Weak Bisimulation is Sound and Complete for PCTL*

Josée Desharnais Vineet Guptd, Radha Jagadeestdnand Prakash Panangaden

! Département d’'Informatique,Université Laval,Québ@anada, G1K 7P4
2 Stratify Inc., 501 Ellis Street, Mountain View CA 94043 USA
3 Dept. of Computer Science, Loyola University-Lake ShorenPas, Chicago IL 60626, USA
4 School of Computer Science, McGill University, Montrealjgpec, Canada

Abstract. We investigate weak bisimulation of probabilistic systémthe pres-
ence of nondeterminism, i.e. labelled concurrent Markazirth (LCMC) with

silent transitions. We build on the work of Philippou, Lealg®okolsky [1] for

finite state LCMCs. Their definition of weak bisimulation tteys the additivity
property of the probability distributions, yielding inatcapacities The mathe-
matics behind capacities naturally captures the intuiti@ when we deal with
nondeterminism we must work with estimates on the possitdbgbilities.

Our analysis leads to three new developments:

— We identify an axiomatization of “image finiteness” for coainle state sys-
tems and present a new definition of weak bisimulation foseheCMCs.
We prove that our definition coincides with that of Philippaee and Sokol-
sky for finite state systems.

— We show that bisimilar states have matching computatiohs. ffotion of
matching involvedinear combinationsof transitions. This idea is closely
related to the use of randomized schedulers.

— We study a minor variant of the probabilistic logic pCTL- the variation
arises from an extra path formula to address action labetsskéw that
bisimulation is sound and complete for this variant of pCTL

1 Introduction

The main object of this paper is to study systems that conroleability, concurrency
and nondeterminism. We focus in particular on weak bisitiuta The importance of
weak bisimulation comes from the need for abstraction. blepto construct larger
programs from smaller programs one works with the composithechanisms of the
language. When doing so it is necessary to hide internadraetnd work with weak
(rather than strong) bisimulation.

In the purely probabilistic context, the study of strongriglation was initiated by
Larsen and Skou [2], and an equivalence notion was develspadar to the queuing
theory notion of “lumpability” [3]. This theory has been ertded to continuous state
spaces and continuous distributions [4—6] and, in the disetting, to weak bisimu-
lation [7].

The study of weak bisimulation for systems with probabiéityd non-determinism
is sensitive to the underlying model. The two principal medere thealternating
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model [8] - where there are two disjoint classes of stated)atrilistic states and nonde-
terministic states - and the nonalternating model [9]. Waigknulation for finite-state
systems in the alternating model with distinct nondeteistimand probabilistic states
was defined by Philippou, Lee and Sokolsky [1] whereas wesiknilation for the non-
alternating model was studied by Segala and Lynch [9]. Qudysis set in the context
of the alternating model and follows [1].

We explore the subtle consequences of the benign lookingitiefis of [1]. The
most significant change from ordinary probability theoryhiat the “probabilities” no
longer satisfy additivity. In the presence of nondeterminism, we are describiagta
of probability distributionq Q; } for a given state and a given weak transition lahel
The “probabilities” ascribed by [1] arise by majorizing ovkis set, i.e P(s, a, E), the
probability of reaching a set of statésfrom states on weak transition labelled, is
given bymax; Q;(FE) for any subset of states.

The second important change is that the notion of matchisgchanged radically.
The essence of any bisimulation notion is that transitidree process can be matched
with transitions in the bisimilar process. In order to matomputation paths on given
weak labels we are forced to take linear combinations of adgatiwns. The “compu-
tations” (to be defined precisely later) now have a vectocsparucture. In example 2
we discuss this point in detail. Essentially randomizeckdctters allow one to take just
such linear combinations.

The three main points that we make can be summarized as ®llow

— First, we generalize the definitions of [1] to a large clasiéihite-state systems
satisfying a compactness property. Informally, compeasdrie a topological for-
malization of finite branching. In this context, compactiesables us to capture a
robust notion of “image finiteness” for weak transitionstthae internal actions.
The compact systems that we consider include all finite stgdgems (including
those with cycles).

