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Abstract10

We develop a theory for the commutative combination of quantitative effects, their tensor, given as a11

combination of quantitative equational theories that imposes mutual commutation of the operations12

from each theory. As such, it extends the sum of two theories, which is just their unrestrained13

combination. Tensors of theories arise in several contexts; in particular, in the semantics of14

programming languages, the monad transformer for global state is given by a tensor.15

We show that under certain assumptions on the quantitative theories the free monad that arises16

from the tensor of two theories is the categorical tensor of the free monads on the theories. As an17

application, we provide the first algebraic axiomatizations of labelled Markov processes and Markov18

decision processes. Apart from the intrinsic interest in the axiomatizations, it is pleasing they are19

obtained compositionally by means of the sum and tensor of simpler quantitative equational theories.20
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1 Introduction24

The theory of computational effects began with the work of Moggi [25, 26] seeking a unified25

category-theoretic account of the semantics of higher-order programming languages. He26

modelled computational effects (which he called notions of computation) by means of strong27

monads on a base category with cartesian closed structure. With Cenciarelli [5], he later28

extended the theory by allowing a compositional treatment of various semantic phenomena29

such as state, IO, exceptions, resumptions, etc, via the use of monad transformers. This work30

was followed up by the program of Plotkin and Power [27, 28] on an axiomatic understanding31

of computational effects as arising from operations and equations via the use of Lawvere32

theories (see also [14]). In a fundamental contribution [12] together with Hyland they33

developed a unified modular theory for algebraic effects that supports their combination by34

taking the sum and tensor of their Lawvere theories. This allowed them to recover in a more35

pleasing algebraic structural way many of the monad transformers considered by Moggi.36

Quantitative equational theories, introduced by Mardare et al. [21], are a logical framework37

generalising the standard concept of equational logic to account for a concept of approximate38

equality. They are used to describe quantitative effects as monads on categories of metric39

spaces. Following the work of Hyland et al. [12], in [1] we developed a theory for the sum of40

quantitative equational theories, and proved that it corresponds to the categorical sum of41

quantitative effects as monads. As a major example, we axiomatised Markov processes with42

discounted probabilistic bisimilarity distance [7] as the sum of two theories: interpolative43

barycentric algebras (which axiomatises probability distributions with the Kantorovich44
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23:2 Tensor of Quantitative Equational Theories

metric [21]) and contractive operators (used to express the transition to the next state).45

Whereas the sum of two monads is the simplest combination supporting both given effects46

with no interactions between them, the tensor additionally requires commutation of these47

effects over each other. Some of the most important monad transformers have an elegant48

abstract description using tensor. Specifically, Moggi’s transformers for state, reader, and49

writer are examples of tensors [12].50

In the present paper we extend the work initiated in [1], and develop the theory for the51

tensor of quantitative equational theories. The main contributions are:52

1. we prove that the tensor of quantitative theories corresponds to the categorical tensor of53

their induced quantitative effects as strong monads;54

2. we give quantitative axiomatisations to the quantitative reader and writer monads, from55

which we obtain analogues of Moggi’s transformers at the level of theories using tensor;56

3. we provide the first axiomatization of labelled Markov processes and Markov decision57

processes with their discounted bisimilarity metrics.58

For the proof of (1) we introduce the concept of pre-operation of a strong functor, which59

we use to conveniently characterise the commutative bialgebras for the monads (which60

correspond to the Eilenberg-Moore algebras for their tensor). Crucially, this allows us to61

carry out the technical development directly at the level of quantitative equational theories62

without passing via a correspondence with metric-enriched Lawvere theories.63

The axiomatisations in (3) are two major examples for our compositional theory quantit-64

ative effects. Specifically, we obtain the discounted bisimilarity metrics for labelled Markov65

processes and Markov decision processes with rewards by complementing the axiomatization66

for Markov processes presented in [1]. We model reactions to action labels by tensoring with67

the theory of quantitative reading computations (corresponding to Moggi’s reader monad68

transformer); while rewards are recovered by tensoring with the theory of quantitative writ-69

ing computations (corresponding to Moggi’s writer monad transformer). We will illustrate70

our compositional approach by decomposing the proposed axiomatisations into their basic71

components and showing how to combine them step-by-step to get the desired result.72

Further Related Work. In [12, 11] the tensor of (enriched) Lawvere theories is character-73

ized as the colimit of certain commutative cocones, and the correspondence with the tensor74

of monads is obtained via the equivalence between Lawvere theories and monads. Since it75

is not hard to show that (basic) quantitative equational theories can be characterised as76

metric-enriched Lawvere theories, one may think to recover the correspondence with the77

tensor of monads via the equivalence with Lawvere theories. Alas, quantitative equational78

theories and Lawvere theories are not equivalent, as the latter allows generic operations with79

metric spaces as arities, while the framework of Mardare et al. [21] does not. An equivalence80

with discrete Lawvere theories [13] (where arities are just countable ordinals) does not81

hold either, because quantitative equations implicitly impose the existence operations with82

non-discrete arities which cannot be expressed in the framework of discrete Lawvere theories.83

The above arguments required us to follow a different path, which lead us to the intro-84

duction of pre-operations for a strong functor F . Pre-operations are related to Plokin and85

Power’s algebraic operations [29, 30] in the sense that their assignment to F -algebras are the86

appropriate version of algebraic operations for functors. Moreover, when considered over87

a strong monad T they correspond to generic effects of type I → Tv (i.e., Kleisli maps of88

type I → v, where I is the identity for the monoidal product). The reason why we consider89

pre-operations over functors, and not just monads, is to relate the operations of an algebraic90

monad with those of its signature. This was crucial in the technical development of Section 5.91
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Finally, we remark that quantitative equational theories are a natural kind of enriched92

equational theory expressive enough to recover many examples of interest in computer science93

(see [21, 1, 24]), but not corresponding to metric-enriched Lawvere theories. In this respect,94

it is nice that also this simpler subclass of enriched theories are closed under sum and tensor.95

2 Preliminaries and Notation96

An extended metric space is a pair (X, d) consisting of a set X equipped with a distance97

function d : X × X → [0,∞] allowed to have infinite values, satisfying: (i) d(x, y) = 0 iff98

x = y, (ii) d(x, y) = d(y, x) and (iii) d(x, z) ≤ d(x, y) + d(y, z).99

A sequence (xi) in X is Cauchy if ∀ϵ > 0,∃N, ∀i, j ≥ N, d(xi, xj) ≤ ϵ. If every Cauchy100

sequence converges, the extended metric space (X, d) is said to be complete. If a space is not101

complete it can be completed by a well-known construction called Cauchy completion. We102

write (X, d), or just X, for the completion of (X, d).103

We denote by Met the category of extended metric spaces with morphisms the non-104

expansive maps, i.e. the f : (X, dX) → (Y, dY ) such that dX(x, y) ≥ dY (f(x), f(y)). This105

category is both complete (i.e., have all limits) and cocomplete (i.e., have all colimits). We106

will consider also the full subcategory CMet of complete extended metric spaces.107

The categorical properties of extended metric spaces are much nicer than usual metric108

spaces. In particular, we note that Met is a symmetric monoidal category, with monoidal109

product (X, dX) □ (Y, dY ) being the extended metric space with underlying set X × Y and110

extended metric dX□Y ((x, y)(x′, y′)) = dX(x, x′) + dY (y, y′) (cf. [19]). Note that this is not111

the cartesian product in Met (for which + above would be replaced by max).112

The monoidal product □ introduced above defines a closed monoidal structure on Met,113

with internal hom [(X, dX), (Y, dY )] given by the set of non-expansive maps from X to Y114

with point-wise supremum extended metric d[X,Y ](f, g) = supx∈X d(f(x), g(x)).115

Finally, we recall the basic definitions of strong functor (and monad), strong natural116

transformations, and fix the notation (for more details see e.g. [17, 18]). Let V be a symmetric117

monoidal closed category with monoidal product1 □ : V × V → V, unit object I ∈ V, and118

internal hom-functor [−,−] : V × V → V. We will denote the counit (or evaluation map) of119

the adjunction (V □ −) ⊣ [V,−] by evV : V □ [V,−] ⇒ Id and the unit (or co-evaluatation120

map) by evV : Id → [V, V □ −].121

A functor F : V → V is strong with monoidal strength tV,W : V □ F (W ) → F (V □122

W ), if t is a natural transformation satisfying the coherence conditions Fλ ◦ t = λ and123

t ◦ (id□ t) ◦ α = Fα ◦ t, w.r.t. the associator α and left unitor λ of V. The dual strength124

t̂V,W : F (W ) □ V → F (W □ V ) is given by t̂ = F (t) ◦ t ◦ s, where s : V □W → W □ V is125

the natural isomorphism of the symmetric monoidal category V. A natural transformation126

θ : F ⇒ G is said strong if F,G are strong functors with strengths t, s, respectively, and127

s ◦ (id□ θ) = θ ◦ t, meaning that θ interacts well with the strengths.128

A monad (T, η, µ) with unit η : Id ⇒ T and multiplication µ : TT ⇒ T , is strong if T is a129

strong functor with strength t such that t ◦ (id□ η) = η and µ ◦ tt = t ◦ (id□ µ).130

