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Abstract. We investigate weak bisimulation of probabilistic systemsin the pres-
ence of nondeterminism, i.e. labelled concurrent Markov chains (LCMC) with
silent transitions. We build on the work of Philippou, Lee and Sokolsky [1] for
finite state LCMCs. Their definition of weak bisimulation destroys the additivity
property of the probability distributions, yielding insteadcapacities. The mathe-
matics behind capacities naturally captures the intuitionthat when we deal with
nondeterminism we must work with estimates on the possible probabilities.
Our analysis leads to three new developments:

– We identify an axiomatization of “image finiteness” for countable state sys-
tems and present a new definition of weak bisimulation for these LCMCs.
We prove that our definition coincides with that of Philippou, Lee and Sokol-
sky for finite state systems.

– We show that bisimilar states have matching computations. The notion of
matching involveslinear combinationsof transitions. This idea is closely
related to the use of randomized schedulers.

– We study a minor variant of the probabilistic logic pCTL∗ — the variation
arises from an extra path formula to address action labels. We show that
bisimulation is sound and complete for this variant of pCTL∗.

1 Introduction

The main object of this paper is to study systems that combineprobability, concurrency
and nondeterminism. We focus in particular on weak bisimulation. The importance of
weak bisimulation comes from the need for abstraction. In order to construct larger
programs from smaller programs one works with the composition mechanisms of the
language. When doing so it is necessary to hide internal actions and work with weak
(rather than strong) bisimulation.

In the purely probabilistic context, the study of strong bisimulation was initiated by
Larsen and Skou [2], and an equivalence notion was developed, similar to the queuing
theory notion of “lumpability” [3]. This theory has been extended to continuous state
spaces and continuous distributions [4–6] and, in the discrete setting, to weak bisimu-
lation [7].

The study of weak bisimulation for systems with probabilityand non-determinism
is sensitive to the underlying model. The two principal models are thealternating
⋆ Research supported by NSERC, NSF and MITACS.



model [8] - where there are two disjoint classes of states, probabilistic states and nonde-
terministic states - and the nonalternating model [9]. Weakbisimulation for finite-state
systems in the alternating model with distinct nondeterministic and probabilistic states
was defined by Philippou, Lee and Sokolsky [1] whereas weak bisimulation for the non-
alternating model was studied by Segala and Lynch [9]. Our study is set in the context
of the alternating model and follows [1].

We explore the subtle consequences of the benign looking definitions of [1]. The
most significant change from ordinary probability theory isthat the “probabilities” no
longer satisfy additivity5. In the presence of nondeterminism, we are describing aset
of probability distributions{Qi} for a given states and a given weak transition labela.
The “probabilities” ascribed by [1] arise by majorizing over this set, i.e.P (s, a, E), the
probability of reaching a set of statesE from states on weak transition labelleda, is
given bymaxi Qi(E) for any subset of statesE.

The second important change is that the notion of matching has changed radically.
The essence of any bisimulation notion is that transitions of one process can be matched
with transitions in the bisimilar process. In order to matchcomputation paths on given
weak labels we are forced to take linear combinations of computations. The “compu-
tations” (to be defined precisely later) now have a vector space structure. In example 2
we discuss this point in detail. Essentially randomized schedulers allow one to take just
such linear combinations.

The three main points that we make can be summarized as follows.

– First, we generalize the definitions of [1] to a large class ofinfinite-state systems
satisfying a compactness property. Informally, compactness is a topological for-
malization of finite branching. In this context, compactness enables us to capture a
robust notion of “image finiteness” for weak transitions that hide internal actions.
The compact systems that we consider include all finite statesystems (including
those with cycles).

– Second, we adapt the ideas on randomized schedulers from Segala’s work on prob-
abilistic IO automata [10]. On the one hand, randomized schedulers do not change
the semantics (the sups that one computes are the same). On the other hand, these
schedulers enable us to perform a fine-grained analysis of the structure of com-
putations in bisimilar systems. This analysis permits us toestablish that bisimilar
statess, t satisfy a familiar property: “for every distribution of states induced by
a resolution of non-deterministic choices froms, there exists a resolution of non-
deterministic choices fromt that results in a matching distribution on states”. We
show simple examples that demonstrate that this matching property requiresthe
presence of linear combinations.

