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Université Paris 7, Paris

Josée Desharnais
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Abstract

This paper reports on and discusses three notions of approximation for Labelled
Markov Processes that have been developed this year. The three schemes are im-
provements over the construction given in [DGJP00,DGJP03] in the sense that they
define approximants that capture more properties than before and that converge
faster to the approximated process. One scheme is constructive and the two others
are driven by properties on which one wants to focus. All three constructions involve
quotienting the state-space in some way and the last two are quotients with respect
to sets of temporal properties expressed in a simple logic with a greatest fixed point.
This gives the possibility of customizing approximants with respect to properties
of interest and is thus an important step towards using automated techniques in-
tended for finite state systems, e.g. model checking, for continuous state systems.
Another difference between the schemes is how they relate approximants with the
approximated process. The requirement that approximants should be below the
approximated process has been abandoned in the last scheme.
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1 Introduction

Labelled Markov Processes (LMPs) are probabilistic transition systems where
the state space might be any general measurable space, in particular this
includes situations where the state space may be continuous. They are essen-
tially traditional discrete-time Markov processes enriched with the process-
algebra based notion of interaction by synchronization on labels. They have
been studied intensively in the last few years ([DEP02,DGJP99,vBMOW03]).
This is because they embody simple probabilistic interactive behaviours, and
yet are rich enough to encompass many examples and to suggest interesting
mathematics.

The initial motivation was the inclusion of continuous state spaces with a
view towards eventual applications involving stochastic hybrid systems. An
unexpected benefit of this additional generality has been the discovery that
a simple temporal probabilistic logic, L0, captures a natural notion of equiv-
alence between such processes, namely strong bisimulation. Remarkably this
logic needs neither infinite conjunction, even though the systems may have
even uncountable branching, nor negation nor any kind of negative construct
(like the “must” modality). With this logical view, it became natural to think
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of the interplay between discrete structures (the logic) and the continuous
mathematics of LMPs (measure and probability theory). This led to the im-
portant question of understanding what it means to be an approximation of
a given LMP and especially of a “finite” approximant.

The approximation theory has developed along two lines. Desharnais et.
al. [DGJP99] have developed a metric between LMPs which can be viewed
as a “relaxation” of the notion of strong bisimulation. This metric can be
used to say that one LMP “comes close to” behaving like another. The other
direction was to develop a notion of “finite” approximant [DGJP00,DGJP03]
and cast this in a domain theoretic setting. The papers just cited established
that even a system with an uncountable state space could be approximated
by a family of finite state processes. The family of approximants converge to
the system being approximated in both metric and domain-theoretic senses.
The approximations interact smoothly with the logic in the following sense.
Any formulas of L0 that are satisfied by any approximant of P are satisfied
by the process P itself and any formula satisfied by P is satisfied by some
approximant.

At that point, there remained two soft spots in the approximation theory.
First, while an approximant clearly ought to be some sort of finite quotient
by temporal properties of the process being approximated, nobody so far
was able to lay his hands on a precise way of phrasing just this intuition.
Previous results state that every approximant satisfies some subset of the
properties - definable in a certain temporal logic - that the process being
approximated satisfies, but one does not have a way of saying in advance what
these properties are. Second, another motivation for developing the theory
further is that when fed with a finite process the approximation machinery
was unable to retrieve the process itself in the limit. Instead, a bisimilar
process was obtained. For instance, the pure loop process, with one state and
one a-transition to itself, was approximated by all its finite unfoldings, i.e.
by chains of a-transitions; this seems spectacularly not what one would like
to have intuitively, even if it is acceptable on the technical side (the infinite
chain of a-transitions is bisimilar to the loop, after all).

The first approximation scheme that we present in this paper is an improve-
ment of [DGJP03] that resolves the second limitation. The two other approx-
imation notions that we present are variants that overcome both limitations.
They have been introduced in recent papers by Danos and Desharnais [DD03]
and by Danos, Desharnais and Panangaden [DDP03]. We improme slightly
the result of [DDP03] here.

In [DD03], the idea is that the approximations can be “guided” by a family
of formulas of interest. In other words, if there is a set of formulas of particular
importance, one can construct a specific finite approximant geared towards
these formulas. One can then be sure that the process in question satisfies a
formula of interest if and only if the approximant does. Second, a much more
compact representation is used so that loops are not unwound and convergence
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is attained more rapidly. A disadvantage is that the approximations obtained
are not LMPs because the transition “probabilities” are not measures. Instead
they are capacities [Cho53]. Capacities are not additive but they have instead
a continuity property and are sub (or super) additive. The variants of LMPs
obtained by using capacities instead of measures are called pre-LMPs.

In [DDP03], we have shown that we can have the best of both worlds in the
sense that we can have the flexibility of a customizable approach to approxi-
mation and stay within the realm of LMPs. The approach is based on a radical
departure from the ideas of the previous approaches [DD03,DGJP03]. In these
approaches one always approximated a system by ensuring that the transition
probabilities in the approximant were below the corresponding transition in
the full system. Here we approximate a system by taking a coarse-grained
discretization (pixellization) of the state space and then using average val-
ues. This new notion is not based on the natural simulation ordering between
LMPs as were the previous approaches.

Instead of simulation we use conditional expectation. This is a traditional
construction in probability theory which, given a probability triple (S,Σ, p)
(sample space), a Σ-measurable random variable X (observation) and a sub-σ
algebra Λ (pixellization of the sample space), returns the conditional expec-
tation of X with respect to p and Λ. This conditional expectation is written
Ep(X|Λ) and in some suitable sense is the ‘best’ possible Λ-measurable approx-
imation of X. The best will prove to be enough in our case, in that conditional
expectations will construct for us low-resolution averages of any given LMP.
Furthermore, an LMP will be known completely, up to bisimilarity, from its
finite-resolution (meaning finite state) averages.

Moreover the new construction gives closer approximants in a sense that
we will have to make precise later. They are also likely to be more robust to
numerical variations in the system that one wants to approximate, since they
are based on averages. Of course this is a speculative remark and needs to
be thrashed out in subsequent work. To summarize, the new approximants
are customizable, probabilistic and more accurate and possibly more robust
as well. Beyond this construction, we would like to convey the idea that
probability theory and its toolkit - especially the uses of averages and ex-
pectation values - are remarkably well adapted to a computationally-minded
approach to probabilistic processes. It has a way of meshing finite and contin-
uous notions of computations which is not unlike domain-theory. We expect
far more interaction in the future between these theories than what is re-
ported here. Work on probabilistic powerdomains [JP89] and integration on
domains [Eda94,Eda95] provides a beginning. Curiously enough the bulk of
work in probabilistic process algebra rarely ever mentions averages or expec-
tation values. We hope that the present paper stimulates the use of these
methods by others.

Acknowledgements
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2 Preliminaries

This section is a brief reminder of the main objects of the trade with definitions
slightly optimized for the development we have in mind. The paper is self-
contained, though the reader might find useful to consult a book on basic
probability theory, e.g. [Wil91].

Notations
When S is a set and A ⊆ S, we write 1A for A’s indicator function. When

A, B are disjoint sets, we sometimes write A + B for the (disjoint) union,
and conversely each time we write A + B it is understood that A and B are
indeed disjoint. We write ↓An when An is a decreasing sequence of sets, that
is An ⊇ An+1 and ∩An for the limit. Similarly we write ↑Qn for an increasing
sequence of sets Qn, i.e., ∀n.Qn ⊆ Qn+1.

When R is an equivalence relation over S, and s ∈ S, the equivalence class
of s is written either [s]R or simply [s], when R is clear from the context; and
by R(s) we mean {t | (s, t) ∈ R}. If A is a set of equivalence classes, one uses
the usual set-theoretic notation for union ∪A := {s ∈ S | [s] ∈ A}. Finally,
for any relation R, a set A is said to be R-closed if whenever s ∈ A and
(s, t) ∈ R, then t ∈ A.

2.1 Measurable spaces and Probabilities

A measurable space is a pair (S,Σ) where S is a set and Σ ⊂ 2S is a σ-algebra
over S, that is, a set of subsets of S, containing S and closed under countable
intersection and complement. Well-known examples are [0, 1] and R equipped
with their respective Borel σ-algebras generated by the intervals which we will
both denote by B.

A map f between two measurable spaces (S,Σ) and (S ′,Σ′) is said to be
measurable if for all Q′ ∈ Σ′, f−1(Q′) ∈ Σ. Writing σ(f) for the σ-algebra
generated by f , namely the set of sets of the form f−1(Q′) with Q′ ∈ Σ′, one
can rephrase this by saying σ(f) ⊆ Σ. The set of measurable maps from (S,Σ)
to (R,B) will be denoted mΣ.

A subprobability on (S,Σ) is a map p : Σ → [0, 1], such that for any
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countable collection (Qn) of pairwise disjoint sets in Σ, p(
⋃

nQn) =
∑

n p(Qn).
A subprobability is an actual probability when in addition p(S) = 1. The
condition on p is called σ-additivity and can be conveniently broken up into
two parts:
— additivity : p(Q ∪Q′) = p(Q) + p(Q′), for Q, Q′ disjoint,
— continuity : ∀ ↑Qn ∈ Σ : p(∪Qn) = supn p(Qn).

Let (S,Σ, p) be a probability triple, that is to say a measurable space (S,Σ)
together with a probability p. A subset N ⊂ S is said to be negligible if there
exists a Q ∈ Σ such that N ⊆ Q and p(Q) = 0.

We write Np for p-negligible subsets. Two functions X, Y on (S,Σ, p) are
said to be almost surely equal, written X = Y a.s., if {s ∈ S | X(s) 6= Y (s)} ∈
Np. Sometimes we say p-a.s. equal if we wish to emphasize which measure we
are talking about.

The subset of mΣ consisting of the functions that are integrable with
respect to p will be denoted by L1(S,Σ, p). A last piece of notation that we will
use is to write Xn ↑X when Xns and X are in mΣ, meaning that Xn ≤ Xn+1

with respect to the pointwise ordering and Xn converges pointwise to X.

2.2 Labelled Markov Processes

We begin by defining the objects of interest:

Definition 2.1 [LMP] S = (S,Σ, h : L×S×Σ → [0, 1]) is a Labelled Markov
Process (LMP) if (S,Σ) is a measurable space, and:
— for all a ∈ L, Q ∈ Σ, h(a, s,Q) is Σ-measurable as a function of s;
— for all s ∈ S, h(a, s,Q) is a subprobability as a function of Q.
A pointed LMP is an LMP with an initial state i ∈ S and is sometimes written
S = (S, i,Σ, h).

Any state can be the initial state of an LMP; any notion relating to states
can be lifted to an LMP through its initial state. After the traditional ter-
minology in Markov chains, the map h is called the kernel of S. Most of
the time, we will write h(a, s, A) simply as ha(s, A). It is a measure of the
likelihood that being at s and receiving a the LMP will jump to a state in A.

Some particular cases: 1) when S is finite and Σ = 2S we have the familiar
probabilistic transition system, 2) when h(a, s,Q) does not depend on s or
on a we have the familiar (sub)probability triple. An example of the latter
situation is ([0, 1],B, h) with h(a, s, B) = λ(B) with λ the Lebesgue measure
on the collection B of Borel sets.