Note that strong functors (resp. monads) on a symmetric monoidal closed category V131

are equivalent to V-enriched functors (resp. monads) on the self-enriched category V [17].132

1 We denote the monoidal product by □ to avoid confusion with other tensorial operations we will deal
with in this paper, e.g., the tensor of monads.
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3 Quantitative Equational Theories133

Quantitative equations were introduced in [21]. In this framework equalities t ≡ε s are134

indexed by a positive rational number, to capture the idea that t is “within ε” of s. This135

informal notion is formalised in a manner analogous to traditional equational logic. In this136

section we review this formalism.137

Let Σ be a signature of function symbols f : n ∈ Σ of arity n ∈ N. Let X be a countable138

set of variables, ranged over by x, y, z, . . . . We write T(Σ, X) for the set of Σ-terms freely139

generated over X, ranged over by t, s, u, . . ..140

A substitution of type Σ is a function σ : X → T(Σ, X), canonically extended to terms as141

σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)); we write S(Σ) for the set of substitutions of type Σ.142

A quantitative equation of type Σ over X is an expression of the form t ≡ε s, for143

t, s ∈ T(Σ, X) and ε ∈ Q≥0. We use V(Σ, X) to denote the set of quantitative equations of144

type Σ over X, and its subsets will be ranged over by Γ,Θ, . . .. Let E(Σ, X) be the set of145

conditional quantitative equations on T(Σ, X), which are expressions of the form146

{t1 ≡ε1 s1, . . . , tn ≡εn
sn} ⊢ t ≡ε s ,147

for arbitrary si, ti, s, t ∈ T(Σ, X) and εi, ε ∈ Q≥0.148

A quantitative equational theory of type Σ over X is a set U of conditional quantitat-149

ive equations on T(Σ, X) closed under the relation ⊢ as axiomatised below, for arbitrary150

x, y, z, xi, yi ∈ X, terms s, t ∈ T(Σ, X), rationals ε, ε′ ∈ Q≥0, and Γ,Θ ⊆ V(Σ, X),151

(Refl) ⊢ x ≡0 x ,152

(Symm) {x ≡ε y} ⊢ y ≡ε x ,153

(Triang) {x ≡ε z, z ≡ε′ y} ⊢ x ≡ε+ε′ y ,154

(Max) {x ≡ε y} ⊢ x ≡ε+ε′ y , for all ε′ > 0 ,155

(Cont) {x ≡ε′ y | ε′ > ε} ⊢ x ≡ε y ,156

(f -NE) {xi ≡ε yi | i=1..n} ⊢ f(x1, . . . , xn) ≡ε f(y1, . . . , yn) , for f : n ∈ Σ ,157

(Subst) If Γ ⊢ t ≡ε s, then {σ(t) ≡ε σ(s) | t ≡ε s ∈ Γ} ⊢ σ(t) ≡ε σ(s) , for σ ∈ S(Σ) ,158

(Ass) If t ≡ε s ∈ Γ, then Γ ⊢ t ≡ε s ,159

(Cut) If Γ ⊢ Θ and Θ ⊢ t ≡ε s, then Γ ⊢ t ≡ε s ,160
161

where we write Γ ⊢ Θ to mean that Γ ⊢ t ≡ε s holds for all t ≡ε s ∈ Θ.162

The rules (Subst), (Cut), (Ass) are the usual rules of equational logic. The axioms163

(Refl), (Symm), (Triang) correspond, respectively, to reflexivity, symmetry, and the triangle164

inequality; (Max) represents inclusion of neighborhoods of increasing diameter; (Cont) is the165

limiting property of a decreasing chain of neighborhoods with converging diameters; and166

(f -NE) expresses non-expansivness of f ∈ Σ.167

A set A of conditional quantitative equations axiomatises a quantitative equational theory168

U , if U is the smallest quantitative equational theory containing A.169

The models of these theories, called quantitative Σ-algebras, are Σ-algebras in Met.170

▶ Definition 1 (Quantitative Algebra). A quantitative Σ-algebra is a tuple A = (A,ΣA), where171

A is an extended metric space and ΣA = {fA : An → A | f : n ∈ Σ} is a set of non-expansive172

interpretations (i.e., satisfying maxi dA(ai, bi) ≥ dA(fA(a1, . . . , an), fA(b1, . . . , bn))).173

The morphisms between quantitative Σ-algebras are non-expansive Σ-homomorphisms.174

Quantitative Σ-algebras and their morphism form a category, denoted by QA(Σ).175
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A = (A,ΣA) satisfies the conditional quantitative equation Γ ⊢ t ≡ε s in E(Σ, X), written176

Γ |=A t ≡ε s, if for any assignment ι : X → A, the following implication holds177 (
∀t′ ≡ε′ s′ ∈ Γ , dA(ι(t′), ι(s′)) ≤ ε′) ⇒ dA(ι(t), ι(s)) ≤ ε ,178

179

where ι(t) is the homomorphic interpretation of t in A.180

A quantitative algebra A is said to satisfy (or be a model for) the quantitative theory U ,181

if Γ |=A t ≡ε s whenever Γ ⊢ t ≡ε s ∈ U . We write K(Σ,U ) for the collection of models of a182

theory U of type Σ.183

Sometimes it is convenient to consider the quantitative Σ-algebras whose carrier is a184

complete extended metric space. This class of algebras forms a full subcategory of QA(Σ),185

written CQA(Σ). Similarly, we write CK(Σ,U ) for the full subcategory of quantitative186

Σ-algebras in CQA(Σ) which are models of U .187

The following lifts the Cauchy completion of metric spaces to quantitative algebras.188

▶ Definition 2. (Algebra Completion) The Cauchy completion of a quantitative Σ-algebra189

A = (A,ΣA), is the quantitative Σ-algebra A = (A,ΣA), where A is the Cauchy completion190

of A and ΣA = {fA : An → A | f : n∈ Σ} is such that for Cauchy sequences (bij)j converging191

to bi ∈ A, for 1 ≤ i ≤ n, fA(b1, . . . , bn) = limj f
A(b1

j , . . . , b
n
j ).192

The above extends to a functor C : QA(Σ) → CQA(Σ) which is the left adjoint to the193

functor embedding CQA(Σ) into QA(Σ).194

The completion of quantitative Σ-algebras extends also to a functor from K(Σ,U ) to195

CK(Σ,U ), whenever U can be axiomatised by a collection of continuous schemata, which are196

conditional quantitative equations of the form197

{xi ≡εi
yi | i = 1..n} ⊢ t ≡ε s , for all ε ≥ f(ε1, . . . , εn),198

199

where f : Rn≥0 → R≥0 is a continuous real-valued function, and xi, yi ∈ X. We call such a200

theory continuous.201

Free Monads on Quantitative Equational Theories202

To every signature Σ, one can associate a signature endofunctor (also called Σ) on Met by:203

Σ =
∐
f :n∈Σ

Idn .204

It is easy to see that, by couniversality of the coproduct, quantitative Σ-algebras correspond205

to Σ-algebras for the functor Σ in Met, and the morphisms between them to non-expansive206

homomorphisms of Σ-algebras. Below we pass between the two points of view as convenient.207

▶ Theorem 3 (Free Algebra [21]). The forgetful functor K(Σ,U ) → Met has a left adjoint.208

The left adjoint assigns to any X ∈ Met a free quantitative Σ-algebra (TX , ψU
X) satisfying U ,209

from which one canonically obtains the monad (TU , η
U , µU ), with functor TU : Met → Met210

mapping X ∈ Met to the carrier TX of the free algebra.211

A similar free construction also holds for quantitative algebras in CQA(Σ) for continuous212

quantitative equational theories, implying that the forgetful functor from CK(Σ,U ) to CMet213

has a left adjoint. In particular, CTU is the free monad on U in CMet, provided that the214

quantitative equational theory is continuous.215

CVIT 2016
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Finally, let T -Alg denote the category of Eilenberg-Moore (EM) algebras for a monad T .216

In [1], it is shown that, whenever the quantitative theory U is basic, i.e., it can be axiomatised217

by a set of conditional equations of the form218

{x1 ≡ε1 y1, . . . , xn ≡εn
yn} ⊢ t ≡ε s ,219

where xi, yi ∈ X (cf. [22]), then EM TU -algebras are in 1-1 correspondence with the quantit-220

ative algebras satisfying U :221

▶ Theorem 4. For any basic quantitative equational theory U of type Σ, TU -Alg ∼= K(Σ,U ).222

4 Tensor of Strong Monads223

In this section we provide the definition of tensor of strong monads on a generic symmetric224

monoidal closed category V. The presentation follows and generalises that of Manes [20],225

which considers only the case of monads on Set.226

Let v be an object in V. As V is self-enriched, it has all v-fold powers (or v-powers)227

Xv, of any object X ∈ V, defined as Xv = [v,X] [16]. Moreover, (−)v : V → V is a strong228

functor with strength ξX,Y : X □ Y v → (X □ Y )v obtained by currying229

v □ (X □ Y v)
∼=−→ X □ (v □ Y v) X□ev−−−−→ X □ Y .230

Let F : V → V be a strong functor with strength t. The v-power functor (−)v is be lifted231

to F -algebras by mapping (A, a) to (A, a)v = (Av, av ◦ σA), where σA : FAv ⇒ (FA)v is the232

strong natural transformation obtained from t by currying T evvA ◦ tv,Av . Hence F -algebras233

are closed under powers of V-objects.234

▶ Definition 5 (Pre-operation of a strong functor). Let F : V → V be a strong functor and235

v ∈ V. A v-ary pre-operation of F is a strong natural transformation of type (−)v ⇒ F .236

