a measure µη on the
paths of the resulting computation Cη in a standard way7.

Example 6.2 Consider the policy η such that η(s0, l0, s1, l1, s2, . . . , si) =
(si, τ, 1). It is valid at si via the computation that only has a root si.
The behavior s0, l0, s1, l1, s2, . . . , si, si is the sole behavior that immediately
extends s0, l0, s1, l1, s2, . . . , si as per this policy. So, this policy models one-
step of stuttering at state si after behavior s0, l0, s1, l1, s2, . . . , si.

Here is an example showing the effect of mumbling.

Example 6.3

s

τ
��

b

��

a

��

s′

c

��b����
��

��
�

0 0 0

t

τ
��

a

��

t′

c

��b����
��

��
�

0 0 0

6Thus, in contrast to the definition of a-computations in earlier sections, the validating
computation can have different weak labels on different paths from the root to the leaves.

7We elide well-known measure-theoretic details in this paper.
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Consider the systems shown above. According to our definitions the states
s and t should be weakly bisimilar. If we were to look for a direct match of

the path s
b
→ 0 from t we would only find t

τ
→ t′

b
→ 0 and there is no state in

the former path that is weakly bisimilar to t′. With mumbling, however, we
are allowed to drop intermediate steps and we have the “mumbled” version

of the path, namely t
b
→ 0.

6.1 The formal semantics of the logic

The basic semantic relation is of the form s |= φ for state formulas and
α |= ψ for path formulas where α is a behavior and s is a state, φ is a state
formula and ψ is a path formula. The semantics of the path formulas is
exactly as in standard linear temporal logic, indeed this is standard linear
temporal logic. For a ∈ Act, the path formula a is true of a behaviors
s0, a, s1, . . . whose first weak label is a. Formally,

s0 a s1 . . . |= a
s0 a . . . |= φ if s0 |= φ
s0 a0 s1 a1 . . . |= ©ψ if s1 a1 . . . |= ψ.

We omit the other cases as they follow the standard pattern.

Policies and the probabilistic quantifier For state formulas the only
interesting point is the probabilistic quantifier. Let K be an LCMC. Fix
a (possibly general) policy η. A set of behaviors is measurable if the set
of the corresponding paths in η is measurable. By a routine structural
induction, we can show that the sets of behaviors that satisfy path formulas
are measurable.

The state formula P⊲⊳qψ is true at a state s if for all policies η, the
measure of the set of behaviors that satisfy ψ is in the ⊲⊳ relation to q. More
precisely, let µη,s be the measure induced on the set of paths starting from
s with the policy η, then

s |= P⊲⊳qψ if µη,s({α|α |= ψ}) ⊲⊳ q.

Example 6.4 We illustrate how the logic captures minimum and maximum
probabilities, where the minima (resp. maxima) are taken over the set of
policies.
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Let ψ be a path formula. The formula P≤q¬ψ is true at a state s if for
all policies η that are valid for K, the measure of the set of behaviors that
satisfy ¬ψ is at most q.

The formula P≥q¬ψ is true at a state s if for all policies η, the measure
of the set of behaviors that satisfy ¬ψ is at least q.

One needs to be aware of the expressive power of the logic especially with
regards to divergence. With the closure of the policies under stuttering we
are effectively adding self loops everywhere.

Example 6.5 Consider the two processes shown in Figure 2. For the pro-

s1
τ

))

a

��

p1

1

ii

p1

1
		

t1

τ

HH

s2

a

��
p2

1
		

t2

τ

HH

Figure 2: The logic does not detect divergence

cess on the left there is a divergent τ -loop (recall that probabilistic tran-
sitions are viewed as being unlabelled) coming out of the state s1; apart
from this the states s1 and s2 are identical. It is clear that the pairs of
states (t1, t2) and (p1, p2) are bisimilar. By our definitions (s1, s2) are also
bisimilar. It may appear that this contradicts the claim that the logic is
sound for weak bisimulation because it appears that the formula P=1(3a) is
satisfied by s2 for any possible scheduler whereas this formula is not satisfied
by s1 under the (unfair) scheduler which always chooses the τ action in s1.
However, the effect of closing under stuttering is precisely to add the same τ
loop to s2, and thus the two states indeed satisfy the same formulas; in this
case neither will satisfy the formula just mentioned. Thus, in this example
neither process will satisfy any nontrivial formula of the form P≥qφ.