Second we see that equivalently LMPs can be defined as follows:

Definition 2.2 [LMP2] A Labelled Markov Process consists of a measurable
space (S,Σ) and a family of Σ-measurable functions (h(a,Q))a∈L,Q∈Σ with
values in [0, 1], such that:
— additivity: for all disjoint Q, Q′: h(a,Q ∪Q′) = h(a,Q) + h(a,Q′);
— continuity: for all increasing sequence ↑Qn: h(a,

⋃
Qn) = suph(a,Qn).
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From the definition it follows that for all a, s one has h(a, S)(s) ≤ 1.

In this second definition we view an LMP as a Σ-indexed family of Σ-
measurable functions, namely the random variables “probability of jumping to
Q in one step labelled with a”, instead of an S-indexed family of probabilities
on Σ. Both definitions are related by h(a, s,Q) = h(a,Q)(s). The functions h
are commonly referred to as transition probability functions or Markov kernels
(or stochastic kernels).

In previous treatments [DEP02] LMPs were required to have an analytic
state space. This was needed for the proof of the logical characterization of
bisimulation. We will not mention this again in the present paper since we
will not need the analytic structure.

2.3 Temporal properties and simulation.

LMPs differ from standard Markov chains in that the kernels also depend
on an auxiliary set L of actions. This seemingly small difference leads to
a very different interpretation for them. They are construed as interactive
processes which synchronize on labels and therefore one is interested in var-
ious notions of bisimulations and simulations as in non-deterministic process
algebras [MPW92].

The following “bisimulation logic” L0 is a central tool for asserting prop-
erties of LMPs:

θ := > | θ ∧ θ | 〈a〉rθ.
The depth |θ| of a formula θ is defined as: |>| = 0, |θ0 ∧ θ1| = max(|θ|0, |θ|1)
and |〈a〉rθ| = |θ|+ 1.

Definition 2.3 Given an LMP S, one may inductively define the map [[.]]S :
L0 → Σ as:
— [[>]]S = S,
— [[θ0 ∧ θ1]]S = [[θ0]]S ∩ [[θ1]]S ,
— [[〈a〉rθ]]S = {s ∈ S | ha(s, [[θ]]S) ≥ r}

In previous work, we have used a strict inequality for the semantics of 〈a〉rθ.
This is necessary for the approximation construction of the next section but
not for the other constructions. The logic L0 extended with disjunction is
called L∨.

We write s |= θ to mean s ∈ [[θ]]S and θ′ ≤ θ to mean that θ′ is a subformula
of θ. Monoidal equations: θ0 ∧ (θ1 ∧ θ2) = (θ0 ∧ θ1) ∧ θ2, θ0 ∧ θ1 = θ1 ∧ θ0,
θ ∧ > = θ all clearly preserve [[.]]S . A pointed LMP satisfies a formula if its
initial state does.

Given a set F of formulas of L0, one can compare two states with respect
to this set. We write if s ≈F t if s and t satisfy the same formulas of F .

The logic also induces a form of simulation between states in the sense
that a state can be said to simulate another one if it satisfies at least the same
formulas as the other does. The concept can be cast in behavioural terms as
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in the following definition.

Definition 2.4 [DGJP00] Let S = (S,Σ, h) be a LMP. A relation R on S is
a simulation if whenever sRs′, we have that for all a ∈ L and every R-closed
set A ∈ Σ, ha(s, A) ≤ ha(s

′, A). We say s is simulated by s′ if sRs′ for some
simulation relation R. If S and T are pointed LMPs, we say that S simulates
T if the initial state of S simulates the initial state of T .

This definition can be extended easily to simulation between states of dif-
ferent LMPs.

The notion of simulation meshes properly with the logic in the sense of the
following proposition.

Proposition 2.5 ([DGJP00]) If s simulates s′, then for all formulas θ ∈
L0, s

′ |= θ implies s |= θ.

In [DGJP00], it is shown that if we add disjunction to L0, the converse of this
result is also true; that is, the simulation induced by the logic is equivalent to
Definition 2.4 (but this result uses analyticity of the state-space).

In [DGJP99] a family of metrics, dc for c ∈ (0, 1), has been introduced that
is closely related to L0. Indeed one can think of the metric as measuring the
complexity of the distinguishing formula between two states if any.

We do not need to give the precise definition of these metrics here, but
we do want to use it to show convergence of approximants. This will be done
using the following result which is a direct consequence of results relating the
logic and the metric that can be found in [DGJP99].

Proposition 2.6 Let (Fi)i∈N be an increasing sequence of sets of formulas
converging to the set of all formulas of L0. Let S be an LMP and (Si)i∈N a
sequence of LMPs. Then if Si ≈Fi

S for every i, then for all c ∈ (0, 1)

dc(Si,S)−→i→∞0.

3 Improved Constructive Approximation

In this section and the following, we propose two ways of approximating LMPs
from below. The goal is to determine a family of finite processes that are sim-
ulated by the original LMP, and converge to it. We work with pointed LMPs,
which allows us to more easily compare the process with its approximations.
The first approach is through parameters, the depth of observation and the
accuracy of the probabilities. This approach will have limitations that will be
overcome by the second approach we propose, which is through quotienting
with respect to sets of formulas.

In this section, we introduce the new version of the constructive approach,
which is a small modification of the first approximation scheme that was given
for LMPs ([DGJP03]). The original construction was based on an “unfolding”
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construction. As the approximation was refined there were more and more
transitions possible. We follow almost the same idea in the new construction.

The state-space is constructed in the same manner but there will be “more”
transitions possible, that is, transitions that produce cycles. There are two
parameters to the approximation: one is a natural number n, and the other
is a positive rational ε. The number ε measures the accuracy with which
the transition probabilities of the approximant approximate the transition
probabilities of the original process. The parameter n represents the depth
of our observation; this is slightly different than in the previous construction
where n also represented the depth of the transition graph of the approximant
itself. Since the state-space is constructed in the same way as in [DEP02], all
the results that we had about the state-space of the previous construction can
be used here. The difference is in the transitions from states to states.

Given a labelled Markov process S = (S,Σ, h), a natural number n and a
rational number ε > 0, we define S∗(n, ε) as an n-step unfolding approximation
of S. Its state-space is divided into n+1 levels which are numbered 0, 1, . . . , n.
In [DGJP03] bisimulation is shown to be the fixed point of a suitable operator
on relations and that one has - for each n - a level n approximation to bisim-
ulation. At each level, say n, the states of the approximant is a partition of S
which corresponds to n-bisimulation. The initial state of S∗(n, ε) is at level n
and transitions only occur between a state of one level to a state of one lower
level or between states of the same level. Thus, in particular, the unique state
of level 0 either has no outgoing transitions or has a transition to itself. The
main difference with what we did before is that we now permit transitions to
states at the same level. Thus, in particular, the transition graph could be
cyclic and no longer has a well defined depth. The parameter “n” refers to
the extent to which we probe the process by our observations.

In the following we omit the curly brackets around singletons.

Definition 3.1 Let (S, i,Σ, h) be a labelled Markov process, n ∈ N and ε
a positive rational. We denote the finite-state approximation by S∗(n, ε) =
(P, p0, ℘P, ρ) where

• P is a subset of Σ× {0, . . . , n}; the numbers from 0 to n correspond to the
level of the states. States are defined by induction on their level.
— At level 0 there is one state (S, 0).
— Now, given the states (C1, l), (C2, l), . . . , (Cm, l) at level l, we define states
of level l + 1 as follows. Let (Bj)j∈I be the partition

{{0}, (0, ε/m], (ε/m, 2ε/m], . . . }

of the interval [0, 1] into intervals of size ε/m. States of level l+1 are obtained
by forming the coarsest common refinement of the partition {Ci}m

i=1 and the
partition generated by the sets ha(·, Ci)

−1(Bj), for every set Ci and every
label a ∈ {a1, . . . , an}, j ∈ I. If a set X is in this partition of S, (X, l + 1)
is a state of level l + 1.
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• The initial state p0 of S∗(n, ε) is the unique state (X,n) such thatX contains
i, the initial state of S.

• Transitions can happen between states of the same level, or from a state
to a state of the preceding level, and the transition probability function is
given as follows. Let (X, l + 1), (Y, l + 1), (Z, l) be states of level l + 1 and
l, where l ≥ 0. Then

ρa((X, l + 1), (Y, l + 1)) = inf
x∈X

ha(x, Y )

ρa((X, l + 1), (Z, l)) = inf
x∈X

ha(x, Z)−
k∑

i=1

ρa((X, l + 1), (Zi, l + 1))

where {Zi}k
i=1 is the unique partition of Z such that (Zi, l+1) is a state for

every i. Unspecified transitions are given the value 0.

The partition of S at level l + 1 is defined in such a way that every state
x ∈ X (where X is a member of the partition) has probability within ε/m
to every set in the partition of level l (not necessarily true for transitions to
states of level l+ 1). Intuitively, transitions are filled as follows: from a given
state (X, l+1), transitions to states at the same level are given the maximum
probability possible (staying below all simulating states x ∈ X). This would
not be sufficient to guarantee that the transition be close to the corresponding
transition of S because the partition of level l+ 1 is constructed with respect
to states of level l. Since this condition is essential to preserve the accuracy
of the approximation – and the statement of the lemma below reflects this –
we complete the probability by adding transitions to states (Z, l).

Notation
If s ∈ S, we denote by (Xs, l) the unique state at level l such that s ∈ Xs.

We will write (Y, l) for the set {(Y1, l), (Y2, l), . . . }, where Y = ∪Yj; in this case,
we often say that Y is a union of sets at level l and that the Yi’s correspond
to states of level l. By extension, we will write ρa((X, l + 1), (Y, l)) to mean∑

j ρa((X, l + 1), (Yj, l)). The same notation will be used when we work with
states of consecutive levels corresponding to the same subset of S: for example,
we will write (Y, l∪l+1) to mean {(Y1, l), (Y2, l), · · · , (Y ′

1 , l+1), (Y ′
2 , l+1), · · · },

with ∪Yi = ∪Y ′
i = Y . Note that every set of level l − 1 is a union of sets of

level l because the partition of S at level l is a refinement of the partition at
level l − 1.

The following lemma is a consequence of the construction of finite approx-
imants and uses crucially the fact that the partition of [0, 1] takes into account
the number of states m at the preceding level.

Lemma 3.2 Let S be a labelled Markov process, and s ∈ S. In S∗(n, ε), if Y
is a union of sets appearing at level l, then 0 < ha(s, Y )−ρa((Xs, l+1), (Y, l∪
l + 1)) ≤ ε.
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Proof. The first inequality is trivial. Before proving the second one, note
that the lemma is not necessarily true if Y is a union of sets appearing at the
same level as (Xs, l + 1).

Let s ∈ S and (Xs, l + 1), (Yi, l + 1), (Y ′
j , l), i= 1, . . . , k, j = 1, . . . , k′ be

states of S∗(n, ε) such that Y = ∪k
i=1Yi = ∪k′

j=1Y
′
j . Let m be the number of

states at level l. Then for all j = 1, . . . , k′ and t ∈ Xs we have

|ha(s, Y
′
j )− ha(t, Y

′
j )| < ε/m,

because of the way S is partitioned on level l + 1. Moreover, we have

ρa((Xs, l + 1), (Y, l ∪ l + 1))

= ρa((Xs, l + 1), (Y, l)) + ρa((X, l + 1), (Y, l + 1))

=
k′∑

j=1

ρa((Xs, l + 1), (Y ′
j , l)) +

k∑
i=1

ρa((Xs, l + 1), (Yi, l + 1))

=
k′∑

j=1

inf
s∈Xs

ha(s, Y
′
j ))

and hence

|ha(s, Y )− ρa((Xs, l + 1), (Y, l ∪ l + 1))|

= |
k′∑

j=1

ha(s, Y
′
j )−

k′∑
j=1

inf
s∈Xs

ha(s, Y
′
j )|

≤
k′∑

j=1

|ha(s, Y
′
j )− inf

s∈Xs

ha(s, Y
′
j )|

≤
k′∑

j=1

ε/m

≤ ε.
2

Since every transition probability of S∗(n, ε) is smaller than in the corre-
sponding transition in S, then every state (X, l) in S∗(n, ε) is simulated by
every state s ∈ X in S.