We denote by OF (v) the set of v-ary pre-operations of F . An assignment of g ∈ OF (v)237

to an F -algebra (A, a) is the composite ag = a ◦ gA. We call ag an operation of (A, a).238

▶ Proposition 6. Let (A, a), (B, b) be F -algebras of a strong endofunctor F on V and239

f : A → B a morphism in V. Then, the following are equivalent:240

1. f is a F -homomorphisms from (A, a) to (B, b);241

2. For every v ∈ V and g ∈ OF (v), f ◦ ag = bg ◦ fv.242

The above proposition indicates that F -algebras are precisely characterised by their243

operations. In some situations, depending on the functor F , one gets the same characterisation244

with much fewer operations. We identify this property with the following definition.245

▶ Definition 7 (Density). A set D of pre-operations of a strong functor F : V → V is dense,246

if for any F -algebras (A, a), (B, b) and f : A → B in V, the following are equivalent:247

1. f is a F -homomorphisms from (A, a) to (B, b);248

2. For every v-ary pre-operation g ∈ D, f ◦ ag = bg ◦ fv.249

Let F,G be two strong endofunctors on V. A ⟨F,G⟩-bialgebra is a triple (A, a, b) consisting250

of an object A ∈ V with both a F -algebra structure a : FA → A and a G-algebra structure251

b : GA → A. A morphism of ⟨F,G⟩-bialgebras is an arrow that is simultaneously a F - and252

G-homomorphism. Denote by ⟨F,G⟩-biAlg the category of ⟨F,G⟩-bialgebras.253

▶ Proposition 8. Let (A, a, b) be a ⟨F,G⟩-bialgebra. The following statements are equivalent:254
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1. For all v ∈ V and g ∈ OF (v), ag is a G-homomorphism;255

2. For all w∈ V and h ∈ OG(w), bh is a F -homomorphism.256

Diagrammatically:257

GAv Av

GA A

b̄

G(ag) (1) ag

b

iff
FAw Aw

FA A

ā

F (bh) (2) bh

a

258

where (A, a)w = (Aw, ā) and (A, b)v = (Av, b̄).259

▶ Definition 9 (Commutative bialgebra). A ⟨F,G⟩-bialgebra (A, a, b) is commutative if it260

satisfies either of the equivalent conditions of Proposition 8.261

In the case the functors F and G admit dense sets of pre-operations, commutativity for262

their bialgebras can be more conveniently expressed in the following way.263

▶ Proposition 10. Let D and E be dense sets of pre-operations for F and G, respectively. A264

⟨F,G⟩-bialgebra (A, a, b) is commutative iff it satisfies either of the equivalent conditions:265

1. For all g ∈ D, ag is a G-homomorphism;266

2. For all h ∈ E, bh is a F -homomorphism.267

Let (T, η, µ) be a strong monad on V. Note that, as T is a strong functor and the268

EM-algebras for T are closed under powers of V-objects, all the results and definitions given269

in this section extends to EM-algebras for T .270

Let (T, η, µ), (T ′, η′, µ′) be two strong monads on V. A EM ⟨T, T ′⟩-bialgebra is a triple271

(A, a, a′) consisting of an object A ∈ V with both a EM T -algebra structure a : TA → A and272

a EM T ′-algebra structure a′ : T ′A → A. We say that a EM ⟨T, T ′⟩-bialgebra (A, a, b) is273

commutative if it is so as a ⟨T, T ′⟩-bialgebra for the functors T, T ′. We denote by ⟨T, T ′⟩-biAlg274

the category of EM ⟨T, T ′⟩-bialgebras and by (T ⊗ T ′)-biAlg, the full subcategory of the275

commutative EM ⟨T, T ′⟩-bialgebras.276

▶ Definition 11 (Tensor of monads). If the forgetful functor (T ⊗ T ′)-biAlg → V has left277

adjoint, then the monad induced by the adjunction is the tensor of T, T ′, denoted T ⊗ T ′.278

Note that the tensor of monads does not necessarily exist (see [4] for counterexamples).279

However, when it does T ⊗ T ′ ∼= T ′ ⊗ T , as the categories of commutative biagebras280

(T ⊗ T ′)-biAlg and (T ′ ⊗ T )-biAlg are isomorphic.281

5 Tensor of Quantitative Theories282

In this section, we develop the theory for the tensor of quantitative equational theories. The283

main result is that the free monad on the tensor of two theories is the tensor of the monads284

on the theories. In the proof given, we use the fact that the quantitative theories are basic,285

as this allows us to exploit the correspondence between the algebras of a theory U and the286

EM-algebras of the monad TU (Theorem 4).287

Let Σ, Σ′ be two disjoint signatures. Following Freyd [8] (and [12]), we define the tensor288

of two quantitative equational theories U , U ′ of respective types Σ and Σ′, written U ⊗ U ′,289

as the smallest quantitative theory containing U , U ′ and the quantitative equations290

⊢ f(g(x1
1, . . . , x

1
m), . . . , g(xn1 , . . . , xnm)) ≡0 g(f(x1

1, . . . , x
n
1 ), . . . , f(x1

m, . . . , x
n
m)) , (1)291

for all f : n ∈ Σ and g : m ∈ Σ′, expressing that the operations of one theory commute with292

the operations of the other.293
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5.1 Density of Symbolic Pre-operations294

Towards our main result, we identify a dense set of pre-operations for the free monads on295

quantitative equational theories which, in turn, will gives us a simpler characterization for296

commutative bialgebras for these monads (cf. Proposition 10).297

First notice that any signature functor Σ =
∐
f :n∈Σ Id

n in Met is strong, as it is the298

coproduct of the strong functors Idn ∼= (−)n, where n ∈ Met denotes the set {1, . . . , n}299

equipped with the discrete extended metric assigning infinite distance to distinct elements.300

Moreover, the injections inf : (−)n ⇒ Σ are strong natural transformations, hence they are301

n-ary pre-operations of Σ (cf. Definition 5).302

▶ Proposition 12. SΣ = {inf | f : n ∈ Σ} is a dense set of pre-operations of Σ.303

In the following, the pre-operations in SΣ will be called symbolic, and to simplify the notation,304

for any f : n ∈ Σ and Σ-algebra (A, a), we write af instead of ainf .305

Let U be a quantitative equational theory of type Σ. Then, also the monad TU is strong,306

with strength ζX,Y : X □ TUY → TU (X □ Y ) obtained by uncurrying the unique map hX,Y307

that, by Theorem 3, makes the following diagram commute308

Y TUY ΣTUY

(TU (X □ Y ))X Σ(TU (X □ Y ))X
βX,Y

ηU
Y

hX,Y

ψU
Y

ΣhX,Y

ψU
(T (X□Y ))X

309

where βX,Y is the currying of ηU
X□Y : X □ Y → TU (X □ Y ).310

Since a monad is strong iff both its unit and multiplication are strong natural transform-311

ations, both ηU , µU are strong. Moreover, also ψU : ΣTU ⇒ TU is strong.312

Thus any pre-operation g ∈ OΣ(v) can be tuned into an pre-operation of TU as the313

composite314

(−)v g−→ Σ ΣηU

−−−→ ΣTU
ψU

−−→ TU .315

In particular, when the theory U is basic, by exploiting Theorem 4, the above transforma-316

tion allows us to turn any dense set of pre-operations of Σ into a dense set of pre-operations317

of TU .318

▶ Proposition 13. Let U be a basic quantitative theory of type Σ and D a dense set of319

pre-operations of Σ. Then {ψU ◦ ΣηU ◦ g | g ∈ D} is a dense set of pre-operations of TU .320

By combining Propositions 12 and 13, we have that STU = {ψU ◦ ΣηU ◦ inf | f : n ∈ Σ} is321

a dense set of pre-operations of TU . We call also these pre-operations symbolic and we simplify322

the notation by writing a⟨f⟩ instead of a(ψU ◦ΣηU ◦inf ), for f : n ∈ Σ and (A, a) ∈ TU -Alg.323

Thus, as an immediate consequence of Propositions 10 and 13, we obtain the following324

simpler characterization for commutative ⟨TU , TU ′⟩-bialgebras.325

▶ Corollary 14. Let U , U ′ be basic quantitative theories respectively of type Σ, Σ′. A326

⟨TU , TU ′⟩-bialgebra (A, a, b) is commutative iff it satisfies either of the equivalent conditions327

1. For all f : n ∈ Σ, a⟨f⟩ is a TU ′-homomorphism;328

2. For all g : n ∈ Σ′, b⟨g⟩ is a TU -homomorphism.329



G. Bacci, R. Mardare, P. Panangaden, G. Plotkin 23:9

5.2 Tensor of Free Monads on Quantitative Theories330

Let U ,U ′ be basic quantitative theories respectively of type Σ,Σ′. We show that any model331

for U ⊗ U ′ is a ⟨U ⊗ U ′⟩-bialgebra: an extended metric space A with both a Σ-algebra332

structure a : ΣA → A satisfying U and a Σ′-algebra structure b : Σ′A → A satisfying U ′ and333

respecting the diagrammatic condition below, for all f : n ∈ Σ and g : m ∈ Σ′
334