— Second, we adapt the ideas on randomized schedulers framteSagork on prob-
abilistic IO automata [10]. On the one hand, randomizedduglees do not change
the semantics (the sups that one computes are the same)e Oth#r hand, these
schedulers enable us to perform a fine-grained analysiseo$ttiucture of com-
putations in bisimilar systems. This analysis permits usstablish that bisimilar
statess, t satisfy a familiar property: “for every distribution of $&& induced by
a resolution of non-deterministic choices framthere exists a resolution of non-
deterministic choices fromthat results in a matching distribution on states”. We
show simple examples that demonstrate that this matchiogepty requiresthe
presence of linear combinations.

— Third, we analyze the structure that arises by majorizingr @vset of probabil-
ity distributions. This structure is called a capacity — éor purposes, capacities
are monotone functions from a Borel algebra to the realsgreserve sups (resp.
infs) of increasing (resp. decreasing) sequences of safsadlties are not neces-
sarily additive. Indeed, the capacities induced by the difirs of [1] only satisfy:
P(s,a,A) + P(s,a,B) > P(s,a, AU B) for disjoint sets of stated, B.

5 Additivity: P is additive if for disjoint setsd, B, P(AU B) = P(A) + P(B).



This loss of additivity has already been recognized in weisituations in mathe-
matics [11-13] and in economics [P4and a rich theory was already available for
our use. This theory meshes very well with the idea that uairgy in probability
distributions should be captured by giving upper and loveaentals on probabilities
and expectation values. We show that the key equations thatsnanded by this
theory are met by the capacities that arise in the contexeakvibisimulation.

Soundness and Completeness of weak bisimulation for piledtedogics. A funda-
mental application of these ideas and the original impetugHese investigations is
the analysis of soundness and completeness of bisimulatigmobabilistic logics. We
study a minor variant of the probabilistic logic pCT[15] — the variation arises from

an extra path formula to address action labels — and is ey the variants of prob-
abilistic logics that deal with action labels [9, 8] . We shthvat bisimulation is sound
and complete for this variant of pCTLOur soundness and completeness proofs relies
crucially on all three developments identified above.

Organization of this paperThe rest of this paper is organized as follows. First, in sec-
tion 2, we review the basic definitions of the model (the ‘fadéging model”) and weak
probabilistic bisimulation and associated results to nthkeyaper self-contained. Sec-
tion 3 identifies the class of countable systems to which tudysapplies. In section 4
we show that our definition is equivalent to that of Philippbee and Sokolsky [1]. In
section 5 we show that the capacities defined in the developofigveak bisimulation
satisfy the axioms required of capacities. Finally, in ec6, we use the machinery
that has been developed to prove soundness and completeslss for the logic.

2 Background and Definitions

We begin with a review of the underlying framework — our deforis are adapted
from [1]. We work in the context of the “alternating model’rftabelled concurrent
Markov chains [8], labelled transition systems with nortedinism and probability.

Definition 1. A labelled concurrent Markov chain (henceforth LCMC), isiple C =
(K, Act,—, ko), where

(1) K = K, U K,,, a countable set, is partitioned into the probabilistictsts K, and
the nondeterministic statds,,. kg is the start state.

(2) Act is a finite set of action symbols that contains a special actio

(3) The transition relation—=—, U —, is partitioned into probabilistic and
nondeterministic transitions—,,C K, x Act x K, isimage-finitei.e. for eachs
K, anda € Act, theset{s’ € K,, | s = s'}is finite.—,C K, x (0, 1] x K,, satisfies
thatforeachs € K, > e, m=1.

% Economic studies distinguish risk (the relative probsieti of the events are known) from
uncertainty (there is no unique assignment of probalslitieevents) - this is what computer
scientists call nondeterminism. Risk is modelled usingophility. The modelling of uncer-
tainty is via a set of probability measures that are consistéth the known information. The
structure obtained by majorizing this set of probabilityaseres does not satisfy additivity
and is a capacity.



A state is either probabilistic - in which case the transisi@re probabilistic and un-
labelled - or nondeterministic, in which case the transgiare finite-branching and
labelled (possibly by &). The probabilistic branching can be countable at a state.

Every probabilistic state induces a probability distributio on K,, given by
Q) = > (s r e, T fOreveryt € K. We sometimes write —, @ to emphasize
this distribution. Indeed, one can take the view that thal"retates are the nondeter-
ministic states and the probabilistic states are realliynasnes for certain probability
distributions.