– Third, we analyze the structure that arises by majorizing over a set of probabil-
ity distributions. This structure is called a capacity — forour purposes, capacities
are monotone functions from a Borel algebra to the reals thatpreserve sups (resp.
infs) of increasing (resp. decreasing) sequences of sets. Capacities are not neces-
sarily additive. Indeed, the capacities induced by the definitions of [1] only satisfy:
P (s, a, A) + P (s, a,B) ≥ P (s, a, A ∪B) for disjoint sets of statesA,B.

5 Additivity: P is additive if for disjoint setsA, B, P (A ∪ B) = P (A) + P (B).



This loss of additivity has already been recognized in various situations in mathe-
matics [11–13] and in economics [14]6, and a rich theory was already available for
our use. This theory meshes very well with the idea that uncertainty in probability
distributions should be captured by giving upper and lower bounds on probabilities
and expectation values. We show that the key equations that are demanded by this
theory are met by the capacities that arise in the context of weak bisimulation.

Soundness and Completeness of weak bisimulation for probabilistic logics. A funda-
mental application of these ideas and the original impetus for these investigations is
the analysis of soundness and completeness of bisimulationfor probabilistic logics. We
study a minor variant of the probabilistic logic pCTL∗ [15] – the variation arises from
an extra path formula to address action labels – and is inspired by the variants of prob-
abilistic logics that deal with action labels [9, 8] . We showthat bisimulation is sound
and complete for this variant of pCTL∗. Our soundness and completeness proofs relies
crucially on all three developments identified above.

Organization of this paper.The rest of this paper is organized as follows. First, in sec-
tion 2, we review the basic definitions of the model (the “alternating model”) and weak
probabilistic bisimulation and associated results to makethe paper self-contained. Sec-
tion 3 identifies the class of countable systems to which our study applies. In section 4
we show that our definition is equivalent to that of Philippou, Lee and Sokolsky [1]. In
section 5 we show that the capacities defined in the development of weak bisimulation
satisfy the axioms required of capacities. Finally, in section 6, we use the machinery
that has been developed to prove soundness and completenessresults for the logic.

2 Background and Definitions

We begin with a review of the underlying framework — our definitions are adapted
from [1]. We work in the context of the “alternating model” for labelled concurrent
Markov chains [8], labelled transition systems with non-determinism and probability.

Definition 1. A labelled concurrent Markov chain (henceforth LCMC), is a tupleK =
(K, Act,−→, k0), where
(1)K = Kp ∪Kn, a countable set, is partitioned into the probabilistic states,Kp, and
the nondeterministic statesKn. k0 is the start state.
(2) Act is a finite set of action symbols that contains a special action τ .
(3) The transition relation−→=−→p ∪ −→n is partitioned into probabilistic and
nondeterministic transitions.−→n⊆ Kn × Act×Kp is image-finite, i.e. for eachs ∈
Kn anda ∈ Act, the set{s′ ∈ Kp | s

a
→ s′} is finite.−→p⊆ Kp×(0, 1]×Kn satisfies

that for eachs ∈ Kp,
∑

(s,π,t)∈−→p
π = 1.

6 Economic studies distinguish risk (the relative probabilities of the events are known) from
uncertainty (there is no unique assignment of probabilities to events) - this is what computer
scientists call nondeterminism. Risk is modelled using probability. The modelling of uncer-
tainty is via a set of probability measures that are consistent with the known information. The
structure obtained by majorizing this set of probability measures does not satisfy additivity
and is a capacity.



A state is either probabilistic - in which case the transitions are probabilistic and un-
labelled - or nondeterministic, in which case the transitions are finite-branching and
labelled (possibly by aτ ). The probabilistic branching can be countable at a state.

Every probabilistic states induces a probability distributionQ on Kn given by
Q(t) =

∑
(s,π,t)∈−→p

π for everyt ∈ K. We sometimes writes →p Q to emphasize
this distribution. Indeed, one can take the view that the “real” states are the nondeter-
ministic states and the probabilistic states are really just names for certain probability
distributions.

The LCMC model does not need to be strictly alternating. One can work with a
model that only restricts states to be either purely nondeterministic or purely proba-
bilistic and does not enforce strict alternation.

We use some notation for sequences (of states or transitions). We useε for the
empty sequence and· for concatenation. Every sequence, sayσ, of transitions has as
an associated probabilityprob(σ), obtained by multiplying the probabilities occurring
on the path. Thus, we attribute1 to a nondeterministic transition in a path, and multiply
together probabilities of all the probabilistic transitions. Similarly, every sequenceσ
of transitions has an associated weak sequence of labelsWeak(σ) ∈ (Act − {τ})∗,
obtained by removing the labels ofτ -transitions. Thus, probabilistic transitions and
nondeterministic transitions with labelτ do not contribute to the weak label. We useτ
for the empty sequence as well as for the empty transition. Thus we will say that a path
of τ transitions and probabilistic transitions has weak labelτ .