An A Am

(Am)n (An)m

af bg

χ

∼=

(bg)n (af )m (2)335

Formally, we denote by (U ⊗U ′)-biAlg the category of ⟨U ⊗U ′⟩-bialgebras, with morphisms336

the non-expansive homomorphisms preserving both algebraic structures. Then, the following337

isomorphism of categories holds.338

▶ Proposition 15. K(Σ+Σ′,U ⊗U ′) ∼= (U ⊗U ′)-biAlg, for U ,U ′ basic quantitative theories.339

Moreover, by adapting the isomorphism of Theorem 4 and exploiting the density of340

symbolic pre-operations (cf. Corollary 14) the following is also true.341

▶ Proposition 16. (U ⊗U ′)-biAlg ∼= (TU ⊗TU ′)-biAlg, for U ,U ′ basic quantitative theories.342

By combining the above two propositions we get the main theorem of this section.343

▶ Theorem 17. Let U ,U ′ be basic quantitative theories. Then, the monad TU ⊗U ′ in Met is344

the tensor of monads TU ⊗ TU ′ .345

Proof. By Propositions 15 and 16 the forgetful functor from (TU ⊗ TU ′)-biAlg to Met has346

a left adjoint and the monad generated by this adjunction is isomorphic to TU ⊗U ′ . Thus, by347

definition of tensor of monads, TU ⊗U ′ ∼= TU ⊗ TU ′ . ◀348

The above results do not require any specific property of Met, apart that its morphisms349

are non-expansive maps. Thus, when the quantitative equational theories are continuous, we350

can reformulate an alternative version of Theorem 17 which is valid in CMet.351

▶ Theorem 18. Let U ,U ′ be continuous quantitative theories. Then, CTU ⊗U ′ in CMet is352

the tensor of monads CTU ⊗ CTU ′ .353

6 Quantitative Reader Algebras354

Let E be a finite set or input values and fix an enumeration E = {e1, . . . , en} for it. The355

quantitative reader algebras of type E are the algebras for the signature356

ΣRE
= {r : |E|}357

having only one operator r of arity equal to the number of the input values in E, and358

satisfying the following axioms359

(Idem) ⊢ x ≡0 r(x, . . . , x) ,360

(Diag) ⊢ r(x1,1, . . . , xn,n) ≡0 r(r(x1,1, . . . , x1,n), . . . , r(xn,1, . . . , xn,n)) .361
362

The quantitative theory induced by the axioms above, written RE , is called quantitative363

theory of reading computations.364
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Intuitively, the term r(t1, . . . , tn) can be interpreted as the computation that proceeds as365

ti after reading the value ei from its input. The axiom (Idem) says that if we ignore the value366

of the input the reading of it is not observable; (Diag) says that the resulting computation367

after reading the input is the same no matter how many times we read it.368

▶ Remark 19. For the binary case (|E| = 2) we can think of r as an if-then-else statement369

b?(S, T ) checking for the value of a fixed global Boolean variable b and proceeding as S when370

b = true, and as T otherwise. In this case, (Idem) and (Diag) express the standard program371

equivalences S ≡ b?(S, S) and b?(S, T ) ≡ b?(b?(S, T ), b?(S, T )).372

In the following, when the set E is clear from the context, we use R in place of RE .373

On Metric Spaces374

Let E be a finite set. We denote by E the extended metric space on E equipped with the375

indiscrete metric that assigns infinite distance to any pair of distinct elements.376

Consider the E-power functor (−)E : Met → Met, assigning to each X ∈ Met the377

metric space [E,X] of (necessarily non-expansive) maps from E to X.378

This functor has a monad structure, with unit κ : Id ⇒ (−)E and multiplication379

∆: ((−)E)E ⇒ (−)E , respectively given as follows, for x ∈ X, e ∈ E, and f ∈ E → XE
380

κX(x)(e) = x , ∆X(f)(e) = f(e)(e) .381
382

This is also known as reader monad (also called environment monad or function monad).383

▶ Remark 20. The reader monad is always well defined in a cartesian closed category. Fix384

an object E. The reader monad (−)E has unit and multiplication respectively given by385

X ∼= X1 X!

−−→ XE and (XE)E ∼= XE×E Xδ

−−→ XE ,386
387

where ! : E → 1 is the unique map to the terminal object and δ : E → E × E the diagonal388

map δ = ⟨id, id⟩. However, this definition does not generalise to arbitrary monoidal closed389

categories, and Met is such a counterexample. The specific problem with Met is that390

δ : E → E □ E is not well-defined for arbitrary E ∈ Met, as non-expansivness requires that391

dE(e, e′) ≥ dE□E(δ(e), δ(e′)) = dE(e, e′) + dE(e, e′) ,392

which holds only when E has the discrete metric. This is the reason why in our treatment393

we restrict the set of input values to have discrete metric.394

The reader monad (−)E is isomorphic to the free monad TR . In other words, the395

quantitative theory R of reading computations axiomatises the reader monad.396

▶ Theorem 21. The monads TR and (−)E in Met are isomorphic.397

Let T be a strong monad with strength t. The natural transformation λX : TXE ⇒ (TX)E398

obtained from the strength t by currying T evEX ◦ tE,XE , is a distributive law of monads.399

Distributive laws induce a notion of monad composition [2], so Moggi’s reader monad400

transformer T 7→ (T−)E is also available in Met. The following says that we can recover401

this monad transformer as the operation of tensoring with the reader monad.402

▶ Theorem 22 (Tensoring with Reader Monad). Let T be a strong monad. Then, T ⊗ (−)E403

exists and is given as the monad composition (T−)E.404

By using the above result in combination with Theorem 17, we obtain an analogous405

transformer at the level of quantitative equational theories as follows.406

▶ Corollary 23. Let U be a basic quantitative equational theory. Then, (TU −)E is the free407

monad on the theory U ⊗ R in Met.408
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On Complete Metric Spaces409

The category CMet has finite products. Since, we assumed the set of input values E to be410

finite, the functor (−)E is isomorphic to the finite product (−)n, for n = |E|. Therefore the411

power functor (−)E , preserves Cauchy completeness and can be restricted to an endofunctor412

on CMet. Thus also the reader monad restricts to CMet.413

Because R is a continuous quantitative theory, the free monad on R in CMet is CTR .414

Thus, by restricting Theorem 21 to quantitative algebras over CMet, we obtain:415

▶ Theorem 24. The monads CTR and (−)E in CMet are isomorphic.416

In virtue of the above characterisation, by instantiating Theorem 22 in the category of417

complete extended metric spaces, in combination with Theorems 17 we obtain the following418

variant of the quantitative reader theory transformer on continuous quantitative theories.419

▶ Corollary 25. Let U be a continuous quantitative theory. Then, (CTU −)E is the free420

monad on the theory U ⊗ R in CMet.421

7 Quantitative Writer Algebras422

Fix an extended metric space Λ ∈ Met of output values having monoid structure (Λ, ∗, 0)423

with non-expansive multiplication operation ∗ : Λ × Λ → Λ.424

The quantitative writer algebras of type Λ are the algebras for the signature425

ΣWΛ = {wα : 1 | α ∈ Λ}426

having a unary operator wα, for each output value α ∈ Λ, and satisfying the following axioms427

(Zero) ⊢ x ≡0 w0(x) ,428

(Mult) ⊢ wα(wα′(x)) ≡0 wα∗α′(x) ,429

(Diff) {x ≡ε x
′} ⊢ wα(x) ≡δ wα′(x′) , for δ ≥ dΛ(α, α′) + ε .430

431

The quantitative theory induced by the axioms above, written WΛ, is called quantitative432

theory of writing computations.433

The term wα(t) represents the computation that proceeds as t after writing α on the434

output tape. The axiom (Zero) says that writing the identity element 0 is not observable on435

the tape; (Mult) says that consecutive writing operations are stored in the tape in the order436

of execution; (Diff) compares two computations w.r.t. the distance of their output values.437

In the following, when the metric space Λ of output values is clear from the context, we438

use W in place of WΛ.439

On Metric Spaces440

Let (Λ □ −) : Met → Met be the functor assigning to each extended metric space X the441

space (Λ □X). By exploiting the monoid structure of Λ, the functor (Λ □ −) can be given a442

monad structure with unit τ : Id ⇒ (Λ □ −) and multiplication ς : (Λ □ (Λ □ −)) ⇒ (Λ □ −),443

respectively given as follows, for arbitrary x ∈ X and α, α′ ∈ Λ444

τX(x) = (0, x) , ςX((α, (α′, x))) = (α ∗ α′, x) .445
446

This monad is also known as writer monad (also called complexity monad). Note that,447

the non-expansiveness of the maps above crucially depends on the assumption that the448

multiplication ∗ in Λ is non-expansive.449
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The next theorem says that the writer monad (Λ □ −) has a quantitative equational450

presentation in terms of the theory W of writing computations.451

▶ Theorem 26. The monads TW and (Λ □ −) in Met are isomorphic.452

Let T be a strong monad with strength t. There is a canonical distributive law of the453

monad (Λ □ −) over T , obtained using the strength tΛ,− : (Λ □ T−) ⇒ T (Λ □ −) of T . So454