The LCMC model does not need to be strictly alternating. Care work with a
model that only restricts states to be either purely nomdetastic or purely proba-
bilistic and does not enforce strict alternation.

We use some notation for sequences (of states or trangitidfes usec for the
empty sequence andor concatenation. Every sequence, sayf transitions has as
an associated probabiliprob(c), obtained by multiplying the probabilities occurring
on the path. Thus, we attributeo a nondeterministic transition in a path, and multiply
together probabilities of all the probabilistic transit® Similarly, every sequence
of transitions has an associated weak sequence of ldbeldo) € (Act — {7})*,
obtained by removing the labels eftransitions. Thus, probabilistic transitions and
nondeterministic transitions with labeldo not contribute to the weak label. We use
for the empty sequence as well as for the empty transitions T¥e will say that a path
of T transitions and probabilistic transitions has weak label

We definecomputation®f an LCMC as transition trees obtained by unfolding the
LCMC from the root, resolving the nondeterministic choifies each nondeterministic
state has at most one transition coming out of it) and takilgrababilistic choices at
a probabilistic state. A computation can thus be viewed asraly (sub)probabilistic
labelled Markov chain. We refer to the set of all the prokatid transitions from a
probabilistic state asfan.

Definition 2. A computationof an LCMC is a (possibly infinite) subtree of the tree
obtained by partially unfolding the LCMC. In a computatioregey nondeterministic
state has at most one transition coming out of it and if a pholigtic transition is
included then the entire fan of that probabilistic tranaitiis included.

We are interested in transitions with particular weak label

Definition 3. Let K be a LCMC,a € Act. Ana-computation frony € K is a compu-
tation such that every path from the root has weak labet <.

It may seem peculiar to allow arcomputation to have paths labelleddyr his is done
to allow for a computation where thetransition has not happened yet (or may never
happen). However, when we associate probability distidbstwith computations we
will not count the paths labelled with, we insist that the paths that contribute to the
distribution have weak label

Each computation induces a distribution on its leaf statdlse standard way — the
probability of a leaf node is the probability of the (uniggath going to it. We actually
use a somewhat looser correspondence between computatidngdistributions. We
allow many distributions to be induced by a given computatihe requirement of



matching is weakened to an inequality. This will turn out eouery convenient when
constructing certain sequences of weak transitions, famgte in proving Lemma 1.

Definition 4. Let/XC be a LCMC,s € K, and let@ be a distribution on states.

We writes = @, if there is ana-computation such that for ak; € K, Q(s;) <
>, prob(o) where the summation is taken over pathsith weak labek that start in
s and end in the leaf;.

We extend this notation to linear combinations of distridus. s = DA X Qg is an
a-transition froms to the distribution) ", \; x Q;. This is where the linear structure
becomes explicit. Such a transition can be viewed as theghted superposition” of
the transitions = Q;.

Definition 5. Lets; = Q; and letd> >, \i < 1, where all\; > 0. Then we write:
Do X (s £ Q) to denote the linear combination of the transitions® Q;. In the

special case where all; = s, we writes = > Ai X Q; to represent ani-transition
from s to the distribution), \; x Q;.

We thus have linear (vector-space) structure on the spacemoputations and on the
space of distributions. Note that when we write®> Q we refer to the general case of
transitions of the forms = > Ai x Q;: when we want to refer to transitions that are
not weighted combinations we use the term “basic”. Fef ¢, the notation\ x (s =
Q1)+ (1—)\) x (t = Q) is merely notational convenience. Note tha® [\ x Q1 +

(1 — X) x Q2] is reminiscent of the randomized schedulers [10].

Transitions from states to distributions as above are onetwahe defintion of
bisimulation. Another way is through transitions from stato sets of states, which is
how strong bisimulation is defined for labelled Markov preses in [4, 6]. The “prob-
ability” from a states to a subset of states via a path with weak labéd defined by
taking the supremum over all possilalecomputations.