We definecomputationsof an LCMC as transition trees obtained by unfolding the
LCMC from the root, resolving the nondeterministic choices(i.e. each nondeterministic
state has at most one transition coming out of it) and taking all probabilistic choices at
a probabilistic state. A computation can thus be viewed as a purely (sub)probabilistic
labelled Markov chain. We refer to the set of all the probabilistic transitions from a
probabilistic state as afan.

Definition 2. A computationof an LCMC is a (possibly infinite) subtree of the tree
obtained by partially unfolding the LCMC. In a computation every nondeterministic
state has at most one transition coming out of it and if a probabilistic transition is
included then the entire fan of that probabilistic transition is included.

We are interested in transitions with particular weak labels.

Definition 3. LetK be a LCMC,a ∈ Act. Ana-computation froms ∈ K is a compu-
tation such that every path from the root has weak labela or ε.

It may seem peculiar to allow ana-computation to have paths labelled byε. This is done
to allow for a computation where thea transition has not happened yet (or may never
happen). However, when we associate probability distributions with computations we
will not count the paths labelled withε, we insist that the paths that contribute to the
distribution have weak labela.

Each computation induces a distribution on its leaf states in the standard way — the
probability of a leaf node is the probability of the (unique)path going to it. We actually
use a somewhat looser correspondence between computationsand distributions. We
allow many distributions to be induced by a given computation; the requirement of



matching is weakened to an inequality. This will turn out to be very convenient when
constructing certain sequences of weak transitions, for example in proving Lemma 1.

Definition 4. LetK be a LCMC,s ∈ K, and letQ be a distribution on states.
We writes

a
⇒ Q, if there is ana-computation such that for allsi ∈ K, Q(si) ≤∑

σ prob(σ) where the summation is taken over pathsσ with weak labela that start in
s and end in the leafsi.

We extend this notation to linear combinations of distributions.s
a
⇒

∑
i λi ×Qi is an

a-transition froms to the distribution
∑

i λi × Qi. This is where the linear structure
becomes explicit. Such a transition can be viewed as the “weighted superposition” of
the transitionss

a
⇒ Qi.

Definition 5. Let si
a
⇒ Qi and let

∑
i λi ≤ 1, where allλi ≥ 0. Then we write:∑

i λi × (si
a
⇒ Qi) to denote the linear combination of the transitionssi

a
⇒ Qi. In the

special case where allsi = s, we writes
a
⇒

∑
i λi × Qi to represent ana-transition

from s to the distribution
∑

i λi ×Qi.

We thus have linear (vector-space) structure on the space ofcomputations and on the
space of distributions. Note that when we writes

a
⇒ Q we refer to the general case of

transitions of the forms
a
⇒

∑
i λi × Qi: when we want to refer to transitions that are

not weighted combinations we use the term “basic”. Fors 6= t, the notationλ × (s
a
⇒

Q1)+ (1−λ)× (t
a
⇒ Q2) is merely notational convenience. Note thats

a
⇒ [λ×Q1 +

(1 − λ) ×Q2] is reminiscent of the randomized schedulers [10].
Transitions from states to distributions as above are one way to the defintion of

bisimulation. Another way is through transitions from states to sets of states, which is
how strong bisimulation is defined for labelled Markov processes in [4, 6]. The “prob-
ability” from a states to a subset of states via a path with weak labela is defined by
taking the supremum over all possiblea-computations.

Definition 6. LetK be a LCMC,s ∈ K,E ⊆ K. Then, the probability of going froms
toE ⊆ K via a, denoted byP (s, a, E), is defined as:

P (s, a, E) = sup{
∑

t∈E

Q(t) | s
a
⇒ Q}.

The supremum in this definition is the source of the subtlety of weak bisimulation —
P (s, a, .) does not satisfy additivity.
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Fig. 1. (a)Additivity Fails (b) Matching with linear combinations



Example 1.Consider the transition system in figure 1(a). ThenP (s, a, {t1}) = 0.5,
P (s, a, {t2}) = 0.6, P (s, a, {t1, t2}) = 0.6. Thus additivity does not hold. This exam-
ple also illustrates in a trivial way why we must take the sup over all computations in
the definition ofP (s, a, E).

The next example shows the importance of allowing linear combinations when
matching computations with given weak labels.