T (Λ □ −) acquires a canonical monad structure [2], and we obtain Moggi’s writer monad455

transformer T 7→ T (Λ □ −) in Met.456

In [12], Hyland et al. observed that Moggi’s writer monad transformer can be equivalently457

recovered as the operation of tensoring with the writer monad.458

▶ Theorem 27 (Tensoring with Writer Monad [12]). Let T be a strong monad. Then, the459

monad composition T (Λ □ −) is given as T ⊗ (Λ □ −).460

By combining the above with Theorems 17 and 26, we get an analogous transformer at461

the level of quantitative equational theories as follows:462

▶ Corollary 28. Let U be a basic quantitative theory. Then, TU (Λ □ −) is the free monad463

on the theory U ⊗ W in Met.464

On Complete Metric Spaces465

If we assume the monoid (Λ, ∗, 0) to be over a complete extended metric space Λ, the writer466

monad (Λ □ −) is well defined also in CMet.467

Since W is axiomatised by a continuous schema of quantitative conditional equations the468

free monad on W in CMet is given by CTW . Thus, by restricting the use of Theorem 26 to469

quantitative algebras over complete extended metric spaces, we obtain:470

▶ Theorem 29. The monads CTW and (Λ □ −) in CMet are isomorphic.471

Thus, by similar arguments as before, we obtain the following variant of Corollary 28.472

▶ Corollary 30. Let U be a continuous quantitative theory. Then, CTU (Λ □ −) is the free473

monad on the theory U ⊗ W in CMet.474

8 The Algebras of Labeled Markov Processes475

In this section we show how to obtain a quantitative equational axiomatization of labelled476

Markov processes with discounted bisimilarity metric as the combination, via sum and tensor,477

of the following simpler quantitative equational theories:478

(a) The quantitative theory of interpolative barycentric algebras B from [21] (see also Ap-479

pendix B) over the signature ΣB = {+e : 2 | e ∈ [0, 1]} extends M. H. Stone’s theory of480

barycentric algebras [32] (a.k.a. abstract convex algebras) with the following axiom481

(IB) {x≡ε y, x
′ ≡ε′ y′} ⊢x+e x

′ ≡δ y +e y
′, for δ ≥ eε+ (1 − e)ε′

482
483

expressing that the distance between convex combinations is obtained as the convex484

interpolation of the distance of their sub-terms. This theory will be used to axiomatise485

probability distributions with Kantorovich metric [15] (see also Appendix A).486

(b) The pointed quantitative theory, defined as the free quantitative theory U 0 (i.e., the487

one imposing no additional axioms) for a signature Σ0 = {0 : 0} consisting of a single488

constant 0 symbol. This will be used to axiomatise termination.489



G. Bacci, R. Mardare, P. Panangaden, G. Plotkin 23:13

(c) The quantitative theory RA of reading computations (cf. Section 6) will be used to490

axiomatise the reaction to the choice of a label from a set A of action labels.491

(d) The quantitative theory of contractive operators discussed in [1], is the theory obtained492

by imposing a Lipschitz contractive axiom for each operator in the signature. In our case,493

we consider a signature Σ⋄ = {⋄ : 1} with only one unary operator and the contractive494

theory U ⋄ generated from the axiom495

(⋄-Lip) {x =ε y} ⊢ ⋄(x) ≡δ ⋄(y) , for δ ≥ cε ,496
497

where c ∈ (0, 1) is a fixed contractive factor for the operator ⋄. This theory will be used498

to axiomatise the transition to a next state with discount factor c.499

Formally, we define the quantitative theory U LMP of labelled Markov processes as the500

following combination of quantitative theories, with signature ΣLMP given by the disjoint501

union of those from its component theories:502

ΣLMP = ΣB + Σ0 + ΣRA
+ Σ⋄ , U LMP = ((B + U 0) ⊗ RA) + U ⋄ .503

504

Following [33, Section 6], we regard A-labelled Markov processes over extended metric505

spaces as (∆(1 + −))A -coalgebras in Met, where ∆ is the Kantorovich functor assigning to506

each X ∈ Met the space of Radon probability measures with finite moment over X equipped507

with Kantorovich metric. In [33] it is shown that the probabilistic bisimilarity distance on a508

labelled Markov processes (X, τ) is equal to the (pseudo)metric509

d(X,τ)(x, x′) = dZ(h(x), h(x′)) ,510

where h : X → Z is the unique homomorphism to the final coalgebra (Z, ω).511

Similarly to [1], we slightly extend the type of the coalgebras to encompass the case when512

the probabilistic bisimilarity distance is discounted by a factor 0 < c < 1. Explicitly, we513

consider coalgebras for the functor (∆(1 + c · −))A, where (c · −) is the rescaling functor,514

mapping a metric space (X, dX) to (X, c · dX). This will not change the essence of the results515

from [33] that are used in this section to characterise the probabilistic bisimilarity metric.516

In the reminder of the section we prove that the theory U LMP axiomatizes (the monad517

of) A-labelled Markov processes with c-discounted bisimilarity metric.518

On Metric Spaces519

We characterise the monad TU LMP in steps. First, note that TU 0
∼= 1∗ = (1 + −) is the520

maybe monad, i.e., freely generated monad on the constant terminal object functor 1. As the521

monad (1 + −) is isomorphic to (1F )∗, for any functor F , by [1, Theorems 4.4 and 5.2], and522

[12, Theorem 4], we obtain the following isomorphism of monads in Met:523

TB+U 0
∼= TB + TU 0

∼= Π(1 + −) ,524

where Π(1 + −) is the finite sub-distribution monad with functor assigning to X ∈ Met the525

space of finitely supported Borel sub-probability measures with Kantorovich metric. Thus,526

B + U 0 axiomatizes finitely supported sub-probability distributions with Kantorovich metric.527

From the above, Theorem 17 and Corollary 23, we further get the monad isomorphism528

T(B+U 0)⊗RA
∼= Π(1 + −) ⊗ (−)A ∼= (Π(1 + −))A ,529

saying that tensoring with the theory RA of reading computations corresponds to axiomatic-530

ally adding the capability of reacting to the choice of an action label.531
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By [1, Theorem 6.3], TU ⋄ is isomorphic to the free monad over the rescaling functor (c ·−).532

Hence, by [1, Theorem 4.4] and [12, Corollary 2] we get the following last isomorphism533

TU LMP = T((B+U 0)⊗RA)+U ⋄
∼= µy.(Π(1 + c · y + −))A .534

Explicitly, this means that, the free monad on U LMP assigns to an arbitrary metric space535

X ∈ Met the initial solution of the following functorial equation in Met536

LMPX ∼= (Π(1 + c · LMPX +X))A .537

In particular, when X = 0 is the empty metric space (i.e., the initial object in Met) the538

above corresponds to the isomorphism on the initial (Π(1+c ·−))A -algebra. The isomorphism539

gives us also a (Π(1 + c · −))A -coalgebra structure on LMP0, which can be converted into a540

labeled Markov process (LMP0, τ0) via a post-composition with the inclusion Π(−) ↪→ ∆(−).541

The key aspect is that the metric of LMP0 is exactly the bisimilarity metric.542

▶ Lemma 31. dLMP0 is the c-discounted probabilistic bisimilarity metric on (LMP0, τ0).543

▶ Remark 32. For a less abstract description of (LMP0, τ0), notice that the elements of LMP0544

are (equivalence classes of) ground terms over the signature ΣLMP, which one can interpret545

as pointed (or rooted) acyclic labelled Markov processes quotiented by bisimilarity.546

On Complete Metric Spaces547

Since all the quantitative theories considered are continuous, we can replicate the same steps548

also while interpreting the theory U LMP over complete metric spaces, obtaining the monad549

CTU LMP
∼= µy.∆(1 + c · y + −)A .550

By following similar arguments to [1, Section 8.3], one can prove that the the functorial551

equation LMPX ∼= ∆(1 + c · LMPX + X)A has a unique solution. Thus by applying the552

monad above on X = 0 we recover the carrier of the final (∆(1 + c ·−))A -coalgebra, equipped553

with c-discounted probabilistic bisimilarity metric.554

▶ Remark 33. While by interpreting the theory U LMP over Met we can only characterise555

Markov processes that are acyclic, by doing it over CMet we obtain an algebraic representa-556

tion of all bisimilarity classes as the elements of the final coalgebra. Thus, among others, we557

also recover Markov processes with cyclic structures as the limit of all their finite unfoldings.558

9 The Algebras of Markov Decision Processes with Rewards559

As a last example, we provide a quantitative axiomatization of Markov decision processes560

with rewards equipped with discounted bisimilarity metric. As the construction is similar to561

Section 8, we avoid repeating the details of each step of the monad characterization.562

Let (R,+, 0) be the standard monoid structure on the reals. We define the quantitative563

theory U MDP of Markov decision processes with real-valued rewards as follows564

ΣMDP = ΣB + ΣWR + ΣRA
+ Σ⋄ , U MDP = ((B ⊗ U WR) ⊗ RA) + U ⋄ ,565

566

where WR is the theory of writing computations and the other theories are as in Section 8.567