How would we distinguish s1 or s2 from a dead state nil without any
transition? One can use negation to, in effect, “get an existential quantifi-
cation over policies.” In fact positive formulas with universal quantification
over policies are not very useful. One really wants to have existential quan-
tification over policies and these one gets with negation.
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Example 6.6 Consider the formula ¬P<qφ. A state s satisfies this formula
if s 6|= P<qφ. According to our semantics, this means that there is a policy,
say η, such that in the Markov chain starting from s following policy η, the
measure of the paths satisfying φ is at least q.

The states s1 (and s2) in the above example satisfy ¬P<1[a] which a
dead state does not.

6.2 Soundness of bisimulation

The key to the proof, as might be expected, is to show that the paths and
computations out of bisimilar states “match” sufficiently.

First, we consider behaviors. The following proposition is a standard
use of the co-inductive definition of bisimulation. We do not need it but
it is worth noting. The proof is omitted because it can be done on similar
lines to Lemma 6.8 which follows. That lemma is needed in the proof of the
soundness theorem.

Proposition 6.7 Let s ≈ t. Then, for any behavior s, l0, s1, l1, s2, . . . from
s, there is a behavior with equal trace, t, l0, t1, l1, t2, . . ., from t such that:
(∀i) [si ≈ ti].

Next, we move to policies and induced computations. For this, we follow
the proof of Theorem 4.3 (in particular the implication (2) ⇒ (3)). This
proof has already shown that given a computation C from a state s, and
given t bisimilar to s, there is a computation C ′ from t that assigns the same
probabilities to the leaves of C. We will now generalize this to all paths —
given an a-computation Cη induced by a policy η from a state s, we show
that for any bisimilar state t, there is a policy η′ that assigns at least the
probabilities assigned by η to all the paths in Cη. We use the equivalence of
our definitions with those of Philippou, Lee and Sokolsky [PLS00]. The first
case of their definition permits the simulation of non-deterministic edges.
The second case of their definition permits the simulation of probabilistic
branches.

Lemma 6.8 Let s, t be bisimilar states. Let η be a policy and let Cη be the
induced η-computation from s. Then, there is a policy η′ such that every path
in Cη is a behavior in the η′ computation from t with the same probability.

Proof. It suffices to prove this for the case where η is a basic policy.
The proof is a routine induction. Cη has countably many transitions.

Consider any ordering o of these transitions such that a transition occurs
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after all the transitions leading up to it. We construct Cη′ by mimicking
transitions in the order prescribed by o. Our induction hypothesis is that
at the i’th stage: every path in the subtree induced by the first i transitions
(as per o) is a behavior in Ci

η′ computation from t with at least the same
probability.

Let the i+ 1’st transition be a transition at u. Let p be the probability
of the path from s to u in Cη. Let V be the set of leaves v in Ci

η′ such that:

• v ≈ u

• The path from s to u in Cη is a behavior corresponding to the path
from t to v in Ci

η′ .

The measure of V in Ci
η′ , say q, is at least p by the induction hypothesis.

There are two cases based on the kind of the (i+ 1)st transition.

1. The (i+ 1)st transition is a nondeterministic transition u
b
→ u′. This

transition can be matched by computations from all elements of V :
by definition these computations reach [u′] with probability 1 on weak
label b.

2. The (i+ 1)st transition is a probabilistic transition u→ Q. There are
two cases depending on whether Q([u]) = 0 or not.

If Q([u]) = 0, this transition can be matched by computations from
all elements of V : by theorem 4.3 these computations reach the leaves
with label ε and assign probabilities in accordance with Q.

If Q([u]) = r > 0, consider the transition from u to Q′ where: Q′[v] =
Q[v]
1−r , if u 6∈ [v] and Q′([u]) = 0. Pick any element v ∈ V . Since v ≈ u,
by theorem 4.3, this computation reaches the leaves with label ε and
assign probabilities in accordance with Q′. The required transition
to Q from v is given by a linear combination (with coefficient 1 − r)
of this computation with the computation consisting only of v (with
coefficient r).

In either case, let Ci′

η′ be the extension of Ci
η′ by these matching transitions.