Proposition 3.3 Every labelled Markov process S simulates all its approx-
imations of the form S∗(n, ε). More precisely, every state (X, l) of S∗(n, ε)
(l ≤ n) is simulated in S by every s ∈ X.

Proof. The proof is conceptually easy but the notation necessary for the
bookkeeping makes it hard to read. Let S∗(n, ε) = (P, p0, ρ) and let U =
(U, u0,Ω, ν) be the direct sum of S∗(n, ε) and S. Now let R be the relation on
U that relates a state (X, l) from S∗(n, ε) to every state s ∈ X from S. We
prove that R is a simulation. Consider two related states, (X, l) and s ∈ X

11
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and let Z ∈ Ω be R-closed, that is, Z ∩ S ∈ Σ and R(Z ∩ P ) ⊆ Z. We want
to prove that νa((X, l), Z ∩ P ) ≤ νa(s, Z ∩ S). We will prove the inequality
for Z∗ a set containing Z ∩ P and defined as follows: Z∗ is the smallest set
containing Z ∩P and satisfying the property that if it contains a state of level
l− 1, it contains every corresponding state of level l. This is possible because
the partition of level l is finer than the one of level l − 1. Of course, Z∗ may
contain some other state of level l that do not intersect states of level l − 1.

The only transitions with positive probability from (X, l) are to states of
level l and l− 1 so we can assume that Z∗ is a union of states of these levels,
and hence it must be of the form

Z∗ = (Y ′, l ∪ l − 1) ∪ (Y, l),

where, as before, the notation (Y, l) may refer to a union of sets of level l.
By the way Z∗ is constructed, Y ∪ Y ′ ⊆ Z ∩ S. Then we have, by (the first
inequality of) the preceding lemma

νa((X, l), Z ∩ P )≤ ρa((X, l), Z
∗)

= ρa((X, l), (Y
′, l ∪ l − 1)) + ρa((X, l), (Y, l))

≤ha(s, Y
′) +

k∑
i=1

ρa((X, l), (Yi, l)) where ∪k
i=1 Yi = Y

= ha(s, Y
′) +

k∑
i=1

inf
s∈X

ha(s, Yi)

≤ha(s, Y
′) + ha(s, Y )

= ha(s, Y
′ ∪ Y )

≤ νa(s, Z ∩ S)

and hence the result. 2

The next theorem is the main result of this section. The proof is exactly
the same as for the previous version of the construction except for the very
last sequence of inequalities, which is adapted to the fact that transitions can
happen between states of the same level. Notice that here we use a semantics
for L∨ with strict inequality in the modal formula.

Theorem 3.4 If a state s ∈ S satisfies a formula φ ∈ L∨, then there is some
approximation S∗(n, ε) such that (Xs, n) |= φ.

Proof. The proof is by induction on the structure of formulas. We prove
the following stronger induction hypothesis. We prove that for all formulas φ
there is an increasing sequence (Xn)n≥depth(φ) of sets in Σ which satisfy:

(i) ∪n≥depth(φ)Xn = [[φ]]S ;

(ii) Xn = ∪s∈XnCs, where (Cs, l) ∈ S∗(n, 1/2n) and l ≥ depth(φ);

(iii) the states (Cs, l) satisfy φ in S∗(n, 1/2n).

12
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It is obvious for T with Xn = S for all n.

Consider φ = φ1 ∧ φ2. Assume the claim is true for φj, j = 1, 2. Let
(Xj

n)n≥depth(φj) be the sequence for φj. Now define for n ≥ depth(φ), the
sequence

Xn = X1
n ∩X2

n.

Note that this is an increasing sequence of sets in Σ. We first prove (i):
for all s |= φ, there is some n such that s ∈ Xn. Choose n = max(n1, n2)
where nj is such that s ∈ Xj

nj
. Now for (ii) and (iii), let s ∈ Xn, for a fixed

n ≥ depth(φ). Then because all states (Cs, l) satisfy φj and Cs ⊆ Xj
n, we have

(Cs, l) |= φ1∧φ2 and Xn = ∪s∈XnCs. The proof for the case φ1∨φ2 is similar.

Consider φ′ = 〈a〉qφ, and assume the claim is true for φ. Let d =
depth(〈a〉qφ), εn = 1/2n and let (Xn)n≥d−1 be the sequence for φ.

Now define for n ≥ d, the sequence

Yn = ∪{C : (C, d) ∈ S∗(n, εn), and ∀s ∈ C, ha(s,Xn) > q + εn}.

This is an increasing sequence of sets in Σ because if (C, d) ∈ S∗(n, εn) and
C ⊆ Yn, then for all s ∈ C we have ha(s,Xn+1) ≥ ha(s,Xn) ≥ q + εn.
Moreover, if (C ′, d) is a state of S∗(n, εn+1) and s, t ∈ C ′, then ha(t,Xn+1) >
ha(s,Xn+1)− εn+1 ≥ q + εn − εn+1 = q + εn+1.

We now prove (i), that is, for all s |= φ′, there is some n such that s ∈ Yn.
So assume ha(s, [[φ]]) > q. Then there is some n such that ha(s,Xn)− q > 2εn
because ha(s, ·) is a measure and Xn is an increasing sequence which converges
to [[φ]] and εn (= 1/2n) is decreasing to 0. Now since Xn is a union of states
of level l − 1 ≥ d − 1, then for every t ∈ Cs, with (Cs, l) a state of S∗(n, εn)
we have

|ha(s,Xn)− ha(t,Xn)| < εn

and hence ha(t,Xn)− q > εn. Thus Cs ⊆ Yn and (i) and (ii) are proved. Note
that the inequality sign in the meaning of the modal formula was crucial to
this part of the proof.

We now prove (iii). Let s ∈ Yn, for a fixed n ≥ d. Then because all states
(X, l − 1), where X ⊆ Xn and l − 1 ≥ d− 1, satisfy φ and by Lemma 3.2, we
have

ρa((Cs, l), ([[φ]]S∗(n,εn), l ∪ l − 1))≥ ρa((Cs, l), (Xn, l ∪ l − 1))

≥ha(s,Xn)− εn
>q + εn − εn = q,

and hence, (Cs, l) |= φ′ for all l ≥ d as wanted in (iii). 2

The following results shows that a finite process is eventually approxi-
mated by itself. This is the main reason why we have introduced this new
construction.

Corollary 3.5 For every finite process there exists a bisimilar approximation.

13
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Proof. Since the process S is finite, the partition at the highest level of
S∗(n, 1/2n) must stabilize when n increases. In fact, it must converge to the
bisimulation equivalence classes. Indeed, if two states are not bisimilar they
must be distinguished by a formula φ. Then by the (proof of the) previous
theorem there is some n such that the two states are not in the same set of
S∗(n, 1/2n). Thus the partition at the highest level corresponds exactly to the
bisimulation equivalence classes. By construction of approximants, transitions
from states of this level will only happen to states of this same level and hence
the result. 2

Corollary 3.6 Let S be an LMP. Then for c < 1 we have

dc(S,S∗(n, 1/2n)) → 0

and it is also true for c = 1 if the set of infinite sequences of non-bisimilar
states starting in the initial state of S is of measure 0.

4 Abstract Approximations

Looking again at the construction above, one might wonder why Theorem 3.4
is so hard to prove. Indeed, we partition the state-space with respect to some
depth and some accuracy of transition probability in such a way that one
could think that the construction is faithful to formulas of the right depth
and with probabilities that are a multiple of the accuracy. However, by taking
the infimum, we lose some probabilities to unions of sets. This is because the
infimum of a union is greater than or equal to the sum of infima. By not taking
this into account, i.e., by underestimating the transition probabilities to sets
of states, we get slightly away from the logic. This is one reason why the logic
must have a strict inequality sign in the modal formula. In the approximation
scheme presented in this section, we will take all transitions into account and
we will show how to quotient an LMP by a set of L0 formulas. A natural
candidate for the quotient kernel is to take the infimum of the original kernel
over equivalent states. This is what we have done in the preceding section,
by defining the state-to-state transition using the infimum and then defining
the transition probability to a set of states to be the sum of the transition
probabilities to the individual states in the set; this way we manifestly have
additivity. This leads to underestimating the transition probabilites to sets
of states quite drastically. We can try to use the infimum to sets of states
and get a perhaps better estimate of the approximate transition probabilities.
Unfortunately this destroys additivity; if we take a set of probability distri-
butions {µi|i ∈ I} and attempt to define a “measure” by µ(A) = infi∈I µi(A)
we lose additivity. The following example illustrates why and also shows that
taking infs to sets of states can give very bad estimates.

Example 4.1 Consider the following LMP, where unweighted transitions are
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of probability 1.

s0
b[.5] //

b[.5] ��@
@@

@@
@@

@ s a // s1
a //

b

��?
??

??
??

? ·

t a // · ·
We want to quotient it with respect to the equivalence defined by all formulas
of the form 〈a〉r> and 〈b〉r> for all r ∈ [0, 1]. The result is as follows:

[s0]
b[1] // [s, t] a //

a

""

[s1]

a,b[1]

��·

Both dotted transitions are given value 0, for inft∈[s] ha(t,∪[s1]) = inft∈[s] ha(t, s1) =
0 and similarly for dead states. However inft∈[s] ha(t,∪[s1, ·]) = 1. Hence the
resulting transition probability function is not a measure and hence the quo-
tient is not an LMP.

This example illustrates that if we want to take infs, we will have to weaken
something in the objects of study. In the preceding section, the weakening was
on the logical requirements, in this section we will weaken the notion of LMPs.
This can be done because even if infima do not preserve additivity of measures,
they do preserve super-additivity.

4.1 Pre-LMPs

The difference between a pre-LMP and an LMP lies in the following definition.

Definition 4.2 Given a measurable space (S,Σ), a function f : Σ → [0, 1] is
called a pre-measure if:
— ∀A,B ∈ Σ disjoint: f(A+B) ≥ f(A) + f(B);
— ∀ ↓An ∈ Σ : f(∩An) = infn f(An).

Easy consequences of the first condition are f(∅) = 0 and monotonicity:
A ⊆ B ⇒ f(A) ≤ f(B). The second property is a (co)continuity property. If
one replaces the inequation in the first clause by an equation, the definition is
equivalent to f being a sub-probability. Choquet introduced a similar notion
under the name “capacity” [Cho53] and realized the importance of keeping
continuity while giving up additivity. This definition is weaker than Choquet’s
since he required both (upwards) continuity and (downwards) co-continuity.

Definition 4.3 A pre-LMP is a triple S = (S,Σ, h : L × S × Σ → [0, 1])
where (S,Σ) is a measurable space, and for all a ∈ L, s ∈ S, A ∈ Σ: ha(s, .)
is a pre-measure, and ha(., A) is measurable.

The intent of this definition is to use pre-LMPs as estimators for LMPs.
It is not necessary that the estimation engine be of the same nature as what
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it tries to estimate. What we are interested in is how easy it is to handle and
how well it estimates. Pre-LMPs turn out to be better estimators than LMP
as will be illustrated in Proposition 4.18.