For convenience, we regard Markov decision processes over metric spaces as the coalgebras568

for the functor (∆(R□ c · −))A on Met, where the endofunctor (R□ −) is used to encode569

the metric differences at each decision step for the real-valued reward available for two states.570

Via this coalgebraic representation, the c-discounted probabilistic bisimilarity distance on571

this structures can be defined as in [33] (following the same definition of Section 8).572
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▶ Remark 34. In [31] a Markov decision process is defined as a tuple (S, p(·|s, a), r(s, a))573

with a Markov kernel p : S ×A → ∆(S) and randomised reward function r : S ×A → ∆(R).574

Our coalgebraic representation is the natural generalisation over metric spaces, where the575

randomness of the Markov kernel and reward function is combined as a probability measure576

on (R□ c · S), by regarding R and S as extended metric spaces (for each a ∈ A).577

On Metric Spaces and Complete Metric Spaces578

Similarly to what we have done in Section 8 for labelled Markov processes, we relate Markov579

decision processes and their c-discounted probabilistic bisimilarity pseudometric with the580

free monads on the theory U MDP in Met and CMet.581

The only step that changes in the characterisation of TU MDP , regards the combination of582

theories B ⊗ U WR , which is dealt using Corollary 28. Thus, similarly to Section 8 we get583

TU MDP = T((B+⊗U WR )⊗RA)+U ⋄
∼= µy.Π((R□ y) + −)A .584

The metric on the initial solution for the functorial fixed point definition corresponds to the585

c-discounted probabilistic bisimilarity (pseudo)metric on its coalgebra structure.586

Similar considerations apply also when interpreting the theories in the category CMet of587

complete metric spaces, as the argument follows without issues because R a complete metric588

space. Thus we obtain the following characterisation for the monad:589

CTU LMP
∼= µy.∆((R□ y) + −)A .590

Again, the metric on the solution for the above functorial fixed point definition corresponds591

to the c-discounted probabilistic bisimilarity metric. Moreover, as the fixed point solution is592

unique, CTU LMP0 is an algebraic characterization of the final (∆(R□ c · −))A -coalgebra.593

10 Conclusions594

We studied the commutative combination of quantitative effects as the tensor of their595

quantitative equational theories. The key result in this regard is Theorem 17, asserting596

that the tensor of two quantitative theories corresponds to the categorical tensor of their597

free monads. In addition to this general result, we show how to extend to the quantitative598

algebraic setting Moggi’s notions of reader and writer monad transformers.599

We illustrate the applicability of our theoretical development with two examples: labeled600

Markov processes and Markov decision processes. Apart from the intrinsic interest in their601

quantitative equational axiomatisations, what is particularly pleasant is the systematic602

compositional way with which one can obtain quantitative axiomatisations of different603

variants of Markov processes by just combining theories as new basic ingredients.604

An example that escapes our compositional treatment via sum and tensor is the com-605

bination of probabilities and non-determinism as illustrated in [24]. A possible future work606

in this direction is to extend the combination of theories with another operator: the dis-607

tributive tensor (see [13, Section 6]). Following a similar intuition by Cheng [6], we claim608

that these correspond in a suitable way to Garner’s weak distributive law [9]. Our claim609

seems promising in the light of the work [10, 3] which consider equational axiomatisations610

combining probabilities and non-determinism.611
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A Kantorovich Metric on Extended Metric Spaces683

We assume the reader is familiar with the notions of σ-algebras, measurable functions, and684

Borel probability measures. Next we review some facts about metrics between extended685

spaces of probability distributions from [23].686

Let M be an extended metric space. A Borel probability measure µ over M is Radon if687

for any Borel set E ⊆ M , µ(E) is the supremum of µ(K) over all compact subsets K of E.688

Examples of Radon probability measures are finitely supported probability measures on any689

metric space and generic Borel probability measures over complete separable metric spaces.690

A Radon probability measure µ over M has finite moment (of order 1) if, for some691

(equivalently all) m0, the integral692 ∫
dM (m0,−) dµ693

is finite. By restricting our attention to Radom measures of finite moment the following is a694

well-defined metric [23].695

The Kantorovich metric (or W1 metric) between Radon probability measures µ, ν of finite696

moment over M is defined as:697

K(dM )(µ, ν) = min
{∫

dM dω | ω ∈ C(µ, ν)
}
.698

where C(µ, ν) is the set of couplings for a pair of Radon measures (µ, ν), that is, a Radon699

probability measures ω on the product space M ×M , such that, for all Borel sets E ⊆ M700

ω(E ×M) = µ(E) and ω(M × E) = ν(E) .701
702

We write ∆(M) for the set of Radon probability measures with finite moment over M ,703

equipped with the Kantorovich metric and Π(M) for the subspace of ∆(M) of the finitely704

supported Borel probability measures over M .705
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▶ Theorem 35 (Theorem 2.7 [23]). Let M be a complete extended metric space. Then, ∆(M)706

is a complete metric space generated as the Cauchy completion of Π(M), i.e., Π(M) ∼= ∆(M).707

B Interpolative Barycentric Algebras708

In this section we recall interpolative barycentric algebras from [21], which are the quantitative709

algebras for the signature710

ΣB = {+e : 2 | e ∈ [0, 1]}711

having a binary operator +e, for each e ∈ [0, 1] (a.k.a. barycentric signature), and satisfying712

the following axioms713

(B1) ⊢ x+1 y ≡0 x ,714

(B2) ⊢ x+e x ≡0 x ,715

(SC) ⊢ x+e y ≡0 y +ē x ,716

(SA) ⊢ (x+e y) +e′ z ≡0 x+ee′ (y + e′−ee′
1−ee′

z) , for e, e′ ∈ [0, 1) ,717

(IB) {x≡ε y, x
′ ≡ε′ y′} ⊢x+e x

′ ≡δ y +e y
′, for δ ≥ eε+ (1 − e)ε′ .718

719

The quantitative theory induced by the axioms above, written B, is called interpolative720

barycentric quantitative equational theory. The axioms (B1), (B2), (SC), (SA) are those of721

barycentric algebras (a.k.a. abstract convex sets) due to M. H. Stone [32] where (SC) stands722

for skew commutativity and (SA) for skew associativity; (IB) is the interpolative barycentric723

axiom introduced in [21].724

On Metric Spaces725

Let Π: Met → Met be the functor assigning to each X ∈ Met the metric space Π(X)726

of finitely supported Borel probability measures with Kantorovich metric and acting on727

morphisms f : X → Y as Π(f)(µ) = µ ◦ f−1, for µ ∈ Π(X).728

This functor has a monad structure, with unit δ : Id ⇒ Π and multiplication m : Π2 ⇒ Π,729

given as follows, for x ∈ X, Φ ∈ Π2(X), and Borel subset E ⊆ X730

δX(x) = δx , mX(Φ)(E) =
∫
vE dΦ ,731

732

where δx is the Dirac distribution at x, and vE : Π(X) → [0, 1] is the evaluation function,733

taking µ ∈ Π(X) to µ(E) ∈ [0, 1]. This monad is also known as the finite distribution monad.734

For any X ∈ Met, one can define a quantitative ΣB-algebra (Π(X), ϕX) as follows, for735

arbitrary µ, ν ∈ ΠX736

ϕX : ΣBΠX → ΠX ϕX(in+e(µ, ν)) = eµ+ (1 − e)ν .737
738

This quantitative algebra satisfies the interpolative barycentric theory B (cf. [21, The-739

orem 10.4]) and is isomorphic to the free quantitative B-algebra (cf. [21, Theorem 10.5]).740

Thus, as shown in [21], Π is isomorphic to the free monad TB on the theory B of741

interpolative barycentric algebras.742

▶ Theorem 36. The monads TB and Π in Met are isomorphic.743
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On Complete Metric Spaces744

Define the functor ∆: CMet → CMet assigning to each X ∈ CMet the complete metric745

space ∆(X) of Radon probability measures with finite moment and equipped with Kantorovich746

metric; acting on morphisms f : X → Y as ∆(f)(µ) = µ ◦ f−1, for µ ∈ ∆(X). This functor747

has a monad structure, defined similarly to the one for Π. It is known as the Kantorovich748

monad.749

By exploiting Lemma 35, one can verify that ∆(X) with its canonical barycentric algebra750

structure is the free interpolative barycentric algebra in CMet (Theorem 3.7 [23]). As the751

canonical monad structure on CΠ is isomorphic to the one on ∆ in CMet, by Theorem 36,752

we obtain the following.753

▶ Theorem 37. The monads CTB and ∆ in CMet are isomorphic.754

Note that, since B is axiomatised by a continuous schema of quantitative equations, the755

free monad on B in CMet is given by CTB . In other words, [23, Theorem 3.7] provides an756

algebraic characterisation of the Kantorovich monad.757

C Omitted Proofs758

Proof. (of Proposition 6) (1) ⇒ (2) follows by definition of ag, bg and naturality of g.759

As for (2) ⇒ (1), note that since V is a symmetric monoidal closed category, we have a760