Example 2.Consider the transition systems of figure 1(b). Intuitivelywe would like to
say that the statess andt are weakly bisimilar. We would also like to sayp, p′ andq, q′

are weakly bisimilar.
The probability of starting froms and reachingu on a weaka label is1/2 and the

same is true for reachingu′ from t. Note that we need to sum over all possible paths
that include theτ -loop if we want to get the answer1/2 starting froms. Thus thea-
computation fromt that includesu′ gives a probability of1/2 to u′ and can be matched
by the infinite computation froms that loops infinitely throughw and gives probability
1/2 to u. However, we have absolutely no way of matching the distribution induced
by the computation including only one step froms. Indeed, this computation induces
the distribution that gives probability1/3 to each one ofu, w andv. The only way to
match it is to take a linear combination, namely the distribution δt induced by the trivial
computation consisting only of statet, and the distributionP induced by the one-step
computation. The required combination is thus1/3 × δt + 2/3 × P .

We are now ready to define weak bisimulation. Given an equivalence relationR, we
say a setE isR-closed ifE = ClR(E) := {s | ∃t ∈ E such thattRs}.

Definition 7. An equivalence relationR onK is a weak bisimulation if for alls, t ∈ K
such thats R t and allR-closedE ⊆ K, we have:

(∀a ∈ Act) [P (s, a, E) = P (t, a, E)].

There is a maximum weak bisimulation, denoted by≈. We write[u] for the bisimulation
class of the stateu.

A LCMC K is bisimulation collapsedif for any state, the targets of all transitions are in
distinct bisimulation classes.

The equational laws supported by this definition extend the usual ones for nondeter-
ministic labelled transition systems or purely probabilistic transition systems. Indeed,
the usual relations that witness the bisimulation are carried over essentially unchanged,
for example,τ.K ≈ K, and unfolding a LCMC yields a weakly bisimilar system.
See [16] for a full axiomatization of equational laws for finite processes (without loops,
so the transition system is a tree).

We present a second definition of bisimulation which is similar to the one found
in the non-probabilistic setting. It will be shown to be equivalent to the one above in
Section 4 forcompactLCMCs, defined in the next section.

Definition 8. An equivalence relationR onK is a weak-∗ bisimulation iff for alls, t ∈
K such thats R t we have:

∀s
a
⇒ Q ∃t

a
⇒ Q′ (∀R-closedE ⊆ K [Q(E) = Q′(E)])

We will denote it≈∗.



3 The compactness condition

We consider countable-state LCMCs that satisfy a compactness condition. Intuitively
speaking, the compactness condition can be viewed as the right generalization of “image-
finiteness” for countable state LCMCs in the context of weak transitions that hideτ -
labels.

We first consider some preliminary motivation for considering such a condition. In
general, it is not the case – even for finitely branching systems – that there is a single
computation that attains the supremum of definition 6.

Example 3.LetK be the LCMC described by the following diagram.
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Clearly,P (s0, a, {sa}) = 1, but there is no single computation to witness this.

We diagnose the reason as the infinite (weak) branching at thestates0. We now iden-
tify a large class of countable systems the class of systems that we will work with.
Intuitively, this is a “compactness” condition that captures the essence of a “finite weak
branching” requirement.

We begin with the definition of a metricd on distributions of states.

Definition 9. The metricd on distributions of the states of a LCMCK is defined by
d(Q1, Q2) = supA⊆K |Q1(A) −Q2(A)|.

In this metric, any computation is the limit of finite depth computations.

Lemma 1. Given any weak transitions
a
⇒ P , one can find a sequence of finite-depth

computations with corresponding weak transitionss
a
⇒ Pi with thePi distributions

converging toP in the metricd.

Definition 10. Let K be the LCMC ands be a state anda any label. We says is a-
compact if the set{Q | s

a
⇒ Q} is compact7 under metricd.

A bisimulation collapsed LCMCK is compactif all statess are a-compact for all
labelsa (includingτ ).

A LCMCK′ is compactif its bisimulation collapse is compact.

For labelled transition systems, the compactness condition is an image-finiteness
condition. Here the probability of all paths is1 andd is the discrete metric. So, an LTS

7 A subsetA of a metric space is compact if every infinite subsetS ⊆ A has a limit point inA,
i.e.,(∀S ⊆ A)(∃p ∈ A) (∀ǫ > 0) (∃x ∈ S) d(p, x) < ǫ.



is compact iff for all statess and all labelsa, the set of states reachable on a weak
transition labelleda is finite.