Ci+1
η′ is got by a linear combination t ⇒ [λ × Ci′

η′ + (1 − λ) × Ci
η′ ], where

λ = p/q.
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Lemmas 6.7 and 6.8 yield the desired theorem by a standard induction
on the structure of formulas.

Theorem 6.9 If s ≈ t, then for all pCTL∗ state formulas φ, s |= φ iff
t |= φ.

Proof. We sketch the case of P≥qψ. Let s satisfy P≥qψ. Every policy
induces a set of computations from s. For every computation from s, using
lemma 6.8, there is a computation from t that attributes a larger measure
to the set of behaviors from t that satisfy ψ. Hence, t satisfies P≥qψ.

6.3 Completeness

We proceed now to completeness. Here the fact that we have a capacity
plays a key role, as we use the downward continuity property of capacities.

We identify L, a sub-fragment of the state formulas of the pCTL∗ variant
above, that suffices for completeness. These are generated by the following
grammar:

φ ::= ⊤ | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | 〈a〉≥qφ

where a ∈ Act (including τ), q is a rational and 〈a〉≥qφ is shorthand for
¬P≤q[a∧©φ]; recall the discussion of example 6.6. Thus, a state s satisfies
〈a〉≥qφ iff there is a policy η such that the computation induced by η assigns
probability greater than q to the states satisfying φ reachable on a weak a
transition. More succinctly, s satisfies 〈a〉≥qφ if P (s, a, {t | t satisfies φ}) ≥
q.

Theorem 6.10 If two states satisfy the same formulas of L, then they are
bisimilar.

Proof. Let R be the equivalence relation defined by the formulas of L. Let
s and t be two R-related states. We need to prove that for every R-closed
set X, P (s, a,X) = P (t, a,X), where a 6= τ and also an analogous proof for
an empty weak label. By using formulas of the form 〈a〉≥qφ, we obtain the
required equality for sets of states X that are denotations of formulas, i.e.
X = {s′ | s′ satisfies φ}, φ ∈ L.

Since the state space is countable every R-closed set is a countable union
of equivalence classes. Every equivalence class is described by countably
many formulas and - since we have negation - can be described as the in-
tersection of countably many sets of the form {s|s satisfies φ}. Thus every
R-closed set, say Y , is of the form

Y = ∪∞
i=1 ∩

∞
j=1 Xij
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where the Xij are the denotations of formulas.
We define

Yi := ∩∞
j=1[∪

i
k=1Xkj].

Note that Yi forms an increasing family in the subset ordering. Furthermore

∪∞
i=1Yi = Y by distributivity. Now, for each i, the sets Z

(l)
i := ∩l

j=1 ∪
i
k=1

Xkj are a decreasing family as l increases and they are the denotations of
formulas, since there is conjunction and disjunction in the logic. Thus the

two capacities will agree on each Z
(l)
i and - since liml→∞Z

(l)
i = Yi - by up

continuity they will agree on Yi and thus - by down continuity - they agree
on Y .

The proof for P (s, ε,X) = P (t, ε,X) is similar except for the use of the
formulas 〈τ〉φ and is omitted.

Note how we used the up and down continuity properties of capacities
to get from having the transition probabilities8 agree on sets definable by
formulas was as good as knowing that they agree everywhere. In other situa-
tions [DGJP02a], we have used Dynkin’s λ−π theorem to short circuit most
of the above proof. Here, of course, that theorem does not apply (because
we do not have σ-additivity); instead we used the continuity properties of
capacities to complete the argument.

7 Conclusions

The main thrust of the present paper has been to elucidate the interaction
between probability and nondeterminism in the alternating model. The
definition of weak bisimulation that we have used generalizes the elegant
treatment of Philippou, Lee and Sokolsky from finite state to countable
systems. We have emphasized two features of their definition that were left
implicit by them, namely the loss of additivity and the need for considering
convex-linear structure when matching weak transitions. The main new
result of our analysis is that weak bisimulation is sound and complete for (a
minor variant of) pCTL∗.

It is worth taking a retrospective view of some of the mathematical ideas
in the proofs. The basic problem, with which we have had to struggle, is the
loss of σ-additivity. The heart of any completeness proof of this type is an
argument to establish that equality of the transition probabilities to sets of
states defined by the logic forces equality of all the transition probabilities.