4.2 Temporal properties

Semantics of L0 still makes sense with pre-LMPs.

Lemma 4.4 For all pre-LMP S and θ ∈ L0: [[θ]]S ∈ Σ.

Proof. Easy induction on L0.2

To the modal operator of L0, namely 〈a〉r, a family of maps is naturally
associated, still written 〈a〉r : Σ → Σ and called the shifts :

〈a〉r(A) := {s ∈ S | ha(s, A) ≥ r}

Clearly 〈a〉r(A) = ha(., A)−1([r, 1]), and ha(., A) being measurable for all A ∈
Σ, one has that 〈a〉r(A) ∈ Σ. One can also define the strict shifts as {a}r(A) :=
{s | ha(s, A) > r}, which are endomaps of Σ as well.

With this new notation: [[〈a〉rθ]]S = 〈a〉r([[θ]]S).
Actually a much stronger statement than the lemma above can be made:

Theorem 4.5 Let (S,Σ, h) be an LMP, the σ-algebra generated by ([[θ]]S)θ∈L0

is the smallest sub-σ-algebra of Σ which is closed under the shifts 〈a〉r.

We skip the proof (see [DD02]) since it is not used in the rest of the paper.
Nevertheless, the theorem deserves mention because it gives purely measure-
theoretic status to L0.

4.3 Co-simulation morphisms

The following notion of morphism between pre-LMPs will witness the relation
between a process and its approximant. Recall that our goal is to define
approximants as quotients of pre-LMPs under equivalence relations. Such
quotients are usually related to the original process S through a measurable
map from S to its quotient; this map will be proven to be a co-simulation
morphism.

Definition 4.6 Given S, S ′ two pre-LMPs, a map q : S → S ′ is said to be a
co-simulation iff it is surjective, measurable and for all a ∈ L, s ∈ S, A′ ∈ Σ′:

ha(s, q
−1A′) ≥ h′a(q(s), A

′).

If S and S ′ have initial states, these must be linked by q.

Caveat: we are changing [Des99]’s definition of simulation morphisms,
reversing the inequation and requiring surjectivity. We can thus use the proof
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of [Des99, Proposition 3.6.7] to show that co-simulation morphisms define
simulation relations.

Proposition 4.7 If q : S → S ′ is a co-simulation morphism, then every
s ∈ S simulates q(s).

Proof. The proof of the dual result with simulation morphisms of [Des99]
does not use the additivity property. 2

This proposition will allow us to make sure that the approximant is simu-
lated by (or is below) S.

Proposition 2.5 can also be extended to pre-LMPs.

Corollary 4.8 Let q : S → S ′ be a co-simulation, then for all θ ∈ L0, s ∈ S:
q(s) ∈ [[θ]]S′ ⇒ s ∈ [[θ]]S .

Proof : The statement can be restated as q−1[[θ]]S′ ⊆ [[θ]]S . The proof is by
induction on L0:
— for >, one has [[θ]]S′ = S ′ and q−1S ′ = S = [[θ]]S ;
— q−1[[θ∧ψ]]S′ = q−1([[θ]]S′∩[[ψ]]S′) = q−1([[θ]]S′∩[[ψ]]S′) = q−1[[θ]]S′∩q−1[[ψ]]S′ ⊆
[[θ]]S ∩ [[ψ]]S ;
— if q(s) ∈ [[〈a〉rθ]]S′ , then s ∈ [[〈a〉rθ]]S because:

r ≤ h′a(q(s), [[θ]]S′)

≤ ha(s, q
−1[[θ]]S′)

≤ ha(s, [[θ]]S). 2

4.4 The infimum construction

Proposition 4.10 below, which says that “one can do infs” on measurable
equivalence classes, is the most important in a sense, for without it we could
not construct any quotient.

Lemma 4.9 Let (S,Σ) be a measurable space and R be an equivalence relation
on S. If there is a finite number of R equivalence classes and if they are
all in Σ, then for all measurable function g : S → [0,+∞], the function
gR(s) := inft∈[s] g(t) is measurable.

Proof. The inverse image under gR of a measurable set is a union of equiv-
alence classes. 2

This result can be extended to equivalence relations that are generated by a
countable subset F of measurable sets: that is, two elements are F -equivalent
if they belong to exactly the same sets of F .

Proposition 4.10 Given (S,Σ) a measurable space, R an equivalence rela-
tion on S generated by a countable subset of Σ, then for all measurable function
g : S → [0,+∞], the function gR is measurable.
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Proof : Consider Fi a sequence of finite subsets of F , increasing to F .
Each Fi defines an equivalence Ri with finitely many classes, all in Σ. By
the preceding lemma, gRi

is measurable for all i, and hence supi gRi
is also

measurable. Since R = ∩iRi, the sup is gR. 2

We obtain a particular case of the construction above with R = B × B +
Bc × Bc for some B ⊂ S and g = 1A for some A. If B ⊆ A ⊂ S (strict
inclusion is important) then gR = 1B. Therefore, if B 6∈ Σ, gR is not Σ-
measurable and one sees that the measurability assumption in the proposition
above is essential.

4.5 Quotients and Simulations

In the rest of the paper we will simply say that R is an equivalence on a given
pre-LMP S = (S,Σ, h), meaning it is an equivalence on S generated by a
countable subset of measurable sets.

Definition 4.11 Given an equivalence R on S, we define the quotient pre-
LMP, written SR, as the following triple (SR,ΣR, hR):
—SR is the set of R equivalence classes,
—ΣR is the quotient σ-algebra of R-closed sets of Σ,
—hR(a, [s], A) = inft∈[s] ha(t,∪A) for a ∈ L, s ∈ S and A ∈ ΣR. If S has an
initial state, then its equivalence class is the quotient’s initial state.

When the kernel and the equivalence are compatible (in the sense that
equivalent states have equal transition probabilities to unions of equivalence
classes), then hR([s], A) = h(t,∪A) for all t ∈ [s] and the construction boils
down to an ordinary bisimulation quotient.

We have seen in Example 4.1 that this quotient does not always define an
LMP. However it does define a pre-LMP.

Lemma 4.12 SR as defined above is a pre-LMP.

Proof : We have three things to verify according to Definition 4.3 above.
The first is obvious. For the second condition, the verification that hR is a
pre-measure breaks down in two subconditions.
Super-additivity. If A, B are disjoint sets in ΣR:

h(s,∪(A+B)) = h(s,∪A+ ∪B)

≥ h(s,∪A) + h(s,∪B)

≥ hR([s], A) + hR([s], B).

Co-continuity. Let ↓An be a decreasing sequence of sets in ΣR, then ↓∪An is
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also a decreasing sequence of R-closed sets of Σ and:

hR([s],∩An) := inftRs h(t,∩(∪An))

= inftRs infn h(t,∪An)

= infn inftRs h(t,∪An)

=: infn hR([s], An)

so indeed hR(s, .) is a pre-measure.

Finally for the third, we verify that for all A ∈ ΣR and r ∈ Q, the set
{hR(., A) ≥ r} is in ΣR. Writing q for the canonical projection from S to SR,
we can write our set as:

{[s] | hR([s], A) ≥ r} = q({s | inf
tRs

h(t, q−1A) ≥ r})

i.e., as the projection of a set which is clearly R-closed and, by Proposi-
tion 4.10 applied to h(., q−1A) (which indeed is a measurable function, since
q is measurable and therefore q−1A ∈ Σ), belongs to Σ. 2

Now that we know the quotient SR exists, we need to bring up the prop-
erties it might share with S.

Proposition 4.13 SR is simulated by S. Specifically, the canonical surjection
q : S → SR is a co-simulation.

The proof is obvious.

4.6 Quotients and Logical Properties

Combining Proposition 4.13 with Corollary 4.8, we get that each property
that SR satisfies is also satisfied by S.

Corollary 4.14 Let R be an equivalence on S, then for all θ ∈ L0, and s ∈ S:
[s] ∈ [[θ]]SR

⇒ s ∈ [[θ]]S .

We now need a converse to this, that will quantify how good the approxi-
mation given by the quotient is, and say how much of the L0 properties of s
in S are still properties of [s] in SR.

Definition 4.15 We will say R refines a property θ iff all interpretations of
subformulas of θ are R-closed.

In other words: for all θ′ ≤ θ and all (s, t) ∈ R, if s |= θ′ then t |= θ′.

Proposition 4.16 Let R be an equivalence on S, then ∀θ ∈ L0 that R refines,
s ∈ S: s ∈ [[θ]]S ⇒ [s] ∈ [[θ]]SR

.

Proof : The lemma can be rephrased as q−1[[θ]]SR
⊇ [[θ]]S . We prove it by

induction on θ, the only interesting case being θ = 〈a〉rψ, and then for all a,
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s:

h′a([s], [[ψ]]SR
) = inft∈[s] ha(t, q

−1[[ψ]]SR
)

= inft∈[s] ha(t, [[ψ]]S),

where the second equation is by induction (since R refines also ψ, q−1[[ψ]]SR
⊇

[[ψ]]S and by the corollary above, these two subsets of S are actually equal).
It follows that if s |= θ and [s] 6|= θ, there must be a t ∈ [s] close enough to
the infimum, such that t 6|= θ either, which means R actually does not refine
θ. 2

Subformulas have to be included in the refinement condition and this can
be seen on a small example. Say r ≥ u, here are S and a quotient SR:

s0
a[r] //

##

s
a[u] //

##

t

{{
[s0]

a[r] // [s, t]

Now set θ = 〈a〉r〈a〉u>; one has:

[[〈a〉u>]]S = {s, s0}, [[θ]]S = {s0},

[[〈a〉u>]]SR
= {[s0]}, [[θ]]SR

= ∅,

so though [[θ]]S is R-closed and s0 ∈ [[θ]]S , yet qR(s0) = [s0] 6∈ [[θ]]S′R .

Combining the last two statements in the particular case of logically gen-
erated approximations, we get:

Theorem 4.17 (abstract approximants) Let F be a downward closed sub-
set of L0, and R be the associated equivalence on S:

∀θ ∈ F ,∀s ∈ S : s ∈ [[θ]]S ⇔ [s]R ∈ [[θ]]SR
.

Proof : R is an equivalence on S because it is generated by a countable
subset of Σ, and hence Corollary 4.14 applies. Now R refines F and is even
the coarsest such equivalence, and one may apply Proposition 4.16. 2

A particular case is F = {>}, and then SR = ({∗}, {∅, {∗}}, ha) with
ha(∗,∅) = 0 and ha(∗, {∗}) = infs∈S ha(s, S) =: αa. So SR is the loop with
coefficients (αa)a∈L. Of course very few properties are retained here, namely
the combinations of 〈a〉r with r ≤ αa. This trivial approximation can be
thought of as a quite blunt abstract interpretation of S. The theorem above
explains, in essence, how to construct arbitrarily sharper ones. Note also that
the set of formulas that are satisfied by a state of the quotient is not necessarily
included in F : it may satisfy more formulas.
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4.7 Abstract approximants are optimal

A noteworthy observation is that if one wants the quotient map q to generate
a simulation, the choice made above for hR is optimal, ΣR is the largest σ-
algebra that will make q measurable and all other kernels would be pointwise
smaller:

Proposition 4.18 Given S, S ′ two pre-LMPs and q : S → S ′ a co-simulation
morphism, and defining the equivalence relation generated by q on S as (s, t) ∈
R iff q(s) = q(t), one has:
1) Σ′ is a sub-σ-algebra of ΣR;
2) for all s′ ∈ S ′, A′ ∈ Σ′: h′(s′, A′) ≤ hR(s′, A′).

