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Abstract

We develop a new bisimulation (pseudo)metric for weighted finite au-
tomata (WFA) that generalizes Boreale’s linear bisimulation relation. Our
metrics are induced by seminorms on the state space of WFA. Our de-
velopment is based on spectral properties of sets of linear operators. In
particular, the joint spectral radius of the transition matrices of WFA
plays a central role. We also study continuity properties of the bisimu-
lation pseudometric, establish an undecidability result for computing the
metric, and give a preliminary account of applications to spectral learning
of weighted automata.

1 Introduction

Weighted finite automata (WFA) form a fundamental computational model that
subsumes probabilistic automata and various other types of quantitative au-
tomata. They are much used in machine learning and natural language process-
ing, and are certainly relevant to quantitative verification and to the theory of
control systems [16]. The theory of minimization of weighted finite automata
goes back to Schützenberger [37]. In [5, 6] we began studying approximate min-
imization of WFA by using spectral methods. The idea there was to obtain au-
tomata for a given weighted language, smaller than the minimal possible which,
of course, means that the automaton constructed does not exactly recognize the
given weighted language but comes “close enough.”

In [5, 6] the notion of proximity to the desired language was captured
by an `2 distance. However, a powerful technique for understanding approx-
imate behavioural equivalence is by using behavioural metrics which are crafted
to capture behaviour. Bisimulation, or more precisely probabilistic bisimula-
tion [31, 33], was defined to capture the notion of probabilistic processes with
indistinguishable behaviour. It was soon realized that an equivalence relation
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was too unstable a concept in a quantitative setting and bisimulation pseu-
dometrics were invented [14] to provide a concept appropriate for quantitative
settings. In particular, with a behavioural pseudometric we recover bisimulation
as the kernel. Such behavioural metrics for Markov processes were proposed by
Giacalone et al. [23] and the first successful pseudometric that has bisimula-
tion as its kernel is due to Desharnais et al. [14, 15]; see [33] for an expository
account. The subject was greatly developed by van Breugel and Worrell [39]
among others.

For WFA, a beautiful treatment of linear bisimulation relations was given
by Boreale in [11] and by Bonchi et al. in its subsequent journal version [9]. We
were motivated to develop a metric analogue of Boreale’s linear bisimulation
with the eventual goal of using it to analyze approximate minimization. As
it turns out, our treatment of norms and metrics in the present paper is not
well adapted to the spectral algorithm of [5, 6] but other interesting connections
emerged in the present work. In the present paper we develop the general theory
of bisimulation (pseudo)metrics for WFA (and for weighted languages).

It turns out that in the linear algebraic setting appropriate to WFA it is
a (semi)norm rather than a (pseudo)metric that is the fundamental quantity
of interest. Indeed, as one might expect, in a vector space setting norms and
seminorms are the natural objects from which metrics and pseudometrics can
be derived. The bisimulation metric that we construct actually comes from a
bisimulation seminorm which is obtained, as usual, using the Banach fixed-point
theorem. Interestingly, we also provide a closed-form expression for the fixed
point bisimulation seminorm and use it to study several of its properties.

Our main contributions are:

1. The construction of bisimulation seminorms and the associated pseudo-
metric on WFA (Section 3). The existence of the fixed point depends on
some delicate applications of spectral theory, specifically the joint spectral
radius of a set of matrices.

2. We obtain metrics on the space of weighted languages from the metrics
on WFA (Section 3).

3. We show two continuity properties of the metric; one using definitions due
to Jaeger et al. [28] and the other developed here (Section 4).

4. We show undecidability results for computing our metrics (Section 5).

5. Nevertheless, we show that one can successfully exploit these metrics for
applications in machine learning (Section 7).

6. We investigated the connection between our methods and previous bisim-
ulation metrics for probabilistic automata, thus establishing a number
of relations between our metric and the bisimulation metric of Feng and
Zhang [17] (Section 6).

The metric of the present paper led naturally to some sophisticated topolog-
ical and spectral theory arguments which one would not have anticipated from
the treatment of linear bisimulation in [9, 11]. We have chosen to work with
WFA defined over fields rather than over semi-rings. This is a limitation but it
still includes all the applications to probabilistic situations where one naturally

2



works with the real numbers. The examples that are ruled out are situations
where one is interested in combinatorial applications. By staying with fields
and vector spaces we have many basic properties: existence of a basis, spec-
tral theory results and other crucial mathematical features that are lost in the
semi-ring setting.

2 Background

In this section we recall preliminary definitions and results that will be used
throughout the rest of the paper. Here we discuss Boreale’s linear bisimulation
relations for weighted automata and provide a short primer on the joint spectral
radius of a set of linear operators, which will play an important technical role
in the remainder of the paper.

2.1 Norms, Seminorms, and Pseudometrics

Seminorms (resp. pseudometrics) are generalizations of norms (resp. metrics) of-
ten used in analysis. The key difference is that seminorms (resp. pseudometrics)
are allowed to assign zero value to non-zero vectors (resp. zero distance to pairs
of distinct vectors). This section recalls their definitions and main properties.

A seminorm s on a vector space V is a function s : V → R satisfying the
following two axioms:

1. (absolute homogeneity) s(cv) = |c|s(v) for all c ∈ R and v ∈ V , and

2. (subadditivity) s(u+ v) ≤ s(u) + s(v) for all u, v ∈ V .

Jointly, these two conditions imply s(v) ≥ 0 for all v ∈ V . Furthermore, the first
condition implies s(0) = 0, but unlike in the case of norms we do not require
that 0 is the only vector with s(v) = 0. The kernel of a seminorm s is defined
as ker(s) = {v ∈ V : s(v) = 0}. Therefore, a seminorm s is a norm if and only
if ker(s) = {0}. It can be readily verified that ker(s) is always a linear subspace
of V .

Given a finite-dimensional normed real vector space (V, ‖·‖) we let V ∗ denote
the dual vector space equipped with the dual norm ‖w‖∗ = sup‖v‖≤1 w(v) for
any w ∈ V ∗. The induced norm of a linear operator τ : V → V is defined as
‖τ‖ = sup‖v‖≤1 ‖τ(v)‖. We recall that on a finite-dimensional vector space all
norms are equivalent. Namely, given two norms ‖ · ‖ and ‖ · ‖′ on V there exists
a pair of constants 0 < c ≤ C such that c‖v‖ ≤ ‖v‖′ ≤ C‖v‖ holds for all v ∈ V .
It is immediate to check that the inequalities C−1‖w‖∗ ≤ ‖w‖′∗ ≤ c−1‖w‖∗ hold
for the corresponding dual norms.

A pseudometric on a set V is a function d : V × V → R satisfying the
following axioms:

1. (non-negativity) d(v, w) ≥ 0 for all v, w ∈ V ,

2. (indiscernibility of identicals) d(v, v) = 0 for all v ∈ V ,

3. (symmetry) d(v, w) = d(w, v) for all v, w ∈ V , and

4. (triangle inequality) d(v, u) ≤ d(v, w) + d(w, u) for all u, v, w ∈ V .
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Note that the only difference between a metric and a pseudometric is that in
the latter case we do not require that d(v, w) = 0 implies v = w. Therefore, a
pseudometric might not be able to distinguish between every pair of points in
V . Seminorms provide a convenient way to build pseudometrics: if V is a real
vector space and s : V → R is a seminorm on V , then d(v, w) = s(v − w) is a
pseudometric on V . We shall say that d is the pseudometric induced by s.

2.2 Strings and Weighted Automata

Given a finite alphabet Σ we let Σ? denote the set of all finite strings with
symbols in Σ and let Σ∞ denote the set of all infinite strings with symbols in Σ
and we write Σω = Σ? ∪ Σ∞. The length of a string x ∈ Σω is denoted by |x|;
|x| = ∞ whenever x ∈ Σ∞. Given a string x ∈ Σω and an integer 0 ≤ t ≤ |x|
we write x≤t to denote the prefix containing the first t symbols from x, with
x≤0 = ε, the empty string. Given an integer t ≥ 0 we will write Σt (resp. Σ≤t)
for the set of all strings with length equal to (resp. at most) t. The reverse of a
finite string x = x1x2 · · ·xt is given by x̄ = xtxt−1 · · ·x1.

We only consider automata with weights in the real field R. We will mostly
be concerned with properties of weighted automata that are invariant under
change of basis. Accordingly, our presentation uses weighted automata whose
state space is an abstract real vector space.

A weighted finite automaton (WFA) is a tuple A = 〈Σ, V, α, β, {τσ}σ∈Σ〉
where Σ is a finite alphabet, V is a finite-dimensional vector space, α ∈ V is
a vector representing the initial weights, β ∈ V ∗ is a linear form representing
the final weights, and τσ : V → V is a linear map representing the transition
indexed by σ ∈ Σ. The vectors in V are called states of A. We shall denote
by n = dim(A) = dim(V ) the dimension of A. The transition maps τσ can be
extended to arbitrary finite strings in the obvious way: τx1···xt = τxt ◦ · · · ◦ τx1

.
A weighted automaton A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 computes the function fA :

Σ? → R (sometimes also referred to as the weighted language in RΣ? recognized
by A) given by fA(x) = β(τx(α)). Given a WFA A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 and
a state v ∈ V we define the weighted automaton Av = 〈Σ, V, v, β, {τσ}σ∈Σ〉
obtained from A by taking v as the initial state. We call fAv the function
realized by state v. Similarly, give a linear form w ∈ V ∗ we define the weighted
automaton Aw = 〈Σ, V, α, w, {τσ}σ∈Σ〉 where the final weights are replaced by
w. The reverse of a weighted automaton A is Ā = 〈Σ, V ∗, β, α, {τ>σ }σ∈Σ〉, where
τ>σ : V ∗ → V ∗ is the transpose map of τσ. It is easy to check that the function
computed by Ā satisfies fĀ(x) = fA(x̄) for all x ∈ Σ?.