Definition 6. LetXC be a LCMC,s € K, E' C K. Then, the probability of going from
to F C K viaa, denoted byP(s, a, E), is defined as:

P(s,a,E) =sup{)_Q(t) | s = Q}.
teE

The supremum in this definition is the source of the subtlétyeak bisimulation —
P(s,a,.) does not satisfy additivity.

a 0.5 1/3 1/3 , 1/2 1/2 ,
§—>0 ——>{; P<——858—->(q <~—t——>gq
\ la T< )1/3 \Lb la \Lb
0.6 w v

o — > 1y / /

Fig. 1. (a)Additivity Fails (b) Matching with linear combinations



Example 1.Consider the transition system in figure 1(a). THefs, a, {t1}) = 0.5,
P(s,a,{t2}) = 0.6, P(s,a, {t1,t2}) = 0.6. Thus additivity does not hold. This exam-
ple also illustrates in a trivial way why we must take the suprall computations in
the definition ofP(s, a, E).

The next example shows the importance of allowing linear moations when
matching computations with given weak labels.

Example 2.Consider the transition systems of figure 1(b). Intuitively would like to
say that the statesandt are weakly bisimilar. We would also like to sayp’ andq, ¢’
are weakly bisimilar.

The probability of starting frons and reaching: on a weaka label is1/2 and the
same is true for reaching from ¢. Note that we need to sum over all possible paths
that include ther-loop if we want to get the answér/2 starting froms. Thus thea-
computation front that includes:’ gives a probability of /2 to «’ and can be matched
by the infinite computation froma that loops infinitely througlw and gives probability
1/2 to u. However, we have absolutely no way of matching the distidlouinduced
by the computation including only one step framindeed, this computation induces
the distribution that gives probability/3 to each one ofi, w andv. The only way to
match it is to take a linear combination, namely the distrdnud, induced by the trivial
computation consisting only of stateand the distributior? induced by the one-step
computation. The required combination is tHy8 x ¢; +2/3 x P.

We are now ready to define weak bisimulation. Given an egeie relatior, we
say a set’ is R-closed ifE = Cigr(F) := {s | 3t € E such thatRs}.

Definition 7. An equivalence relatio® on K is a weak bisimulation if for alf, t € K
such thats R t and all R-closedE C K, we have:

(Va € Act) [P(s,a, FE) = P(t,a, E)].

There is a maximum weak bisimulation, denoteesbyWe write[u] for the bisimulation
class of the state.

A LCMC K is bisimulation collapsedf for any state, the targets of all transitions are in
distinct bisimulation classes.

The equational laws supported by this definition extend tualbones for nondeter-
ministic labelled transition systems or purely probabdisransition systems. Indeed,
the usual relations that witness the bisimulation are edmiver essentially unchanged,
for example,7.K =~ K, and unfolding a LCMC yields a weakly bisimilar system.
See [16] for a full axiomatization of equational laws for feprocesses (without loops,
so the transition system is a tree).

We present a second definition of bisimulation which is samib the one found
in the non-probabilistic setting. It will be shown to be eglént to the one above in
Section 4 forrompact_ CMCs, defined in the next section.

Definition 8. An equivalence relatio®® on K is a weakx bisimulation iff for alls, t €
K such thats R t we have:

Vs % Q 3t = Q' (YR-closedE C K [Q(E) = Q'(E)))

We will denote it>...



3 The compactness condition

We consider countable-state LCMCs that satisfy a compastoendition. Intuitively
speaking, the compactness condition can be viewed as titggageralization of “image-
finiteness” for countable state LCMCs in the context of weakditions that hide-
labels.

We first consider some preliminary motivation for considgrsuch a condition. In
general, it is not the case — even for finitely branching sgste that there is a single
computation that attains the supremum of definition 6.

Example 3.Let K be the LCMC described by the following diagram.

So Uo S1 U1—>81—T>UZ
to 3 123
1
172—0 .
-5t
2 1
I=57
Sa

Clearly, P(so,a, {s.}) = 1, but there is no single computation to witness this.

We diagnose the reason as the infinite (weak) branching atates,. We now iden-
tify a large class of countable systems the class of systhatswe will work with.
Intuitively, this is a “compactness” condition that cagsithe essence of a “finite weak
branching” requirement.

We begin with the definition of a metri¢on distributions of states.

Definition 9. The metricd on distributions of the states of a LCMC is defined by
d(Q1, Q2) = supack|Q1(4) — Q2(A)].

In this metric, any computation is the limit of finite depthneputations.

Lemma 1. Given any weak transitios = P, one can find a sequence of finite-depth
computations with corresponding weak transitions®> P; with the P; distributions
converging taP in the metricd.