8Strictly speaking, we should say “transition capacities”, but this is too ugly.
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Such an argument rests on theorems that guarantee equality of measures
given equality on a suitable generating set for the σ-field. These uniqueness
theorems heavily rely on σ-additivity. Thus, we were led to consider what
structure we do have given that we do not have a probability measure. The
fact that we have capacities and, in particular, that capacities satisfy strong
continuity properties (both upward and downward) turns out to be strong
enough to establish the results that we need. To conclude we need to argue
that we really have capacities. Here the compactness property turns out to
be crucial.

The other major mathematical innovation (of course implicit in the works
of previous authors) is the use of linear combinations in matching. This is
really taking “out of the closet” ideas that are understood as randomized
schedulers or other such devices. However, having done so it becomes clear
that linear algebra and linear programming plays a key role in matching.
In particular Claire Jones’ remarkably prescient splitting lemma [Jon90] is
clearly part of a general pattern [vBW01] where linear programming ideas,
and duality in particular play a key role.

In closely related work [DGJP02a] we have shown that one can develop
a metric for weak bisimulation analogous to our previous treatment of met-
rics for strong bisimulation [DGJP99]. In that work we heavily use linear
programming and duality.

The present treatment is for discrete systems. We have preliminary re-
sults on continuous time, namely we have shown completeness for continuous
stochastic logic [DP03]. To deal with continuous state spaces one has to use
analogues of the linear programming theory for infinite dimensional spaces.
Fortunately such theories are available and it appears that our results will
go through at least under suitable compactness assumptions. There are ana-
logues of such results for continuous-state Markov Decision Processes with
rewards [FPP05], but so far only for strong bisimulation.

After the presentation of the conference version of this paper [DGJP02b],
Jean Goubault-Larecq has begun a systematic investigation of the use of
capacities in the context of modelling probability and non-determinism. He
has explicitly worked with continuous state spaces and has tied the work to
games [GL07].

An important related development has been the work carried out by
Roberto Segala and his collaborators, two important papers are by Parma
and Segala [PS07] and by Segala and Turrini [ST05]. Another relevant paper
by Segala appears in CONCUR ’06 [Seg06]. They also prove soundness and
completeness of an appropriate logic for weak bisimulation using different
ideas. Their work uses the framework of probabilistic automata which does
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not have the alternating character of our LCMC model. However, they give
a bisimulation preserving translation from LCMC to probabilistic automata
and from this soundness for LCMC also follows. As already remarked by
Philippou et al. [PLS00], the existence of a converse bisimulation preserving
translation is unlikely. Such a translation is needed for inferring our com-
pleteness results from theirs. The existence of such a translation is suggested
in [ST05] but it was not clear to us. In particular the convexity properties
that one needs for the probabilistic automaton case are not readily available
in LCMC. There is no doubt that these papers have significantly advanced
our understanding of the concepts and they have served to provide a unified
conceptual framework for the different models in the extant literature.
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A Complete Proof of Theorem 4.3

The first lemma says that there must be some non-zero probability that a
weak-ε transition can exit a set of pairwise non-bisimilar states.

Lemma A.1 Given a countable set of states A, with every pair of states in
A non-bisimilar, there exists s ∈ A such that P (s, ε,A \ {s}) < 1.

Proof. Let A = {si | i = 1, 2, . . .}. We first prove that if ((∀si ∈
A) [P (si, ε, A \ {si}) = 1]) then the same statement is true for A \ {sj}
in place of A, for any sj ∈ A. This will lead to a contradiction as follows. If
the statement is true with one state removed it will be true for any finite set
of states removed, by induction. Now define the set Ai to be A\{s1, . . . , si}.
For any i we have P (s1, ε, Ai) = 1 hence P (s1, ε,∩iAi) = 1 but ∩iAi = ∅
so we get the obvious contradiction P (s1, ε, ∅) = 1. To complete the proof
we need to establish the implication asserted in the second sentence of this
paragraph.