2.3 Linear Bisimulations

Linear bisimulations for weighted automata were introduced by Boreale in [11]
and by Bonchi et al. in [9], where its characterisation was given from a coalge-
braic perspective. Here we recall the key definition and several important facts.
09

Definition 1. A linear bisimulation for a weighted automaton A = 〈Σ, V, α, β, {τσ}σ∈Σ〉
on a vector space V is a linear subspace W ⊆ V satisfying the following two
conditions:

1. β(v) = 0 for all v ∈W ; that is, W ⊆ ker(β), and
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2. W is invariant under the action of each τσ; that is, τσ(W ) ⊆ W for all
σ ∈ Σ.

Furthermore, two states u, v ∈ V are called W -bisimilar if u− v ∈W .

In particular, the trivial subspace W = {0} is always a linear bisimulation.
The notion of W -bisimilarity induces an equivalence relation on V which we will
denote by ∼W . The kernel of an equivalence relation ∼ on a vector space V is
the set of vectors in the equivalence class of the null vector: ker(∼) = {v ∈ V :
v ∼ 0}. It is immediate from the definition that for any bisimulation relation
∼W we have ker(∼W ) = W .

Given a weighted automaton A we say that u, v ∈ V are A-bisimilar if
there exists a bisimulation W for A such that u ∼W v. The corresponding
equivalence relation is denoted by ∼A. Boreale showed in [9, 11] that for every
WFA A there exists a bisimulation WA such that ∼WA

exactly coincides with
∼A, and the bisimulation can be obtained as WA = ker(∼A). He also showed
that WA is in fact the largest linear bisimulation for A in the sense that any
other linear bisimulation W for A must be a subspace of WA. Accordingly, we
shall refer to the relation ∼A and the subspace WA as A-bisimulation.

Note that the subspaces considered in Definition 1 are independent of the ini-
tial state α of A. In fact, A-bisimilarity can be understood as a relation between
possible initial states for A, as presented in [10]. Indeed, using the definition
of ∼A it is immediate to check that for any states u, v ∈ V we have u ∼A v if
and only if fAu = fAv . This implies that in a WFA where the bisimulation WA

corresponding to ∼A satisfies WA = {0} every state realizes a different func-
tion. Such an automaton is called observable. A weighted automaton is called
reachable if the reverse Ā is observable.

A weighted automaton A is minimal if for any other weighted automaton
A′ over the same alphabet such that fA = fA′ we have dim(A) ≤ dim(A′). It
is also shown in [9, 11] that linear bisimulations can be used to characterize
minimality, in the sense that A is minimal if and only if it is observable and
reachable.

2.4 Joint Spectral Radius

The joint spectral radius of a set of linear operators is a natural generalization
of the spectral radius of a single linear operator. The joint spectral radius and
several equivalent notions have been thoroughly studied since the 1960’s. These
radiuses arise in many fundamental problems in operator theory, control theory,
and computational complexity. See [29] for an introduction to their properties
and applications. Here we recall the basic definitions and some important facts
related to quasi-extremal norms.

Definition 2. The joint spectral radius of a collection M = {τi}i∈I of linear
maps τi : V → V on a normed vector space (V, ‖ · ‖) is defined as

ρ(M) = lim sup
t→∞

(
sup
T∈It

∥∥∥∥∥∏
i∈T

τi

∥∥∥∥∥
)1/t

= lim
t→∞

(
sup
T∈It

∥∥∥∥∥∏
i∈T

τi

∥∥∥∥∥
)1/t

.

The second equality above is a generalization of Gelfand’s formula for the
spectral radius of a single operator due to Daubechies and Lagarias [12, 13].
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An important fact about the joint spectral radius is that ρ(M) is independent
of the norm ‖ · ‖, i.e. one obtains the same radius regardless of the norm given
to the vector space V . The joint spectral radius behaves nicely with respect
to direct sums, in the sense that given two sets of operators M = {τi}i∈I and
M ′ = {τ ′i}i∈I , then ρ({τi ⊕ τ ′i}i∈I) = max{ρ(M), ρ(M ′)}.

The notion of joint spectral radius can be readily extended to weighted
automata. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 be a weighted automaton with states
on a normed vector space (V, ‖ · ‖). Then the spectral radius of A is defined
as ρ(A) = ρ(M) where M = {τσ}σ∈Σ. In this case the definition above can be
rewritten as

ρ(A) = lim
t→∞

(
sup
x∈Σt

‖τx‖
)1/t

.

Now we discuss several fundamental properties of the joint spectral radius
that will play a role in the rest of the paper. Like in the case of the classic
spectral radius, the joint spectral radius is upper bounded by the norms of the
operators in M : ρ(M) ≤ supi∈I ‖τi‖. Obtaining lower bounds for ρ(M) is a
major problem directly related to the hardness of computing approximations to
ρ(M). An approach often considered in the literature is to search for extremal
norms. A norm ‖ · ‖ on V is extremal for M if the corresponding induced norm
satisfies ‖τi‖ ≤ ρ(M) for all i ∈ I. This immediately implies that given an
extremal norm for M we have ρ(M) = supi∈I ‖τi‖. Conditions on M guaran-
teeing the existence of an extremal norm have been derived by Barabanov and
others; see [40] and references therein. However, most of these conditions are
quite technical and algorithmically hard to verify. On the other hand, if one
only insists on approximate extremality, the following result due to Rota and
Strang guarantees the existence of such norms for any set of matrices M that
is compact with respect to the topology generated by the operator norm in V .
We remark that, unfortunately, the proof of this result is non-constructive.

Theorem 3 ([36]). Let M = {τi}i∈I be a compact set of linear maps on V . For
any η > 0 there exists a norm ‖ · ‖ on V that satisfies ‖τi(v)‖ ≤ (ρ(M) + η)‖v‖
for every i ∈ I and every v ∈ V .

The statement above is in fact a special case of Proposition 1 in [36]; a proof
for finite sets M can be found in [8]. An important result due to Barabanov
[7] states that the function M 7→ ρ(M) defined on compact sets of operators is
continuous (see also [26]). Another result that we will need was again proved
by Barbanov in [7] and it states that if M is a bounded set of linear operators
and M̄ denotes its closure then ρ(M) = ρ(M̄). Note that if M is bounded then
its closure M̄ is compact by the Heine–Borel theorem.

A special case which makes the joint spectral radius easier to work with is
when the set of matrices M is irreducible. A set of linear maps M is called
irreducible if the only subspaces W ⊆ V such that τi(W ) ⊆ W for all i ∈ I are
W = {0} and W = V . If there exists a non-trivial subspace W ⊂ V invariant
under all τi we say that M is reducible. In fact, almost all sets of matrices are
irreducible in following sense. The Hausdorff distance between two sets of linear
maps M and M ′ on the same normed vector space (V, ‖ · ‖) is given by

dH(M,M ′) = max

{
sup
τ∈M

inf
τ ′∈M ′

‖τ − τ ′‖, sup
τ ′∈M ′

inf
τ∈M
‖τ − τ ′‖

}
.
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It is possible to show that irreducible sets of matrices are dense among com-
pact sets of matrices with respect to the topology induced by the Hausdorff
distance. Furthermore, Wirth showed in [40] that the joint spectral radius is
locally Lipschitz continuous around irreducible sets of matrices with respect to
the Hausdorff topology (see also [30] for explicit expressions for the Lipschitz
constants). This can be seen as an extension of Barabanov’s continuity result
providing extra information about the behaviour of the function M 7→ ρ(M).

Again, the concept of irreducibility can be readily extended to WFA. We say
that the weighted automaton A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 is irreducible if M =
{τσ}σ∈Σ is irreducible. This concept will play a role in Section 7. The following
result provides a characterization of irreducibility for weighted automata in
terms of minimality. In particular, the result shows that irreducibility is a
stronger condition than minimality.

Theorem 4. A weighted automaton A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 is irreducible if
and only if Awv is minimal for all v ∈ V and w ∈ V ∗ with v 6= 0 and w 6= 0.

Before proving the above theorem, we introduce the following characteriza-
tions of reachability and observability, which will be used in the proof.

Lemma 5. Given a weighted automaton A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 the following
hold:

1. A is observable if and only if fAv 6= 0 for all v ∈ V \ {0}.

2. A is reachable if and only if fAw 6= 0 for all w ∈ V ∗ \ {0}.

Proof. To prove the first claim we note that if A is not observable then there
exist two different states u, v ∈ V such that fAu = fAv . Therefore, we see that
w = u − v 6= 0 and Aw computes the function fAw = fAu − fAv = 0. On the
other hand, if v ∈ V \ {0} is such that fAv = 0, then Av and A0 compute the
zero function and A is not observable.

The second claims follows from applying the first claim to the reverse au-
tomaton Ā.