Definition 10. Let K be the LCMC and be a state and: any label. We say is a-
compact if the sefQ | s = Q1 is compact under metricd.

A bisimulation collapsed LCM& is compactf all statess are a-compact for all
labelsa (includingT).

A LCMCK' is compacif its bisimulation collapse is compact.

For labelled transition systems, the compactness condii@n image-finiteness
condition. Here the probability of all pathsisandd is the discrete metric. So, an LTS

" A subsetA of a metric space is compact if every infinite subSet A has a limit point in4,
ie,(VSCA)(Fpe A) (Ve>0) (Fz € S)d(p,z) <e.



is compact iff for all states and all labelsa, the set of states reachable on a weak
transition labelled: is finite.

The definition is general enough to include all finite statgtens. Weighted com-
binations of computations are crucial to this proof. Thegbrduilds on the idea of
Example 2. It shows that for any statgethere is a finite set of computations rooted at
s such that any computation rootedsatan be built as a weighted combination of the
elements of this set.

Theorem 1. All finite state systems are compact.

For compact countable-state systems, there is a single waiign yielding the
maximum probability, thus resolving the issue raised byripie 3.

Lemma 2. P(s,a,E) =Y, 5 Q(s) for somes = Q.

4 Coincidence with the definition of Philippou, Lee and Sokatky

Our formulation of bisimulation (Definition 7) is differefitom the definition in [1].
However, the two definitions are equivalent.

We begin by presenting their definition below — we have reitasterms of com-
putations rather than schedulers. Recall that stands for the equivalence class of a
stateu for an equivalence relatioR. Let C' be ana-computation starting from, we
write PC (s, a, -) for the distribution induced on the leaves®f

Definition 11. An equivalence relatioz on K is a PLS-weak bisimulation if for all
s,t € K such that wheneverRRt, then

—if s € K,,a € Act and (s,a,s’) €—, then there exists a computatighsuch
that PC (¢, a,[s'|r) = 1.

- if s € K, with s —, @, then there exists a computatichsuch that
QM)

1-Q([s]r)

There is a maximum weak bisimulation, denoteddpy 5.

VM € K/R — [s]gr, P (t,e, M) =

The term% represents the conditional probability of reachiigfrom s in one
step given that the system leaves the equivalence clasmafs first step.

For compact LCMCs (and hence all finite state LCMGsand~ p s coincide. The
proof of this theorem requires weighted combinations of gotations, as illustrated by
Example 2. The role of these weighted linear combinatiossés in the cas@) = (3)

in the following proof.
Theorem 2. The following are equivalent for compact LCMCs.

1. s=t.
2. SXpLS t.
3. s~,t.



Proof. We sketch the main ideas below.

— (1) = (2): The key structural properties exploited in the proof are:
e If ¢ is a nondeterministic state, andis a probabilistic state, such thatis
weakly bisimilar tos, then there is a-transition from¢ to somet’ such that’
is weakly bisimilar tos.
e we can show that:-bisimilar probabilistic states have identical (uptdprob-
abilistic fans.
— (2) = (3): We show this with~ p 1 s as the equivalence relation in the Definition 8.
Using Lemma 1, it suffices to prove the result for finite-degmputations). In
this case, the proof proceeds by induction on depth.

e Let C extends = @ by a nondeterministic transitiom b ' at a leafu. Let
Q(u) = p. In this case, consider = @', the extension of) by matching

transitionsy = Q; from all thev ~pr 5 u that are leaves.

e The case wheld extendss = @ by adding a one-step probabilistic transi-
tion v — @ at a leafu uses the ideas from example 2. There are two cases
depending on whethé&p([«]) = 0 or not.

If Q([u]) = 0,u — Q can be matched by computations fromallthe pr,s u.

If Q([u]) = r > 0, consider the transition from to Q" where:Q’[v] = ?Eﬂ,
if w & [v] and@’([u]) = 0. For anyv ~prs u, this computation reaches
its leaves with weak labet and assign probabilities in accordance wijh
The required transition t6) from v is given by a linear combination (with
coefficientl — r) of this computation with the computation consisting onfy o

v (with coefficientr).
Considert = @', the extension of) by matching transitions 2 Q; from all
thev ~prs u that are leaves.
In either case, the required transition fragnms obtained by a linear combination
t=[AxQ +(1—-X) xQ], whereh = p/Q([u]).
— (3) = (1): This is immediate.