Yet another way of saying this is: the identity ι : SR → S ′ is a co-simulation
which decomposes q as ι ◦ qR. The proof of 1) is left to the reader. Point 2) is
obvious. Notice that R is an equivalence on S because it is generated by sets
of the form q−1[r,∞) where r ∈ [0, 1] is rational.

For one thing, pre-LMP support what seems the natural construction, as
summarized in Theorem 4.17, whereas with plain LMPs one has to restrict to
finite quotients. Moreover, the approximant construction of [DGJP00] and of
the preceding section, needed a logic L0 where the inequality sign was strict in
the semantic of the formula 〈a〉qφ. Secondly, pre-LMP also give more accurate
finite predictors in the sense of the last proposition.

4.8 The sup-quotient

We have shown how to construct quotients of pre-LMPs using infima of mea-
surable functions. One could be interested in the dual construction using
suprema. All the results above can be dualized to their sup counterpart
with little modification. Basically, one has to reverse inequality signs and
replace co-continuity with continuity. The resulting model could be called
conveniently sub-pre-LMP, since suprema generate subadditive kernels (and
our pre-LMPs shoud then be called super-pre-LMPs since they have super-
additive kernels as we know). The quotient of a sub-pre-LMP is above the
original process instead of below. Consequently, we have a simulation mor-
phism instead of a co-simulation in the equivalent of Proposition 4.13. The
semantics of 〈a〉r has to be adapted as well, 〈a〉r(A) meaning now the set of
states having a probability strictly greater than r to jump in A.

4.9 Stronger Approximants

We now extend the results to a logic with fixpoints. This will allow us to ap-
proximate with respect to a much richer class of properties. More to the point,
we have seen in section 3 how the introduction of loops in the approximants
allows for quicker convergence when there are loops in the transition graph
of the original process. In the present section we have just shown how the
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approximations may be guided by formulas. However, the formulas used only
capture one step transitions and one needs richer formulas to capture looping
behaviour. In fact one needs exactly the fixed point logic of this section.

4.9.1 Extended logic

We introduce an extended logic L∗0 to capture cyclic temporal properties. To
deal with mutual fixpoint equations, it is convenient to present the extended
formulas as automata.

Definition 4.19 [cyclic temporal properties] An L∗0 formula is a pair (I, λ),
with I a finite indexing set and λ a partial map from L× I × I to [0, 1].

We write dom(λ) for the domain of λ; working with total maps, by ex-
tending λ to be zero outside dom(λ), turns out to be inconvenient. We will
use freely the automaton terminology and talk about I as the state space and
λ as the transition map. Notice that there is no condition on the transition
function: it need not be a subprobability distribution. One should understand
the transitions as if they were non-deterministic.

First of all we show how to present our old L0 formulas as automata.

Definition 4.20 [mapping L0 to L∗0] One defines a map (.)∗ from L0 to L∗0
as follows:
— I is the set of θ’s (occurrences of) maximal conjunctive sub-formulas,
— λ(a, θ0, θ1) = r iff θ0 = 〈a〉rθ1∧θ′ for some θ′, up to the monoidal equations
associated to ∧.

So, for instance:
—>∗ = ({>},∅),
—(〈a〉.5>)∗ = ({〈a〉.5>,>}, {(a, 〈a〉.5,>, .5)}).

i.e. = 〈a〉.5>
a[0.5] //>

—(〈a〉1φ ∧ 〈b〉.5>)∗ = 〈a〉1φ ∧ 〈b〉.5>
a[1]

yyrrrrrrrrrrr
b[0.5]

%%KKKKKKKKKKK

φ∗ >
This correspondence is one-one, up to monoidal equations, and θ∗ is always

a tree.

Now, given S an LMP, we would like to extend the map [[.]]S to L∗0-formulas,
or in other words, to make sense of s |= θ for our new formulas. This will be
done using two independent approaches that will turn out to be equivalent.
One will be the definition of a suitable fixpoint in the category CS defined
below, and the other one will be in terms of simulation relations.

Semantics of L∗0 via fixpoints.
Let CS be the sub-Cartesian category of Set generated by:

— cartesian powers of Σ for the objects
— shifts 〈a〉r : Σ → Σ,
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— intersection ∩ : Σ× Σ → Σ.

Products in CS are ordinary set-theoretic products, not products of mea-
surable spaces. The objects of the category CS , i.e.Σns, are ordered with the
inclusion ordering extended pointwise to products: (A1, . . . , An) ≤ (B1, . . . , Bn)
if for all 1 ≤ i ≤ n, Ai ⊆ Bi. If one restricts to shifts with rational coefficients,
there are only countably many arrows in CS .

The key to the extension of [[.]]S is the following:

Lemma 4.21 Morphisms of CS are all monotonic and co-continuous; endo-
morphisms of CS all have greatest fixpoints.

Proof : First of all, we observe that shifts are indeed returning results in
Σ by definition of a pre-LMP. Secondly, all generators are clearly monotonic
increasing. Thirdly, if ↓An is a decreasing sequence in Σ then:

〈a〉r(∩An) = {s | ha(s,∩An) ≥ r}

= {s | infn ha(s, An) ≥ r}

= ∩〈a〉r(An)

where the second equation uses ha(s, .) co-continuity on Σ, given by defini-
tion of pre-LMP kernels. So shifts are co-continuous, and so are evidently
projections, intersections and all cartesian combinations of them.

Lastly, suppose ψ is an endomorphism, since it is monotonic increasing it
has a greatest fixpoint in (2S)n, and since ψ is also co-continuous, this fixpoint
can be written as ∩nψ

n(S, . . . , S) and hence is in Σn. 2

In fact CS has a structure of traced Cartesian category (or Cartesian cat-
egory with fixpoints as discussed for instance in [Has97]). We will write Yψ
for the fixpoint of ψ. This is, of course, what we use for interpreting fixpoints
in the logic.

More generators could be added to the collection while keeping the key
lemma above. For example, we could have added unions, countable unions
and countable intersections to the generators (and therefore the countable
power ΣN as an object of CS). This might indeed prove useful at some later
stage, but for now we do not do this. We could not have added maps such as:

ψ(A) = 〈a〉r(A) \ 〈a〉r′(A) = {s | ha(s, A) ∈ [r, r′)}

which is not monotonic; having only positive operators in the basic logic is
crucial here. More subtly, strict shifts which are monotonic cannot be added
because they are not co-continuous and we need greatest fixpoints (as made
clear below).

So, strict shifts are not co-continuous and neither are shifts continuous.
Here is an example: ([0, 1],B, h) with ha(s, B) = λ(B), where λ is Lebesgue
measure on B, and while ∪n[0, 1 − 1/n] = [0, 1], but for no n can we be
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Lebesgue sure to hit [0, 1− 1/n] there is always a 1/n chance that we do not,
and so 〈a〉1([0, 1− 1/n]) = ∅. A similar case can be made against strict shifts
being co-continuous with intervals ↓(0, 1/n].

Definition 4.22 Given a formula θ = (I, λ) ∈ L∗0, with I of cardinality n,
= {q1, . . . , qn}, we define in turn {|θ|}S ∈ CS [Σ

I ,ΣI ] and [[θ]]S ∈ ΣI by:

{|θ|}S(τ)(i) :=
⋂

(a,i,j)∈dom(λ)

〈a〉λ(a,i,j)(τ(j)),

with τ ∈ ΣI a I-indexed tuple in Σ, and:

[[θ]]S := Y{|θ|}S = ∩p ↓{|θ|}p
S(S, . . . , S)

where the p stands for the number of iterations.

This somewhat pedantic notation comes handy when one wants to access
states by their names, not their indices. We will use concrete tuple notation
in examples, but not in proofs. Symbol τ sounds like “tuple” and is supposed
to be suggestive of what τ is, a tuple. When dom(λ) is empty (which happens
exactly when the corresponding state is dead in θ), we take the convention
that the intersection is equal to the full set S.

Each component map λτ.{|θ|}S(τ)(i) is in CS [Σ
I ,Σ] indeed, since it is

clearly expressed as a finite intersection of shifts; therefore the lemma above
applies, and [[θ]]S = Y{|θ|}S is well-defined and lies in ΣI .

Lemma 4.23 For all θ = (I, λ) ∈ L∗0, [[θ]]S ∈ ΣI .

Least fixpoints are not interesting here, since one has to use strict shifts
to have them in Σ, but {a}r(∅) = 0 for all pre-LMPS, so these would always
be empty.

Example 4.24 Here is a simple LMP example S with state space S = {s0, s1, s2}
followed by a cyclic formula θ in L∗0:

S = s0

.3

##

.5 ..

s1

.6pps2

.3
00

θ = q1

.5

ssq2

.25

33
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The fixpoint converges in two steps:

{|θ|}S(A1, A2) = (〈〉.5A2, 〈〉.25A1),

Y{|θ|}S = {|θ|}2
S(S, S) = ({s0, s1}, {s0, s2}),

[[θ]]S(q1) = {s0, s1}.

Intuitively Y{|θ|}S is finding the biggest state-sets in S showing the behaviour
described by θ.

The following example might be helpful for people used to the µ-calculus
notation.

Example 4.25 Suppose that we have the νX.〈a〉1X formula and we want to
express this in L∗0. We think of this automata theoretically. There is a state
where X is satisfied and the system can do an a transition with probability 1
and return to this state. Thus in L∗0 we write: {q}, λ(a, q, q) = 1.

νX.〈a〉1X = q1

a[1]

��

Suppose we want to write the usual temporal logic formula with “until”:, say,
a1Ub.5 meaning that the system can keep doing a with probability 1 until it
does a b with probability .5. In this case the automaton has two states and
the L∗0 version would be ({q1, q2}, {λ(a, q1, q1) = 1, λ(b, q1, q2) = .5}).

a1Ub.5 = q1

a[1]

�� b[.5] // q2

Now with Definition 4.22 and a formula θ ∈ L0, we can build both [[θ]]S
and [[θ∗]]S , so obviously we have to say something ! (Reminder: formulas are
used as their own indexing sets when coerced in L∗0.)

Lemma 4.26 Definitions 4.22 and 2.3 of [[θ]]S agree, in the sense that for all
θ ∈ L0: [[θ∗]]S(θ) = [[θ]]S .

Proof : The proof is an induction on L0, where we prove in addition that
the fixpoint Y{|θ|}S is obtained in |θ| steps (and therefore “convergence time”
for L0 formulas is independent of S).
— θ = >: then I = {>}, λ = ∅ and {|>∗|}S(τ)(>) = S, [[>∗]]S(>) = S which
is the correct answer obtained in 0 = |>| steps;
— θ = θ0 ∧ θ1: I = I0 · I1 is the smashed sum of I0 and I1, obtained by
fusing the initial states θ0 and θ1 into θ (since θ0 and θ1 are no longer maximal
conjunctive) and taking the disjoint union otherwise; the only state where λ
changes value is precisely θ itself, and λ(a, θ, i) = λ0(a, θ0, i) + λ1(a, θ1, i); so
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that, by definition:

{|θ∗|}S(τ0 · τ1)(θ) = {|θ∗0|}S(τ0)(θ0) ∩ {|θ∗1|}S(τ1)(θ1)

[[θ∗]]S(θ) = [[θ∗0]]S(θ0) ∩ [[θ∗1]]S(θ1)

and the answer is obtained in max(|θ0|, |θ1|).
— θ = 〈a〉rθ0: I = I0+{θ}; λ takes now one more value, namely λ(a, θ, θ0) = r
and:

{|θ∗|}S(τ)(θ) = 〈a〉r(τ(θ0)),

again the correct answer, and obtained in |θ0|+ 1 steps, as expected. 2

Semantics of L∗0 via simulations.