Proof of Theorem 4. To prove the “only if” part assume that the set of linear
maps M = {τσ}σ∈Σ is reducible. Then there exists a non-trivial subspace
W ⊂ V that is left invariant by all the τσ. Using this subspace we can find
a non-zero vector v ∈ W and a non-zero linear form w ∈ V ∗ such that W ⊆
ker(w). We claim that A′ = Awv is not minimal. Indeed, since W is invariant
under the action of every τσ we have τx(v) ∈ W for all x ∈ Σ?, which implies
fA′(x) = w(τx(v)) = 0 for all x ∈ Σ?. Therefore we have fA′ = 0 which is
also computed by the weighted automaton Aw0 with initial weights 0 ∈ V , so by
Lemma 5 A′ is not observable.

For the “if” part we assume that Awv is not minimal for some v ∈ V \{0} and
w ∈ V ∗\{0}. Since A is irreducible if and only if Ā is irreducible, we can assume
without loss of generality that Awv is not observable. Furthermore, by Lemma 5
we can further assume that (replacing v by a different state if necessary) Awv
computes the zero function. Now let us take the subspace W = span{τx(v) :
x ∈ Σ?} ⊆ V and show that it is a witness for the reducibility of M . Note that
by construction we immediately have τσ(W ) ⊆ W for any σ ∈ Σ, so we only
need to check that W is not trivial. On the one hand we have 0 6= v ∈ W , so
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dim(W ) ≥ 1. On the other hand, since Awv computes the zero function we must
have W ⊆ ker(w), which implies dim(W ) ≤ dim(ker(w)) = n− 1 since w is not
zero.

3 Bisimulation Seminorms and Pseudometrics
for WFA

In the same way that the largest bisimulation relation in many settings can
be obtained as a fixed point of a certain operator on equivalence relations, a
possible way to define bisimulation (pseudo)metrics is via a similar fixed-point
construction. See [18] for an example in the case of Markov decision processes.
In this section, the fixed-point construction is used to obtain a bisimulation
seminorm on states of a given WFA. Given two WFA we can build their differ-
ence automaton A and compute the corresponding seminorm of the initial state
of A. This construction yields a bisimulation pseudometric between weighted
automata.

Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 be a weighted automaton over the vector space
V . Let S denote the set of all seminorms on V . Given γ > 0 we define the map
FA,γ : S → S between seminorms given by

FA,γ(s)(v) = |β(v)|+ γmax
σ∈Σ

s(τσ(v)) . (1)

Note that this definition is independent of the initial state α, as is the linear
bisimulation for A described in Section 2.3. In the sequel we shall write F
instead of FA,γ whenever A and γ are clear from the context.

To verify that F : S → S is well defined we must check that the image F (s)
of any seminorm s is also a seminorm. Absolute homogeneity is immediate by
the linearity of β and τσ and the absolute homogeneity of s. For subadditivity
we have

F (s)(u+ v) = |β(u+ v)|+ γmax
σ∈Σ

s(τσ(u+ v))

= |β(u) + β(v)|+ γmax
σ∈Σ

s(τσ(u) + τσ(v))

≤ |β(u)|+ |β(v)|+ γmax
σ∈Σ

(s(τσ(u)) + s(τσ(v)))

≤ F (s)(u) + F (s)(v) ,

where the last inequality uses subadditivity of the maximum.
To construct bisimulation seminorms for the states of a weighted automaton

A we shall study the fixed points of FA,γ . We start by showing that FA,γ has a
unique fixed point whenever γ is small enough.

Theorem 6. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉. If γ < 1/ρ(A), then FA,γ has a
unique fixed point.

Proof. For simplicity, let F = FA,γ . By the assumption on γ there exists some
δ > 0 such that γ ≤ 1/(ρ(A) + δ). Now take M = {τσ}σ∈Σ and η = δ/2
and let ‖ · ‖ be the corresponding quasi-extremal norm on V obtained from
Theorem 3. Using this norm we can endow S with the metric given by d(s, s′) =
sup‖v‖≤1 |s(v)−s′(v)| to obtain a complete metric space (S, d). Thus, if we show
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that F is a contraction on S with respect to this metric, then by Banach’s fixed
point theorem F has a unique fixed point. To see that F is indeed a contraction
we start by observing that:

d(F (s), F (s′)) = sup
‖v‖≤1

|F (s)(v)−F (s′)(v)| = γ sup
‖v‖≤1

∣∣∣max
σ

s(τσ(v))−max
σ′

s′(τσ′(v))
∣∣∣ .

(2)
Fix any v ∈ V with ‖v‖ ≤ 1 and suppose without loss of generality (otherwise
we exchange s and s′) that maxσ s(τσ(v)) ≥ maxσ′ s

′(τσ′(v)). Then, using the
absolute homogeneity of s and s′, it can be shown that:∣∣∣max

σ
s(τσ(v))−max

σ′
s′(τσ′(v))

∣∣∣ = max
σ

s(τσ(v))−max
σ′

s′(τσ′(v))

= s(τσ∗(v))−max
σ′

s′(τσ′(v))

≤ s(τσ∗(v))− s′(τσ∗(v))

= ‖τσ∗(v)‖
(
s

(
τσ∗(v)

‖τσ∗(v)‖

)
− s′

(
τσ∗(v)

‖τσ∗(v)‖

))
≤ ‖τσ∗(v)‖ sup

‖v′‖≤1

|s(v′)− s′(v′)|

= ‖τσ∗(v)‖d(s, s′) . (3)

Finally, we use the definition of ‖ · ‖ and the choices of δ and η to see that

γ‖τσ∗(v)‖ ≤ γ(ρ(A) + η)‖v‖ ≤ ρ(A) + δ/2

ρ(A) + δ
< 1 ,

from which we conclude by combining (2) with (3) that d(F (s), F (s′)) < d(s, s′).

We now exhibit the fixed point of FA,γ in closed form. This provides a useful
formula for studying properties of the resulting seminorm.

Theorem 7. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉. Suppose γ < 1/ρ(A) and let sA,γ ∈
S be the fixed point of FA,γ . Then for any v ∈ V we have

sA,γ(v) = sup
x∈Σ∞

∞∑
t=0

γt|β(τx≤t(v))| = sup
x∈Σ∞

∞∑
t=0

γt|fAv (x≤t)| . (4)

Proof of Theorem 7. For simplicity, let F = FA,γ and s = sA,γ . In the first
place we note that s clearly satisfies the seminorm axioms. However, this is not
enough to guarantee that s is a seminorm because the supremum over Σ∞ could
be unbounded while the definition of seminorm requires the image by s of every
element in V to be in R. To guarantee that s is a seminorm we must show that
s(v) is always finite. Let ‖ · ‖ be the norm on V constructed in the proof of
Theorem 6. Then we can use Hölder’s inequality and the submultiplicativity of
induced norms to show that for any v ∈ V and x ∈ Σ? we have

|β(τx(v))| ≤ ‖τx(v)‖‖β‖∗ ≤ (ρ(A) + η)|x|‖v‖‖β‖∗ ,

where η = δ/2 for some δ > 0 such that γ ≤ 1/(ρ(A) + δ). Thus, for any v ∈ V
we can bound the expression in (4) as

s(v) ≤ ‖v‖‖β‖∗
∞∑
t=0

γt(ρ(A) + η)t ≤ ‖v‖‖β‖∗
∞∑
t=0

(
ρ(A) + δ/2

ρ(A) + δ

)t
<∞ .
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Now that we know that s is a seminorm and F has a unique fixed point in S,
we only need to verify that the expression in (4) is a fixed point of F . To see
that this is the case we just note the following holds for any v ∈ V :

F (s)(v) = |β(v)|+ γmax
σ∈Σ
|s(τσ(v))|

= |β(v)|+ γmax
σ∈Σ

∣∣∣∣∣ sup
x∈Σ∞

∞∑
t=0

γt|β(τx≤t(τσ(v)))|

∣∣∣∣∣
= |β(v)|+ max

σ∈Σ
sup
x∈Σ∞

∞∑
t=0

γt+1|β(τ(σx)≤t+1
(v))|

= |β(v)|+ sup
x∈Σ∞

∞∑
t=1

γt|β(τx≤t(v))|

= s(v) .

Finally, note that the second equality follows from the identity |β(τy(v))| =
fAv (y) for all y ∈ Σ?.

The next theorem is the main result of this section. It shows that any
seminorm arising as a fixed point of FA,γ captures the notion of A-bisimulation
through its kernel for any γ. Namely, two states u, v ∈ V are A-bisimilar if and
only if sA,γ(u− v) = 0. Note that this result is independent of the choice of γ,
as long as the fixed point of FA,γ is guaranteed to exist.

Definition 8. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 be a weighted automaton with A-
bisimulation ∼A. We say that a seminorm s over V is a bisimulation seminorm
for A if ker(s) = ker(∼A).

Theorem 9. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉. For any 0 < γ < 1/ρ(A) the fixed
point sA,γ ∈ S of FA,γ is a bisimulation seminorm for A.

Proof. For simplicity, let F = FA,γ and s = sA,γ . Since WA = ker(∼A) is the
largest bisimulation for A, it suffices to show that ker(s) is a bisimulation for
A with WA ⊆ ker(s). For the first property we recall that ker(s) is a linear
subspace of V and note that for any v ∈ ker(s) we have, using Theorem 7,

0 = s(v) = |β(v)|+ sup
x∈Σ∞

∞∑
t=1

γt|β(τx≤t(v))| ≥ |β(v)| ≥ 0 .

