
Epistemic Strategies and Games on Concurrent

Processes

KONSTANTINOS CHATZIKOKOLAKIS1 and SOPHIA KNIGHT1

and
CATUSCIA PALAMIDESSI1 and PRAKASH PANANGADEN2

1: INRIA and LIX, Ecole Polytechnique, France.

2: School of Computer Science, McGill University, Montréal, Québec

We develop a game semantics for process algebra with two interacting agents. The purpose of
our semantics is to make manifest the role of knowledge and information flow in the interactions
between agents and to control the information available to interacting agents. We define games
and strategies on process algebras, so that two agents interacting according to their strategies
determine the execution of the process, replacing the traditional scheduler. We show that dif-
ferent restrictions on strategies represent different amounts of information being available to a
scheduler. We also show that a certain class of strategies corresponds to the syntactic schedulers
of Chatzikokolakis and Palamidessi, which were developed to overcome problems with traditional
schedulers modelling interaction. The restrictions on these strategies have an explicit epistemic
flavour.

Categories and Subject Descriptors: F.1.2 [Theory of Computation]: Modes of Computa-

tion—parallelism; concurrency; F.3.2 [Theory of Computation]: Logics and Meanings of Pro-
grams—operational semantics; I.2.4 [Computing Methodologies]: Knowledge representation
formalisms and methods—Modal logic

General Terms: Security, Verification

Additional Key Words and Phrases: Game semantics, schedulers, epistemic logic, concurrency,
process algebra, probability

1. INTRODUCTION

Concurrency theory is fundamentally about the interaction of autonomous agents,
usually assumed to be computing agents. The most widely studied framework for
the study of concurrent agents is process algebra. In this approach processes are
given an explicit syntax and their dynamics are given by operational semantics.
The structure obtained is a state transition system called a labelled transition sys-
tem. The main mathematical tools that are brought to bear are binary relations
that characterize behavioral equivalence of states and which lead to an equational
theory (hence the name “process algebra”) and modal logics that characterize the

This research was funded in part by NSERC and by an INRIA-Canada collaboration grant.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2010 ACM 1529-3785/2010/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010, Pages 1–40.

2 · Chatzikokolakis et al.

equivalences. The most commonly used equivalence relation is bisimulation and
the logic that characterizes it is Hennessy-Milner logic [Hennessy and Milner 1980;
1985] independently discovered by van Benthem [van Benthem 1976; 1983]. This
combination of algebraic and logical principles is powerful for reasoning about con-
currency.

However, process algebra - as traditionally presented - has no explicit epistemic
concepts, making it difficult to discuss what agents know and what has been suc-
cessfully concealed. Epistemic concepts and indeed modal logics capturing “group
knowledge” have proven very powerful in distributed systems [Halpern and Moses
1984; Fagin et al. 1995]. Strangely, it has taken a long time for these ideas to
surface in the concurrency theory community.

Epistemic concepts play a striking role in the resolution of nondeterministic choices.
Typically one introduces a scheduler (or adversary) to resolve nondeterminism.
This scheduler represents a single global entity that resolves all the choices, based on
its own knowledge. Furthermore, traditional schedulers are effectively omniscient:
they may use the entire past history as well as all other information in order to
resolve the choices. This is reasonable when one is reasoning about correctness
in the face of an unknown environment. In this case one wants a quantification
over all possible schedulers in order to deliver strong guarantees about process
behaviour.

In security, however, one comes across conditions where omniscient schedulers are
unreasonably powerful, creating circumstances where one cannot establish security
properties. The typical situation is as follows. One wants to set up protocols that
conceal some action(s) from outside observers. If the scheduler is allowed to see
these actions and reveal them through perverse scheduling decisions, there is no
hope for designing a protocol that conceals the desired information. For example,
randomness is often used as a way of concealing information; if the scheduler is
allowed to see the results of random choices and code these outcomes through
scheduling policies then randomness has no power to obfuscate data.

Consider, for instance, a voting system which collects people’s votes for candidate
a or b, and outputs, in some arbitrary order, the list of people who have voted – for
example, to check whether everyone has voted – but is required to do so in a way
that does not reveal who voted for whom. Among the possible schedulers, there is
one that lists first all the people who voted for a. Clearly, this scheduler completely
violates the desired anonymity property. Usually when we want a correctness prop-
erty to hold for a nondeterministic system we require that it hold for all choices of
the scheduler: there is no way such universally quantified statements will be true
if we permit such omniscient schedulers.

How then is process algebra traditionally used to treat security issues? In fact
scrutiny reveals that they do not have a completely adversarial or demonic scheduler
all the time. For example, Schneider and Sidiropoulos [1996] argue that a system is
anonymous if the set of (observable) traces produced by one user is the same as the
set of traces produced by another user. This is, in fact, an extremely angelic view of
the scheduler. A perverse scheduler can most definitely leak information in this case

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 3

by ensuring that certain traces never appear in one case even though the operational
semantics permits them. Even a probabilistic (hence not overtly demonic) scheduler
can leak information as discussed by Beauxis and Palamidessi[2009]. These issues
manifest themselves particularly sharply in the issue of anonymity.

Even bisimulation, a notion often used in the analysis of security properties, does
not treat non-determinism in a purely demonic way. If one looks at its definition,
there is an alternation of quantifiers: s is bisimilar to t is for every s

a
−−→ s′ there

exists t′ such that t
a

−−→ t′ ... This definition implies that the scheduler that
chooses the a transition for s is demonic whereas the scheduler that chooses the
corresponding transition for t is angelic.

One approach to solving the problem of reasoning about anonymity in the pres-
ence of demonic schedulers has been suggested in Chatzikokolakis and Palamidessi
[2010]: the interplay between the secret choices of the process and the choices of the
scheduler is expressed by introducing two independent schedulers and a framework
that allows one to switch between them. This problem is discussed at length in
[Chatzikokolakis et al. 2009]. The authors also propose a solution by introducing
the concept of demonic bisimulation, which essentially requires the transitions for
s and t to be chosen by the same scheduler.

The ideas of demonic versus angelic schedulers, the idea of independent agents and
the presence of epistemic concepts all suggest that games are a unifying theme.
In this paper we propose a game-based semantic restriction on the information
flow in a concurrent process. We introduce a turn-based game that is played be-
tween two agents and define strategies for the agents. The game is played with
the process as the “playing field” and the players’ moves roughly representing the
process executing an action. The information to which a player does not have ac-
cess appears as a restriction on its allowed strategies. This is in the spirit of game
semantics [Abramsky and Jagadeesan 1994; Hyland and Ong 2000; Abramsky et al.
2000] where restrictions on strategies are used to describe limits on what can be
computed. The restrictions we discuss have an epistemic character which we model
using Kripke-style indistinguishability relations.

We show that there is a particular epistemic restriction on strategies that exactly
captures the syntactic restrictions developed by Chatzikokolakis and Palamidessi
[2010]. It should be noted that this correspondence is significant since it only works
with one precise restriction on the strategies, which characterizes the knowledge
of the schedulers. This restriction is an important achievement because although
Chatzikokolakis and Palamidessi showed that these schedulers solve certain security
problems, this is the first time that the epistemic qualities of these schedulers
have been made explicit. In their paper certain equations are shown to hold and
it is informally argued that these equations suggest that the desired anonymity
properties hold.

The advantage to thinking in terms of strategies is that it is quite easy to capture
restrictions on the knowledge of the agents as restrictions on the allowed strategies.
For example, if one were to try to introduce some entirely new restriction on what
schedulers “know” one would have to rethink the syntax and the operational se-

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

4 · Chatzikokolakis et al.

mantics of the process calculus with schedulers and work to convince oneself that
the correct concept was being captured. With strategies, one can easily add such
restrictions and it is clear that the restrictions capture the intended epistemic con-
cept. For instance, our notion of introspection makes completely manifest what
the agents know since it is couched as an explicit statement of what the moves
can depend on. Indeed, previously one only had an intuitive notion of what the
schedulers of Chatzikokolakis and Palamidessi [2010] “knew” and it required some
careful design to come up with the right rules to capture this in the operational se-
mantics. Thus, strategies and restrictions are a beneficial way to model interaction
and independence in process algebra.

Related work There are many kinds of games used in mathematics, logic and
computer science. Games are also used widely in economics, although these are
quite different from the games that we consider. Even within logic there is a
remarkable variety of games. The logical games most related to our games are
Lorenzen games. Lorenzen games are dialogues that follow certain rules about the
patterns of questions and answers. There is a notion of winning and the main
results concern the correspondence between winning strategies and the existence of
constructive proofs. The idea of dialogue games appears in programming language
semantics culminating with the deep and fundamental results of Abramsky et al.
[2000] and Hyland and Ong [2000] on full abstraction for PCF. These games do
not have a notion of winning. Rather the games simply delineate sets of possible
plays and strategies are used to model programs. This has been a fruitful paradigm
to which many researchers - far too many to enumerate - have contributed. It
has emerged that games of this kind form a semantic universe where many kinds
of language features coexist. Different features are simply modelled by different
conditions on the strategies.

The games that we describe are most similar to these kinds of games in spirit, but
there are crucial differences. Our games are not dialogue games and there is no no-
tion of question and answer, as a result, conditions like bracketing have no meaning
in our setting. There is no notion of winning in our games either. Our games are
specifically intended to model multiple agents working in a concurrent language.
While there have been some connections drawn between concurrent languages like
the π-calculus and dialogue games [Hyland and Ong 2000] these are results that say
that π-calculus can be used to describe dialogue games, not that dialogue games
can be used to model π-calculus. The latter remains a fundamental challenge and
one that promises to lead to a semantic understanding of mobility.

“Innocence” is an important concept pervading game semantics [Hyland and Ong
2000; Danos and Harmer 2001]. This is a very particular restriction on what the
players know. In order to define innocence much more complex structures come
into play; one needs special indicators of dependence (called “justification pointers”)
that are used to formalize a concept called the “view” of each process. In the end
innocence, like our introspection concept, is a statement about what knowledge
the agents have. Our games have much less complicated structure because there
are no issues with higher types and the introspection notion is relatively simple to
define.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 5

The complementary nature of the process algebraic and epistemic approaches to
security, and the benefits to combine them, have been already recognized by several
authors (e.g. [Hughes and Shmatikov 2004; Dechesne et al. 2007; Kramer et al. 2009;
Chadha et al. 2009]). The approach of Hughes and Shmatikov [2004] uses function
views to represent partial information and make the interface between protocol and
properties. The approach of Dechesne et al. [2007] bridges the gap more directly,
by proposing a combined framework in which the intruders epistemic knowledge
is modeled by the set of traces generated by a process. Kramer et al. [2009] have
extended the above work to probabilistic processes, and have also taken into account
the presence of the scheduler, although (in contrast to the present paper) not as
an active component in possible collusion with the adversary, but rather as part of
the lack of knowledge of the agents. Chadha et al. [2009] have also proposed an
epistemic logic to describe what an intruder can learn from the traces of a process.
They have considered the applied π-calculus [Abadi and Fournet 2001], which is an
extension of the pi calculus designed to manipulate complex data and functions,
such as cryptographic primitives (e.g. encryption, signature, . . .), instead of just
names. Consequently, the approach of [Chadha et al. 2009] is much richer than the
above approaches (and than the present work) from the point of view of reasoning
about the specific properties of cryptographic protocols. The specificity of the
present paper is that the scheduler is an integral part of the system, and that we
use a game-theoretic approach to represent the interplay between the scheduler
and the process, which contributes to construct (dynamically) the knowledge of the
adversary.