5 From measures to capacities

5.1 Background

In this section we first review the basic theory of capacifiey. The original con-
text that Choquet was interested in led him to impose segeraditions that need not
concern us here. We will present a simplified treatment anid pmofs of any results
available in the literature.

We begin by recalling that the basic example 1(a) shows tedbse the additivity
property crucial to the definition of a measure. We omit a fdwhe details in the
following definition$.

Definition 12. Let.S be a set and lel’ be an algebra of subsets 8f A capacity on X
is a non-negative real-valued set function > — R such that

8 Like the exact definition of the family of sets on which a capgis defined.



-v@ =0
if AC Bin X thenv(A) < v(B),

.CE,C. =v(B),
.ODFE,D. =v(E).

If, in addition, it satisfies (4 U B) < v(A4) 4+ v(B), itis said to besubadditive.

For measures the two continuity properties are conseqaefoeountable additivity.
If we have a family of measurgs defined onY’ we can get subadditive capacities as
follows®.

T(A) == sup pi(A)

We establish the key properties of the functiofi&') = P(s, a, E') showing that they
are capacities.

Lemma 3. Lets € K, a € Act. Then the functiow on the=-closed subsets af
defined as above is a subadditive capacity as per definition 12

Proof. We sketch the proof. Recall that for atythat is ana-computation frons, we
write P for the induced distribution on the leaves. We have:

— By C By = PY(s,a,E,) C P%(s,a, E).

— Let{E;} be anincreasing sequencewilosed sets of states. Th&¥ (s, a, U; E;) =
sup; P¢(s,a, E;).

—If By NEy =0, P°(s,a,E1 UEy) = P9(s,a, Ey) + P(s,a, Es).

Thus, the first three properties and sub-additivity folloanfi basic properties afip.
The proof of the fourth property crucially uses compactnEsst note that is the
sup of a family of measures, s&y;. Measures are down-continuous - considered as
functions from ther-algebra - as an easy consequence-afiditivity. Since the space
is compact the convergence is uniform and the limit of a unily convergent family
is continuous.

6 pCTL*

We now examine the relation between our processes and a wariant of pCTL* [18,
15], a standard modal logic used for expressing properfipsobabilistic systems. We
will largely elide formal definitions, instead focusing oxpéaining the key differences
from the treatment of de Alfaro [15] for Markov decision pesses (that lack and
associateiniqueprobability distributions with each label at a state).

% There are examples showing that not all capacities aridgsmiay.



The logic. There are two kinds of formulas — state formulas, denated, ..., and
sequence formulas, denotedy’, . . .. These are generated by the following grammar:

pu=T | =¢| ¢N¢" | EY| Pagp
Ypu=ald | | PAY [O¢] O | YUy

In the aboves« is drawn from{=, <, >, <, >} g is arational in0, 1], anda € Act.

We ignoreatomic formulaswhich are first order logic formulas over some fixed
sets of variables, functions and predicate symbols. Onassume that bisimilar states
satisfy the same atomic formulas.

Silent transitions and behaviorsVe handle the presence of silent transitions by con-
sidering a “saturation” of the set of paths from a state, m gpirit of closure under
“stuttering”.

We define abehavior(adapting the definition of de Alfaro [15] to weak transition
sequences) from a stat¢o be a sequence of states and labels s, Iy, s1, 11, s2, - - -
wherel; € Act is the weak label for the transition fros to s; 1 and the probability
of this transition is non-zero. Thus, we are permittingestaipetition and skipping of
intermediate states reached-bjransitions.

The non-probabilistic formulag=or a € Act, the path formula: is true of behaviors
s9,a, S1, ... whose first weak label ig. Following standard definitions, the state for-
mula E is true at a state if there is a behavios = s, a, s1, ... ats that satisfies the
path formula.