Recall that we are assuming that P (si, ε, A \ {si}) = 1 for any si in A.
Let Ci be the computation that induces the maximum value, namely 1, of
P (si, ε, A\{si}), and let Pi be the distribution induced by this computation
on A \ {si}. Then for all j ≥ 1,

1 = P (s1, ε, [A \ {s1}]) = P1(sj) + P1(A \ {s1, sj}) and

1 = P (sj, ε, [A \ {sj}]) = Pj(s1) + Pj(A \ {s1, sj}).

Now the computation Cj (resp C1) was chosen to attain the maximum possi-
ble value on A\{si} but it need not be the one that maximises the probability
for reaching A \ {s1, sj}. Thus, we have the inequality

P (sj , ε, A \ {s1, sj})
≥ Pj(A \ {s1, sj}) + Pj(s1)P (s1, ε, A \ {s1, sj})
≥ Pj(A \ {s1, sj}) + Pj(s1)[P1(A \ {s1, sj}) + P1(sj)P (sj, ε, A \ {s1, sj})].

Thus since s1 is not bisimilar to sj, we have Pj(s1)P1(sj) < 1, and hence

P (sj , ε, A \ {s1, sj}) ≥
Pj(A \ {s1, sj}) + Pj(s1)P1(A \ {s1, sj})

1 − Pj(s1)P1(sj)
.

But this fraction is equal to 1 because of the two equalities above. Thus it
follows that P (sj, ε, [A \ {s1, sj}]) = 1. This completes the argument.
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Now we give the complete proof of Theorem 4.3. In the main text we
had already shown that (2) implies (3) and observed that (3) implies (1)
immediately.

Theorem A.2 Given an LCMC which satisfies the property that the total
of all the probabilities from any probabilistic state is 1, if states s and t in
it are bisimilar then they are bisimilar according to the definition of Lee,
Philippou and Sokolsky [PLS00].

Proof. This corresponds to (1) ⇒ (2) in the statement of Theorem 4.3.
We show that the relation ≈, which is our notion of weak bisimulation,

satisfies both the conditions of Definition 4.1. Let us recall this definition:

An equivalence relation R ⊆ S × S is a PLS-weak bisimulation
iff whenever sRt, then

• if s ∈ Kn, α ∈ Act and (s, α, s′) ∈−→, then there exists a
computation C such that
PC(t, α, [s′]) = 1.

• if s ∈ Kp, there exists a computation C such that for all
M ∈ K/R − [s]R, QR(s,M) = PC(t, ε,M).

QR is the probability distribution from s ∈ Kp “normalized” by
weighting by the probability of exiting [s]R. Let s→p Q. Then:

QR(s,M) =

{

Q(M), if Q([s]R) = 1
Q(M)

1−Q([s]R) , otherwise

Let s, t ∈ K, with s ≈ t. The first condition is satisfied easily: If (s, α, s′) ∈−→,
P (s, α, [s′]) = 1. Since s ≈ t, P (t, α, [s′]) = 1, and using Proposition 3.8, we
have an α-computation C such that PC(t, α, [s′]) = 1.

For the second condition, assume s ∈ Kp. Let si, i = 1, . . . , sn be the
targets of the probabilistic transition from s that are not ≈-related to s.
If there are no such states, the condition is satisfied trivially because there
are no Ms of the type described above. Our proof proceeds in the following
steps. For t ∈ Kn, we show that there exists t′ ≈ t such that (t, τ, t′) ∈−→,
thus reducing this case to the case when t is probabilistic. For t ∈ Kp, we
show that the targets of the probabilistic transition from t are precisely the
ones of s with identical “normalized” probabilities.

• Case t ∈ Kn: we will show that there exists t′ ≈ t such that (t, τ, t′) ∈−→.
Let E be a ≈-closed set that does not contain [t]. Then, by Proposition 3.8,
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there is a state tE belonging to the targets of τ -transitions from t such that
P (t, ε, E) = P (tE, ε, E). We will consider the analogous statement with the
set A for E where A = [s1]∪· · ·∪ [sn] which is ≈-closed and does not contain
s, and hence not [t]. We will show that the corresponding state tA satisfies
tA ≈ t; this will turn out to be the state t′ that we are looking for. Now
P (tA, ε, A) = P (t, ε,A) = P (s, ε,A) = 1. The first equality is from the def-
inition of tA and the second holds because s ≈ t. The last equality follows
from the following little calculation, suppose that s −→p Q then:

P (s, ε,A) = Q(A) +Q([s])P (s, ε,A).