The fixpoint definition of L∗0’s semantics, while being convenient for measure-
theoretic considerations, is a bit clumsy when it comes to understanding
what is going on. To rectify this we introduce a more perspicious semantics
s ∈ [[θ]]S(i) which will turn out to be equivalent to the one just given.

Observe that when we say that a state satisfies a logical property, we ex-
pect this state to satisfy at least this property, and that it may satisfy other
properties as well. Now that our properties are stated in a labelled transition
setting, it is tempting to use the corresponding algebraic notion, that is, sim-
ulation. Indeed, if we look back to Example 4.24, we can observe that (the
reflexive and transitive closure of) the relation (q1, s0), (q1, s1), (q2, s0), (q2, s2)
is a simulation relation.

The definition 2.4 of simulation must be extended to include systems that
are not pre-LMPs. Recall that even if we view formulas of L∗0 as automata,
they are not pre-LMPs because of the fact that a-transitions probabilities may
sum up to some number > 1. This problem is easily disposed of by considering
formulas as non-deterministic systems, and thus every transition as defining
a distinct sub-probability distribution.

Definition 4.27 Given θ = (I, λ) ∈ L∗0, S = (S,Σ, h) a pre-LMP, a relation
S ⊆ I × S is a non-deterministic simulation if for all a ∈ L, (i, s) ∈ S and
j ∈ I: λ(a, i, j) ≤ ha(s,S(j)).

It is understood above that ∀i, S(i) ∈ Σ. However, this requirement is
not in Definition 2.4 of simulation between LMPs, for if it was, bisimulation
would not be a simulation. This issue is technically complex and not addressed
here. The reader must keep in mind that this definition of simulation is
safe only if we deal with countable state-space processes or if we manipulate
simulated processes related by a co-simulation morphism, as will be argued in
Lemma 4.29 below 1 .

1 We conjecture that requiring that S(i) ∈ Σ be an analytic set in S would solve the
problem.
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Proposition 4.28 Given θ = (I, λ) ∈ L∗0, S = (S,Σ, h) a pre-LMP, S ⊆
I × S is a simulation iff for all i:
— S(i) ∈ Σ,
— S(i) ⊆ {|θ|}S(λj.S(j))(i).

Proof : The proof is by trivial manipulation of the various definitions.2

Now we say that s simulates i, when there exists a non-deterministic sim-
ulation S, with (i, s) ∈ S. Here is the rephrasing: s ∈ [[θ]]S(i), or s |= θ(i) in
shorthand notation, iff s simulates i. We also observe that [[θ]]S , regarded as
a relation on I × S, is the coarsest simulation.

4.9.2 Quotients with L∗0
We can now prove the analog of Corollary 4.8: co-simulation morphisms pre-
serve formulas of L∗0.

Lemma 4.29 Let S, S ′ be pre-LMPs and q : S → S ′ be a co-simulation
morphism, then for all θ = (I, λ) ∈ L∗0, i ∈ I, s ∈ S: q(s) ∈ [[θ]]S′(i) ⇒ s ∈
[[θ]]S(i).

Proof. Composing a non-deterministic simulation on I × S ′ with the co-
simulation q gives a simulation for S. 2

Finally, it remains now to prove the analog of Proposition 4.16, that is,
that quotient states satisfy the same formulas of F as the states they F -
approximate. But before we have to explain what it means now for an equiv-
alence R over S to refine a formula θ ∈ L∗0.

Definition 4.30 Let S be a pre-LMP, R be an equivalence over S, and θ =
(I, λ) ∈ L∗0, then R refines θ if for all i ∈ I, [[θ]]S(i) is R-closed.

By Lemma 4.26, this second definition coincides with the definition given
before for L0 (to be exact, only maximal conjunctive subformulas have to be
R-closed, so next proposition is marginally better).

With our definition in place we can home in on our proposition:

Proposition 4.31 Let S be a pre-LMP and R be an equivalence on S which
refines θ, then for all i ∈ I, s ∈ S: s ∈ [[θ]]S(i) ⇒ [s]R ∈ [[θ]]SR

(i).

Proof. Let R be an equivalence relation refining θ, and assume that s |= θ(i).
Then there is an associated simulation relation S between θ and S such that
for all iSs, if λ(a, i, j) = r then ha(s,S(j)) ≥ r. Now let us prove that
the corresponding relation between θ and SR is a simulation relation. This
relation R∗ is defined as iR∗[s] if iR′t for all t ∈ [s]. Since R refines θ, and by
definition of R∗ in terms of S, we have that S(j) = q−1R∗(j) where q is the
quotient function. But now if λ(a, i, j) = r then ha(t,S(j)) ≥ r for all t ∈ [s]
and hence hR(a, [s],R∗(j)) = inft∈[s] ha(t, q

−1R∗(j)) = inft∈[s] ha(t,S(j)) ≥ r.
2
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We can pithily summarize the results of this section in a statement paral-
leling Theorem 4.17:

Theorem 4.32 (strong approximants) Let S be a pre-LMP, F be a subset
of L∗0, and R the associated equivalence on S, then for all θ = (I, λ) ∈ F ,
s ∈ S and i ∈ I:

s ∈ [[θ]]S(i) ⇔ [s]R ∈ [[θ]]SR
(i).

Proof. As in the parallel statement, R equivalence classes are in Σ, because R

has countably many generators, namely the [[θ]]S(i), for θ ∈ F , i ∈ Iθ. So again
R is an equivalence on S, the quotient SR is well-defined by Lemma 4.12, and
the projection is a co-simulation morphism by Proposition 4.13, so Lemma 4.29
applies, and this gives the left to right implication. Besides and by definition,
R is the coarsest equivalence on S refining all θs in F , so one may apply
Proposition 4.31 and obtain the other implication. 2

Note that, even if S is itself infinite state, the quotient will be finite, as
soon as F is, just as in the L0 case.

The following result, which now follows easily, is one of the main mo-
tivations for using a logic with loops. Finite-state processes are eventually
approximated by themselves up to bisimulation (see [DEP02] for bisimulation
for LMPs and characterization of bisimulation). We first need to prove that
simulation relation between finite LMPs preserve formulas of L∗0.

Lemma 4.33 If two states s and t of a finite LMP are related by a simulation
relation, then every formula of L∗0 that s satisfies is also satisfied by t.

Proof. The proof lies on simple manipulations of relations and inequalities
and on the fact that every set in a finite LMP is measurable. 2

Theorem 4.34 For every finite-state LMP, there is a finite set of formulas
F of L∗0 such that the quotient with respect to F is bisimilar to the process
itself.

Proof : The logic L∗0 clearly characterizes bisimulation of LMPs 2 . Indeed,
it is an extension of L0 and since simulation preserves satisfaction of formulas
of L∗0 (by the preceding lemma), so does bisimulation. This implies that if two
states are not bisimilar, then there is a formula of L∗0 that will distinguish them.
There are finitely many pairs, and taking all formulas that distinguish pairs of
non-bisimilar states and closing this set under subformulas yields a finite set
of formulas. This set defines a quotient which is bisimilar to the original finite-
state process. Indeed, since non-bisimilar states belong to different equivalence
classes, we have that every state of the quotient is made of bisimilar states
of the original process. These states have the same transition probability to
every bismulation-closed set, and hence to every equivalence class. 2

2 Note that for uncountable processes, this result needs an assumption that the state-space
is analytic.
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5 Approximation through average

In this section, we present an approach introduced in [DDP03], showing that
we can have a customizable approach to approximation and stay within the
realm of LMPs. The approach is based on a radical departure from the ideas of
the previous approaches. In the previous approaches one always approximated
a system by ensuring that the transition probabilities in the approximant were
below the corresponding transition in the full system. Here we approximate
a system by taking a coarse-grained discretization (pixellization) of the state
space and then using average values. This new notion is not based on the
natural simulation ordering between LMPs as were the previous approaches.

Instead we use conditional expectation, which will construct for us low-
resolution averages of any given LMP. Furthermore, an LMP will be known
completely, up to bisimilarity, from its finite-resolution (meaning finite state)
averages.

We first recall the definition of Conditional expectation, then we iden-
tify circumstances in which the conditional expectation is actually defined
pointwise and not only “almost everywhere”. We construct an adaptation of
Lebesgue measure on any given LMP that will serve as the ambient proba-
bility which we need to drive the construction home. With all this in place
we may turn to the definition of approximants. This conditional expectation
will be made with respect to a σ-algebra generated by a set of formulas of L∗0.
We will prove that the approximant satisfies exactly the same formulas of the
given set as does the process being approximated. This will prove that they
are correct, but we will also show the precise relation in which they stand with
the order-theoretic approximants given in Section 4 (and in [DD03]).

5.1 Conditional expectation

The expectation Ep(X) of a random variable X is the average computed by∫
Xdp and therefore it is just a number. The conditional expectation is not

a mere number but a random variable. It is meant to measure the expected
value in the presence of additional information. The conditional expectation is
typically thought of in the form: “if I know in advance that the outcome is in
the set Q then my revised estimate of the expectation is Ep(X|Q).” However
additional information may take a more subtle form than merely stating that
the result is in or not in a set.

The additional information takes the form of a sub-σ algebra, say Λ, of Σ.
In what way does this represent “additional information”? The idea is that
an experimenter is trying to compute probabilities of various outcomes of a
random process. The process is described by (S,Σ, p). However she may have
partial information in advance by knowing that the outcome is in a measurable
set Q. Now she may try to recompute her expectation values based on this
information. To know that the outcome is in Q also means that it is not in
Qc. Note that {∅, Q,Qc, S} is in fact a (tiny) sub-σ-algebra of Σ. Thus one
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can generalize this idea and say that for some given sub-σ-algebra Λ of Σ she
knows for every Q ∈ Λ whether the outcome is in Q or not. Now she can
recompute the expectation values given this information.

How can she actually express this revised expectation when the σ-algebra Λ
is large? It is presented as a density function so that for every Λ-measurable set
B one can compute the conditional expectation by integration over B. Thus
instead of a number we get a Λ-measurable function called the conditional
expectation given Λ and is written Ep( |Λ). 3

It is not at all obvious that such a function should exist and is indeed a
fundamental result of Kolmogorov (see for instance [Wil91], p.84).

Theorem 5.1 (Kolmogorov) Let (S,Σ, p) be a probability triple, X be in
L1(S,Σ, p) and Λ be a sub-σ-algebra of Σ, then there exists a Y ∈ L1(S,Λ, p)
such that

∀B ∈ Λ.

∫
B

Xdp =

∫
B

Y dp. (1)

Not only does the conditional expectation exist, but it has a lot of prop-
erties. As a functional of type

Ep( |Λ) : L1(S,Σ, p) → L1(S,Λ, p)

it is linear, increasing with respect to the pointwise ordering and continuous
in the sense that for any sequence (Xn) with 0 ≤ Xn ↑X and Xn, X ∈
L1(S,Σ, p), then Ep(Xn|Λ) ↑Ep(X|Λ) . . . but it is not uniquely defined !

All candidate conditional expectations are called versions of the condi-
tional expectation. It is easy to prove that any two Λ-measurable functions
satisfying the characteristic property (1) given above may differ only on a set
of p-probability zero.