In recent interesting work by Pacuit and Simon [Pacuit and Simon 2010] they
discuss reasoning about protocols under uncertainty using dynamic epistemic logic.
These ideas are close in spirit but the formal development is entirely different. The
main difference is that programs are part of the syntax of formulas in dynamic
logics whereas in process algebras the modal formulas and the transition systems
are kept apart. Nevertheless it is also very much in the same general area as this
paper though of course the particular issues of schedulers and their ability to leak
knowledge are not part of their discussion.

2. BACKGROUND

We begin by introducing a process calculus with two distinctive features: labels as-
sociated with action prefixes and a protection operator represented by curly brack-
ets. The execution of a process is controlled by two agents, X and Y . The first is the
traditional scheduler controlling the execution of the global process. A sub-process
enclosed in the protected operator, however, is controlled by the second agent Y ,
modelling the fact that this sub-process needs to hide information from the sched-
uler. The labels on actions are the only information that the agents have access to
about the process. This allows an agent to hide information from the other agent;
for example, assume that Y has two possible executions to choose from, leading to
two different processes which, however, have the same labels. Since X can only see
the labels, it will be unaware of the exact choice of Y . The interaction between the
agents is made explicit in the next sections, where the agents are viewed as players

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

6 · Chatzikokolakis et al.

ACT
l : α .P

α
−−−→
lX

P
RES

P
α

−−→
s

P ′ α 6= a, ā

(νa)P
α

−−→
s

(νa)P ′
SUM1

P
α

−−→
s

P ′

P +Q
α

−−→
s

P ′

PAR1
P

α
−−→
s

P ′

P |Q
α

−−→
s

P ′|Q
COM

P
a

−−−→
lX

P ′ Q
ā

−−−→
jX

Q′

P |Q
τ

−−−−−−→
(l, j)X

P ′|Q′
SWITCH

P
τ

−−−→
jX

P ′

l : {P}
τ

−−−−−→
lX .jY

P ′

Fig. 1. Operational semantics

in a game.

Let l, j, and k represent labels, a and b actions, ā and b̄ co-actions, τ the silent
action, and α and β generic actions, co-actions, or silent action. The syntax for a
process is as follows:

P,Q ::= l : α.P | P |Q | P +Q | (νa)P | l : {P} | 0

The operational semantics for this process calculus is shown in Fig. 1. The transition
relation in the operational semantics includes both the action and the label for the
action. In the case of synchronization, the labels for both synchronizing actions
are included in the transition. Simiarly, for the SWITCH rule, two labels are also
included, one representing the fact that the protected process was chosen (by X)
and one representing the action taken within the protected process (by Y). All
the labels have an X or Y subscripted to them, denoting the agent that controls
the corresponding action. There are corresponding right rules for + and |; these
operators are both associative and commutative.

All of the rules are analogous to those of traditional process algebra, the novelties
being the labels and the introduction of the SWITCH rule. This rule defines ex-
ecutions of protected processes, controlled by an independent agent Y . The main
agent X (the traditional scheduler) selects the label of the protected sub-process
and the second agent Y controls the execution of that sub-process. For example
consider the process

(l1 :a + l2 :b) | l3 :{k1 :τ . l4 :a + k2 :τ . l4 :b}

The main agentX controls whether the left part of the process performs an a or b ac-
tion, but does not control how the choice on the right side of the process is resolved.
This choice is instead controlled by an agent Y that acts independently.

Note that the SWITCH rule requires that the protected subprocess does a silent
action τ . This ensures that the choice of Y is performed independently from any
choice of X . Without this restriction, X could force Y to choose a specific action a
by enforcing a synchronization to some external process performing an ā. A silent
action, on the other hand, is independent from any external behaviour. Note also
that the protection operator only protects the top level choices, since the SWITCH
rule removes the protection. If the inner choices should be also controlled by Y
then a nested protection operator can be used. This provides fine-grained control
over which choices are independent and allows arbitrary alternations between the
two agents.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 7

Finally note that a deterministic choice is resolved by selecting a label at the left-
hand or right-hand side of the choice operator; the operator itself has no labels.
This might be counterintuitive at first, but leads to simpler semantics. It allows
any transition to be determined by at most 2 labels. Labelling each side of the plus
operator would require more, in the case of nested choices.

Because of our restriction to deterministically labelled processes, the evolution of a
process is completely determined by the actions of the two agents. Besides the two
agents’ choices, there is no other source of nondeterminism.

Deterministically labelled processes. The idea behind this calculus is that the choices
of the two agents, represented as the selection of a label, should completely deter-
mine the evolution of the process. In other words, there should be no other source
of nondeterminism, besides the two agents’ choices. However, this is not necessarily
the case. Consider for example the process l :a+ l :b, containing a choice of two ac-
tions, both labelled by l. The agent X (the global scheduler) is supposed to control
the execution of this process, however selecting the label l (the only one available)
does not uniquely determine a transition, there is still nondeterminism left. To
avoid this problem, from now on we restrict ourselves to deterministically labelled
processes, i.e. those where there can never be more than one action available with
the same label.

We write P −→ P ′ if P
α

−−→
s

P ′ for some α, s and −→∗ for the reflexive and transitive

closure of −→.

Definition 2.1. P is deterministically labelled iff for all Q s.t. P−→∗Q the
following conditions hold:

(1) If Q
α

−−→
s

Q′ and Q
β

−−→
s

Q′′ then α = β and Q′ = Q′′.

(2) If Q
τ

−−−−−→
lX .jY

Q′ then there is no transition Q
α

−−−→
lX

Q′′ for any α or Q′′.

The first condition ensures that two enabled actions never have the same label. For
example, P = l : a + l : b is not deterministically labelled because P

a
−−→
lX

0 and P

b
−−→
lX

0 but a 6= b, violating the first condition.1 The second condition ensures that

if a label for X leads to a transition of a protected sub-processes (involving a label
of Y), there is no transition with the same label involving only X . For example,

P = l1 :a + l1 :{l2 : τ} is not deterministically labelled since P
τ

−−−−−−→
l1X .l2Y

0 and P

a
−−→
l1

0.

On the other hand, l1 :a . l3 :b + l2 :c . l3 :d is deterministically labelled even though
l3 occurs twice, since there is no series of transitions that will result in both l3’s
being available simultaneously.

1Note, however, that l : a . P + l : a . P is deterministically labelled. Even though l is available

twice, l :a . P + l :a . P
a

−−−→
lX

P is the only transition available, so P is deterministically labelled.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

8 · Chatzikokolakis et al.

Note that determining whether a labelling is deterministic is decidable, since we only
consider finite processes, but there is no simple syntactic restriction to characterize
such labellings. Note also that the calculus could be extended with replication to
describe infinite behaviour. This, however, requires the use of a relabelling operator
to ensure that a labelling remains deterministic, which adds technical complications
(we refer to [Chatzikokolakis and Palamidessi 2010] for details). Such an extension
is orthogonal to our goals so we chose to keep our model simple. We believe that
our results extend naturally to the infinite setting, we plan to investigate this in
the future.

3. GAMES AND STRATEGIES

In this section we define two player games on deterministically labelled processes.
One game is defined for each deterministically labelled process. The two players
are called X and Y . The moves in the game are labels and pairs of labels. Moves
represent an action being taken by the process. The player X controls all the
unprotected actions, and the player Y is in charge of all the top level actions within
the protected subprocesses. This makes it possible to represent the independent
resolution of the two kinds of choice, by carefully defining the appropriate strategies
for these games. A strategy is for one player and determines the moves the player
will choose within the game. Games and strategies are both made up of valid
positions, discussed in the next section.

3.1 Valid Positions

Valid positions are defined on a process and represent valid plays or executions
for that process, with player X moving first. Every valid position is a string of
moves (labels or pairs of labels from the process), each of which is assigned to a
player X or Y , with player X moving first. The set of all valid positions for a pro-
cess represents all possible executions of the process, including partial, unfinished
executions.

Definition 3.1. A move is anything of the form lX , lY , (l, j)X , or (l, j)Y where
l, and j are labels. lX and (l, j)X are called X-moves and lY and (l, j)Y are called
Y -moves.

To define valid positions, we must define an extension of the transition relation.

Definition 3.2. This extends the transition relation to multiple transitions, ig-
noring the actions for the transitions but keeping track of the labels.

(1) For any process P , P −−→
ε
P .

(2) If P
α

−−→
s

P ′ and P ′ −−→
s′

P ′′ then P −−−→
s.s′

P ′′.

Now we define valid positions.

Definition 3.3. If P −−→
s

P ′ then every prefix of s (including s) is a valid

position for P .

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 9

In order for the set of valid positions to be prefix closed, we must explicitly include
prefixes in the definition because of the SWITCH rule. For example, for the process
l : {j : τ}, the set of valid positions is {ε, lX , lX .jY }, but if the condition about
prefixes were not included in the definition of valid positions, lX would not be a
valid position, because the process does not have any transition with this label
alone.

Example 3.4. Consider the process

P = (νb)
(

l1 :{k1 :τ . l2 :a . l3 :b+ k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)
)

.

Here are some of the valid positions for P :

l1X .k1Y .l2X .(l3, l4)X .l5X

l1X .k1Y .l2X .(l3, l4)X .l6X

l1X .k2Y .l2X .(l3, l4)X .l5X

l1X .k2Y .l2X .(l3, l4)X .l6X

The prefixes of these valid positions are also valid positions.

It is easy to see that the valid positions form a tree structure. The tree of valid
positions will be our game tree, on which we will eventually define strategies and
plays of the game.

Definition 3.5. Let V be the set of valid positions for process P . The game
tree for P is a tree where the nodes are the valid positions for P and the edges are
moves. Specifically, the root of the game tree is ε, and for a node s, the children of
s are all valid positions of the form s.m.

Now, for notational convenience, we define the set of children of a valid posi-
tion.

Definition 3.6. Let V be the set of valid positions for a process. For s ∈ V ,
we define ChV (s) = {s′ ∈ V | s′ = s.m for some move m}. If the set V is clear,
we will use the notation Ch(s).

We also define a partial function Pl : V −→ {X,Y }, the player whose turn it is at
V .

Definition 3.7. Let V be the set of valid positions for a process. For s ∈ V ,
Z ∈ {X,Y }, Pl(s) = Z if and only if there is some s′ ∈ Ch(s) such that s′ = s.lZ .
If Pl(s) = Z, we say that s belongs to Z.

Note that a position can belong to at most one player, since a process never has
both X and Y moves enabled at the same time. Furthermore, the leaves of the
tree, where the process is blocked, do not belong to either player.

Example 3.8. Here is the game tree for
P = (νb)

(

l1 :{k1 :τ . l2 :a . l3 :b+ k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)
)

.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

10 · Chatzikokolakis et al.

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

The node in bold belongs to Y ; all the other nodes except the leaves, which belong
to neither player, belong to X. At each level, we write only the last move in the
valid position to save space. For example, the bottom left node actually represents
the valid position l1X .k1Y .l2X .(l3, l4)X .l5X .

3.2 Strategies

A strategy for a certain player is a special subtree of the game tree. The idea behind
a strategy is that it tells a player what move to make whenever it is his turn. We will
only consider deterministic, complete strategies (also called functional strategies):
strategies that tell the player of the strategy exactly one move to make at any
possible execution of the game.

From now on, when we use m without a subscript to denote a move, it will mean a
move including its player: a move of the form lX , (l1, l2)X , lY , or (l1, l2)Y . When
we use mX , mY , or mZ to denote a move, it means a move with the specified
subscript, where Z represents X or Y .