The definition is general enough to include all finite state systems. Weighted com-
binations of computations are crucial to this proof. The proof builds on the idea of
Example 2. It shows that for any states, there is a finite set of computations rooted at
s such that any computation rooted ats can be built as a weighted combination of the
elements of this set.

Theorem 1. All finite state systems are compact.

For compact countable-state systems, there is a single computation yielding the
maximum probability, thus resolving the issue raised by Example 3.

Lemma 2. P (s, a, E) =
∑

s∈E Q(s) for somes
a
⇒ Q.

4 Coincidence with the definition of Philippou, Lee and Sokolsky

Our formulation of bisimulation (Definition 7) is differentfrom the definition in [1].
However, the two definitions are equivalent.

We begin by presenting their definition below — we have recastit in terms of com-
putations rather than schedulers. Recall that[u]R stands for the equivalence class of a
stateu for an equivalence relationR. Let C be ana-computation starting froms, we
writePC(s, a, ·) for the distribution induced on the leaves ofC.

Definition 11. An equivalence relationR onK is a PLS-weak bisimulation if for all
s, t ∈ K such that wheneversRt, then

– if s ∈ Kn, a ∈ Act and (s, a, s′) ∈−→, then there exists a computationC such
thatPC(t, a, [s′]R) = 1.

– if s ∈ Kp with s→p Q, then there exists a computationC such that

∀M ∈ K/R− [s]R, P
C(t, ε,M) =

Q(M)

1 −Q([s]R)
.

There is a maximum weak bisimulation, denoted by≈PLS.

The term Q(M)
1−Q([s]R) represents the conditional probability of reachingM from s in one

step given that the system leaves the equivalence class ofs in its first step.
For compact LCMCs (and hence all finite state LCMCs),≈ and≈PLS coincide. The

proof of this theorem requires weighted combinations of computations, as illustrated by
Example 2. The role of these weighted linear combinations isseen in the case(2) ⇒ (3)
in the following proof.

Theorem 2. The following are equivalent for compact LCMCs.

1. s ≈ t.
2. s ≈PLS t.
3. s ≈∗ t.



Proof. We sketch the main ideas below.

– (1) ⇒ (2): The key structural properties exploited in the proof are:
• If t is a nondeterministic state, ands is a probabilistic state, such thatt is

weakly bisimilar tos, then there is aτ -transition fromt to somet′ such thatt′

is weakly bisimilar tos.
• we can show that≈-bisimilar probabilistic states have identical (upto≈) prob-

abilistic fans.
– (2) ⇒ (3): We show this with≈PLS as the equivalence relation in the Definition 8.

Using Lemma 1, it suffices to prove the result for finite-depthcomputationsQ. In
this case, the proof proceeds by induction on depth.

• Let C extends
a
⇒ Q by a nondeterministic transitionu

b
→ u′ at a leafu. Let

Q(u) = p. In this case, considert
a
⇒ Q′, the extension ofQ by matching

transitionsv
b
⇒ Qi from all thev ≈PLS u that are leaves.

• The case whenC extendss
a
⇒ Q by adding a one-step probabilistic transi-

tion u → Q at a leafu uses the ideas from example 2. There are two cases
depending on whetherQ([u]) = 0 or not.
If Q([u]) = 0,u→ Q can be matched by computations from all thev ≈PLS u.
If Q([u]) = r > 0, consider the transition fromu toQ′ where:Q′[v] = Q[v]

1−r
,

if u 6∈ [v] andQ′([u]) = 0. For anyv ≈PLS u, this computation reaches
its leaves with weak labelτ and assign probabilities in accordance withQ′.
The required transition toQ from v is given by a linear combination (with
coefficient1 − r) of this computation with the computation consisting only of
v (with coefficientr).

Considert
a
⇒ Q′, the extension ofQ by matching transitionsv

b
⇒ Qi from all

thev ≈PLS u that are leaves.
In either case, the required transition fromt is obtained by a linear combination
t⇒ [λ×Q′ + (1 − λ) ×Q], whereλ = p/Q([u]).

– (3) ⇒ (1): This is immediate.

5 From measures to capacities

5.1 Background

In this section we first review the basic theory of capacities[11]. The original con-
text that Choquet was interested in led him to impose severalconditions that need not
concern us here. We will present a simplified treatment and omit proofs of any results
available in the literature.

We begin by recalling that the basic example 1(a) shows that we lose the additivity
property crucial to the definition of a measure. We omit a few of the details in the
following definitions8.