1-1 correspondence between strong and V-enriched endofunctors on V, and also between761

strong and V-enriched natural transformations [17]. Therefore, by (the weak form of) the762

enriched Yoneda lemma (cf. [16]), there exists a natural bijection between strong natural763

transformations g ∈ OF (A) and the (generalised) elements of FA, i.e., morphisms of the764

form I → FA, obtained via the composition765

I
idA−−−→ AA

gA−−→ FA .766

Thus, for any e : I → FA, there exists ê ∈ OF (A) such that êA ◦ idA = e. Therefore, by767

naturality of ê, definition of aê, bê, and (2), the following diagram commute768

I FA A

AA BA

FA FB B

e

e
idA

a

f

êA

fA

êA
êB

Ff b

769

implying that f I ◦ aI = bI ◦ (Ff I). Then (1) follows by the naturality of the isomorphism770

V
∼=−→ V I (obtained by currying λ : I □ V

∼=−→ V ) and the commutativity of the diagram771

FA (FA)I AI A

FB (FB)I BI B

∼=

Ff

a

aI

(Ff)I fI

∼=

f

∼=

b

bI ∼=

◀772
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▶ Proposition 38. Let (A, a) be a F -algebra of a strong endofunctor F on V. Then, for any773

v, w ∈ V and g ∈ OF (v) the following commute774

(Av)w (Aw)v

Aw

χ

∼=

(ag)w āg

775

where (A, a)w = (Aw, ā) and χ is the canonical isomorphism.776

Proof. By the universality of the counit ev : (w□−) ⇒ Id of the adjunction (w□−) ⊣ (−)w777

it suffices to show that the following two diagrams commute:778

w □ (Av)w

A w □Aw

ag◦ev w□(ag)w

ev

w □ (Av)w w □ (Aw)v

A w □Aw

ag◦ev

w□χ

w□āg

ev

779

The diagram to the left commutes by naturality of the counit ev; the one to the right780

commutes as follows, where ξ and t are respectively the strengths of (−)v and F781

w □ (Aw)v

w □ (Av)w (w □Aw)v

Av F (w □Aw) w □ FAw

FA w □ (FA)w

A w □Aw

w□gξ
w□χ

ev
evv

g

g
Fev

t

w□σ

a

ev

w□aw

ev

782

by naturality of the counit ev; definition of ξ and χ; definition of the law σ : F (−)w ⇒ (F−)w;783

definition of ag, āg; by ā = aw ◦ σ; and because g is strong. ◀784

Proof. (of Proposition 8) (1) ⇒ (2) By Proposition 6, we prove (2) by showing that for all785

v ∈ V and g ∈ OF (v), bh ◦ āg = ag ◦ (bh)v. This is shown by the diagram below786

(Aw)v Aw

(Av)w

Av A

āg

χ

(bh)v bh
χ−1 (ag)w

b̄h

ag

787

which commutes by Proposition 38, (1), definition of ag, and naturality of g. The implication788

(2) ⇒ (1) is similar. ◀789

Proof. (of Proposition 10) The equivalence of the statements (1), (2) follows as in Proposi-790

tion 8, by using the density of D and E in lieu of Proposition 6.791
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Assume (A, a, b) is a commutative ⟨F,G′⟩-bialgebra. Then, (1) follows trivially because,792

D is a subset of pre-operations of F . For the converse implication, assume (1) and let793

h ∈ OG(w) for some w ∈ V. We want to show that794

FAw Aw

ΣA A

ā

F (bh) bh

a

795

commutes, where (A, a)w = (Aw, ā). By density of D, it suffices to show that for all v-ary796

pre-operation g ∈ D, bh ◦ āg = ag ◦ (bh)v. This follows by797

(Aw)v Aw

(Av)w

Av A

āg

χ

(bh)v bh
χ−1 (ag)w

b̄h

ag

798

which commutes by Proposition 38, (1), definition of ag, and naturality of g. ◀799

Proof. (of Proposition 12) Let (A, a), (B, b) be Σ-algebras in Met and h : A → B a non-800

expansive map. We want to prove the equivalence of801

1. f is a Σ-homomorphisms from (A, a) to (B, b);802

2. For every f : n ∈ Σ, h ◦ af = bf ◦ hv.803

(1) ⇒ (2) follows by definition of af , bf and naturality of inf : (−)n ⇒ Σ. The implication804

(2) ⇒ (1) follows by the universality of the coproduct, as Σ =
∐
f :n∈Σ Id

n. ◀805

▶ Proposition 39. TU is a strong monad with strength ζ.806

Proof. Naturality of ζ follows by definition and naturality of ηU and ψU . The coherence807

conditions of a monoidal strength follow by universality of the evaluation and co-evaluation808

maps of the closed structure of Met, Theorem 3 and definition of (TU , η
U , µU ). ◀809

Proof. (of Proposition 13) (A, a), (B, b) be TU -algebras and h : A → B a non-expansive map.810

We want to prove the equivalence of811

1. h is a TU -homomorphism from (A, a) to (B, b);812

2. For every v-ary pre-operation g ∈ D, h ◦ a(ψU ◦ΣηU ◦g) = b(ψU ◦ΣηU ◦g) ◦ hv.813

(1) ⇒ (2) follows by definition of a(ψU ◦ΣηU ◦g), b(ψU ◦ΣηU ◦g) and naturality of ψU ◦ΣηU ◦g.814

For the converse implication, recall that the isomorphism of categories from Theorem 4, maps815

a TU -algebra (A, a) to the Σ-algebra (A, a◦ψU
A ◦ΣηU

A) and morphisms essentially to themselves.816

Thus (2) ⇒ (1) follows by density of D and definition of a(ψU ◦ΣηU ◦g), b(ψU ◦ΣηU ◦g). ◀817

Proof. (of Proposition 15) The isomorphism is given by the pair of functors818

K(Σ + Σ′,U ⊗ U ′) K((Σ,U ) ⊗ (Σ′,U ′))
H

K

819

defined, for a (Σ + Σ′)-algebra (A, a) satisfying U ⊗ U ′ and a ⟨U ⊗ U ′⟩-bialgebra (B, b, b′),820

respectively as821

H(A, a) = (A, a ◦ inl, a ◦ inr) , K(B, b, b′) = (B, [b, b′]) ,822
823
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where [b, b′] : ΣB + Σ′B → B is the unique map induced by b and b′ by universality of the824

coproduct. Both functors are identity on morphisms; it is easy to see that a homomorphism825

in one sense is also a homomorphism in the other.826

The pair of functors above is the restriction of the isomorphic pair of functors used in the827

proof of [1, Proposition 4.1]. Thus, to show H and K are well defined we are just left to deal828

with checking that the restriction conditions on the subcategories are preserved both ways.829

As for H, we prove that whenever A = (A, a) satisfies the quantitative equation in (1),830

then (A, a ◦ inl, a ◦ inr) satisfies the commutativity of the diagram in (2). This follows as,831

for all f : n ∈ Σ and g : m ∈ Σ′, by definition of algebraic interpretation (−)A, we have832

fA = a ◦ inl ◦ inf = (a ◦ inl)f ,833

gA = a ◦ inr ◦ ing = (a ◦ inr)g .834
835

Thus, the satisfiability (1) coincides with the commutativity of the diagram in (2).836

For K we need to show that whenever (B, b, b′) satisfies the commutativity of the diagram837

in (2), then A = (A, [b, b′]) satisfies (1). This follows as, for all f : n ∈ Σ and g : m ∈ Σ′, by838

definition of algebraic interpretation (−)A, we have839

fA = [b, b′] ◦ inl ◦ inf = (b)f ,840

gA = [b, b′] ◦ inr ◦ ing = (b′)g .841
842

Thus, the commutativity of the diagram in (2) coincides with the satisfiability of (1). ◀843

Proof. (of Proposition 16) Recall the isomorphism of categories from Theorem 4844

TU -Alg K(Σ,U )
H

K

845

mapping morphisms essentially to themselves and on objects acting as follows: for (A, a) ∈846

TU -Alg and (B, b) ∈ K(Σ,U ),847

H(A, a) = (A, a ◦ ψU
A ◦ ΣηU

A) , K(B, b) = (B, b♭) ,848
849

where β♭ : TUB → B is the unique map that, by Theorem 3, satisfies the equations b♭ ◦ ηU
B =850

idB and b♭ ◦ ψU
B = b ◦ Σb♭. (for the details on the proof cf. [1, Theorem 4.2]).851

Next we show that the obvious point-wise extension of the above functors on the categories852

of bialgebras (U ⊗ U ′)-biAlg and (TU ⊗ TU ′)-biAlg is an isomorphism of categories.853

Clearly, since H and K are inverse with each other, so are their point-wise extensions.854

The only thing we are left to prove is that they are well defined; in particular that the855

respective commutative conditions are preserved.856

Let (A, a, b) ∈ (TU ⊗ TU ′)-biAlg. We need to show that condition (2) is satisfied by857

(A, a◦ψU
A ◦ΣηU

A , b◦ψU
A ◦ΣηU

A). Let (A, b)n = (An, b̄). By Corollary 14 and Propositions 12, 13,858

we have that the bottom square diagram below commutes for all f : n ∈ Σ and all g : m ∈ Σ′,859

while the top commute by Proposition 38:860

(Am)n

(An)m An

Am A

χ

(b⟨g⟩)n

b̄⟨g⟩

(a⟨f⟩)m a⟨f⟩

b⟨g⟩

861
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Since a⟨f⟩ = (a ◦ ψU
A ◦ ΣηU