Definition 3.9. Let Z stand for either X or Y , and let Z̄ stand for the opposite
player. In the game for P , a strategy for Z is a subtree T of the game tree for P
meeting the following three conditions:

(1) ε ∈ T

(2) If s ∈ T and Pl(s) = Z, then exactly one of the children of s is in T .

(3) If s ∈ T and Pl(s) = Z̄, then Ch(s) ⊆ T .

So, a strategy for player Z is a tree where whenever it is Z’s turn, all but one
of the children has been pruned, but whenever it is the other player’s turn all
continuations are included. Thus, Z can respond to any possible move of Z̄, and Z
will always have exactly one move available when it is his turn.

Example 3.10. For
P = (νb)

(

l1 :{k1 :τ . l2 :a . l3 :b+ k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)
)

,the boxed nodes
show a subtree which is a strategy for X:

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 11

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

Here, the circled nodes show a strategy for Y :

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

Here is a non-strategy for X:

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

12 · Chatzikokolakis et al.

This is not a strategy for X because it contains l1X and Pl(l1X) = Y but it does
not contain all the children of this position.

Here is an example of something that is not a strategy for Y :

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

This is not a Y -strategy for two reasons. First, since Pl(l1X) = Y , this node must
have exactly one child. Second, no strategy can ever exclude all the children of any
node; at least one child of every node that is not a leaf must be included in the
strategy.

3.3 Execution of Processes According to Strategies

In this section we define the execution of a process with two strategies- one for each
player.

Proposition 3.11. In the game for some process P , if S1 is a strategy for X
and S2 is a strategy for Y , then S1 ∩ S2 = {ε,m1,m1.m2, ...m1.m2...mk} for some
moves m1, ...,mk, and the valid position m1.m2...mk is a leaf in the game tree for
P .

Proof. First, ε ∈ S1 ∩ S2 because every strategy contains ε.

Now we will show that for every valid position t ∈ S1 ∩ S2, either t is a leaf in the
game tree for P or there is exactly one move m such that t.m ∈ S1 ∩ S2. This is
true because if t is not a leaf, then t belongs either to X or to Y . If Pl(t) = X ,
then by definition of X-strategy, exactly one of the children of t is in S1, and by
definition of Y -strategy, all of the children of t are in S2, so t has exactly one child
in S1 ∩ S2. Similarly, if Pl(t) = Y , then all the children of t are in S1 and t has
exactly one child in S2, so t has exactly one child in S1 ∩ S2.

Since ε ∈ S1 ∩ S2, and every non-leaf element of S1 ∩ S2 has exactly one child in
S1 ∩ S2 and the game tree for P is finite, S1 ∩ S2 must be of the form
{ε,m1,m1.m2, ...m1.m2...mk}, and m1.m2...mk must be a leaf in the game tree for
S1 ∩ S2, since it has no child in S1 ∩ S2.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 13

Definition 3.12. Define the execution of a process P with X-strategy S1 and
Y -strategy S2 as follows: Let s be the deepest (leaf) element in the subtree S1 ∩S2.
The execution of P according to S1 and S2 is the sequence of processes P, P1, ..., Pn

such that s = s1s2...sn where each si is either a single X move of an X move
followed by a Y move, and

P
α1−−−→
s1

P1
α2−−−→
s2

P2
α3−−−→
s3

...
αn−1

−−−−→
sn−1

Pn−1
αn−−−→
sn

Pn

for some α1, ..., αn. This represents the sequence of moves that will be chosen and
processes that will be reached if labels are chosen according to the strategies S1 and
S2.

We already proved that S1 ∩ S2 is of the form {ε,m1,m1.m2, ...,m1.m2...mk}: ex-
actly one entire branch in the game tree. Thus, there is a unique maximal element,
and it defines the execution of P with S1 and S2.

Example 3.13. For the process discussed above,

P = (νb)
(

l1 :{k1 :τ . l2 :a . l3 :b + k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)
)

we will show the execution corresponding to the following pair of strategies, S1 the
X-strategy on the left, S2 the Y -strategy in the middle, and the intersection on the
right:

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

The maximal element of S1∩S2 is the position l1X .k2Y .l2X .(l3, l4)X .l6X . This gives
the execution

(νb)
(

l1 :{k1 :τ . l2 :a . l3 :b+ k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)
) τ
−−−−−−→
l1X .k2Y

(νb)
(

(l2 :c . l3 :b) | l4 : b̄ . (l5 :d+ l6 :e)
) c
−−−→
l2X

(νb)
(

l3 :b | l4 : b̄ . (l5 :d+ l6 :e)
)

τ
−−−−−−→
(l3, l4)X

(νb) (l5 :d+ l6 :e)
e

−−−→
l6X

0

This example shows why, in the definition of the execution, we set s = s1s2...sn
where each si is either a single X move of an X move followed by a Y move.
In the first step of the execution, l1X and k2Y together define one transition for

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

14 · Chatzikokolakis et al.

the process. Neither a switch move nor a Y -move alone gives a process transition
according to the operational semantics; the two must be combined to produce a single
transition.

3.4 Epistemic Restrictions on Strategies

Now that we have shown how properly specified strategies determine the execu-
tion of a process, we can consider epistemic restrictions on strategies, representing
agents’ actions when their knowledge is limited. In general, we impose epistemic
conditions on strategies first by determining what knowledge is appropriate for
each agent, that is, which sets of executions should be indistinguishable for him,
in the form of an equivalence relation on valid positions. Once the correct notion
of the agent’s knowledge is determined, we can define strategies that respect that
condition.

Definition 3.14. Given an equivalence relation E ⊆ V × V , we say that a
strategy T respects E for player Z if for all s1, s2 ∈ T , if (s1, s2) ∈ E and Pl(s1) =
Pl(s2) = Z, then for every move m, s1.m ∈ T if and only if s2.m ∈ T . We call
this an epistemic restriction.

In other words, Z must choose the same move whether s1 or s2 describes the
execution of the process so far, because it does not know whether s1 or s2 has
occurred- they are indistinguishable for him. Note that we quantify only over the
player’s own positions; all children of the other player’s positions must be in the
strategy, as always.

For example, we could require that an agent only have knowledge of his own past
moves, or only know what moves are currently available to him, or only remember
his past three moves. In order to formalize these epistemic restrictions on strategies,
we need the following subsidiary definitions:

Definition 3.15. Let V denote the set of valid positions for a process P . If s
is a valid position for P , enabled(s, V) represents the set of moves available after
s: define enabled(s, V) = {m | s.m ∈ V }. We use enabled(s) where V is clear
from the context. Also define the X and Y moves available after s as, respectively,
enabledX(s) = {mX | s.mX ∈ V } and enabledY (s) = {mY | s.mY ∈ V }.

Definition 3.16. If s is a valid position for P and Z is a player, let Z̄ denote
the other player. We define Z(s), the string of Z moves in s, inductively as follows:

(1) Z(ε) = ε.

(2) Z(s.mZ) = Z(s).mZ .

(3) Z(s.mZ̄) = Z(s).

Now we can formally define the epistemic restriction for an agent only remembering
his own past moves. In this case, it is useful to define an equivalence relation for
each agent.

Definition 3.17. We will define the equivalence relation HZ as HZ = {(s1, s2) | Z(s1) =
Z(s2)}.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 15

In a strategy that respects this condition for its player, the player responds the same
way no matter what the other player does, because it does not have knowledge of
the other player’s actions.

Example 3.18. In the following process, for readability, we replace labels with
superscript numbers preceding actions: 1a.P represents l1 : a . P . As a simple ex-
ample, consider the process

P = 1{ 3τ + 4τ} + 2{ 3τ + 4τ}

the Y -strategy on the left respects HY , but the Y -strategy on the right does not:

ε

l2X

l4Yl3Y

l1X

l4Yl3Y

ε

l2X

l4Yl3Y

l1X

l4Yl3Y

The second strategy does not respect HY because Y (l1X) = Y (l2X) = ε, so (l1X , l2X) ∈
HY , and both these positions are in the strategy and belong to Y , so they should be
indistinguishable to Y and have the same continuation, but they do not.

Note that in for some equivalence relations, for certain processes there are no strate-
gies respecting the equivalence relation. This occurs if there are two indistinguish-
able positions that do not have any enabled moves in common. Here is a simple
example of a process where no X-strategy respects HX , the equivalence based on
X ’s past actions.

Example 3.19. For the process 0{ 1τ . (3a +4 b) +2 τ . 5a}, with the game tree
below, there is no X-strategy respecting HX . Any X-strategy must contain the
boxed nodes by definition, since it must contain exactly one child of every X posi-
tion and all children of every Y position. But X(l0X .l1Y) = X(l0X .l2Y) = l0X , so
(l0X .l1Y , l0X .l2Y) ∈ HX and these two positions must contain the same continua-
tions in the strategy. However, enabled(l0X.l1Y) ∩ enabled(l0X.l2Y) = ∅, so there
is no possible strategy respecting this epistemic restriction.

ε

l0X

l2Y

l5X

l1Y

l4Xl3X

Although some epistemic restrictions cannot be respected on certain processes, some
epistemic restrictions can be respected on any process. For equivalence relation E,
if (s1, s2) ∈ E −→ enabled(s1) = enabled(s2), then it is evident that for any process
there is a strategy respecting E.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

16 · Chatzikokolakis et al.

Example 3.20. We can require that an agent only know what moves are cur-
rently available to him. We will call this equivalence relation AvZ : (s1, s2) ∈ AvZ ⇔
enabledZ(s1) = enabledZ(s2). As discussed above, for any process it will be possible
to find a strategy that respects this condition.

We now single out a very important epistemic restriction, called introspection.
An introspective strategy allows a player to “remember” not only his own history
of moves, but also the moves that were available to him at every point in the
past, including the current step. Introspective strategies are important because
they exactly capture the intended independence requirement for the protection
operator.

Definition 3.21. For player Z, positions s1 and s2 are called introspectively
Z-equivalent, denoted (s1, s2) ∈ IZ , if they satisfy the following conditions:

(1) Pl(s1) = Pl(s2) = Z

(2) Z(s1) = Z(s2)

(3) enabledZ(s1) = enabledZ(s2).

(4) For all prefixes s′1 of s1 and s′2 of s2, if Pl(s
′
1) = Pl(s′2) = Z and Z(s′1) =

Z(s′2), then enabledZ(s
′
1) = enabledZ(s

′
2).

In this definition, two positions are indistinguishable if the player made the same
series of moves to arrive at both positions, and at any point in the past where it
had made a certain series of moves in both positions and had moves available, it
had the same set of moves available in both positions.

The introspection condition corresponds to perfect recall of the moves that an
agent made as well as the moves that it could have made but did not. However,
it is not aware of opponent moves except insofar as such moves determine its own
choices. One can imagine restrictions where an agent has only the ability to recall
a bounded amount of its past history, but these type of restrictions are not relevant
to the particular situation in which we are interested.

For the rest of this section, we will only discuss the introspective equivalence condi-
tion, so when we say that two positions are indistinguishable for Z, we mean that
the are introspectively Z-equivalent.

Definition 3.22. Given a process P , and S a strategy for player Z on P , S is
introspective if it respects the introspection equivalence relation for Z.

In other words, the player chooses the move it makes at each step based on his
past moves, the moves that are available to him, and the moves that were available
to him at each point in the past. If these conditions are all the same at two
positions, the player cannot distinguish them, so it makes the same move at both
positions.