Definition 12. LetS be a set and letΣ be an algebra of subsets ofS. A capacity onΣ
is a non-negative real-valued set functionν : Σ → R such that

8 Like the exact definition of the family of sets on which a capacity is defined.



– ν(∅) = 0

– if A ⊆ B in Σ thenν(A) ≤ ν(B),
– if E1 ⊆ E2 ⊆ . . . ⊆ En ⊆ . . . with ∪iEi = E thenlimi→∞ ν(Ei) = ν(E),
– if E1 ⊇ E2 ⊇ . . . ⊇ En ⊇ . . . with ∩iEi = E thenlimi→∞ ν(Ei) = ν(E).

If, in addition, it satisfiesν(A ∪B) ≤ ν(A) + ν(B), it is said to besubadditive.

For measures the two continuity properties are consequences of countable additivity.
If we have a family of measuresµi defined onΣ we can get subadditive capacities as
follows9.

ν(A) := sup
i

µi(A)

We establish the key properties of the functionsν(E) = P (s, a, E) showing that they
are capacities.

Lemma 3. Let s ∈ K, a ∈ Act. Then the functionν on the≈-closed subsets ofK
defined as above is a subadditive capacity as per definition 12.

Proof. We sketch the proof. Recall that for anyC that is ana-computation froms, we
writePC for the induced distribution on the leaves. We have:

– E1 ⊆ E2 ⇒ PC(s, a, E1) ⊆ PC(s, a, E2).
– Let{Ei} be an increasing sequence of≈-closed sets of states. ThenPC(s, a,∪iEi) =

supi P
C(s, a, Ei).

– If E1 ∩ E2 = ∅, PC(s, a, E1 ∪ E2) = PC(s, a, E1) + PC(s, a, E2).

Thus, the first three properties and sub-additivity follow from basic properties ofsup.
The proof of the fourth property crucially uses compactness. First note thatν is the

sup of a family of measures, sayQi. Measures are down-continuous - considered as
functions from theσ-algebra - as an easy consequence ofσ-additivity. Since the space
is compact the convergence is uniform and the limit of a uniformly convergent family
is continuous.

6 pCTL∗

We now examine the relation between our processes and a minorvariant of pCTL∗ [18,
15], a standard modal logic used for expressing properties of probabilistic systems. We
will largely elide formal definitions, instead focusing on explaining the key differences
from the treatment of de Alfaro [15] for Markov decision processes (that lackτ and
associateuniqueprobability distributions with each label at a state).

9 There are examples showing that not all capacities arise in this way.



The logic. There are two kinds of formulas — state formulas, denotedφ, φ′, . . . , and
sequence formulas, denotedψ, ψ′, . . . . These are generated by the following grammar:

φ ::= ⊤ | ¬φ | φ ∧ φ′ | Eψ | P⊲⊳qψ
ψ ::= a | φ | ¬ψ | ψ ∧ ψ′ | ©φ | 3φ | ψUψ′

In the above,⊲⊳ is drawn from{=,≤,≥, <,>} q is a rational in[0, 1], anda ∈ Act.
We ignoreatomic formulaswhich are first order logic formulas over some fixed

sets of variables, functions and predicate symbols. One canassume that bisimilar states
satisfy the same atomic formulas.

Silent transitions and behaviorsWe handle the presence of silent transitions by con-
sidering a “saturation” of the set of paths from a state, in the spirit of closure under
“stuttering”.

We define abehavior(adapting the definition of de Alfaro [15] to weak transition
sequences) from a states to be a sequence of states and labelss = s0, l0, s1, l1, s2, . . .
whereli ∈ Act is the weak label for the transition fromsi to si+1 and the probability
of this transition is non-zero. Thus, we are permitting state repetition and skipping of
intermediate states reached byτ transitions.

The non-probabilistic formulasFor a ∈ Act, the path formulaa is true of behaviors
s0, a, s1, . . . whose first weak label isa. Following standard definitions, the state for-
mulaEψ is true at a states if there is a behaviors = s0, a, s1, . . . ats that satisfies the
path formulaψ.

Policies and the probabilistic quantifierA basic policy [15], sayη, is a partial function
from state sequences to states — thus a policy resolves the non-determinism completely.
We also permit linear combinations of policies

∑
i λiηi, whereλi > 0,

∑
i λi = 1.

Each policyη defines a computationC(η, s) starting from each states. We denote by
µη,s the measure on the paths ofC(η, s) which is induced in a standard way10.