Therefore ker(s) ⊆ ker(β). To verify the invariance of ker(s) under all τσ let
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v ∈ ker(s) and note that using β(v) = 0 we can write

0 ≤ s(τσ(v)) = sup
x∈Σ∞

∞∑
t=0

γt|β(τx≤t(τσ(v)))|

= sup
x∈Σ∞

∞∑
t=0

γt|β(τ(σx)≤t+1
(v))|

=
1

γ
sup
x∈Σ∞

∞∑
t=0

γt+1|β(τ(σx)≤t+1
(v))|

≤ 1

γ
sup
x∈Σ∞

∞∑
t=1

γt|β(τx≤t(v))|

=
1

γ

(
|β(v)|+ sup

x∈Σ∞

∞∑
t=1

γt|β(τx≤t(v))|

)

=
1

γ
s(v) = 0 .

This implies τσ(v) ∈ ker(s) for all v ∈ ker(s) and σ ∈ Σ. Therefore ker(s) is a
bisimulation for A.

Now let v ∈WA. Since WA is contained in the kernel of β and is invariant for
all τσ, we see that β(τx(v)) = 0 for all x ∈ Σ?. Therefore, using the expression
for s given in Theorem 7 we obtain s(v) = 0. This concludes the proof.

Because every fixed point of FA,γ is a seminorm whose kernel agrees with
that of Boreale’s bisimulation relation ∼A, we shall call them γ-bisimulation
seminorms for A. Interestingly, we can now show that when A is observable
then every γ-bisimulation seminorm is in fact a norm.

Corollary 10. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 and γ < 1/ρ(A). If A is observable
then the γ-bisimulation seminorm sA,γ is a norm.

Proof. By Theorem 9 and the observability of A we have ker(sA,γ) = ker(∼A
) = {0}. Thus, sA,γ is a norm.

Given an automaton A, and state vectors v, w ∈ V , the pseudometric be-
tween states of A induced by sA,γ is dA,γ(v, w) = sA,γ(v − w). Pseudometrics
of this form will be called γ-bisimulation pseudometrics. By Corollary 10, if A
is observable then dA,γ is in fact a metric.

To conclude this section we show how to use our γ-bisimulation pseudo-
metrics to define a pseudometric between weighted automata. In order to
capture the idea of distance between two WFA let us build the automaton
computing the difference between their functions. Given weighted automata
Ai = 〈Σ, Vi, αi, βi, {τi,σ}σ∈Σ〉 for i = 1, 2, we define their difference automaton
as A = A1 − A2 = 〈Σ, V, α, β, {τσ}σ∈Σ〉 where V = V1 ⊕ V2, α = α1 ⊕ (−α2),
β = β1 ⊕ β2, and τσ = τ1,σ ⊕ τ2,σ for all σ ∈ Σ. Note that A satisfies
fA(x) = fA1(x) − fA2(x) for all x ∈ Σ? and that ρ(A) = max{ρ(A1), ρ(A2)}.
Then, letting sA,γ be the bisimulation seminorm for A we are ready to define
our bisimulation distance between weighted automata.
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Definition 11. Let A1 and A2 be two weighted automata and let A be their
difference automaton. For any γ < 1/ρ(A) we define the γ-bisimulation distance
between A1 and A2 as dγ(A1, A2) = sA,γ(α).

By exploiting the closed form expression for sA,γ given in Theorem 7 we can
provide a closed form expression for dγ .

Corollary 12. Let A1 and A2 two weighted automata and γ < 1/max{ρ(A1), ρ(A2)}.
Then the γ-bisimulation distance between A1 and A2 is given by

dγ(A1, A2) = sup
x∈Σ∞

∞∑
t=0

γt |fA1(x≤t)− fA2(x≤t)| . (5)

Using the properties of our bisimulation seminorms one can immediately
see that dγ is indeed a pseudometric between all pairs of WFA such that γ <
1/ρ(A1 − A2). It is also easy to see that dγ captures the notion of equivalence
between weighted automata, in the sense that dγ(A1, A2) = 0 if and only if
fA1

= fA2
. Therefore, since minimal weighted automata are unique up to a

change of basis, the only way to have dγ(A1, A2) = 0 when A1 is minimal is
to have either A1 = A2 or A2 is a non-minimal WFA recognizing the same
weighted language as A1. In particular, this implies that dγ is a metric on the
set of all minimal WFA A with γ < 1/ρ(A). Equivalently, we see that dγ can
be interpreted as the metric

dγ(f1, f2) = sup
x∈Σ∞

∞∑
t=0

γt |f1(x≤t)− f2(x≤t)|

on the set of weighted languages{
f : Σ? → R : sup

x∈Σ∞

∞∑
t=0

γt|f(x≤t)| <∞

}
.

4 Continuity Properties

In this section we study several continuity properties of our bisimulation pseu-
dometrics between weighted automata. The continuity notions we consider are
adapted from those presented by Jaeger et al. in [28], which are developed for
labelled Markov chains. Here we extend their definitions of parameter continu-
ity and property continuity to the case of weighted automata. Such notions can
be motivated by applications of metrics between transition systems to problems
in machine learning [15, 20, 19]; see Section 7 for a discussion on how to use our
bisimulation pseudometrics in the analysis of learning algorithms.

4.1 Parameter Continuity

Given a sequence of weighted automata Ai converging to a weighted automaton
A, parameter continuity captures the notion that, as the weights in Ai converge
to the weights in A, the behavioural distance between Ai and A tends to zero.
To make this formal we first define convergence for a sequence of automata and
then parameter continuity.
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Definition 13. Let (Ai)i∈N be a sequence of WFA Ai = 〈Σ, V, αi, βi, {τi,σ}σ∈Σ〉
over the same alphabet Σ and normed vector space (V, ‖ · ‖). We say that the
sequence (Ai) converges to A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 if limi→∞ ‖αi − α‖ = 0,
limi→∞ ‖βi − β‖∗ = 0, and limi→∞ ‖τi,σ − τσ‖ = 0 for all σ ∈ Σ.

Definition 14. A pseudometric d between weighted automata is parameter con-
tinuous if for any sequence (Ai)i∈N converging to some weighted automaton A
we have limi→∞ d(A,Ai) = 0.

The main result of this section is the following theorem stating that our
bisimulation pseudometric dγ is parameter continuous.

Theorem 15. The γ-bisimulation distance between weighted automata is pa-
rameter continuous for any sequence of weighted automata (Ai)i∈N converging
to a weighted automaton A with γ < 1/ρ(A).

The proof of this result is quite technical and combines the following two
tools:

1. A technical estimate of dγ(A,Ai) in terms of the distance between the
weights of A and Ai with respect to a certain norm (Lemma 17). This
result also plays a prominent result in Section 7.

2. Several topological properties of the joint spectral radius discussed in Sec-
tion 2.4.

We first state an elementary lemma that we need in order to prove an upper
bound on dγ . This estimate also plays an important role in the application of
our bismulation pseudometric to spectral learning presented in Section 7.

Lemma 16. Let (sl)l∈N be a sequence such that there exists a constant a and
a sequence (bl)l∈N satisfying sl+1 ≤ asl + bl for all l ≥ 0. Then for all l ≥ 0 we

have sl+1 ≤ al+1s0 +
∑l
i=0 a

l−ibi.

Proof. Simple proof by induction on l.

Lemma 17. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 and A′ = 〈Σ, V, α′, β′, {τ ′σ}σ∈Σ〉 be
two weighted automata over the same alphabet Σ and the same vector space V .
Let M = {τσ}∪ {τ ′σ} and ρ = ρ(M). Suppose γ < 1/ρ and ‖ · ‖ is a norm on V
such that for all σ ∈ Σ we have ‖τσ‖, ‖τ ′σ‖ ≤ θ for some θ such that ν = γθ < 1.
Then we have the following:

dγ(A,A′) ≤ ‖α‖‖β − β
′‖∗ + ‖β′‖∗‖α− α′‖

1− ν
+
γ‖α‖‖β′‖∗maxσ ‖τσ − τ ′σ‖

(1− ν)2
. (6)

Proof. Fix x ∈ Σ∞ and given l ≥ 0 define Dl(x) =
∑l
t=0 γ

t|fA(x≤t)−fA′(x≤t)|.
By applying the triangle and Hölder inequalities to any term in the summation
Dl(x) we get

|fA(x≤t)− fA′(x≤t)| ≤ ‖β − β′‖∗‖τx≤t(α)‖+ ‖β′‖∗‖τx≤t(α)− τ ′x≤t(α
′)‖ . (7)

Using the assumption on ‖ · ‖ we can see that ‖τx≤t(α)‖ ≤ θt‖α‖ for any t ≥ 0.
Now let εβ = ‖β−β′‖∗ and εt = ‖τx≤t(α)−τ ′x≤t(α

′)‖. Plugging these definitions

and the bound (7) in Dl we get

Dl(x) ≤ εβ‖α‖

(
l∑
t=0

γtθt

)
+ ‖β′‖∗

(
l∑
t=0

γtεt

)
. (8)

13



Now we shall bound the term sl =
∑l
t=0 γ

tεt. Suppose x≤t+1 = yσ, where
y ∈ Σt and σ ∈ Σ. Let ετ = maxσ ‖τσ − τ ′σ‖. Using the triangle inequality we
can show the following:

εt+1 = ‖τyσ(α)− τ ′yσ(α′)‖
= ‖τσ(τy(α))− τ ′σ(τ ′y(α′))‖
≤ ‖τσ(τy(α))− τ ′σ(τy(α))‖+ ‖τ ′σ(τy(α)− τ ′y(α′))‖
≤ ‖τσ − τ ′σ‖‖τy(α)‖+ ‖τ ′σ‖‖τy(α)− τ ′y(α′)‖
≤ ετθt‖α‖+ θεt .