Example 3.23. For

P = (νb)
(

l1 :{k1 :τ . l2 :a . l3 :b + k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)
)

the strategy given above for X,

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 17

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

is not introspective. This is because in order to satisfy the introspection condi-
tion, l1X .k1Y .l2X .(l3, l4)X and l1X .k2Y .l2X .(l3, l4)X should have the same moves
appended to them in S, since they are X indistinguishable. However,
l1X .k1Y .l2X .(l3, l4)X .l5X ∈ S and l1X .k2Y .l2X .(l3, l4)X .l5X 6∈ S, and similarly,
l1X .k2Y .l2X .(l3, l4)X .l6X ∈ S and l1X .k2Y .l2X .(l3, l4)X .l5X 6∈ S.

An example of an introspective strategy for X is this:

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

Here is an example showing why the prefixes of the valid positions are discussed in
the definition of introspective. For readability, labels are replaced with superscript
numbers preceding actions: 1a.P represents l1 :a . P .

Example 3.24. Consider

P = 0{ 1τ .(3c .(6f + 7g) + 4d) + 2τ .(3c .(6f + 7g) + 5e)}.

Let X’s strategy be the boxed nodes:

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

18 · Chatzikokolakis et al.

ε

l0X

l1Y

l3X

l6X l7X

l4X

l2Y

l3X

l6X l7X

l5X

This strategy is introspective. Even though X(l0X .l1Y .l3X) = X(l0X .l2Y .l3X) and
enabledX(l0X .l1Y .l3X) = enabledX(l0X .l2Y .l3X), it is acceptable that the two strings
have different moves appended to them, because enabledX(l0X .l1Y) = {l3X , l4X}
and enabledX(l0X .l2Y) = {l3X , l5X}. This can be thought of as X being able to
distinguish between the two positions l0X .l1Y .l3X and l0X .l2Y .l3X because it remem-
bers what moves were available to him earlier and is able to use this information to
tell apart the two positions.

The essence of the introspection condition is that a player knows what moves it has
made in the past and knows what moves, if any, were available to it at each point
in the past, but cannot see any moves that its opponent has made. Thus, each
player must choose its moves based solely on its own past moves, the past moves
that were available to it, and the moves available to it now.

4. CORRESPONDENCE BETWEEN STRATEGIES AND SCHEDULERS

In this section, we first review the syntactic schedulers defined in [Chatzikokolakis
and Palamidessi 2010] and then prove that introspective strategies correspond ex-
actly to these schedulers. This result is important because these schedulers are
defined purely syntactically, without any explicit reference to knowledge or equiva-
lence between executions. Since the players’ knowledge is explicit in the definition
of introspective strategies, this equivalence explains the knowledge requirements
underlying the syntactic schedulers, which had not been discussed before.

4.1 Background on Schedulers

The process calculus with schedulers uses the syntax for processes discussed above,
with the protection operator, but also adds a new ingredient: explicit syntax for
a pair of independent schedulers. The schedulers use labels, rather than actions,
to interact with a process, making it possible to use labels to control a scheduler’s
“view” of a process. The schedulers choose a sequence of labels, to execute actions,
or pairs of labels, to synchronize processes, and also can check whether a label
or synchronization is available, using an if... then... else... construct. The two
schedulers operate independently and do not communicate with one another, and
each scheduler controls certain choices in the process. This makes it possible to

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 19

represent independent choices in the process calculus. A complete process is an
ordinary process augmented with a pair of schedulers. In this section, we also add
the notion of general labels, either a single ordinary label or a pair of ordinary labels.
This convention is useful because an ordinary label and a pair of synchronizing
ordinary labels both represent a single action by a scheduler. We let l and k
represent ordinary labels and L andK represent general labels. The notations σ(L),
σ(l), and σ(l, k) are used to designate a choice made by a scheduler: σ(l) means
a single action will be executed, σ(l, k) means that the scheduler will synchronize
two actions, and σ(L) can represent either of these cases. We let a and b represent
actions, ā and b̄ co-actions, τ the silent action, α and β generic actions, co-actions,
or silent action, P and Q processes, and ρ and η schedulers. The syntax for a
complete process is as follows:

P,Q ::= l : α.P | P |Q | P +Q | (νa)P | l : {P} | 0

L ::= l | (l, k)

ρ, η ::= σ(L).ρ | if L then ρ else η | 0

CP ::= P ‖ ρ, η

The first scheduler is called the primary scheduler and the second scheduler is the
secondary scheduler. The rules for the operational semantics of the process calculus

ACT
l : α.P ‖σ(l).ρ, η

α
−−−→
lX

P ‖ ρ, η

RES
P ‖ ρ, η

α
−−→
s

P ′ ‖ ρ′, η′ α 6= a, ā

(νa)P ‖ ρ, η
α

−−→
s

(νa)P ′ ‖ ρ′, η′

SUM1
P ‖ ρ, η

α
−−→
s

P ′ ‖ ρ′, η′ ρ 6= if L then ρ1 else ρ2

P +Q ‖ ρ, η
α

−−→
s

P ′ ‖ ρ′, η′

PAR1
P ‖ ρ, η

α
−−→
s

P ′ ‖ ρ′, η′ ρ 6= if L then ρ1 else ρ2

P |Q ‖ ρ, η
α

−−→
s

P ′|Q ‖ ρ′, η′

SWITCH

P ‖ η, 0
τ

−−−→
jX

P ′||η′, 0

l : {P} ‖σ(l).ρ, η
τ

−−−−−→
lX .jY

P ′ ‖ ρ, η′

COM

P ‖σ(l).0, 0
a

−−−→
lX

P ′ ‖ 0, 0 Q ‖σ(j).0, 0
ā

−−−→
jX

Q′ ‖ 0, 0

P |Q‖σ(l, j).ρ, η
τ

−−−−−−→
(l, j)X

P ′|Q′ ‖ ρ, η

IF1

P ‖ ρ1, η
α

−−→
s

P ′ ‖ ρ′1, η
′ P ‖ σ(L).0, θ

β
−−→
s′

P ′′ ‖ 0, θ′ for some scheduler θ

P ‖ if L then ρ1 else ρ2, η
α

−−→
s

P ′ ‖ ρ′1, η
′

IF2
P ‖ ρ2, η

α
−−→
s

P ′ ‖ ρ′2, η
′ P ‖ σ(L).0, θ 6−→ for all schedulers θ

P ‖ if L then ρ1 else ρ2, η
α

−−→
s

P ′ ‖ ρ′2, η
′

Fig. 2. Operational semantics for processes with schedulers

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

20 · Chatzikokolakis et al.

with schedulers are in Fig. 2. Using the if then else construct (rules IF1, IF2),
the scheduler can check whether a move is available and choose what to do based
on that information. The SWITCH rule says that the curly brackets indicate a
point where the secondary scheduler makes the next choice. After making this
choice, control reverts to the primary scheduler. The choice made by the secondary
scheduler must result in a τ observation because the process is encapsulated and
cannot interact with the environment at this point. Of course, once control reverts
to the primary scheduler, interactions with the external environment can indeed
take place. The order in which the schedulers are written indicates which one is
to be regarded as primary. In the rules SUM1 and PAR1, we require that the
primary scheduler not be of the form if L then ρ1 else ρ2 because the if then

else construct allows a scheduler to check whether a label is available. Thus, the
behaviour of a process P with primary scheduler if L then ρ1 else ρ2 may be
different than the behaviour of process P +Q with the same scheduler if the label
L is available in process Q. The same condition applies to PAR1. The rules IF1 and
IF2 check whether a process can execute any transition with the one step primary
scheduler σ(L) and any secondary scheduler. If there is any transition that can
occur for this complete process, then the first branch of the primary scheduler is
activated, otherwise, the second branch occurs.

Clearly, if a process is blocked, then no transition is possible with any schedulers.
On the other hand, it is possible for a process that is not blocked to have no
transitions available with certain schedulers. For example, the process l : a is not
blocked, but no transitions are available for the complete process l : a ‖ σ(j), 0.
Thus, it is useful to define the notion of a pair of schedulers being nonblocking for
a certain process.

Definition 4.1. For a process P which is not blocked, a pair of schedulers ρ, η
are inductively defined as nonblocking if P ‖ ρ, η

α
−−→ P ′ ‖ ρ′, η′ for some α, P ′, ρ′,

and η′, and if P is not blocked, then ρ′ and η′ are non-blocking for P ′.

Since we consider only finite processes, this inductive definition characterizes all
nonblocking scheduler pairs for processes that are not blocked.

We have defined a nonblocking scheduler pair as, essentially, a pair of schedulers
that choose a move for the process whenever one is available. Now we define the
concept of a single scheduler being nonblocking. We would like to say that a single
primary or secondary scheduler for a process is nonblocking if it can be paired with
any nonblocking secondary or primary scheduler (respectively) for the process and
not cause the process to be blocked. Obviously, this would be a circular definition,
so we define nonblocking first inductively for a secondary scheduler, and then for a
primary scheduler, with reference to nonblocking secondary schedulers.

Definition 4.2. If P is a deterministically labelled process and is not blocked,
then a scheduler η is a nonblocking secondary scheduler for P if for every general
label L such that for some η1,

P ‖ σ(L), η1
α

−−→
s

P ′ ‖ 0, η′1

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 21

(for some α, s, P ′, and η′1), then

P ‖ σ(L), η
β

−−→
s′

P ′′ ‖ 0, η′

(for some β, s′, P ′′ and η′), and if P ′′ is not blocked, η′ is a nonblocking secondary
scheduler for P ′′.

If P is blocked, then any secondary scheduler is defined to be nonblocking.

First, note that this is a complete inductive definition because we only consider
finite processes, so any process will be blocked after some finite number of steps.
The meaning of this definition is the following: if there is a label that can be chosen
by the primary scheduler and execute an action in conjunction with some arbitrary
secondary scheduler, then a nonblocking secondary scheduler must also be able
to execute an action in conjunction with the primary scheduler that chooses this
label.

For a blocked process, all schedulers are considered to be nonblocking because it
is not the scheduler that is preventing an action from occurring, but the process
itself, so the scheduler is nonblocking.

Definition 4.3. If P is a deterministically labelled process that is not blocked,
then primary scheduler ρ is primary nonblocking if for any nonblocking secondary
scheduler η,

P ‖ ρ, η
α

−−→
s

P ′ ‖ ρ′, η′

(for some α, s, P ′, ρ′, η′) and if P ′ is not blocked, then ρ′ is a nonblocking primary
scheduler for P ′.

In other words, a primary scheduler is one that will schedule an action for the
process no matter what nonblocking secondary scheduler it is paired with.

4.2 Correspondence Theorem

The main correspondence theorem can now be stated.

Theorem 4.4. Given a deterministically labelled process P , a nonblocking pri-
mary scheduler ρ for P , and a nonblocking secondary scheduler η for P , there is
an introspective X strategy S depending only on P and ρ, and an introspective Y
strategy T depending only on P and η, such that the execution of P ‖ ρ, η is identical
to the execution of P with S and T .

Furthermore, given a deterministically labelled process P , an introspective X strat-
egy S for P , and an introspective Y strategy T for P , there is a nonblocking primary
scheduler ρ depending only on S and P and a nonblocking secondary scheduler η
depending only on T and P such that the execution of P with S and T is identical
to the execution of P ‖ ρ, η.

Before we discuss the proof we make some observations on the quantifier struc-
ture of the statement of the theorem. One could imagine stating the first part as

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

22 · Chatzikokolakis et al.

follows:

∀P, ρ∃S s.t. ∀η∃T . . .