Policies and the probabilistic quantified basic policy [15], say), is a partial function
from state sequences to states — thus a policy resolves thdeterminism completely.
We also permit linear combinations of polici®s, A\in;, whereX; > 0,%°. A\ = 1.
Each policyn defines a computatiofi(n, s) starting from each state We denote by
tin,s the measure on the paths@fn, s) which is induced in a standard wdy

The path formulas of pCTLare interpreted on behaviours. We define an operation
C] from paths to sets of behaviours by closing under repetitibatates and under
replacing subsequences of the fosm v = t with s = ¢. This is lifted to give a map
from sets of paths to sets of behaviours. Now we defing on behaviours (using the
same name as on paths) by (B) = uw(CI_l(B)), whereB is a set of behaviours.

Fix a policy n. A set of behaviors is measurable if the set of the correspgnd
paths inn is measurable. By a routine structural induction, we camvghat the sets of
behaviours that satisfy path formulas are measurable.

Following standard definitions, the state formia,« is true at a state if for all
policiesn, the setB of behaviours that satisfy satisfies.,, s(B) i g.

Soundness of bisimulation

The key to the proof, as might be expected, is to show thataliesgand computations
out of bisimilar states “match” sufficiently.

10 We elide well-known measure-theoretic details in this pape



First, we consider behaviors. The following lemma is a stadduse of the co-
inductive definition of bisimulation.

Lemma 4. Lets =~ t. Then, for any behaviot = s, ly, 1,11, S2, ... from s, there is
a behaviort = to, (), t1, 1], t2, ..., fromt such that:(Vi) [s; ~ t;] and (Vi) [I; = l]].

Based on this we define two behaviours to be equivalent if fagigfy the conclu-
sions of Lemma 4.

Next, we move to policies and induced computations. For tésfollow the proof
of Theorem 2 (in particular the implicatiqi2) = (3)). This proof has already shown
that given a computatio@ from a states, and givent bisimilar to s, there is a com-
putationC’ from ¢ that assigns the same probabilities to the leaves.dive will now
generalize this to all paths — given a computat@ninduced by a policy; from a
states, we show that for any bisimilar statethere is a policy;’ that assigns at least
the probabilities assigned bpto all the paths irC;,. We use the equivalence of our def-
initions with those of Philippou, Lee and Sokolsky [1]. Theficase of their definition
permits the simulation of non-deterministic edges. Th@sdaase of their definition
permits the simulation of probabilistic branches.

Lemma 5. Lets, t be bisimilar states. Let be a policy and letC(n, s) be the induced
n-computation froms. Then, there is a policy/ such that every path i€ (7, s) is
equivalent to a behaviour i6¥ (7, t) with the same probability.

Proof. It suffices to prove this for the case wherés a basic policy.

The proof is a routine induction. We writ@, for C(n, s) andC,, for C(',t). C,
has countably many transitions. Consider any ordesiafithese transitions such that a
transition occurs after all the transitions leading upté¥e construcC;, by mimicking
transitions in the order prescribed byOur induction hypothesis is that at thth stage:
every path in the subtree induced by the firsansitions (as pes) is a behavior ier],
computation fronmt with the same probability.

Let thei + 1'st transition be a transition at. Let p be the probability of the path
from¢towin C,. LetV be the set of leaves ifi}, such that:

-V U
— The path froms to u in C,, is a behavior corresponding to the path fromo v in
Ci/
n

The measure of in C’fz/, sayg, is at leasp by the induction hypothesis.
There are two cases based on the kind of(the 1)st transition.

1. The(i + 1)st transition is a nondeterministic transition «. This transition can
be matched by computations from all element$/oby definition these computa-
tions reachuw’] with probability1 on weak labeb.

2. The(i + 1)st transition is a probabilistic transitian — Q. There are two cases
depending on whethép([u]) = 0 or not.

If Q([u]) = 0, this transition can be matched by computations from athelets of
V: by theorem 2 these computations reach the leaves with vabakd and assign
probabilities in accordance with.



If Q([u]) = r > 0, consider the transition from to Q' where:Q’[v] = Cﬂ”j, if

u & [v] and@’([u]) = 0. Pick any element € V. Sincev ~ u, by theorem 2, this
computation reaches the leaves with weak latehd assign probabilities in accor-
dance withQ)’. The required transition t@ from v is given by a linear combination
(with coefficientl — r) of this computation with the computation consisting only

of v (with coefficientr).

In either case, IetE'};/ be the extension af’}, by these matching transitions; ' is got
by a linear combination = [\ x Cf]/, + (1= X) x C;,], whereh = p/q.