We will now use the inequality above to show that sl satisfies a recurrence of
the form considered in Lemma 16 for all l ≥ 0:

sl+1 = ε0 +

l+1∑
t=1

γtεt

= ε0 + γ

l∑
t=0

γtεt+1

≤ ε0 + γ

l∑
t=0

γt
(
ετθ

t‖α‖+ θεt
)

= γθsl + ε0 + γετ‖α‖
l∑
t=0

(γθ)t .

Let εα = ‖α− α′‖ and note that s0 = ε0 = εα. Thus, applying Lemma 16 with

a = γθ and bl = εα + γετ‖α‖
∑l
t=0(γθ)t to the sequence sl we get:

sl ≤ (γθ)lεα +

l−1∑
i=0

(γθ)l−1−i

(
εα + γετ‖α‖

i∑
t=0

(γθ)t

)

= εα

l∑
t=0

(γθ)t + γετ‖α‖
l−1∑
i=0

(
(γθ)l−1−i

i∑
t=0

(γθ)t

)

= εα
1− (γθ)l+1

1− γθ
+
γετ‖α‖
1− γθ

l−1∑
i=0

(
(γθ)l−1−i − (γθ)l

)
= εα

1− (γθ)l+1

1− γθ
+
γετ‖α‖
1− γθ

(
1− (γθ)l

1− γθ
− l(γθ)l

)
=

εα
1− γθ

+
γετ‖α‖

(1− γθ)2
− (γθ)l

(
εαγθ + lγετ‖α‖

1− γθ
+

γετ‖α‖
(1− γθ)2

)
.

Plugging this bound into (8) and grouping the terms multiplied by (γθ)l into
Rl we get

Dl(x) ≤ εβ‖α‖+ εα‖β′‖∗
1− γθ

+
γετ‖α‖‖β′‖∗

(1− γθ)2
− (γθ)lRl . (9)

Finally, observing that Rl = O(l) and using that γθ = ν < 1, we take the
limit l→∞ and obtain the desired bound using the closed form expression for
dγ(A,A′) given in Corollary 12.
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Now we proceed to the proof of Theorem 15. The main ingredient of this
proof is the construction of a norm on V satisfying the conditions of Lemma 17
uniformly for all Ai with i ≥ j0 for some j0 ∈ N.

Proof of Theorem 15. LetAi = 〈Σ, V, αi, βi, {τi,σ}σ∈Σ〉 be a sequence of weighted
automata converging to A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 with respect to some norm
‖ · ‖ on V and suppose γ < 1/ρ(A). For any j ∈ N we define the set

Mj = {τσ}σ∈Σ ∪
⋃
i≥j

{τi,σ}σ∈Σ .

Since limi→∞ τi,σ = τσ for all σ ∈ Σ, the set Mj is bounded for all j ∈ N.
Let ρj = ρ(Mj) = ρ(M̄j), where M̄j is the compact set obtained as the closure
of Mj . Using the continuity of the joint spectral radius on compact sets of
operators we see that limj→∞ ρj = ρ(A). Thus, letting δ = 1−γρ(A) > 0, there
exists a constant j0 ∈ N such that |ρj−ρ(A)| < δ/(4γ) is satisfied for all j ≥ j0.
Now we can apply Theorem 3 to M̄j0 with η = δ/(4γ) to find a norm ‖ · ‖′ on V
such that ‖τσ‖′ ≤ ρ(A)+δ/(2γ) and ‖τi,σ‖′ ≤ ρ(A)+δ/(2γ) for all σ ∈ Σ and all
i ≥ j0. Taking θ = ρ(A)+δ/(2γ) we see that γθ = γρ(A)+δ/2 < γρ(A)+δ = 1.
Hence, we are under the hypotheses of Lemma 17 and we have that the following
holds for all i ≥ j0:

dγ(A,Ai) ≤
‖α‖′‖β − βi‖′∗ + ‖βi‖′∗‖α− αi‖′

1− ν
+
γ‖α‖′‖βi‖′∗maxσ ‖τσ − τi,σ‖′

(1− ν)2
,

(10)
where ν = γθ = γρ(A) + δ/2.

Now recall that all norms in a finite dimensional vector space are equivalent.
Therefore, we can find a pair constants 0 < c ≤ C such that c‖v‖ ≤ ‖v‖′ ≤ C‖v‖
holds for all v ∈ V and C−1‖w‖∗ ≤ ‖w‖′∗ ≤ c−1‖w‖∗ for all w ∈ V ∗. Plugging
these inequalities in (10) we see that for all i ≥ j0 we have

dγ(A,Ai) ≤
C(‖α‖‖β − βi‖∗ + ‖βi‖∗‖α− αi‖)

c(1− ν)
+
C2γ‖α‖‖βi‖∗maxσ ‖τσ − τi,σ‖

c(1− ν)2
.

Since the sequence of automata (Ai) converges to A with respect to ‖ · ‖, we
conclude that limi→∞ dγ(A,Ai) = 0.

4.2 Input Continuity

Inspired by the notion of property continuity presented in [28], we define a new
notion of input g-continuity encapsulating the idea that an upper bound on the
behavioural distance between two systems should entail an upper bound on the
difference between their outputs on any input x ∈ Σ?.

Definition 18. Let g : N → R be such that g(l) > 0 for all l ∈ N. A distance
function d between weighted automata is input g-continuous when the following
holds: if (Ai)i∈N is a sequence of weighted automata such that limi→∞ d(A,Ai) =
0 for some weighted automaton A, then one has

lim
i→∞

sup
x∈Σ?

|fA(x)− fAi(x)|
g(|x|)

= 0 . (11)
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Figure 1: Two weighted automata with Σ = {a} and initial weight α = 1.

q1

1

q2

1
a:τi a:1

Note the special case g(l) = 1 is tightly related to the notion of property
continuity presented in [28]. The authors of that paper consider differences
between the probabilities of the same event under different labelled Markov
chains, and therefore always have numbers between 0 and 1 in the numerator
of (11). However, for general weighted automata the quantity |fA(x)− fA′(x)|
can grow unboundedly with |x|. Thus, in some cases we will need to have a
g(|x|) growing with |x| in order to guarantee that (11) stays bounded. The next
two results show that essentially g(|x|) = γ−|x| is the threshold between input
continuity and input non-continuity in our γ-bisimulation pseudometrics.

Theorem 19. The pseudometric dγ from Definition 11 is input g-continuous
for any g(l) = Ω(γ−l).

Proof. Let A be weighted automaton such that γ < 1/ρ(A) and let (Ai)i∈N be
a sequence of weighted automata converging to A with respect to dγ . Note that
for any i ∈ N we have the following:

sup
x∈Σ?

|fA(x)− fAi(x)|
g(|x|)

= sup
x∈Σ?

|fA(x)− fAi(x)|γ|x|

g(|x|)γ|x|

≤ sup
x∈Σ?

dγ(A,Ai)

g(|x|)γ|x|

= sup
l∈N

dγ(A,Ai)

g(l)γl
.

Now note that g(l) > 0 and g(l) = Ω(γ−l) implies inf l∈N g(l)γl > 0. Using the
assumption that limi→∞ dγ(A,Ai) = 0 we now see that (11) is satisfied.

Note that when γ > 1 (i.e. when dealing with weighted automata with
ρ(A) ≤ 1) we have g(l) = 1 ∈ Ω(γ−l). This shows that in the case of weighted
automata A where every transition operator τσ can be represented by a stochas-
tic matrix – a fact that implies ρ(A) = 1 – our γ-bisimulation pseudometric is
property continuous with respect to the definition in [28].

Further, if g does not grow fast enough as a function of the size of x ∈ Σ?,
then our bisimulation pseudometric is not input g-continuous. In particular, the
proof of Theorem 20 provides simple examples of cases where dγ is not input
g-continuous.

Theorem 20. Let 0 < γ < 1. The pseudometric dγ from Definition 11 is not
input g-continuous for any g(l) = co(l) with c > 1.

Proof. Let Σ = {a} be an alphabet with one symbol and let Ai = 〈Σ, V, α, β, τi〉
with τi = 1 + 2−i and α = β = 1 be the weighted automaton shown on the left
of Figure 1, and let A = 〈Σ, V, α, β, τ〉 with τ = 1 be the weighted automaton
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shown on the right of Figure 1. For any i > log2(γ/(1 − γ)) we have γτi < 1.
Hence, we can write

dγ(A,Ai) = sup
x∈Σ∞

∑
t≥0

γt|τ t − τ ti |

=
∑
t≥0

γt
(
(1 + 2−i)t − 1

)
=

1

1− γ(1 + 2−i)
− 1

1− γ
.

Therefore we see that limi→∞ dγ(A,Ai) = 0. Now let us show that for these
automata the limit in (11) is not zero for any g(l) = co(l) with c > 1. Indeed,
we can write

sup
x∈Σ?

|fA(x)− fAi(x)|
g(|x|)

= sup
x∈Σ?

(1 + 2−i)|x| − 1

co(|x|)

= sup
l∈N

(1 + 2−i)l − 1

co(l)

≥ sup
l∈N

(1 + 2−i)l

co(l)
− sup

l∈N

1

co(l)

=∞ ,

where the last equality uses that (1+2−i)l

co(l)
= ω(1) and 1

co(l)
= O(1) with respect

to l→∞. Therefore dγ is not input g-continuous for these choices of g.