This is apparently stronger and certainly clearer than the original version which
uses the clumsy phrase “depending only on...” However, this is not the case; it
is actually weaker. The “new improved” version allows T to depend on ρ, which
the version stated in the theorem does not allow. There is in fact a formal logic
called “Independence Friendly” (IF) logic which allows quantifiers to be introduced
with independence statements; this is just what the version in the statement of the
theorem does, without, of course, dragging in all the formal apparatus of IF logic. In
fact, it can be proved that there are statements of IF logic than cannot be rendered
in ordinary first-order logic; the statement of the theorem is an example.

In order to prove the theorem we need this definition:

Definition 4.5. A move l in process P is called a switch move if it chooses a
label of the form l : {P ′} in P . Otherwise, it is called an ordinary move.

Proof. There are several steps involved in the proof, so we begin by providing
an outline.

(1) We prove that every scheduler has an equivalent introspective strategy, in
the following way

(a) We provide a translation from a scheduler to a strategy

(b) We prove that the translation does indeed yield a strategy

(c) We prove that the strategy is equivalent to the scheduler

(d) We prove that the strategy is introspective

(2) We prove that every introspective strategy has an equivalent scheduler in
the following steps

(a) We provide a translation from a strategy to a scheduler

(b) We prove that the scheduler is equivalent to the strategy

(c) We prove that the translation yields a nonblocking scheduler

Translation from a scheduler to a strategy

We will give a procedure that takes a scheduler and returns a strategy. It is an
inductive procedure so it also has an argument keeping track of where it is in
the tree of valid positions. Thus, for scheduler ρ, Strat(ρ, ε) is the corresponding
strategy.

Note that the translation only works with respect to a specific process. It must
take the tree of valid positions into consideration. Z stands for X if it is a primary
scheduler and Y if it is a secondary scheduler. Let sZ denote the position s where
Pl(s) = Z, and let sZ̄ be the position s where Pl(s) = Z̄, and sl denote the position

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 23

s where s is a leaf.

Strat(σ(l).ρ, sZ) = {sZ} ∪ Strat(ρ, sZ .lZ)

Strat(if l then ρ1 else ρ2, sZ) =

{

Strat(ρ1, sZ) if sZ .lZ ∈ Ch(sZ)
Strat(ρ2, sZ) otherwise

Strat(ρ, sZ̄) = {sZ̄} ∪
⋃

s′∈Ch(sZ̄)

Strat(ρ, s′)

Strat(ρ, sl) = {sl}

The case for Strat(0, sZ) is not defined because we assume nonblocking schedulers,
so they will always schedule an action when it is Z’s turn, and therefore the sched-
uler 0 cannot occur at a position belonging to Z.

Now, note that s ∈ Strat(ρ, s), for any ρ and any s. This is true because the only
case where s is not specifically added to the strategy is Strat(if l then ρ1 else ρ2, sZ).
But this is equal to either Strat(ρ1, sZ) or Strat(ρ2, sZ), so eventually sZ will be
added to the strategy.

Proof that the translation yields a strategy

In order to prove that this translation yields a strategy, we must check that for any
nonblocking scheduler ρ, Strat(ρ, ε) contains ε, contains exactly one child of every Z
position in Strat(ρ, ε) and contains every child of any Z̄ position in Strat(ρ, ε). We
already showed that Strat(ρ, ε) contains ε. And every time the algorithm encoun-
ters a Z̄ position, it adds all its children to the strategy, since it adds Strat(ρ, s′)
to the strategy for each child s′, and s′ ∈ Strat(ρ, s′). Finally, every time the
translation encounters a Z position, it adds the strategy for exactly one child of
this position and the corresponding subscheduler. Thus, this child will be added to
the strategy, and there is no way for any other child of this position to be added to
the strategy.

Proof that the strategy is equivalent to the scheduler

Now we show that the strategy given by the translation is equivalent to the sched-
uler, in the sense that given process P , if S is the translation of ρ and T is the
translation of η, then the execution of P with S and T is identical to the execution
of P ‖ ρ, η. Since we have shown that the procedure does indeed produce a strategy,
it is straightforward to see that it is correct. At any position where it is Z’s turn,
the function has two choices: first, it can go to the child in the game tree which is
required by the scheduler, meaning that this position will be added to the strategy
at the next step. The other option is testing an if statement and applying the
proper sub scheduler at the current position in the game tree. Since the schedulers
and game trees are finite, it is clear that this gives the correct strategy in the end.

Proof that the strategy is introspective

Assume that (s1, s2) ∈ IZ , and s1 and s2 are in Strat(ρ, ε). We will prove that
s1.m ∈ Strat(ρ, ε) if and only if s2.m ∈ Strat(ρ, ε). We must also prove by in-
duction on the number of Z-moves in s1 that in calculating Strat(ρ, ε), for all
schedulers ρ′, Strat(ρ′, s1) will be reached as a subcase of the recursive definition

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

24 · Chatzikokolakis et al.

of Strat(ρ, ε) iff Strat(ρ′, s2) be reached as a subcase of the recursive definition of
Strat(ρ, ε).

Base Case: s1 has 0 Z-moves. So s1 is a string of 0 or more Z̄-moves, and s2
must also be a string of 0 or more Z̄-moves. It is easy to see that Strat(ρ, s1)
and Strat(ρ, s2) will both be called, since Strat(ρ, sZ̄) just calls Strat(ρ, s′) for
children of sZ̄ , without changing ρ, until Strat(ρ, s1) and Strat(ρ, s2) are both
added to the strategy. At this point, if ρ is of the form σ(l).ρ′, then Strat(ρ′, s1.lZ)
and Strat(ρ′, s2.lZ) will be called. On the other hand, ρ could be of the form
if l then ρ1 else ρ2. But we know that (s1, s2) ∈ IZ , so s1.lz ∈ Ch(s1) iff s2.lZ ∈
Ch(s2). Thus, for ρi either ρ1 or ρ2, Strat(ρi, s1) will be called iff Strat(ρi, s2) is
called. Furthermore, this will be repeated until the function has gone through all
the “if ... then ... else ...” statements, and reached a scheduler of the form σ(l).ρ′,
and the same scheduler will always be called for both s1 and s2.

Induction Step: s1 has n Z-moves, and therefore s2 also has n Z-moves. Thus,
s1 = s′1.t1, and s2 = s′2.t2, where (s′1, s

′
2) ∈ IZ and t1 and t2 are both strings of 0

or more Z̄ moves. So, by the induction hypothesis, s′1 and s′2 were added to the
strategy by the recursive definition Strat eventually reaching two subcases of the
form Strat(ρ′, s′1) and Strat(ρ

′, s′2) for the same sub scheduler ρ′. After this point,
the same thing occurs as in the induction hypothesis when the positions belong
to Z̄, and the recursive definition eventually reaches the point Strat(ρ′, s1) and
Strat(ρ′, s2) and as in the base case, the same move must be added to the strategy
as a continuation of both s1 and s2. Thus, after any two introspectively equivalent
positions, the same move is added, so the strategy is introspective.

Translation from a strategy to a scheduler

Now we give a procedure to get a scheduler corresponding to an introspective strat-
egy. Let P be a deterministically labelled process, S a strategy for player Z, and
V the set of valid positions for P .

First we introduce a new piece notation in schedulers which is an encoding of a
more complicated scheduler term.

Consider the set of all labels in process P , l1, ..., lk. We want to encode an “if”
statement that checks whether exactly a certain subset of moves is enabled, and no
others. Logically, we want to encode a statement along the lines of “If (

∧

i∈I li ∧
∧

i6∈I ¬li) then ρ1 else ρ2.”

First note that we can encode “If (l1 ∧ l2) then ρ1 else ρ2” as
If l1 then (If l2 then ρ1 else ρ2) else ρ2. It is easy to see that the second scheduler
is equivalent to the intuitive meaning of the first one.

Similarly, we can encode “If ¬l then ρ1 else ρ2” as
If l then ρ2 else ρ1.

Finally, we can encode “If l1∧¬l2 then ρ1 else ρ2” as if l1 then (if l2 then ρ2 else ρ1) else ρ2.
We can combine an arbitrary number of conjunctions of labels and negations of la-
bels in the same way.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 25

If the set of labels for a process is L, we will use the notation if = L1 then ρ1 else ρ2
for the scheduler that executes ρ1 if exactly the set of moves L1 is enabled, and
none of the moves in L\L1 are enabled, and executes ρ2 otherwise.

Now we can give the procedure for translating a strategy to a scheduler. The idea
is, roughly, that for strategy S, we have a recursive function ρS that takes a set of
introspectively equivalent valid positions as its input and gives the scheduler corre-
sponding to the strategy’s behavior on that set of valid positions. Then ρS({ε} will
be the scheduler corresponding to the strategy’s behavior starting from beginning
of the process. We need several subsidiary definitions in order to give the function.

Definition 4.6. For R ⊆ V , define

extZ(R) = {r.s ∈ V | r ∈ R,Z(s) = ε and Pl(r.s) = Z}.

This is the set of descendants of elements of R that are the first descendants where
it is Z’s turn. This function is useful because the scheduler only acts when it is Z’s
turn, so it allows us to skip forward to the next part of the strategy where we will
have to define the corresponding scheduler.

Definition 4.7. extZ(R)/IZ is the quotient of extZ(R) by the introspective
equivalence relation.

R will be a set of introspectively equivalent positions, but extZ(R) may extend
elements of R to positions that are in different equivalence classes. The sched-
uler can distinguish between these classes and can act differently on each class,
corresponding to the strategy.

Definition 4.8. If R is a set of introspectively equivalent valid positions, define
en(R) as enabled(s) where s ∈ R. Since all the positions in R are introspectively
equivalent, they all have the same set of enabled moves, so this definition is consis-
tent.

This definition will be used to allow the scheduler to distinguish between different
equivalence classes of valid positions at a certain point in the execution, using the
scheduler construction discussed above.

Definition 4.9. Let S be an introspective strategy for Z and let A be a set of
introspectively equivalent valid positions. If S∩A 6= ∅, definemvS(A) as the move m
such that s ∈ A and s.m ∈ S. This is a consistent definition since all introspectively
equivalent positions must be followed by the same move in an introspective strategy.

We use this definition to define the move that the scheduler schedules for a given
equivalence class.

We need one more piece of notation.

Definition 4.10. If R is a set of introspectively equivalent positions and m ∈
en(R), then define R ⊙m as {r.m | r ∈ R}. Note that if R ⊆ V and m ∈ en(R)
then R⊙m ⊆ V .

Finally, here is the recursive function SchS that turns a strategy S into a scheduler,
SchS({ε}).

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

26 · Chatzikokolakis et al.

SchS(R) =

0 If extz(R) = ∅
if = en(R1) then σ(mv(R1)).SchS(R1 ⊙mv(R1)) else
if = en(R2) then σ(mv(R2)).SchS(R2 ⊙mv(R2)) else
...
if = en(Rk−1) then σ(mv(Rk−1)).SchS(Rk−1 ⊙mv(Rk−1))
else σ(mv(Rk)).SchS(Rk ⊙mv(Rk)) Otherwise

where extZ(R)/IZ = {R1, R2, ..., Rk}

Proof that the scheduler is equivalent to the strategy

A formal proof of the correctness would be tedious, so we just provide an argument in
words. We must show that the execution of the process P with any X-strategy S and any
Y -strategy T is the same as the execution of P ‖SchS({ε}), SchT ({ε}).