The path formulas of pCTL∗ are interpreted on behaviours. We define an operation
Cl from paths to sets of behaviours by closing under repetitionof states and under
replacing subsequences of the forms

τ
→ u

τ
→ t with s

τ
→ t. This is lifted to give a map

from sets of paths to sets of behaviours. Now we defineµη,s on behaviours (using the
same name as on paths) byµη,s(B) = µη,s(Cl

−1
(B)), whereB is a set of behaviours.

Fix a policy η. A set of behaviors is measurable if the set of the corresponding
paths inη is measurable. By a routine structural induction, we can show that the sets of
behaviours that satisfy path formulas are measurable.

Following standard definitions, the state formulaP⊲⊳qψ is true at a states if for all
policiesη, the setB of behaviours that satisfyψ satisfiesµη,s(B) ⊲⊳ q.

Soundness of bisimulation

The key to the proof, as might be expected, is to show that the paths and computations
out of bisimilar states “match” sufficiently.
10 We elide well-known measure-theoretic details in this paper.



First, we consider behaviors. The following lemma is a standard use of the co-
inductive definition of bisimulation.

Lemma 4. Let s ≈ t. Then, for any behaviors = s0, l0, s1, l1, s2, . . . from s, there is
a behavior,t = t0, l

′
0, t1, l

′
1, t2, . . . , from t such that:(∀i) [si ≈ ti] and(∀i) [li = l′i].

Based on this we define two behaviours to be equivalent if theysatisfy the conclu-
sions of Lemma 4.

Next, we move to policies and induced computations. For this, we follow the proof
of Theorem 2 (in particular the implication(2) ⇒ (3)). This proof has already shown
that given a computationC from a states, and givent bisimilar to s, there is a com-
putationC′ from t that assigns the same probabilities to the leaves ofC. We will now
generalize this to all paths — given a computationCη induced by a policyη from a
states, we show that for any bisimilar statet, there is a policyη′ that assigns at least
the probabilities assigned byη to all the paths inCη. We use the equivalence of our def-
initions with those of Philippou, Lee and Sokolsky [1]. The first case of their definition
permits the simulation of non-deterministic edges. The second case of their definition
permits the simulation of probabilistic branches.

Lemma 5. Lets, t be bisimilar states. Letη be a policy and letC(η, s) be the induced
η-computation froms. Then, there is a policyη′ such that every path inC(η, s) is
equivalent to a behaviour inC(η′, t) with the same probability.

Proof. It suffices to prove this for the case whereη is a basic policy.
The proof is a routine induction. We writeCη for C(η, s) andCη′ for C(η′, t). Cη

has countably many transitions. Consider any orderingo of these transitions such that a
transition occurs after all the transitions leading upto it. We constructCη′ by mimicking
transitions in the order prescribed byo. Our induction hypothesis is that at thei’th stage:
every path in the subtree induced by the firsti transitions (as pero) is a behavior inCi

η′

computation fromt with the same probability.
Let thei + 1’st transition be a transition atu. Let p be the probability of the path

from t to u in Cη. LetV be the set of leaves inCi
η′ such that:

– v ≈ u
– The path froms to u in Cη is a behavior corresponding to the path fromt to v in
Ci

η′

The measure ofV in Ci
η′ , sayq, is at leastp by the induction hypothesis.

There are two cases based on the kind of the(i+ 1)st transition.

1. The(i+ 1)st transition is a nondeterministic transitionu
b
→ u′. This transition can

be matched by computations from all elements ofV : by definition these computa-
tions reach[u′] with probability1 on weak labelb.

2. The(i + 1)st transition is a probabilistic transitionu → Q. There are two cases
depending on whetherQ([u]) = 0 or not.
If Q([u]) = 0, this transition can be matched by computations from all elements of
V : by theorem 2 these computations reach the leaves with weak labelτ and assign
probabilities in accordance withQ.



If Q([u]) = r > 0, consider the transition fromu to Q′ where:Q′[v] = Q[v]
1−r

, if
u 6∈ [v] andQ′([u]) = 0. Pick any elementv ∈ V . Sincev ≈ u, by theorem 2, this
computation reaches the leaves with weak labelτ and assign probabilities in accor-
dance withQ′. The required transition toQ from v is given by a linear combination
(with coefficient1 − r) of this computation with the computation consisting only
of v (with coefficientr).

In either case, letCi′

η′ be the extension ofCi
η′ by these matching transitions.Ci+1

η′ is got

by a linear combinationt⇒ [λ× Ci′

η′ + (1 − λ) × Ci
η′ ], whereλ = p/q.