5 An Undecidability Result

In this section we will prove that given a weighted automatonA = 〈Σ, V, α, β, {τσ}σ∈Σ〉,
a discount factor γ < 1/ρ(A), and a threshold ν > 0, it is undecidable to check
whether sA,γ(α) > ν. This implies that in general the seminorms and pseudo-
metrics studied in the previous sections are not computable.

The proof of our undecidability result involves a reduction from an un-
decidable planning problem. Partially observable Markov decision processes
(POMDPs) are a generalization of Markov Decision Processes (MDPs) where
we have a set of observations Ω and conditional observation probabilities O.
Each state emits some observation o ∈ Ω with a certain probability, and so we
have a belief over which state we are in after taking an action and observing
o. An MDP is a special case of a POMDP where each state has a unique ob-
servation, and an unobservable Markov decision process (UMDP) is a special
case of a POMDP where all the states emit the same observation. While plan-
ning for infinite-horizon UMDPs is undecidable [32], planning for finite-horizon
POMDPs is decidable.

Formally, a UMDP is a tuple U = 〈Σ, Q, α, {βσ}σ∈Σ, {Tσ}σ∈Σ, γ〉 where
Σ is a finite set of actions, Q is a finite set of states, α : Q → [0, 1] is a
probability distribution over initial states in Q, βσ : Q → R represents the
rewards obtained by taking action σ from every state in Q, Tσ : Q×Q→ [0, 1] is
the transition kernel between states for action σ (i.e. Tσ(q, q′) is the probability
of transitioning to q′ given that action σ is taken in q), and 0 < γ < 1 is a
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discount factor. The value VU (x) of an infinite sequence of actions x ∈ Σ∞ in U
is the expected discounted cumulative reward collected by executing the actions
in x in U starting from a state drawn from α. This can be obtained as follows:

VU (x) =

∞∑
t=1

γt−1α>Tx≤t−1
βxt , (12)

where Ty = Ty1 · · ·Tyt for any finite string y = y1 · · · yt and Tε = I. The
following undecidability result was proved by Madani et al. in [32].

Theorem 21 (Theorem 4.4 in [32]). The following problem is undecidable:
given a UMDP U and a threshold ν decide whether there exists a sequence of
actions x ∈ Σ∞ such that VU (x) > ν.

Given a UMDP U = 〈Σ, Q, α, {βσ}σ∈Σ, {Tσ}σ∈Σ, γ〉, we say that U has
action-independent rewards if βσ = β for all σ ∈ Σ. We say that U has non-
negative rewards if βσ(q) ≥ 0 for all q ∈ Q and σ ∈ Σ. A careful inspection of
the proof in [32] reveals that in fact the reduction provided in the paper always
produces as output a UMDP with non-negative action-independent rewards.
Thus, we have the following corollary, which forms the basis of our reduction
showing that sγ is not computable.

Corollary 22. The problem in Theorem 21 remains undecidable when restricted
to UMDP with non-negative action-independent rewards.

Theorem 23. The following problem is undecidable: given a weighted automa-
ton A = 〈Σ, V, α, β, {τσ}σ∈Σ〉, a discount factor γ < 1/ρ(A), and a threshold
ν > 0, decide whether sA,γ(α) > ν.

Proof. Let U = 〈Σ, Q, α, β, {Tσ}σ∈Σ, γ〉 be a UMDP with non-negative action-
independent rewards. With each UMDP of this form we associate the weighted
automaton A = 〈Σ,RQ, α, β, {τσ}σ∈Σ〉. Here we assume that the linear form
β : RQ → R is given by β(v) = v>β, and that the linear operators τσ : RQ → RQ
are given by τσ(v) = v>Tσ.

Note that the matrices Tσ are row-stochastic and therefore we have ρ(A) ≤
maxσ ‖τσ‖∞ = 1. Thus, the discount factor in U satisfies γ < 1 ≤ 1/ρ(A) and
the bisimulation seminorm sA,γ associate with A is defined. Using that U has
non-negative action-independent rewards we can write for any x ∈ Σ∞:

VU (x) =

∞∑
t=1

γt−1α>Tx≤t−1
β

=

∞∑
t=0

γtα>Tx≤tβ

=

∞∑
t=0

γt|α>Tx≤tβ|

=

∞∑
t=0

γt|β(τx≤t(α))| .

Therefore we have the relation sA,γ(α) = supx∈Σ∞ VU (x) between the bisimula-
tion seminorm of A and the value of U . Since deciding whether VU (x) > ν for
some x ∈ Σ∞ is undecidable, the theorem follows.
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6 A Coarser Bisimulation Metric

In Section 3, we constructed bisimulation pseudo-metrics via a the following
operator on seminorms:

FA,γ(s)(v) = |β(v)|+ γmax
σ∈Σ

s(τσ(v)) . (13)

Obviously, this operator was chosen with a specific goal in mind: construct-
ing a pseudometric that captures bisimulation in its kernel. But this is not
the only choice of operator from which one can obtain bisimulation pseudomet-
rics. We show here that a slight modification of this operator yields a coarser
pseudometric, and show how this new construction is related to a bisimulation
pseudometric for probabilistic automata proposed by Feng and Zhang [17].

Letting F+ = F+
A,γ be the operator defined in (13), we denote by F∨ = F∨A,γ

the operator obtained by replacing the sum by a maximum:

F∨A,γ(s)(v) := max

{
|β(v)|, γmax

σ∈Σ
s(τσ(v))

}
.

This new operator F∨ shares a number of properties with the operator F+.
For example, invoking a similar argument as in Section 3, we can obtain a unique
fixed point, as well as a closed-form expression for it whenever γ < 1/ρ(A). First,
we check again that F∨(s) is a seminorm for s ∈ S. Absolute homogeneity is
immediate, while for subadditivity we have that

F∨(s)(u+ v) = max

{
|β(u+ v)|, γmax

σ∈Σ
s(τσ(u+ v))

}
= max

{
|β(u) + β(v)|, γmax

σ∈Σ
s(τσ(u) + τσ(v))

}
≤ max

{
|β(u)|+ |β(v)|, γ

(
max
σ∈Σ

s(τσ(u)) + max
σ′∈Σ

s(τσ′(v))

)}
≤ max

{
|β(u)|, γmax

σ∈Σ
s(τσ(u))

}
+ max

{
|β(v)|, γmax

σ∈Σ
s(τσ(v))

}
≤ F∨(s)(u) + F∨(s)(v) .

Next, we show that F∨ has a unique fixed point, provided γ is smaller than
the critical value 1/ρ(A), thus obtaining an analog of Theorem 6 for the new
operator.

Theorem 24. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉. If γ < 1/ρ(A), then F∨A,γ has a
unique fixed point.

Proof. For simplicity, let F∨ = F∨A,γ . Let ‖ · ‖ and d be as in Theorem 6. We
only need to show the contractivity of F∨ in the metric space (S, d). To see
that F∨ is indeed a contraction, we note that:

d(F∨(s), F∨(s′)) ≤ γ sup
‖v‖≤1

∣∣∣max
σ

s(τσ(v))−max
σ′

s′(τσ′(v))
∣∣∣ .

To show that d(F (s), F (s′)) < d(s, s′), the remaining of the argument is exactly
the same as in Theorem 6.
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Similarly, we can obtain a closed-form expression for the unique fixed point
defined via F∨. The argument is again nearly identical to the proof for the
closed form of the fixed point defined via the operator F+, and is omitted here.

Theorem 25. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉. Suppose γ < 1/ρ(A) and let
s∨A,γ ∈ S be the fixed point of F∨A,γ . Then for any v ∈ V we have

s∨A,γ(v) = max
x∈Σ?

γ|x||β(τx(v))| = max
x∈Σ?

γ|x||fAv (x)| . (14)

It is immediate to see from the closed forms defined in Equations (4) and (14)
that s∨A,γ is a lower bound for s+

A,γ . Similarly, given any two automata A1, A2

and defining d∨γ (A1, A2) as s∨A,γ(α) on the difference automaton A = A1 − A2,

we have that d∨γ (A1, A2) is a lower bound for d+
γ (A1, A2), provided γ < 1/ρ(A).

Then, s∨A,γ and d∨γ are bisimulation seminorms and pseudometrics, respectively.

Consequently, the continuity properties defined in Section 4 that hold for d+
γ

also hold for d∨γ . Moreover, by a simple reduction to the emptiness of stochastic
languages [24, 34], we can see that the threshold problem for the seminorm
s∨A,γ(α) is also undecidable, obtaining an analog of Theorem 23 for the new
seminorm.