First, note that when we start out with SchS({ε}), any time there is a recursive call to
the function SchS(R), R will be a set of introspectively equivalent valid positions. This
would be easy to prove by induction, since in the case where there are recursive calls to
the SchS function, it is always after quotienting the set extZ(R) by IZ , the introspective
equivalence relation, and the argument to the function is an equivalence class.

The scheduler is correct because at each step, the function takes all the continuations of
all the elements of the equivalence class where it was last Z’s turn. This set is divided into
equivalence classes based on the introspective equivalence relation. For each equivalence
class R, we add an if clause to the scheduler, so that this clause will only be true in
the equivalence class R and not in any other equivalence class. Inside each if clause,
the correct move according to the strategy is scheduled (σ(mv(R))) and then the correct
scheduler is recursively computed as the continuation after this move. On the other hand,
if extZ(R) = ∅, then the corresponding scheduler is 0, because this means there are no
continuations of any position in R where it is Z’s turn again. Thus, the scheduler should
not schedule any further actions.

Proof that the scheduler is nonblocking

Since we showed that the scheduler is equivalent to the strategy that it translates, and
we know that by definition the strategy provides a move in every possible situation, the
scheduler must in fact be nonblocking.

5. GAMES FOR PROCESSES WITH PROBABILISTIC CHOICE

In this section, we discuss labelled processes equipped with a probabilistic choice
operator and a single scheduler or player that resolves all nonprobabilistic choices.
In some ways, this situation is similar to the two-agent situation; the single nonde-
terministic agent interacts with the outcomes of probabilistic choices in much the
same way as it interacts with the outcome of choices made by the other player in the
two-player situation. On the other hand, the probabilistic choice cannot be said to
be resolved according to a strategy since it is, of course, resolved completely prob-
abilistically, according to the distributions built into the process definition.

We begin by giving background on probabilistic processes. Next, we discuss games,
strategies and epistemic restrictions for these processes. Finally, we prove that

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 27

these introspective strategies for processes with probabilistic choice are equivalent
to the schedulers for processes with probabilistic choice defined in Chatzikokolakis
and Palamidessi [2010].

5.1 Syntax and Semantics

The syntax of these processes is almost the same as the syntax of processes with
an independence operator. The only difference is that the brackets signifying an
independent choice are replaced with a labelled probabilistic choice operator.

P,Q ::= 0 | l : α.P | P +Q | l :
∑

i

li : piPi | P |Q | (νa)P

For a process of the form l :
∑

i li : piPi, we also require that
∑

i pi = 1.

The operational semantics for labelled processes with probabilistic choice, shown
in Fig. 3, is generally similar to the operational semantics without probability, but
with two significant changes. First, each transition between two processes now has
a probability assigned to it, in addition to an action and string of labels like in the
other operational semantics. Second, the SWITCH rule is replaced with the PROB
rule, representing probabilistic choice; the choice is resolved by the process doing
a silent transition to one of the subprocesses, with the probability indicated in the
original process. The other rules are straightforward analogues of the traditional
process algebra rules. Note that only a τ transition can have a probability other
than one. This is why in the COM rule we require that the transitions taken by P
and Q have probability one; in fact, this is the only possibility for these transitions.
In the strings of labels, a label can either have a subscript X , if it is not a label on
a branch of a probabilistic choice, or no added subscript, if it is a label on a branch
of a probabilistic choice.

ACT
l : α . P

α
−−−→
lX 1

P
PROB

l :
∑

i

li : piPi
τ

−−−−→
lX .li pi

Pi

SUM1

P
α

−−→
λ p

P ′

P +Q
α

−−→
λ p

P ′
PAR1

P
α

−−→
λ p

P ′

P |Q
α

−−→
λ p

P ′|Q

COM

P
a

−−−→
lX 1

P ′ Q
ā

−−−→
jX 1

Q′

P |Q
τ

−−−−−→
(l, j)X 1

P ′|Q′
RES

P
α

−−→
λ p

P ′ α 6= a, ā

(νa)P
α

−−→
λ p

(νa)P ′

Fig. 3. Operational semantics for processes with probabilistic choice

We will only consider deterministically labelled processes: processes where every
transition has a unique string of labels.

Definition 5.1. A probabilistic process P is deterministically labelled if for all
Q s.t. P−→∗Q the following conditions hold:

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

28 · Chatzikokolakis et al.

(1) if Q
α

−−→
s p1

Q′ and Q
β

−−→
s p2

Q′′ then α = β, p1 = p2, and Q
′ = Q′′.

(2) If Q
τ

−−−−→
lX .l′ p

Q′ then there is no transition Q
α

−−−→
lX

Q′′ for any α, p,Q′′.

Finally, since we are considering probabilities, we must discuss how they are com-
posed in transition sequences of process. To construct transition sequences, we as-
sume that the probabilities at every step are independent from one another. Thus,
the probability of a sequence of transitions is just the product of the probabilities
of each transition in the sequence. This is formalized below.

5.2 Games, Valid Positions and Strategies

In this section, we define games and strategies on probabilistic labelled processes.
The construction of games and strategies is similar to the two player construction,
since the player interacts with the probabilistic choices in a way similar to the way
the two players interact in the nonprobabilistic case.

5.2.1 Valid Positions. First we define the extension of the transition relation to
allow sequences of transitions, by concatenating the label strings and multiplying
the probabilities.

Definition 5.2. For any process P , P −−→
ε 1

P , and if P
α

−−→
s p1

P ′ and

P ′ −−→
s′ p2

P ′′, then P −−−→
s.s′ p1·p2

P ′′.

Now we define valid positions.

Definition 5.3. If P −−→
s p

P ′ then every prefix of s, including s, is a valid

position for P .

Now we define the game tree for P . Because of the combination of nondeterministic
and probabilistic choice in the tree, we do not define a probability measure on the
game tree. Instead, the game tree represents all possible executions, without taking
the probability of each execution into account. The probability measure on valid
positions is defined later with respect to a strategy that resolves the nondetermin-
istic choices.

Definition 5.4. Let V be the set of valid positions for probabilistic process P .
The game tree for P is a tree where the root is epsilon and the other nodes are the
other valid positions for P . For a node s, the children of s are all the positions of
the form s.m.

As in the nondeterministic case, we define the set of children of a valid posi-
tion.

Definition 5.5. Let V be the set of valid positions for a process. For s ∈ V ,
we define Ch(s) = {s′ ∈ V | s′ = s.m for some move m}.

We define the partial function Pl : V −→ {X, prob}, the function that says whether
at a valid position it is the player’s turn or a probabilistic choice point.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 29

Definition 5.6. Let V be the set of valid positions for a process. For s ∈ V ,
Pl(s) = X if and only if there is some s′ ∈ Ch(s) such that s′ = s.lX . Pl(s) = prob
if and only if there is some s′ ∈ Ch(s) and Pl(s) 6= X. If Pl(s) = X, we say that s
belongs to the player or is a player position, and if Pl(s) = prob we say that s is a
probabilistic position. The leaves in the game tree are neither player positions nor
probabilistic positions.

5.2.2 Strategies. Besides there only being one player, the definition of a strategy
and the restrictions on strategies are quite similar to the two player case. We recall
all the definitions here only for convenience.

We start by defining player moves and probabilistic moves.

Definition 5.7. If s.mX is a valid position for P , then mX is a player move
in this valid position. If s.l is a valid position for P , then l is a probabilistic move
in this valid position.

Now we can define strategies.

Definition 5.8. In the game for a process P , a strategy S is a subtree T of the
game tree for P meeting the following three conditions:

(1) ε ∈ T

(2) If s ∈ T and Pl(s) = X then exactly one of the children of s is in T .

(3) If s ∈ T and Pl(s) = prob then Ch(s) ⊆ T .

5.2.3 Execution of a probabilistic process with a strategy. Since a strategy resolves
all the nonprobabilistic choices in a probabilistic process, a process paired with a
strategy gives a normalized distribution on possible executions of the process.

We cannot define a probability measure on the set of all valid positions for several
reasons. First, the probability assigned to a valid position must be based on the
probability of that execution of the process occurring, but not all valid positions
actually represent possible executions. For example, for the process

l : (l1 :
1
2 (l

′ :a) + l2 :
1
2 (l

′′ :b))

lX is a valid position, but there is no reasonable way to assign a probability to this
valid position because alone, it does not represent a partial execution of the process.
Furthermore, the fact that some valid positions represent partial executions and
the combination of probabilistic and nonprobabilistic choice means that the sum
of the probabilities of all the valid positions will usually be more than one. Thus,
we will only define the probability measure on a special, restricted set of valid
positions.

First, we define the notion of a final valid position: a valid position with no possible
continuations.

Definition 5.9. Let V be the set of all valid positions for a process. Define the
set of final valid positions as Vf = {s | s ∈ V and Ch(s) = ∅}. s is a final valid
position if s ∈ Vf .

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

30 · Chatzikokolakis et al.

Next we will consider the set of final valid positions in a strategy S.

Definition 5.10. Let V be the set of valid positions for a process P and let S
be a strategy for P . Define

final(S) = {s ∈ Vf | s ∈ S}.

Since a strategy resolves all nonprobabilistic nondeterminism, and taking only the
final valid positions removes all partial executions, this definition gives us a set on
which a probability measure can be defined.

Definition 5.11. If S is a strategy for process P , define µP : final(S) −→ [0, 1]
as follows: for s ∈ final(S), if P −−→

s p
P ′, then µP (s) = p.

We will prove that µP is indeed a probability measure, but first we need an auxiliary
definition.

Definition 5.12. For S a strategy, define

S/s = {s′ | s.s′ ∈ S}.

Theorem 5.13. If S is a strategy for P , then µP : final(S) −→ [0, 1] is a
probability measure.

Proof. Since µP is defined on singletons and then extended in the evident way
to arbitrary sets and the overall space is finite it is clear that µP is additive. Thus,
all we have to show is that

µP (final(S)) =
∑

s∈final(S)

µP (s) = 1

This will be proved by induction on the length of the maximal element in final(S).

Base Case. : P is blocked. Then ε is the only valid position for P , so ε ∈ Vf and
S = {ε} by definition of strategy, so final(S) = {ε}. And for any process P , P
−−→
ε 1

P , so µP (ε) = 1.

Case. : S starts by choosing a move m that does not label a probabilistic choice,
resulting in P going to P ′. Then it is easy to see that S/m is a strategy for P ′,
so by the induction hypothesis, µP ′(final(S/m)) = 1. Note, that every element
of final(S) is of the form m.s where s ∈ final(S/m), since from the definition of
strategy, S can only contain one child of m. Furthermore, since P −−→

m 1
P ′, we see

from the definition of µP that if m.s ∈ final(S) then µP (m.s) = µP ′(s). Therefore,
µP (final(S)) = µP ′(final(S/m)) = 1.

Case. : S starts by choosing a label l of a probabilistic move of the form l :

n
∑

i=1

li :

piPi. For i = 1 to n, let

Si =

(

S/(l.li) if Pi is not blocked
{ε} otherwise

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 31

Then since S must by definition of strategy contain all children of l, it is easy to
see that for each i, Si must be a strategy for Pi. Now, for a string s and a set S′,
let s⊙ S′ = {s.s′|s′ ∈ S′}. Then it can be shown that

final(S) =
n
⋃

i=1

l.li ⊙ final(Si).