Lemmas 4 and 5 yield the desired theorem by a standard induction on the structure
of formulas.

Theorem 3. If s ≈ t, then for all pCTL∗ state formulasφ, s |= φ iff t |= φ.

Proof. We sketch the case ofP≥qψ. Let s satisfyP≥qψ. Every policy induces a set of
computations froms. For every computation froms, using lemma 5, there is a compu-
tation fromt that attributes a larger measure to the set of behaviors fromt that satisfy
ψ. Hence,t satisfiesP≥qψ.

Completeness

We proceed now to completeness. Here the fact that we have a capacity plays a key role,
as we use the downward continuity property of capacities.

We identifyL, a sub-fragment of the state formulas of the pCTL∗ variant above,
that suffices for completeness. These are generated by the following grammar:

φ ::= ⊤ | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | 〈a〉≥qφ

wherea ∈ Act (includingτ ), q is a rational and〈a〉≥qφ is shorthand for¬P<1−q[a ∧
©φ]. Thus, a states satisfies〈a〉≥qφ iff there is a policyη such that the computation
induced byη assigns probability greater thanq to the states satisfyingφ reachable on a
weaka transition. More succinctly,s satisfies〈a〉≥qφ if P (s, a, {t | t satisfiesφ}) ≥ q.

Theorem 4. If two states satisfy the same formulas ofL, then they are bisimilar.

Proof. Let R be the equivalence relation defined by the formulas ofL. Let s andt be
twoR-related states. We need to prove that for everyR-closed setX , P (s, {a}, X) =
P (t, {a}, X), wherea 6= τ . By using formulas of the form〈a〉≥qφ, we obtain the
required equality for sets of statesX that are denotations of formulas, i.e.X = {s′ |
s′ satisfiesφ}, φ ∈ L.

Since the state space is countable everyR-closed set is a countable union of equiv-
alence classes. Every equivalence class is described by countably many formulas and -
since we have negation - can be described as the intersectionof countably many sets of
the form{s|s satisfiesφ}. Thus everyR-closed set, sayY , is of the form

Y = ∪∞
i=1 ∩

∞
j=1 Xij



where theXij are the denotations of formulas.
We define

Yi := ∩∞
j=1[∪

i
k=1Xkj ].

Note thatYi forms an increasing family in the subset ordering. Furthermore∪∞
i=1Yi =

Y by distributivity. Now, for eachi, the setsZ(l)
i := ∩l

j=1 ∪i
k=1 Xkj are a decreasing

family asl increases and they are the denotations of formulas, since there is conjunction
and disjunction in the logic. Thus the two capacities will agree on eachZ(l)

i and by up
continuity they will agree onYi and thus, by down continuity, they agree onY .

The proof forP (s, ε,X) = P (t, ε,X) is similar except for the use of the formulas
〈τ〉φ and is omitted.

7 Conclusions

The main thrust of the present paper has been to elucidate theinteraction between prob-
ability and nondeterminism. The definition of weak bisimulation that we have used
generalizes the elegant treatment of Philippou, Lee and Sokolsky from finite state to
countable systems. We have emphasized two features of theirdefinition that were left
implicit by them, namely the loss of additivity and the need for considering linear struc-
ture when matching weak transitions. The main new result of our analysis is that weak
bisimulation is sound and complete for (a minor variant of) pCTL∗.

It is worth taking a retrospective view of some of the mathematical ideas in the
proofs. The basic loss that we have had to struggle with is theloss ofσ-additivity. The
heart of any completeness proof of this type is arguing that equality of the transition
probabilities to sets of states defined by the logic forces equality of all the transition
probabilities. Such an argument rests on theorems that guarantee equality of measures
given equality on a suitable generating set for theσ-field. These uniqueness theorems
heavily rely onσ-additivity. Thus we were led to consider what structure we do have
given that we do not have a probability measure. The fact thatwe have capacities and
in particular that capacities satisfy strong continuity properties (both upward and down-
ward) turns out to be strong enough to rescue the uniqueness theorems that we need.
What remains to argue is that we really have the property of a capacity. Here the com-
pactness property turns out to be crucial.

In closely related work [21] we have shown that one can develop a metric for
weak bisimulation analogous to our previous treatment of metrics for strong bisimu-
lation [22]. In this work we heavily use linear programming and duality.

The present treatment is for discrete systems, we are considering two new direc-
tions: continuous state spaces and continuous time. We havepreliminary results on con-
tinuous time, namely we have shown completeness for continuous stochastic logic [23].
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