This holds because from s one either goes to A or to a state bisimilar to s.
From this we get

P (s, ε,A) =
Q(A)

1 −Q([s])

which is 1 since Q(A) +Q([s]) = 1.
Since (t, τ, tE) ∈−→, we have 1 = P (t, ε, [tE ]) = P (s, ε, [tE ]), it follows

that P (si, ε, [tE ]) = 1 for all si, and hence for every element of A. Thus
P (tA, ε, [tE ]) = 1 and hence P (tA, ε, E) ≥ P (tE , ε, E), which, combined
with P (t, ε, E) ≥ P (tA, ε, E), implies

P (tA, ε, E) = P (t, ε, E) for any ≈-closed E not containing [t].

The case where E contains [t] is trivially handled by including the pair (t, tA)
in the bisimulation relation. Thus tA ≈ t and the computation is the one
that goes from t to tA and then continues as given by the following case for
state tA.

• Case t ∈ Kp: If t has a probability 1 transition to another state, then it
is bisimilar to that state, reducing us to the case above. This process stops
at some point because tA is given by the computation of Proposition 3.8, and
hence it is a probabilistic state that does not have probability 1 to go back
to t. This means that we build up the desired computation by travelling
through bisimilar states until we reach a (probabilistic) state t′ that does
not have probability 1 to some other state. This must happen because s has
non-bisimilar successors and s ≈ t. We then append the computation that
we built to the one for t′, as shown below.

Otherwise, let Qs and Qt be the normalized probability distributions
arising from probabilistic transitions at s and t; that is, the supports of Qs

and Qt are disjoint from [s] and for any set M , Qs(M) = Ps(M)
1−Ps([s])

where

s −→p Ps, similarly for t (recall that Ps([s]) and Pt([t]) are not 1). Let
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s1, s2, . . . be states in the targets of Qs or Qt (in the union of their support)
such that Qs([si]) = Qt([si]) for all i ≥ 1. Let U be the set containing the
remaining states in the union of the supports of Qs and Qt. This set is also
countable. We will show that U is empty.

Let A = ∪u∈U [u]9. Then, since s 6∈ A,

P (s, ε,A) =
∑

u∈U

Qs(u) +
∑

sj

Qs(sj)P (sj , ε, A)

=
∑

u∈U

Qs(u) +
∑

[sj ]

Qs([sj])P (sj , ε, A) by definition of ≈ .

Using the same equality on the t side, and using P (s, ε,A) = P (t, ε,A),
since A is ≈-closed, and alsoQs([si]) = Qt([si]), we have that 0 =

∑

u∈U (Qs(u)−
Qt(u)).

Now by Lemma A.1 there exists u ∈ A such that P (u, ε,A \ {u}) < 1,
and hence there is some u0 ∈ [u] ∩ U such that P (u0, ε, A \ [u0]) < 1. Now

P (s, ε,A\[u0]) =
∑

u∈U\[u0]

Qs(u)+Qs([u0])P (u0, ε, A\[u0])+
∑

[sj ]

Qs([sj])P (sj , ε, A\[u0]).

By using a similar equality for t, and because A \ [u0] is ≈-closed, we obtain

0 =
∑

u∈U\[u0]

(Qs(u) −Qt(u)) + (Qs([u0]) −Qt([u0]))P (u0, ε, A \ [u0]).

Subtracting this equation from the previous equation, we have (Qs([u0]) −
Qt([u0]))(1 − P (u0, ε, A \ [u0]) = 0, which means that Qs([u0]) = Qt([u0]),
as P (u0, ǫ, A\ [u0]) < 1. This is a contradiction to the fact that u0 ∈ U , and
hence U is empty. The emptiness of U implies that s and t have the same
transition probabilities to any equivalence class.

In order to complete the proof we need to construct a computation C
starting from t. This construction proceeds as follows. At t, all successors
of t that are not in [t] will be leaves at depth 1 in C, and then we append
to successors of t that are in [t] the computation given by the arguments

above. Of course Qs([s]) = Qt([s]) 6= 1 and hence Qs(M)
1−Qs([s])

= Qt(M)
1−Qt([s])

=

PC(t, ε,M).

9If it is empty, we are done.
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