Furthermore,

µP (l.li ⊙ final(Si)) =
∑

s′∈final(Si)

µP (l.li.s
′),

but since P −−−→
l.li pi

Pi, by definition 5.2, we have that µP (l.li.s
′) = pi · µPi

(s′). So

altogether,
∑

s∈final(S) µP (s) =
∑n

i=1 µP (l.li ⊙ final(Si))

=
∑n

i=1 pi · µPi
(final(Si))

=
∑n

i=1 pi by induction hypothesis
= 1 by definition

Finally, we would like to point out that epistemic restrictions on strategies are
defined in the probabilistic case just exactly as they are in the nondeterministic,
two-player case. For example, a player strategy that respects the introspective
equivalence relation would correspond to a player or scheduler that does not see
the outcomes of probabilistic choices, but has all the information about the moves
he has made and the moves that have been available to it.

6. A MODAL LOGIC FOR STRATEGIES

In this section we present a modal logic intended to reason about games on pro-
cesses, particularly knowledge, information flow, and the effects of actions on knowl-
edge. This is not intended to be the final word on the subject; this is a version
developed for this particular game-semantics application. One of the advantages of
this logic is that it allows us to characterize certain useful equivalences on positions
using classes of formulas. This characterization is intended to be in the spirit of
the Hennessy-Milner-van Benthem theorem which gives a modal characterization
of bisimulation. Of course, our characterization result is much less general than
this theorem, because the equivalences we are characterizing are less general than
bisimulation, and because our relations are characterized only by specific classes of
formulas, rather than by all formulas in the logic, as in the Hennessy-Milner-van
Benthem theorem.

We consider two-player processes with a switch operator rather than probabilistic
processes because we wish to avoid probabilistic logic, the subtleties of which are
largely orthogonal to our present considerations. We take the tree of valid positions
for a process as our set of states. Our logic will allow us to discuss several aspects

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

32 · Chatzikokolakis et al.

of any given valid position. These aspects are intended to be natural possibilities
for a player’s perceptions of what is occurring in the execution of the game.

—Which player made the last move and what the last move was,

—What moves are available and what player they belong to,

—What formulas are satisfied by specific continuations of the current valid position,

—What formulas are satisfied by specific prefixes of the current valid position,

—The knowledge of each player in the current state, according to an equivalence
relation on the set of states, independent from the logic, and

—What formulas were satisfied by the state immediately after either player’s last
move.

6.1 Syntax and Semantics

As mentioned above, we take the tree of valid positions for a certain process as our
model, and a specific valid position as our state. For V the tree of valid positions
for a process, a valid position s ∈ V and a formula φ, we say that (V, s) |= φ if φ is
true at s in the game tree V . When it is unambiguous from the context what the
model is, we omit the V and write s |= φ.

Let L represent a general label (a single label or a synchronizing pair of labels), m
a move (a general label together with a player), let X and Y be the two players,
and let Z represent either X or Y .

φ ::= CZ(L) | AZ(L) | ©m φ | ©- φ | KZφ | @Zφ | φ ∧ φ | ¬φ | ⊤.

We give the semantics for the operators first and explain them afterwards.

(1) (V, s.LZ) |= CZ(L).

(2) (V, s) |= ©- φ if for some position s′, s ∈ ChV (s
′)t and (V, s′) |= φ.

(3) (V, s) |= @Zφ if s = s′.LZ and (V, s) |= φ or s = s′.LZ .L
1
Z̄
.L2

Z̄
...Ln

Z̄
and

(V, s′.LZ) |= φ.

(4) (V, s) |= KZφ if for all s′ ∼Z s, (V, s′) |= φ.

(5) (V, s) |= φ1 ∧ φ2 if (V, s) |= φ1 and (V, s) |= φ2.

(6) (V, s) |= ¬φ if it is not the case that (V, s) |= φ.

(7) (V, s) |= ⊤ for all s and all V .

(8) (V, s) |= AZ(L) if s.LZ ∈ ChV (s).

(9) (V, s) |= ©mφ if (V, s.m) ∈ ChV (s) and (V, s.m) |= φ.

Some of these operators require discussion. The first three deal with the history
of the current position, and the last two deal with possible continuations of the
current position. CZ(L) just says that the last move chosen was L, and it was

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 33

chosen by player Z. Similarly, ©- φ removes the last move from the current position
and checks whether φ held at that point.

@Zφ is more complicated. According to the formal definition, it holds when φ holds
at the most recent position where it was Z’s turn before the current position. This
operator appears contrived at first glance, but in the setting of agents who may
have limited knowledge, it has significance beyond just being used to characterize
introspection. After an agent moves, it may not know what the other agent has
done, and indeed whether the other agent has done anything at all, until it is again
the original agent’s turn. Thus, it may know what the conditions were in the game
at the last time that it was its turn, without knowing what they are now, and this
kind of information is exactly what the @Z operator captures. The fact that this
operator is reasonable and natural in the setting of agents interacting with limited
knowledge of the overall execution of the process, will be made clearer when we
show that it turns out to be useful in discussing other reasonable limitations of
agents’ knowledge in different settings.

The knowledge operator is standard from epistemic logic. Its semantics requires the
definition of the equivalence relation ∼Z , which is given as part of the model. The
idea behind this operator is that an agent considers several states possible when it
is in a certain state. This is the agent’s uncertainty about what state the system
is in. The agent only knows a fact if it is true in all the states that it considers
possible from the current state.

AZ(L) means that from the current position, it is agent Z’s turn and it has the
option to choose move L. ©mφ is similar to the familiar 〈a〉φ operator in Hennessy-
Milner Logic, or the Xφ operator in Linear Temporal Logic. It means that move m
is available and if it occurs next, then φ will be true. Since we require our processes
to be deterministically labelled, if φ may hold after m and m is available, then
φ will certainly hold after m. The move can only lead to one state, because of
deterministic labelling.

Finally, note that in the syntax and semantics we only discuss the traditional logical
connectives ∧ and ¬, so that the notation is concise. However, from now on we will
use φ1 ∨φ2 as shorthand for ¬(¬φ1 ∧¬φ2), φ1 −→ φ2 for ¬φ1 ∨φ2, and φ1 ⇔ φ2 for
(φ1 −→ φ2) ∧ (φ2 −→ φ1). On the other hand, we do not actually need the operator
AZ(L) since it is equivalent to ©LZ

⊤ but we leave it in our syntax and semantics
anyway, to make the explanations simpler.

6.2 Basic Properties Captured in Modal Logic

This section discusses formulas that capture some basic properties. Many of them
hold in most modal logics while some others are specific to our case. These kinds of
formulas often arise in the course of giving a complete axiomatization for a modal
logic.

(1) ©mφ −→ ¬©m ¬φ.

This formula is true because we require our processes to be deterministically
labelled. Thus, there is at most one state that any valid position can transfer to

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

34 · Chatzikokolakis et al.

for any given movem, and any formula that can possibly hold after m therefore
must hold after m.

(2) φ −→ ¬©m ¬©- φ.

This formula is true because our states have a tree structure: there is at most
one immediate previous state for any valid position.

(3) CZ(L) −→ ©- AZ(L).

This formula says that if a move was chosen in the previous state, it must have
been available there.

(4) AZ(L) −→ ©LZ
CZ(L).

This formula says that if a move is enabled, then there is a next state where that
move was chosen. The last two formulas seem obvious, but formal expressions
of the relationships between the operators are often useful, and are necessary
to give a complete axiomatization for the logic.

Since we define knowledge using an equivalence class on states in the normal Kripke
way, we automatically know that the knowledge axioms as discussed, for example,
in Kripke [1963], are true:

(1) KZφ −→ φ.

This can be interpreted as saying that knowledge is true.

(2) KZφ −→ KZKZφ.

This means that the agents are aware that they know what they know.

(3) (KZ(φ −→ ψ) ∧KZφ) −→ KZψ.

Agents can reason and form new knowledge from what they know.

(4) ¬KZφ −→ KZ¬KZφ.

If an agent does not know something, it is aware of this fact.

6.3 Logical Characterization of Indistinguishability Relations

In the section about epistemic restrictions on strategies, we discussed several pos-
sible indistinguishability (uncertainty) relations on valid positions. We will show
that this logic can be used to characterize all of the equivalences we discussed. That
is, for each equivalence relation E we discussed, we will show that there is a class of
formulas ΦE such that for valid positions s and t, sEt if and only if for all φ ∈ ΦE ,
s |= φ ⇔ t |= φ. This kind of result could because, for example, it means that
given a logically definable equivalence relation or a definition of an agent’s percep-
tion, it means that anytime an agent can distinguish two states, we can come up
with a specific formula that the agent knows to be true at one state and false at
the other state. Furthermore, in many situations it may be more convenient or
intuitive to describe an agent’s equivalence relation by giving a class of formulas
that equivalent states agree on. This class of formulas can be thought of as the

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 35

class of formulas that the agent is aware of: at any state, the agent knows whether
any formula in this class is true or false. The following examples will make this
discussion clearer.

Example 6.1. Recall from Definition 3.17 that s1HZs2 iff Z(s1) = Z(s2), that
is, each player only remembers his own moves. Let Φ be the class of all formulas of
the form (@Z©-)

n@ZCZ(L), for n ≥ 0. Then s1HZs2 if and only if for any φ ∈ Φ,
s1 |= φ⇔ s2 |= φ. This is because s |= @ZCZ(L) if and only if L is the last Z move
in s, and s |= @Z©- @ZCZ(L

′) if and only if L′ is the second to last Z move in s,
and so on. So if two valid positions agree on all such formulas, they must have the
same Z moves in the same order.

The above example also serves as justification for the @ operator. Even though
this operator may seem strange, it is natural from the point of view of a player,
who may only be aware of what happens when it is his turn to move, but cannot
distinguish between the other player not moving at all and it being the first agent’s
turn again immediately, or the other player making one move before it is the first
player’s turn again, or the other player making many moves before it is again the
first player’s turn.

Example 6.2. Recall from Example 3.20 that s1AvZs2 iff AvZ(s1) = AvZ(s2).
Clearly, the set of formulas that characterizes this equivalence relation is the set of
all formulas of the form AZ(L).

We will also give a few new examples of equivalences that were not discussed earlier
as well.

Example 6.3. Consider the equivalence relation n where (s1, s2) ∈ n iff the last
n moves in s1 are the same as the last n moves in s2. This relation is the same
for either player. It describes agents who see all the moves that occur but only have
finite memory. The class of formulas characterizing this equivalence relation is the
class {©- k(CZ (L)) | k < n, Z ∈ {X,Y }, and L is any move}.

Example 6.4. Similarly, we could say that two positions are indistinguishable
for player Z if Z made the same last n moves in both positions. We call this equiva-
lence nZ , and the class of formulas characterizing it is {(@Z©-)k@ZCZ(L) | k < n}.

Finally, we can characterize the introspective indistinguishability relation we dis-
cussed above. Recall from Definition 3.21 that s1IZs2 if all of the following condi-
tions hold:

(1) Z(s1) = Z(s2)

(2) enabledZ(s1) = enabledZ(s2)

(3) For all s′1 ≤ s1, s2 ≤ s′2, if Z(s
′
1) = Z(s′2) then enabledZ(s

′
1) = enabledZ(s

′
2) or

enabledZ(s
′
1) = ∅ or enabledZ(s

′
2) = ∅.

Proposition 6.5. sIZt if and only if s and t agree on all formulas of the form

(@Z©-)
n@ZCZ(L)

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

36 · Chatzikokolakis et al.

for n ≥ 0, and for any L, and also agree on all formulas of the form

(@Z©-)
nAZ(L)

for n ≥ 0 and for any L.