6.1 Comparison with Probabilistic Bisimulation Metrics

Now we can show that when restricted to probabilistic automata (in the sense
of Rabin) interpreted as WFA, the pseudometric d∨γ coincides with the bisim-

ulation pseudometric dFZ
γ developed by Feng and Zhang in [17]. We start

by recalling that a probabilistic automaton (PA) in the sense of Rabin (also
sometimes known as a reactive probabilistic automaton) is defined by taking
P = 〈Σ, Q, α,B, {Tσ}σ∈Σ〉, where Σ is a finite set of actions, Q is a finite set of
states, α : Q→ [0, 1] is a probability distribution over initial states in Q, B ⊆ Q
is the set of accepting states, and Tσ : Q × Q → [0, 1] is the transition kernel
between states for action σ (i.e. Tσ(q, q′) is the probability of transitioning to
q′ given that action σ is taken in q). The automaton P defines a language
fP : Σ? → [0, 1] where fP (x) is the probability of reaching an accepting state
when the initial state q0 is sampled according to α and for each symbol xi in x a
next state qi is sampled from the distribution induced by Txi(qi−1, ·). One can
construct a WFA AP = 〈Σ, V, α, β, {τσ}σ∈Σ〉 recognizing the same language by
taking V = RQ, interpreting α as a vector in [0, 1]Q ⊆ RQ, letting β ∈ {0, 1}Q
with β(q) = 1 if and only if q ∈ B, and representing τσ : RQ → RQ by the
matrix with entries τσ(q, q′) = Tσ(q, q′). An immediate calculation shows that
indeed fAP = fP .

Equipped with this conversion from PA to WFA we can establish the follow-
ing equivalence between d∨ and the probabilitistic bisimulation pseudometric
dFZ
γ . This result shows we can interpret the bisimulation metric d∨ as a gener-

alization for WFA of the probabilitistic bisimulation pseudometric dFZ
γ .

Theorem 26. For any probabilistic automata P1 and P2 over the same alphabet
and any γ < 1 we have dFZ

γ (P1, P2) = d∨(AP1
, AP2

).

Proof. Follows immediately by comparing the definition of our operator F∨ with
the operator that Feng and Zhang define in [17, Definition 14] (when specialized
to Rabin probabilistic automata).
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From the point of view of the bisimulation metric dFZ
γ , our results have two

interesting consequences in the case γ < 1. First, since d+ is an upper bound
for d∨, the continuity properties proved in Section 4 are immediately inherited
by dFZ. Furthermore, the uniqueness of the fixed-point for F∨ implies that the
pseudometric dFZ obtained as a least fixed-point of an operator on a complete
lattice by virtue of the Knaster–Tarski fixed-point theorem is in fact unique.

In view of the results in [17], one can also ask what happens at the critical
value γ = 1 for probabilistic automata, and, more generally, γ = 1/ρ. This
setting is a priori excluded by our results, while it is allowed in the theory of
Feng and Zhang in the case of probabilistic automata. At this critical value the
arguments we used in Theorem 6 to prove the contractivity of F∨ no longer
work. However, the argument in [17] still yields a bisimulation pseudometric as
a least fixed-point of a certain operator. Interestingly, for the case of F∨ one
can show that even at the critical value γ = 1/ρ(A) the seminorm

s∨A,γ(v) = sup
x∈Σ?

γ|x||fAv (x)| (15)

is again a fixed-point of F∨A,γ , although this fixed-point is no longer guaranteed
to be unique. By comparing the pseudometric d∨γ obtained from this fixed-point

of F∨ with the closed-form expression for the pseudometric dFZ at the critical
value γ = 1 given in [17, Proposition 1] we see that we have identified the
fixed-point that is also obtained by Knaster–Tarski.

To illustrate that the strict inequality γ < 1/ρ we used throughout the
paper is not the result of a technical artifact, we now prove that, in general,
the pseudometric d∨γ obtained at the critical value is not parameter continuous.
In particular, this shows that the behavior at the critical value γ = 1/ρ is
qualitatively different from the behavior in the regime γ < 1/ρ.

Theorem 27. There exists a WFA A and a sequence of WFA (Ai)i≥1 such that
ρ(A) = ρ(Ai) = 1, (Ai) converges to A, but limi→∞ d∨1 (A,Ai) 6= 0.

Proof. Let Σ = {a} be an alphabet with one symbol and let A = 〈Σ, V, α, β, τ〉
with α = [1, 0], β = [1, 1] and τ = I being the identity matrix. For i ≥ 1 define
the WFA Ai = 〈Σ, V, α, β, τi〉 with

τi =

[
cos(θi) sin(θi)
− sin(θi) cos(θi)

]
,

where θi = π/i. Since limi→∞ cos(θi) = 1 and limi→∞ sin(θi) = 0, we have
limi→∞ ‖τ − τi‖ = 0 so (Ai) converges to A. We also note that the spectral
radius of A and Ai satisfy ρ(A) = ρ(Ai) = 1 for all i.

Now we shall show that d∨1 (A,Ai) ≥ 2 for all i ≥ 1, thus implying that d∨γ is
not parameter continuous at the critical point γ = 1/max{ρ(A), ρ(Ai)}. To see
this we first note that a standard trigonometric calculation yields the following
identity for all l ∈ N:

τ li =

[
cos(lθi) sin(lθi)
− sin(lθi) cos(lθi)

]
.

In particular, taking l = i we get τ ii = −I. Thus, for every i we have fAi(a
i) =

−1, while fA(ai) = 1. This shows that for any i ≥ 1 we have

d∨1 (A,Ai) = sup
x∈Σ?

|fAi(x)− fA(x)| ≥ 2 .
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Thus limi→∞ d∨1 (A,Ai) 6= 0.

7 Application: Spectral Learning for WFA

An important problem in machine learning is that of finding a weighted au-
tomaton Â approximating an unknown automaton A given only access to data
generated by A. A variety of algorithms in different learning frameworks have
been considered in the literature; see [4] for an introductory survey. In most
learning scenarios it is impossible to exactly recover the target automaton A
from a finite amount of data. In that case one aims for algorithms with formal
guarantees of the form “the output Â automaton gets closer to A as the amount
of training data grows”. To prove such a result one obviously needs a way to
measure the distance between two WFA.

In this section we show how our γ-bisimulation pseudometric can be used
to provide formal learning guarantees for a family of learning algorithms widely
referred to as spectral learning. We also briefly discuss the case for behavioural
metrics in automata learning problems and compare our metric to other metrics
used in the spectral learning literature. In particular, it is interesting to see how
– despite being unable to compute the γ-bisimulation pseudometric between two
WFA (cf. Section 5) – we can still obtain bounds showing that algorithms for
learning WFA from data will produce hypothesis that approximate an unknown
WFA in terms of our bisimulation pseudometric.

7.1 Background on Spectral Learning

Generally speaking, spectral learning algorithms for WFA work in two phases:
the first phase uses the data obtained from the target automaton A to estimate
a finite sub-block of the Hankel matrix of fA; the second phase computes the
singular value decomposition of this Hankel matrix and uses the corresponding
singular vectors to solve a set of systems of linear equations yielding the weights
of the output WFA Â. Here we provide a brief outline of how the algorithm
works. We refer the reader to [4, 3] for further details about the rationale behind
this spectral learning algorithm, which rests on a powerful theorem by Fliess
about the connection between WFA and the rank of infinite Hankel matrices
[21].

The Hankel matrix of a function f : Σ? → R is an infinite matrix Hf ∈
RΣ?×Σ? with rows and columns indexed by finite strings and with entries given
by Hf (x, y) = f(xy), where xy denotes the string obtained by concatenating
the prefix x with the suffix y. Fliess theorem [21] states that the rank of Hf is
exactly the number of states of a minimal WFA computing f . In particular, the
infinite matrix Hf has finite rank if and only if f can be computed by a WFA.
The “only if” part of this theorem is constructive and can be interpreted as
an algorithm to recover a WFA computing f from the Hankel matrix Hf . The
main idea behind spectral learning is to turn this proof strategy into an efficient
algorithm that works with a finite sub-block H of Hf and is robust to small
perturbation of H. The success of this strategy is contingent on the sub-block H
containing enough information to recover a WFA for f , and the perturbation on
H being small enough. To ensure the sub-block H contains enough information
one needs to impose two conditions, one of which is syntactic and the other is
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algebraic. We will now give a formal description of these conditions and then
proceed to sketch the main steps in the spectral learning algorithm.

A finite sub-block of an infinite Hankel matrix Hf can be obtained all the
entries corresponding to a given set of rows (ie. prefixes) P ⊂ Σ? and columns
(ie. suffixes) S ⊂ Σ?. We write H ∈ RP×S to denote the resulting sub-block,
whose entries are obtained from Hf in the natural way: H(p, s) = Hf (p, s).
The pair B = (P, S) identifying the sub-block is usually called a mask and the
success of the learning algorithm depends on this mask being a complete basis.
Suppose Hf has finite rank. We say that B is a basis for Hf if the sub-block
H corresponding to B satisfies rank(Hf ) = rank(H). In addition, we say that
a basis B = (P, S) is complete if there exists a set of prefixes P ′ ⊂ P such that
the following are satisfied: (i) ε ∈ P ′ ∩ S; (ii) p ∈ P ′ implies pσ ∈ P for all
σ ∈ Σ; and (iii) B′ = (P ′, S) is a basis.

The spectral learning algorithm for WFA takes as input a sub-block H of
Hf defined by a complete basis B = (P, S) and proceeds as follows:

1. Find a set P ′ ⊂ P witnessing that B is a complete basis.1

2. Take the sub-block HB′ of H defined by B′ and finds its singular value
decomposition2(SVD) HB′ = LDR>.

3. For each σ ∈ Σ let Hσ be the sub-block of H corresponding to the mask3

Bσ = (P ′σ, S) and let τσ be given by the matrix Tσ = D−1L>HσR.

4. Define the masks Bα = ({ε}, S) and Bβ = (P ′, {ε}) and identify α and β
with the vectors HBαR and D−1LHBβ respectively.