5.2 The finite case

As we have said before, the basic intuition of Ep(X|Λ) is that it averages out
all variations in X that are below the resolution of Λ, i.e. which do not depend
on Λ. In particular, if X is independent of Λ 4 , then Ep(X|Λ) = Ep(X), 5

and X is completely averaged out. On the other hand, if X is fully dependent
on Λ, in other words if X is Λ-measurable, then Ep(X|Λ) = X.

3 Take note that, in the same way as Ep(X) is constant on S, the conditional expectation
will be constant on every “pixel” or smallest observable set in Λ. In the above “tiny” sub-
σ-algebra, this means constant on both Q and Qc. This will turn out to be exactly what
we need later when pixels are defined by sets of formulas.
4 Given a probability triple (S, Σ, p), a random variable X ∈ mΣ is said to be independent of
a sub-σ-algebra Λ if for any event A ∈ σ(X) and B ∈ Λ, p(A∩B) = p(A)p(B). In particular,
as one can easily verify, X is always independent of the trivial σ-algebra Λ0 = {∅, S} and
by the remark above, Ep(X|Λ0) = Ep(X) the ordinary unconditional expectation of X.
5 Recall that in this equation the left-hand side is a function while the right-hand side is a
number; we mean to say that the function on the left is a constant function whose value is
given by the right-hand side.
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Actually this intuition is exact in the case that the sample space S is
finite. We may suppose then that Σ = 2S, and Λ will be generated by a set of
equivalence classes. But then Y = Ep(X|Λ) has to be constant on equivalence
classes (else it is not Λ-measurable) and by the characteristic property, with
B an equivalence class [s], we get:

Y (s).p([s]) =

∫
[s]

Y dp =

∫
[s]

Xdp =
∑
t∈[s]

X(t)p({t})) = E(1[s]X),

where 1[s] is the indicator function of the measurable set [s].

When p([s]) > 0 we see that Y is exactly the p-average of X over equiva-
lence classes associated to Λ:

Y (s) =
1

p([s])
· E(1[s]X)

5.3 The example that says it all

Now that it is understood that in the finite state-space case conditional ex-
pectations are averages over equivalence classes, we can consider a revealing
example. Put S = {x, y, 0, 1}, Σ = 2S, L = {a} (there is only one label, so
we will not even bother to write a in the kernels); h({0})(x) = h({1})(y) = 1
and every other state-to-state transition is of probability zero. Suppose Λ
identifies x and y, and call the resulting class z.

One can conceive of three ways to define a kernel k on the quotient space
{z, 0, 1}. One can define the kernel as the infimum over {x, y} or dually one
can take it to be the supremum:

ki({0})(z) = 0, ki({1})(z) = 0, ki({0, 1})(z) = 1,

ks({0})(z) = 1, ks({1})(z) = 1, ks({0, 1})(z) = 1,

or else one can average (using here the uniform probability):

ka({0})(z) = 1/2, ka({1})(z) = 1/2, ka({0, 1})(z) = 1.

As we said earlier, the use of the infimum results in super-additive kernels
while the use of a supremum results in sub-additive kernels:

ki({0, 1})(z) = 1 > ki({0})(z) + ki({1})(z) = 0

ks({0, 1})(z) = 1 < ks({0})(z) + ks({1})(z) = 2

Of the three options, only using averages preserve additivity:

ka({0, 1})(z) = 1 = ka({0})(z) + ka({1})(z).
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Besides we observe that, perhaps not surprisingly, in all cases the kernel ob-
tained by using averages is sandwiched between the others, e.g. :

0 = ki({0})(z) ≤ ka({0})(z) = 1/2 ≤ ks({0})(z) = 1.

The rest of the paper is essentially about structuring this nice concrete notion
of approximant by averages as a general construction and explaining in what
sense these approximants are actually approximating what they are supposed
to be approximants of.

5.4 When Ep( |Λ) is unique

There is one thing we have to confront. As we noted before, conditional
expectations are unique only “almost surely.” Now we want to use them to
average our family of h(a,Q) and, from the definition of an LMP, we need
these averages to be defined pointwise, not only up to p. Yet, in the case of
finite systems, one option is to choose for p the uniform probability on S, in
which case “almost surely” actually means “surely,” since only the empty set
is in Np. This, intuitively, is because points are big enough chunks to be seen
by the probability distribution. This leads to the following two definitions.

Definition 5.2 [pixels] Let (S,Σ) be a measurable space, one says s and t ∈ S
are Σ-indistinguishable if ∀Q ∈ Σ, s ∈ Q↔ t ∈ Q.

This is an equivalence on S and we write [s]Σ or sometimes simply [s]
to denote the equivalence class of s. One has [s]Σ = ∩{Q | s ∈ Q ∈ Σ} so
equivalence classes might not be measurable themselves unless Σ is countably
generated, which is the case we are interested in.

Definition 5.3 [granularity] Let (S,Σ, p) be a probability triple and Λ ⊆ Σ
be a sub-σ-algebra of Σ; p is said to be granular over Λ if for all s ∈ S,
[s]Λ 6∈ Np.

In other words, p is granular over Λ if no Λ equivalence class is negligible.
What this means intuitively is that the “pixellization” of Λ is always seen by
p. It may be instructive to point out that there are at most countably many
equivalence classes in this case.

As an example, we can take the probability triple ([0, 1)2,B2, λ2), where λ2

is the Lebesgue measure on the square, and Λ = B× [0, 1). Then [s]Λ = {s}×
[0, 1) ∈ Λ and λ2([s]) = 0 so our p is not granular over this Λ. The measurable
sets of Λ are very thin strips. They are too fine to be granular. But if we take
a cruder Λ, namely that containing the squares [k/n, k+1/n)× [h/n, h+1/n)
for k, h < n (with n fixed), then [s]Λ is such a square of λ2-measure 1/n2, so
here p is granular.

The big payoff of granularity is the following
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Lemma 5.4 (Uniqueness lemma) Let (S,Σ, p) be a probability triple, Λ ⊆
Σ, p granular over Λ, X and Y both Λ-measurable, then:

X = Y a.s.⇒ X = Y.

So in this case “almost surely” does mean “surely !”

Proof. Set Q := {s ∈ S | X(s) = α ∧ Y (s) = β} and t ∈ Q. One has Q ∈ Λ,
by Λ-measurability of X and Y , but then [t]Λ ⊆ Q (otherwise Q splits [t]Λ).
So by granularity p(Q) > 0 (else [t]Λ is negligible), and therefore α = β or else
X and Y differ on a non negligible set Q. 2

So in this favourable circumstances we can do away with versions. If
X ∈ L1(S,Σ, p), and p is granular over Λ:

Ep(X|Λ) : L1(S,Σ, p) → L1(S,Λ, p)

is uniquely defined and we can proceed to the main definition.

5.5 Projecting LMPs

Definition 5.5 [projection of an LMP] Given (S,Σ) a measurable space, Λ
a sub-σ-algebra of Σ, p a probability on (S,Σ) granular over Λ, and S =
(h(a,Q))a∈L,Q∈Σ an LMP on (S,Σ), one defines the p-projection of S on Λ,
written (S|Λ)p as:

h′(a,Q) = Ep(h(a,Q)|Λ), for a ∈ L, Q ∈ Λ.

Take note that this is the version of the conditional expectation. Existence
follows from the fact that the h(a,Q) evidently are integrable with respect to
p (they are measurable, positive and bounded by 1), in other words they are
in L1(S,Σ, p).

Proposition 5.6 (Staying within LMPs) (S|Λ)p is an LMP.

Proof. All maps h′(a,Q) are Λ-measurable by definition of the conditional
expectation; additivity is because Ep( |Λ) is linear; continuity follows because
Ep( |Λ) is continuous as can be seen by using the conditional form of the
monotone convergence theorem. 2

We may now round off the construction by changing the state space.

Let us write [ ]Λ : S → [S]Λ for the canonical surjection to the set of
equivalence classes and denote accordingly the quotient σ-algebra by [Λ]Λ.
Then one can define the quotient LMP ([S]Λ, [Λ]Λ, k) with:

k(a,B)([s]Λ) := h′(a,∪B)(t) := Ep(h(a,∪B)|Λ)(t),

with t ∈ [s]. Take note that the right hand side is independent of the choice
of t ∈ [s]Λ since h′(a,Q) is Λ-measurable, and therefore h′(a,Q) has to be
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constant on [s]Λ (else the equivalence is split by an event in Λ). Moreover, [ ]Λ
is a bisimulation morphism (which was formerly called a “zig-zag” [DEP02])
from (S|Λ)p to ([S]Λ, [Λ]Λ, k) and as such it preserves all L0 properties.

So far we have a quotient theory for LMPs when pixels are big enough, but
everything hinges on the choice of an ambient p. This is the second problem
we have to deal with.

5.6 A “uniform” probability on (S, σ(L0))

The key is to construct an appropriate measure, and we will use L0 to do this.
So, given an LMP S = (S,Σ, h), and a fixed enumeration (θn) of L0, we first
define a sequence (S,Λn) of measurable spaces: 6

Λ0 := {∅, S}, Λn := σ([[θi]]S ; i < n).

Then for each n, we set τn := 1[[θn]]S and define αn : {0, 1}n → Λn as:

αn(x) = ∩i<n{s | τi(s) = xi},

with the convention that {0, 1}0 = {∗} and α0(∗) = S.

Each Λn is a finite boolean algebra and so has atoms (non empty sets in
Λn with no proper subsets); each atom of Λn is the image by αn of a unique
sequence x ∈ {0, 1}n, but not all sequences are mapped to atoms, some are
mapped to the empty set.

Now the idea is to construct p stagewise and at each stage to divide evenly
the mass of an atom αn(x) ∈ Λn between its proper subsets in Λn+1 if there
are some. Specifically, we define inductively pn on Λn-atoms as:

p0(∅) = 0, p0(S) = 1

αn+1(x0) 6= ∅, αn+1(x1) 6= ∅ ⇒ pn+1(αn+1(x0)) = pn+1(αn+1(x1)) = 1
2 · pn(αn(x))

αn+1(x0) = ∅, αn+1(x1) 6= ∅ ⇒ pn+1(αn+1(x0)) = 0, pn+1(αn+1(x1)) = pn(αn(x))

αn+1(x0) 6= ∅, αn+1(x1) = ∅ ⇒ pn+1(αn+1(x0)) = pn(αn(x)), pn+1(αn+1(x1)) = 0

Clearly each pn extends to a unique probability on (S,Λn) since it is defined
on Λn-atoms and the pn are compatible in the sense that pn+1 � Λn = pn; the
sequence pn converges to some “skewed” Lebesgue measure p on σ(L0), the
σ-algebra generated by our temporal formulas. 7

First, we have to remind for future use that for any finite set of formulas
F ⊂ L0 and ΛF the associated σ-algebra:

p([s]ΛF ) ≥ 2−N (2)

6 For each n, Λn ⊆ Λn+1, this is usually called a filtration.
7 To be exact, by σ(L0) we mean σ([[θ]]S ; θ ∈ L0).
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where N = max {i | θi ∈ F}.
Second, we observe that the p obtained here will depend on the original

enumeration, and we leave for future investigation the question of whether
there is a principled way of choosing p. In our case, all choices will work
equally well.

As an example we can consider the transition sytem with only state s, only
one letter a and h(a, {s})(s) = 1/2. Then s |= θ iff all coefficients used in θ
are below 1/2. In this case, and as with all one-state systems, at any stage
there will be at most one atom namely {s} and therefore p({s}) = 1.