Lemmas 4 and 5 yield the desired theorem by a standard imaumti the structure
of formulas.

Theorem 3. If s & t, then for all pCTL: state formulas), s = ¢ iff ¢ = ¢.

Proof. We sketch the case dt-,v. Let s satisfy P~ 1. Every policy induces a set of
computations frons. For every computation from, using lemma 5, there is a compu-
tation from¢ that attributes a larger measure to the set of behaviors fribvat satisfy
1. Hencey satisfiesP> ;1.

Completeness

We proceed now to completeness. Here the fact that we haymaaitaplays a key role,
as we use the downward continuity property of capacities.

We identify £, a sub-fragment of the state formulas of the pCMariant above,
that suffices for completeness. These are generated bylthwifagy grammar:

Gpu=T | d1 NP2 | p1 V| 0] (a)>q¢

wherea € Act (includingT), ¢ is a rational anda) >4 ¢ is shorthand forP.1_4[a A
Od)]. Thus, a state satisfies(a)>,¢ iff there is a policyn such that the computation
induced by assigns probability greater tharto the states satisfyingreachable on a
weaka transition. More succinctly satisfies(a)> ¢ if P(s, a, {t | t satisfiesp}) > gq.

Theorem 4. If two states satisfy the same formulasiothen they are bisimilar.

Proof. Let R be the equivalence relation defined by the formulag.ofet s andt be
two R-related states. We need to prove that for everglosed setX, P(s, {a}, X) =
P(t,{a}, X), wherea # 7. By using formulas of the fornja)>,¢, we obtain the
required equality for sets of staté§ that are denotations of formulas, i.E. = {s" |
s’ satisfiesp}, ¢ € L.

Since the state space is countable evergiosed set is a countable union of equiv-
alence classes. Every equivalence class is described yadiy many formulas and -
since we have negation - can be described as the interse¢tonntably many sets of
the form{s|s satisfiesp}. Thus everyR-closed set, say’, is of the form

YV = Uz N7, Xij



where theX;; are the denotations of formulas.
We define

Y= m(;'; [U;c:lej]'

Note thatY; forms an increasing family in the subset ordering. Furtteee?2,Y; =
Y by distributivity. Now, for each, the setsZi(l) = Ni_, Uj_, Xy, are a decreasing
family asl increases and they are the denotations of formulas, siece ificonjunction
and disjunction in the logic. Thus the two capacities wilteggon eacIZfl) and by up
continuity they will agree orY; and thus, by down continuity, they agree¥n

The proof forP(s,e, X) = P(t,e, X) is similar except for the use of the formulas
(t)¢ and is omitted.

7 Conclusions

The main thrust of the present paper has been to elucidaieténaction between prob-
ability and nondeterminism. The definition of weak bisimigda that we have used
generalizes the elegant treatment of Philippou, Lee anaISkok from finite state to
countable systems. We have emphasized two features ofddition that were left
implicit by them, namely the loss of additivity and the needdonsidering linear struc-
ture when matching weak transitions. The main new resultofoalysis is that weak
bisimulation is sound and complete for (a minor variant @)rjh*.

It is worth taking a retrospective view of some of the mathécahideas in the
proofs. The basic loss that we have had to struggle with isofeofo-additivity. The
heart of any completeness proof of this type is arguing thathty of the transition
probabilities to sets of states defined by the logic forcasbty of all the transition
probabilities. Such an argument rests on theorems thaagtes equality of measures
given equality on a suitable generating set for #hfield. These uniqueness theorems
heavily rely ono-additivity. Thus we were led to consider what structure wehdve
given that we do not have a probability measure. The factwieahave capacities and
in particular that capacities satisfy strong continuitygerties (both upward and down-
ward) turns out to be strong enough to rescue the uniquehesseims that we need.
What remains to argue is that we really have the property afpacity. Here the com-
pactness property turns out to be crucial.

In closely related work [21] we have shown that one can dgvelanetric for
weak bisimulation analogous to our previous treatment dfingefor strong bisimu-
lation [22]. In this work we heavily use linear programmingladuality.

The present treatment is for discrete systems, we are amwidtwo new direc-
tions: continuous state spaces and continuous time. Weghaliminary results on con-
tinuous time, namely we have shown completeness for camtimistochastic logic [23].
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