As was already mentioned above, one can view this algorithm as a proof of the
“only if” part of Fliess’ theorem. In particular, if f = fA for some WFA A,
then the algorithm above will return a minimal WFA A′ computing function f .
We note that in general the algorithm works with a fixed basis representation
for A′, but if A is minimal then we know that A and A′ are equivalent.

In the form given above, the algorithm requires an exact sub-block H for
the Hankel matrix Hf . However, a slight modification of this algorithm can

also learn from a perturbed version Ĥ of the sub-block H. Roughly speaking,
the modification entails taking as input the desired number of states n in the
target WFA and taking an approximate singular value decomposition of the sub-
block ĤB′ of rank n. We shall call this version of the algorithm robust spectral
learning ; we refer the reader to [4, 3] for further details. In the sequel we focus
on the analysis of the error in the output of the spectral learning algorithm
under perturbations, and show how to provide learning guarantees in terms of
our distance dγ .

7.2 Bisimulation-based Learning Guarantees

The following lemma encapsulates the first step of the analysis of spectral learn-
ing algorithms. It shows how the error between the operators of A and Â de-

1Note that because B is a basis, the condition of B′ being a basis is equivalent to rank(H) =
rank(HB′ ), which can be efficiently checked.

2Any real matrix M of rank r admits an SVD M = LDR> where L>L = I, R>R = I, and
D is a diagonal matrix with entries s1 ≥ . . . ≥ sr > 0 in the diagonal. This decomposition
can be computed efficiently.

3Here P ′σ = {pσ : p ∈ P ′}.
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pends on the error between the true and the approximated Hankel matrix as
measured by the standard operator `2-norm.

Lemma 28. Suppose Hf is a finite-rank infinite Hankel matrix and B = (P, S)
is a complete basis defining the sub-block H ∈ RP×S. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉
be the WFA with fA = f produced by the spectral learning algorithm on input
H. Let Ĥ ∈ RP×S be another Hankel sub-block on the same mask B and let
Â = 〈Σ, V, α̂, β̂, {τ̂σ}σ∈Σ〉 be the output of robust spectral learning on inputs Ĥ
and n = rank(Hf ). Then the following error estimate holds as ‖H − Ĥ‖2 → 0:

max{‖α− α̂‖, ‖β − β̂‖∗,max
σ∈Σ
‖τσ − τ̂σ‖} ≤ O(‖H − Ĥ‖2) ,

where the constants hidden in the big-O notation only depend on the norm ‖ · ‖,
the Hankel sub-block indices B = (P, S), and the size of the alphabet |Σ|.

Proof. Combine Lemma 9.3.5 and Lemma 6.3.2 from [2].

The results from [2] also provide explicit expressions for the constants hidden
in the big-O notation. In the case of stochastic WFA4, concentration of measure
for random matrices can be used to show that as the amount of training data
m increases then the distance between H and Ĥ converges to zero at a rate
O(1/

√
m) with high probability (see e.g. [22]). Thus, Lemma 28 implies that as

more training data becomes available, spectral learning will output a WFA Â
converging to A.

The last step in the usual analysis of spectral learning involves showing
that as the weights of Â get closer to the weights of A, the behaviour of the
two automata also gets closer. In the learning literature, this step is usually
provided for pseudo-metrics arising from truncated `1 norms (more details are
provided at the end of this section). By invoking the parameter continuity
of dγ (Theorem 15) one readily sees that dγ(A, Â) → 0 as ‖H − Ĥ‖2 → 0.
This provides a proof of consistency of spectral learning with respect to the γ-
bisimulation pseudometric, which for some applications might be more appealing
than the usual truncated `1 guarantees. But machine learning applications often
require more precise information about the convergence rate of dγ(A, Â) in order
to, for example, compute the amount of data required to achieve a certain error.
The following result provides such rate of convergence in the case where the
target automaton is irreducible.

Theorem 29. Suppose Hf is a finite-rank infinite Hankel matrix and B =

(P, S) is a complete basis defining the sub-block H ∈ RP×S. Let H, A, Ĥ and
Â be as in Lemma 28. If A is irreducible, then for any γ < 1/ρ(A) we have
dγ(A, Â) ≤ O(‖H− Ĥ‖2) as ‖H− Ĥ‖2 → 0. Furthermore, the hidden constants
in the big-O notation only depend on A, γ, the Hankel block indices B = (P, S),
and the size of the alphabet |Σ|.

Proof. Let M = {τσ}σ∈Σ and let ‖ ·‖ be a norm on V obtained from Theorem 3
with M and a small enough constant η > 0. Let M̂ = {τσ}σ∈Σ ∪ {τ̂σ}σ∈Σ. Let
dH denote the Hausdorff distance between sets of linear operators induced by
‖ ·‖. Since M is irreducible we can use the local Lipschitz continuity of the joint

4A WFA A is stochastic if the language fA defines a probability distribution over Σ?.

24



spectral radius to see that there exists a constant cM > 0 depending only on M
such that the following holds:

|ρ(M)− ρ(M̂)| ≤ cMdH(M,M̂)

= cM max

{
sup
τ∈M

inf
τ ′∈M̂

‖τ − τ ′‖, sup
τ ′∈M̂

inf
τ∈M
‖τ − τ ′‖

}
≤ cM max

σ∈Σ
‖τσ − τ̂σ‖ .

Note that by Lemma 28 we have maxσ∈Σ ‖τσ − τ̂σ‖ = O(‖H − Ĥ‖2). Thus, by
making ‖H−Ĥ‖2 small enough we can assume that γρ(M̂) < 1. Using this fact
and our choice of η we can apply Lemma 17 to see that dγ(A, Â) ≤ O(‖H −
Ĥ‖2). Furthermore, the hidden constants in the big-O notation depend on the
Hankel block indices B = (P, S), the size of the alphabet |Σ|, the automaton
A, the norm ‖ · ‖, and the constant cM through Lemma 28; and on γ through
Lemma 17.

The local Lipschitz continuity of ρ around irreducible sets of matrices plays
an important role in the proof of this result. Nonetheless, the irreducibility
constraint is not a stringent one since the sets of irreducible matrices are known
to be dense among compact sets of matrices with respect to the Hausdorff metric.

We conclude this section by comparing Theorem 29 with analyses of spectral
learning based on other error measures. We start by noting that all finite-sample
analyses of spectral learning for WFA we are aware of in the literature provide
error bounds in terms of some finite variant of the `1 distance. In particular,
the analyses in [27, 38] bound

∑
x∈Σt |fA(x)−fÂ(x)| for a fixed t ≥ 0, while the

analyses in [1, 2, 25] extend the bounds to
∑
x∈Σ≤t |fA(x) − fÂ(x)| for a fixed

t ≥ 0. This approach poses several drawbacks, including:

1. Finite `1-norms provide a pseudo-metric between WFA whose kernel in-
cludes pairs of non-equivalent WFA.

2. The number of samples required to achieve a certain error increase with
the horizon t, meaning that more data is required to get the same error
on longer strings, and that existing bounds become vacuous in the case
t→∞.

In contrast, our result in terms of dγ establishes a bound on the discrepancy

between A and Â on strings of arbitrary length and will never assign zero dis-
tance to a pair of automata realizing different functions. Furthermore, our
bisimulation metric still makes sense outside the setting of spectral learning of
probabilistic automata where most of the techniques mentioned above have been
developed.

8 Conclusion

8.1 Extension to Vector-Valued Weighted Automata

Throughout this paper, we considered weighted automata that compute func-
tions of the form f : V → R. It is also possible to work with a class of
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weighted automata that output a vector, which subsumes the class of WFA
presented here. Indeed, we can replace the final map by a linear map of the
form β : V → W , where W is a real vector space. This form was presented in
[35] for multitask learning. By replacing the absolute values on the output by a
norm ‖ · ‖ of our choice (as they are all equivalent up to a constant factor), we
can still define pseudometrics for this new class of automata.

Extending the definitions to vector-valued outputs, we get the following
fixed-point operator:

FA,γ(s)(v) = ‖β(v)‖+ γmax
σ∈Σ

s(τσ(v)) ,

which gives rise to the following seminorm under the usual condition that
γρ(A) < 1:

sA,γ(v) = sup
x∈Σ∞

∞∑
t=0

γt‖β(τx≤t(v))‖ = sup
x∈Σ∞

∞∑
t=0

γt‖fAv (x≤t)‖ .

Similarly, we also get a closed-form expression for the pseudometric:

dγ(A1, A2) = sup
x∈Σ∞

∞∑
t=0

γt‖fA1
(x≤t)− fA2

(x≤t)‖ .

We can also recover the continuity properties presented in Section 4 for
these pseudometrics; the proofs remain the same in essence. In particular, the
continuity properties could be used to prove convergence of the target automaton
and the automaton output by the spectral learning algorithm for vector-valued
WFA as we get access to more data, with respect to dγ .

8.2 Future Work

The metric developed in this paper was very much motivated and informed by
spectral ideas. Not surprisingly it was well suited for analyzing spectral learning
algorithms for weighted automata. Two obvious directions for future work are:

1. Approximation algorithms for the bisimulation metric.

2. Exploring the relation to approximate minimization.

For the first one we suspect some recent ideas from non-linear optimization
might be useful in developing approximation algorithms. To explore the relation
to approximate minimization it would be interesting to extend the spectral ideas
at the heart of the approximate minimization algorithm in [5, 6] with respect
to the `2 metric to the pseudometric developed in the present paper.
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