Proof. First, as discussed above, s and t agreeing on all formulas of the form
(@Z©-)n@ZCZ(L) is equivalent to Z(s) = Z(t). Similarly, s and t agreeing on
all formulas of the form AZ(L) (i.e. (@Z©-)0AZ(L)) means that enabledZ(s) =
enabledZ(t). Finally s and t agreeing on all formulas of the form (@Z©-)

nAZ(L) is
equivalent to the third condition in the definition of the introspective relation. This
is because we have already ensured that Z(s) = Z(t) so (@Z©-)n means counting
backwards n Z moves and n contiguous series of Z̄ moves, and then checking that
enabledZ is the same in the two strings. This shows that two valid positions agree
on all formulas of the specified forms if and only if they are Z-indistinguishable.

Example 6.6. To make this idea clearer, we show how the logic works with one
of the processes discussed earlier. For

P = (νb)
(

l1 :{k1 :τ . l2 :a . l3 :b + k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)
)

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

(l1X .k1Y .l2X , l1X .k1Y .l2X) ∈ IX and therefore, these two positions agree on all
formulas of the form (@X©-)n@XCX(L) and (@X©-)nAX(L). For example we will
unfold one such formula with the semantics,

l1X .k1Y .l2X |= @X©- AX(l2) because
l1X .k1Y .l2X |= ©- AX(l2) because
l1X .k1Y |= AX(l2) because l1X .k1Y .l2X ∈ Ch(l1X .k1Y)

Similarly, l1X .k2Y .l2X |= @X©- AX(l2). Furthermore, these two positions agree on
all other formulas in the characterizing class.

As another example, in the same process,

(l1X .k1Y .l2X .(l3, l4)X , l1X .k2Y .l2X .(l3, l4)X) ∈ IX

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 37

Both of these positions model the following formulas in the characterizing class:

AX(l5) AX(l6)
@XCX((l3, l4)) @X©- AX((l3, l4))
@X©- @XCX(l2) @X©- @X©- AX(l2)
@X©- @X©- @XCX(l1) @X©- @X©- @X©- AX(l1)

and neither of them models any other formula in the characterizing class.

Example 6.7. Consider the process

P = 0{ 1τ .(3c .(6f + 7g) + 4d) + 2τ .(3c .(6f + 7g) + 5e)}.

ε

l0X

l1Y

l3X

l6X l7X

l4X

l2Y

l3X

l6X l7X

l5X

The positions l0X .l1Y .l3X and l0X .l2Y .l3X are not introspectively equivalent for
X. l0X .l1Y .l3X |= @X©- AX(l4) but l0X .l2Y .l3X 6|= @X©- AX(l4). Furthermore,
l0X .l1Y .l3X 6|= @X©- AX(l5) whereas l0X .l2Y .l3X 6|= @X©- AX(l4).

6.4 Properties Following from Logical Characterizations of Equivalence Relations

When we are in a setting where we have a logical characterization of the desired
indistinguishability relation for agents, we can conclude that certain logical formulas
about their knowledge hold universally in the system. This result has interesting
implications for our logic. Let ∼Z be the indistinguishability relation for Z.

Theorem 6.8. If Φ characterizes ∼Z , that is, if s1 ∼Z s2 if and only if s1 and
s2 agree on all formulas in φ, then for any φ ∈ Φ, φ −→ KZφ, and ¬φ −→ KZ¬φ.
Furthermore, for any formula φ ∈ Φ, every state satisfies KZφ ∨KZ¬φ.

Proof. Assume V is the set of valid positions and Φ characterizes ∼Z . For any
position s, if s |= φ, then for all t ∼Z s, t |= φ. So, by the semantics of KZ ,
this means that s |= KZφ. Similarly, if s |= ¬φ, then for all t ∼Z s, t |= ¬φ,
so s |= KZ(¬φ). Thus, at all states, for any formula φ ∈ Φ, φ −→ KZφ and
¬φ −→ KZ(¬φ). Finally, since φ ∨ ¬φ holds at any state, we can conclude that
KZφ ∨KZ¬φ holds at any state.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

38 · Chatzikokolakis et al.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have given a semantic treatment of a process algebra with two kinds
of choice in terms of games and strategies. This gives a semantic understanding of
the “knowledge” possessed by schedulers when they resolve choices. This epistemic
aspect is captured by restrictions on what the schedulers can see when they execute
their strategies. We have also introduced a modal logic with dynamic and epistemic
modalities to capture more precisely what agents know.

This work is a first step toward a systematic game semantic exploration of con-
currency. We plan to continue this line of research in several directions. First of
all, we would like to develop a process algebra which is more naturally adapted to
games and perhaps also to multi-agent games. This will lead to richer notions of
interactions between agents than synchronization and value or name passing.

In an interesting paper published in 2003 [Mohalik and Walukiewicz 2003], Moha-
lik and Walukiewicz explored distributed games from the viewpoint of distributed
controller synthesis. In that work the goal is to synthesize a finite-state controller
that will allow a finite set of independent concurrent agents interacting with an
adversarial environment. The question addressed there, the synthesis problem, has
a long history in both concurrency theory and control theory. In the work just
cited, there is also a restriction of agents’ strategies to what they can see locally.
Though not expressed as epistemic restrictions that is clearly what is intended and
the paper even cites the distributed systems model of Halpern and Moses [Halpern
and Moses 1984] as an explicit acknolwedgment of the epistemic aspects of their
work. It is a very suggestive connection and we look forward to exploring this in
future work.

Second, we would like to enrich the epistemic aspects of the subject. In particular,
we would like to move toward an explicit combination of modal process logic and
epistemic logic so that we can describe in a compositional process-algebraic way
how agents learn and exchange knowledge. The idea is to move towards a more
general logic that would capture how agents learn as transitions occur in a labelled
transition system equipped with additional equivalence relations. In work underway
the second and fourth authors have developed such a logic and are working on a
completeness proof. This is a rather more substantial undertaking than the fairly
elementary treatment of the modal logic given here.

Third, we would like to explore more subtle notions of transfer of control between
the agents. Thus, for example, there could be a protracted dialogue between the
agents before they decide on a process move. This could conceivably be fruitful
for incorporating higher-order or mobile processes. Of course, the theory of higher-
order processes is much more complicated and game semantics for it will involve
the complexities that are needed for models of the λ-calculus [Abramsky et al.
2000; Hyland and Ong 2000]. However, it might be illuminating to understand
restrictions on strategies like innocence in epistemic terms explicitly. Of course,
many of the restrictions will not be epistemic, for example, well-bracketing.

Finally, we would like to combine the epistemic and probabilistic notions using ideas

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Epistemic Strategies and Games on Concurrent Processes · 39

from information theory [Shannon 1948]. We have used these information theoretic
ideas for an analysis of anonymity [Chatzikokolakis et al. 2008], indeed it was that
investigation that sparked the research reported in Chatzikokolakis and Palamidessi
[2010] and which ultimately led to the present work. As far as we know, the only
paper looking at epistemic logic and information theory is by Krasucki et al. [1990]
where they quantify the amount of information shared when agents possess common
knowledge. Of course, this is very speculative at this point.

ACKNOWLEDGMENTS

This research was supported by a grant from NSERC and by an INRIA-McGill
grant.

REFERENCES

Abadi, M. and Fournet, C. 2001. Mobile values, new names, and secure communication. In
28th Annual Symposium on Principles of Programming Languages (POPL). ACM, 104–115.

Abramsky, S. and Jagadeesan, R. 1994. Games and full completeness for multiplicative linear
logic. J. Symbolic Logic 59, 2, 543–574.

Abramsky, S., Jagadeesan, R., andMalacaria, P. 2000. Full abstraction for PCF. Information
and Computation 163, 409–470.

Beauxis, R. and Palamidessi, C. 2009. Probabilistic and nondeterministic aspects of anonymity.
Theoretical Computer Science 410, 41, 4006–4025.

Chadha, R., Delaune, S., and Kremer, S. 2009. Epistemic logic for the applied pi calculus. In
Proceedings of FMOODS/FORTE 2009. 182–197.

Chatzikokolakis, K., Norman, G., and Parker, D. 2009. Bisimulation for demonic sched-
ulers. In Proc. of the Twelfth International Conference on Foundations of Software Science
and Computation Structures (FOSSACS 2009), L. de Alfaro, Ed. Lecture Notes in Computer
Science, vol. 5504. Springer, York, UK, 318–332.

Chatzikokolakis, K. and Palamidessi, C. 2010. Making random choices invisible to the sched-
uler. Information and Computation 208, 6, 694–715.

Chatzikokolakis, K., Palamidessi, C., and Panangaden, P. 2008. Anonymity protocols as
noisy channels. Inf. and Comp. 206, 2–4, 378–401.

Danos, V. and Harmer, R. 2001. The anatomy of innocence. Lecture Notes in Computer
Science 2142, 188–202.

Dechesne, F., Mousavi, M., and Orzan, S. 2007. Operational and epistemic approaches to
protocol analysis: Bridging the gap. In Proceedings of the 14th International Conference on
Logic for Programming Artificial Intelligence and Reasoning (LPAR’07), N. Dershowitz and
A. Voronkov, Eds. Lecture Notes in Computer Science, vol. 4790. Springer, 226–241.

Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. 1995. Reasoning About Knowledge.
MIT Press.

Halpern, J. Y. and Moses, Y. 1984. Knowledge and common knowledge in a distributed
environment. In Proc. of Principles of Distributed Computing. 50–61.

Hennessy, M. and Milner, R. 1980. On observing nondeterminism and concurrency. In Au-
tomata, Languages and Programming, J. de Bakker and J. van Leeuwen, Eds. Lecture Notes
in Computer Science, vol. 85. Springer Berlin / Heidelberg, 299–309.

Hennessy, M. andMilner, R. 1985. Algebraic laws for nondeterminism and concurrency. Journal
of the ACM 32, 1, 137–162.

Hughes, D. and Shmatikov, V. 2004. Information hiding, anonymity and privacy: a modular
approach. Journal of Computer Security 12, 1, 3–36.

Hyland, J. M. E. and Ong, C.-H. L. 2000. On full abstraction for PCF. Information and
Computation 163, 285–408.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

40 · Chatzikokolakis et al.

Kramer, S., Palamidessi, C., Segala, R., Turrini, A., and Braun, C. 2009. A quantitative

doxastic logic for probabilistic processes and applications to information-hiding. The Journal
of Applied Non-Classical Logics 19, 4, 489–516.

Krasucki, P., Ndjatou, G., and Parikh, R. 1990. Probabilistic knowledge and probabilistic
common knowledge. In ISMIS 90. North Holland, 1–8.

Kripke, S. 1963. Semantical analysis of modal logic. Zeitschrift fur Mathematische Logik und
Grundlagen der Mathematik 9, 67–96.

Mohalik, S. and Walukiewicz, I. 2003. Distributed games. In FST TCS 2003: Foundations
of Software Technology and Theoretical Computer Science, P. Pandya and J. Radhakrishnan,
Eds. Lecture Notes in Computer Science, vol. 2914. Springer Berlin, Heidelberg, 338–351.

Pacuit, E. and Simon, S. 2010. Reasoning with protocols under imperfect information. In
Advances in Modal Logic.

Schneider, S. and Sidiropoulos, A. 1996. CSP and anonymity. In Proc. of ESORICS. LNCS,
vol. 1146. Springer, 198–218.

Shannon, C. 1948. A mathematical theory of communication. Bell System Technical Journal 27,
379–423,623–656.

van Benthem, J. 1976. Modal correspondence theory. Ph.D. thesis, University of Amsterdam.

van Benthem, J. 1983. Modal Logic and Classical Logic. Bibliopolis.

Received June 10, 2010. Revised version: August 5, 2011.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