5.7 Compressing Σ

But the reader might protest that to apply the projection, one needs a prob-
ability on an arbitrary Σ not just on σ(L0). Well, in fact, it is enough to
consider the latter case because:

Proposition 5.7 σ(L0) is the smallest σ-algebra which is closed under the
shifts:

〈a〉r(Q) = {s | h(a, s)(Q) ≥ r}

That it is the smallest is obvious, but that it is closed is not [DD02].

Therefore, σ(L0) is always included in Σ, since Σ has to be closed by shifts
(this is equivalent to asking that h(a,Q) are all Σ-measurable) and one can
always ‘compress’ an LMP to σ(L0). The obtained LMP is obviously bisim-
ilar to the first since by construction states are the same and their temporal
properties remain the same as well. Without loss of generality, we may and
will suppose thereafter that Σ = σ(L0).

5.8 Approximations

Now we can complete the approximation construction.

Finite-state approximants

Let S be a compressed LMP S = (S,Σ, h) with Σ = σ(L0), and F ⊆ L∗0
be a finite set of formulas, set Λ to be the σ-algebra, σ(F), generated by F
on S.

We observe that by inequation (2), p is granular over Λ, so the machinery
gets us a finite-state LMP approximant:

S = (S,Σ, h)
[.]Λ−→ SF = ([S]Λ, [Λ]Λ, k)

which is the quotient constructed above after the appropriate projection.

There are at most 2|F| states in SF , in particular it is a finite-state proba-
bilistic transition sytem.
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Convergence

We need to say how the obtained SF approximates S. In the previous
approaches, approximants were always below the approximated process and
hence simulated by it. It is not the case here since approximants are neither
above nor below S. However, SF does converge to S. This is what the
following proposition says; it is an improvement over [DDP03] since this paper
only included a proof for the logic L0.

Proposition 5.8 For every finite subformula-closed set of formulas F ⊂ L∗0:
SF ≈F S.

Proof.

Let R be the coarsest simulation between θ = (I, λ) ∈ L∗′ and S. Define
R∗ to be the composition of R with the quotient morphism from S to SF . This
is well defined since R is the coarsest simulation and because equivalent states
satisfy the same formulas of F . We prove that R∗ is a simulation. Let (i, [s]) ∈
R∗ and j ∈ I. Then λ(a, i, j) ≤ h(a,R(j))(t) for all t ∈ [s] because it is true
for at least one t ∈ [s] by definition of R∗ and because all states in [s] satisfy
the same formulas of F . This implies that λ(a, i, j) ≤ Ep(h(a,R(j))|Λ)(t) for
all t ∈ [s], which shows that R∗ is a simulation since ∪R∗(j) = R(j).

Now let R be a simulation between θ = (I, λ) ∈ L∗ and SF . Define R∗

to be the composition of R with the inverse of the quotient morphism from
S to SF . We prove that R∗ is a simulation. Let (i, s) ∈ R∗ and j ∈ I, that
is, (i, [s]) ∈ R. Thus λ(a, i, j) ≤ Ep(h(a,∪R(j))|Λ)(t) for all t ∈ [s]. Then
at least one t ∈ [s] satisfies λ(a, i, j) ≤ h(a,∪R(j))(t) = h(a,R∗(j))(t). This
equation is true for all t ∈ [s] because they all satisfy the same formulas of F ,
and hence it is true for s, as wanted. 2

From Proposition 2.6, it follows now easily that:

Theorem 5.9 If (Fi) is an increasing sequence of subformula-closed sets of
formulas converging to the set of all formulas L∗0, then for all c ∈ (0, 1):

dc(SFi
,S)−→i→∞0.

We could have taken another route to prove Proposition 5.8. As the ex-
ample 5.3 suggested, quotients constructed with conditional expections do lie
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between the inf- and the sup- approximants [DD03]:

k(a, [Q])([s]Λ) := h′(a,Q)(s)

= 1
p([s]Λ)

∫
[s]Λ

h′(a,Q) dp h′(a,Q) constant on [s]Λ

= 1
p([s]Λ)

∫
[s]Λ

h(a,Q) dp [s]Λ ∈ Λ

≥ inft∈[s]Λ h(a,Q)

The second equation holds both because h′(a,Q) is constant on equivalence
classes and because p is granular and therefore p([s]Λ) > 0. The third equation
is the characteristic property of conditional expectations. A similar type of
argument allows one to reason analogously for the supremum case.

Thus another, indirect, way to prove the previous proposition, is to use
this sandwiching effect and the fact that the infimum and supremum were
proven to give approximations in the same sense as proposition 5.8 [DD03].
This also makes clear that the average-based approximants are better than
the order-theoretic ones.

6 Conclusion

We have a constructive approximation which is an improvement of the original
one from [DGJP03], and also two new abstract notions of approximation.
The first is based on customizing the approximation with respect to certain
formulas of interest, the second is based on averaging techniques, or - more
precisely - on the use of conditional approximations.

For the first abstract construction, we have introduced two simple ideas to
the theory of LMPs: first, LMP approximants should be quotients with respect
to the LMP bisimulation logic L0, yielding stronger approximants. Second,
the same quotient construction, supposing there is one, should be possible
with a logic enriched with greatest fixpoints and produce families of approx-
imants sharing cyclic behaviours with the approximation target, resulting in
a faster approximation construction, since finite processes are approximated
with themselves at some finite stage.

Not only do these two ideas carry through but despite their apparant
independence they work together fruitfully. Some of the known constructions
and definitions have to be relaxed in so doing but the resulting theory is in
many ways more pleasing than the original.

We believe that the present work is an important step towards model-
checking LMPs. For example, if one knows what are the properties that a
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given continuous process should satisfy, one would prefer to check for these
properties on a finite faithful approximant of the process instead of checking
each property on the process itself. Our construction achieves this goal since
it theoretically ensures exact satisfaction of formulas.

Observe that in Example 4.1, if one was interested specifically in the initial

state s0 one could live with the approximant: [s0]
b // [s, t] because [s0] is

equivalent to s0, if we consider only formulas of depth 1 –of course there
is a loss for other states like s and t which are not equivalent to [s, t]. This
suggests that there may still be a way of quotienting with formulas and obtain
an LMP. We want to investigate this possibility, which we think will be a
fairly easy task. More interestingly, observe that the quotient we have defined
does not depend only on the satisfied formulas, we crucially use probability
information from the system itself. This implies that two processes that are
F -equivalent may not have the same quotient. We plan to investigate the
possibility of using the quotient construction without using the actual values
of the transition probabilities in the original process, but only values provided
by formulas that are satisfied. Instead, we would use only formulas in F and
take the inf over the formulas satisfied by equivalent states. Every state in
the resulting pre-LMP would be the representant for every F -equivalent state.
An important application of this would be a way to construct a process by
using only the formulas that it has to satisfy, that is, the automated design
of probabilistic models from specifications. We believe that in this case, there
will be no LMP that will satisfy the same property (even for finite quotients),
showing that pre-LMPs are essential for the design of probabilistic systems.

On the practical side, the effective construction of these pre-LMPs could
be costly in time or inconvenient. One has to choose a set of formulas that
will be used to quotient the state space. A pre-LMP is then produced by
computation of an inf from every equivalence class to possibly every union
of states (precisely: unions that are defined with formulas). This last step
increases complexity significantly.

However, we also presented an even faster version of approximants which
works exactly as the construction in [DGJP03] (and hence produce LMPs)
except that it allows loops in the approximants. The loss from the present
work is that one does not have the choice of formulas, except for their depth
and a desired precision. The same properties are satisfied: every formula
satisfied by a state is eventually satisfied by the state’s approximant, and
finite processes are eventually approximated by themselves.

S as a Functor
Let S be a fixed LMP, then if R1 ⊂ R2, one can define a co-simulation

morphism q12 : SR1 → SR2 in the obvious way: q12([s]1) = [s]2, an assign-
ment which is independent of the choice of s ∈ [s]1. This correspondence is
functorial from the poset of equivalences over S ordered by inclusion to the
category of quotients over S (with co-simulation as morphisms). We further
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observe that when R1 ⊂ R2, R2 can also be viewed as an equivalence over
R1 since its classes are R1-closed. Therefore it makes sense to define (SR1)R2

and expectedly (SR1)R2 = SR2 . This functor can be precomposed with the
contravariant functor from the poset of finite subformula-closed subsets of L0

to the poset of equivalences over S, thus obtaining the logical functor L. We
leave the question of whether S is the category-theoretic limit of the functor L
(with target category that of LMPs taken up to bisimulation and co-simulation
morphisms) to further investigation. Addressing this problem might demand
some of the analytic space machinery to be put back in the picture.

Ongoing research is also trying to apply this theory of approximants to
many probabilistic models like continuous time Markov chains and to extend
it to richer logic. One potential application are Markov Decision Processes
that one finds in the field of machine learning. Approximants have been
studied in this field, but always with a focus on partitioning the state-space
without taking account of the behaviour of processes, that is, of the actual
transitions that states can take. As a result, bisimilar or behaviourally close
states can be split in the process, whereas our constructions always partition
the state-space with respect to satisfaction of formulas.

The last approach to approximation is more probablistically-minded. It
is based on conditional expectations. Given a probability p on (S,Σ), and a
sub-σ-algebra Σ′ of Σ, it is possible to define the conditional expectation given
Σ′ of any integrable function according to p. Applied to finite-state systems,
the idea downs to taking the quotient kernel to be an average rather than an
infimum. We have showed that this construction works and gives access to
more robust approximations (see [DD03]).

This technique for LMPs shares a number of good properties with the first
mentioned abstract approach. It can be customized in the same sense; how-
ever, unlike that result, we can also stay within the framework of traditional
LMPs and avoid having to work with capacities.

We feel that there are some new directions in this probabilistic approxima-
tion work whose significance extends beyond the properties of the construction.
First, the idea of granularity is, we feel, significant. One of the big obstacles
to the applicability of modern probability theory on general spaces to the
computational setting has been the curse of non uniqueness embodied in the
phrases “almost everywhere” and “almost surely” seen almost everywhere in
probability theory. One can even argue that the bulk of the computer sci-
ence community has worked with discrete systems to try and avoid this non
uniqueness. Our use of granularity shows a new sense in which the discrete
can be used to dispel the non uniqueness that arises in measure theory.

The second important direction that we feel should be emphasized is the
use of averages rather than infima. This should lead to better numerical
properties. More striking than that however is the fact that the simulation
order is not respected by the approximants. Perhaps it suggests that some
sort of non monotone approximation occurs. Similar phenomena have been

39



Danos and Desharnais and Panangaden

observed by Martin [Mar00] - which was the first departure from Scott’s ideas
of monotonicity as being one of the key requirements of computability - and
also in the context of non determinate dataflow [PS92].

One might ask why we do not mention any properties of analytic space, in
contrast to what is done in previous papers on LMPs. In fact, analyticity is
needed if one wants to use the fact that the relational definition of bisimulation
is characterized by the logic. If one is happy with only the logic or the metric
in order to compare or work with LMPs, there is no need for analyticity of
the state space in the definition. However, if one indeed needs the analytic
property of processes, the results of the present paper carry through since the
quotient of an analytic space under countably many conditions is analytic, as
reported in [DGJP03]. This follows essentially from well known facts about
analytic spaces, see for example chapter 3 of “Invitation to C∗-algebras” by
Arveson [Arv76].
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