A)f and b⟨g⟩ = (b ◦ ψU
A ◦ ΣηU

A)g, the above diagram proves that862

condition (2) holds.863

Let (A, a, b) ∈ (U ⊗ U ′)-biAlg. We need to show that (A, a♭, b♭) is a ⟨TU , TU ′⟩-bialgebra.864

By Corollary 14, it is sufficient to prove that the following diagram commutes for all g : m ∈ Σ′,865

866

TUA
m Am

TUA A

a♭

TU (b⟨g⟩
♭

) b
⟨g⟩
♭

a♭

(3)867

where (A, a♭)m = (Am, a♭).868

Toward proving (3), first notice that the diagram below commutes for all f : n ∈ Σ and869

g : m ∈ Σ′
870

(An)m Am

(Am)n

An A

āf

χ−1

(bg)n bg

χ (af )m

af

(2)

(4)871

for (A, a)m = (Am, ā) and (A, b)n = (An, b̄). Indeed, the bottom commutes because (A, a, b)872

satisfies (2), and the top triangle does by Proposition 38.873

Going back to proving (3), by Theorem 3, it suffices to show that both b
⟨g⟩
♭ ◦ a♭ and874

a♭ ◦ TU (b⟨g⟩
♭ ) are the (unique) homomorphic extension of a along bg♭ . This is shown by the875

following diagrams876

Am TUA
m

A TUA

A

ηU

b
⟨g⟩
♭ TU b

⟨g⟩
♭

ηU

id
a♭

Am TUA
m

Am

A

ηU

id

b
⟨g⟩
♭

a♭

b
⟨g⟩
♭

877

878

TUA
m ΣTUA

m

TUA ΣTUA

A ΣA

TU b
⟨g⟩
♭

ψU

ΣTU b
⟨g⟩
♭

a♭

ψU

Σa♭

a

879

880

TUA
m ΣTUA

m

Σ′TU ′A Am ΣAm ΣΣ′TU ′A

Σ′TU ′A Σ′A ΣΣ′A ΣΣ′TU ′A

TU ′A A ΣA ΣTU ′

a♭

ψU

Σa♭

id ing Σing

a

id

ψU ′ b

Σ′b♭

Σ′ηU ′

Σb
ΣΣ′b♭

ΣΣ′ηU ′

ψU ′

b♭ a Σb♭

881
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that commute by definitions of a♭, b♭, b
⟨g⟩
♭ , bg; by naturality of ηU , ψU ; since (A, a♭)m is a882

EM TU -algebra; because by Theorem 4 (A, a♭)m = (A, a)m; and since from Propositions 12,883

13 and (4) we have that bg is a Σ-homomorphism. ◀884

Proof. (of Theorem 18) The tensor U ⊗ U ′ of continuous theories is also continuous, so that,885

by [1, Theorem 3.4], the free monad on it in CMet is CTU ⊗U ′ . Moreover, by exploiting the886

universal property of [1, Theorem 3.4], we can refactor the proofs of Propositions 15 and 16887

to obtain the isomorphism CK(Σ + Σ′,U ⊗ U ′) ∼= (CTU ⊗ CTU ′)-biAlg. Thus, by definition888

of tensor of monads, CTU ⊗U ′ ∼= CTU ⊗ CTU ′ . ◀889

C.1 Quantitative Reader Algebras890

For any X ∈ Met, we define the quantitative ΣR -algebra (XE , ρX) as follows, for arbitrary891

maps f1, . . . , fn : E → X892

ρX : ΣRX
E → XE ρX(inr(f1, . . . , fn))(ei) = fi(ei) .893

894

This quantitative algebra satisfies the quantitative theory R of reading computations.895

▶ Proposition 40. (XE , ρX) ∈ K(ΣR ,R).896

Proof. Let rρ = ρX ◦ inr denote the interpretation of the operator symbol r : n ∈ ΣR in the897

algebra (XE , ρX). Soundness for the axiom of non-expansiveness (r-NE) follows by the fact898

that ρX is a well defined map in Met as shown below899

dXE (rρ(f1, . . . , fn), rρ(g1, . . . , gn))900

= sup
ei

dX(rρ(f1, . . . , fn)(ei), rρ(g1, . . . , gn)(ei))901

= sup
ei

dX(fi(ei), gi(ei))902

≤ max
j

(
sup
ei∈E

dX(fj(ei), gj(ei))
)

903

≤ max
j
dXE (fj , gj) .904

905

We are left to show that the algebra (XE , ρX) satisfies the axioms (Idem) and (Diag).906

Soundness for (Idem) follows by definition of ρ as, for all ei ∈ E907

rρ(f, . . . , f)(ei) = f(ei) .908

Soundness for (Diag) also follows by definition, as909

rρ(rρ(f1,1, . . . , f1,n)), . . . , rρ(fn,1, . . . , fn,n))(ei)910

= rρ(fi,1, . . . , fi,n)(ei)911

= fi,i(ei)912

= rρ(f1,1, . . . , fn,n)(ei) . ◀913
914

Moreover, it is universal in the following sense:915

▶ Theorem 41. For any ΣR-algebra (A, a) satisfying R and non-expansive map β : X → A,916

there exists a unique homomorphism h : XE → A of quantitative ΣR-algebras making the917

diagram below commute918

X XE ΣRX
E

A ΣRA

β

κX

h

ρX

ΣRh

a

919



G. Bacci, R. Mardare, P. Panangaden, G. Plotkin 23:25

Proof. Let (A, a) be a quantitative ΣR -algebra satisfying R and β : X → A a non-expansive920

map. We define h : XE → A as follows, for arbitrary f : E → X921

h(f) = a(inr(β(f(e1)), . . . , β(f(en)))) .922

As it is defined as the composition of non-expansive maps, then also h is non-expansive. Next923

we prove the commutativity of the diagram, that is, h ◦ κX = β and h ◦ ρX = a ◦ ΣRh.924

Let rρ = ρX ◦ inr and ra = a ◦ inr denote the interpretations of r : n ∈ ΣR in the algebras925

(XE , ρX) and (A, a), respectively. Let x ∈ X. Then926

(h ◦ κX)(x)927

= ra(β(κX(x)(e1)), . . . , β(κX(x)(en))) (def. h)928

= ra(β(x), . . . , β(x)) (def. κ)929

= β(x) . (Idem)930
931

Let f1, . . . , fn : E → X. Then932

(h ◦ ρX)(inr(f1, . . . , fn))933

= ra(β(f1(e1)), . . . , β(fn(en))) (def. h and ρ)934

= ra
(

ra(β(f1(e1)), . . . , β(f1(en))), . . .935

. . . , ra(β(fn(e1)), . . . , β(fn(e1)))
)

(Diag)936

= ra(h(f1), . . . , h(fn)) (def. h)937

= (a ◦ ΣRh)(inr(f1, . . . , fn)) . (def. ra and ΣR)938
939

Hence h is a ΣR -homomorphism.940

It remains to prove the uniqueness of such a homomorphism. Assume there exists941

g : XE → A such that g ◦ κX = β and g ◦ ρX = a ◦ ΣRg. Next we prove h = g. Notice first942

that for any f : XE → X, f = rρ(κX(f(e1)), . . . , κX(f(en))), as for all ei ∈ E, the following943

holds:944

f(ei) = κX(f(ei))(ei) (def. κ)945

= rρ(κX(f(e1)), . . . , κX(f(en)))(ei) . (def. ρ)946
947

From the above we have that, for all f : XE → X,948

h(f) = h(rρ(κX(f(e1)), . . . , κX(f(en))))949

= ra((h ◦ κ)(f(e1)), . . . , (h ◦ κ)(f(e1))) (h homo)950

= ra(β(f(e1)), . . . , β(f(e1))) (h ◦ κ = β)951

= ra((g ◦ κ)(f(e1)), . . . , (g ◦ κ)(f(e1))) (g ◦ κ = β)952

= g(rρ(κX(f(e1)), . . . , κX(f(en)))) (g homo)953

= g(f)954
955

Therefore, g = h. ◀956

Proof. (of Theorem 21) By Theorem 41, the functors (−)E and TR are isomorphic and the957

units of the two monads coincide (up-to iso). We are left to prove that also the multiplications958
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coincide (up-to iso). By Theorem 41, this follows by showing that the following diagram959

commutes960

XE (XE)E ΣR(XE)E

XE ΣRX
E

id

κ
X

E

∆X

ρ
X

E

ΣR ∆X

ρX

961

∆X ◦ κX = id holds since (−)E is a monad. Finally, the right square diagram commutes as962

shown below963

(∆X ◦ ρXE )(inr(F1, . . . , Fn))(ei)964

= ρXE (inr(F1, . . . , Fn))(ei)(ei) (def. ∆)965

= Fi(ei)(ei) (def. ρ)966

= ∆X(Fi)(ei) (def. ∆X)967

= ρX(inr(∆X(F1), . . . ,∆X(Fn)))(ei) (def. ρ)968

= (ρX ◦ ΣR∆X)(inr(F1, . . . , Fn))(ei) (def. ΣR)969
970

for arbitrary F1, . . . , Fn : E → XE . ◀971

Proof. (of Theorem 22) Recall that the composite monad (T−)E is the monad that arises972

from the adjunction with the forgetful functor λ-biAlg → Met, where λ-biAlg denotes the973

full subcategory of EM ⟨T, (−)E⟩-bialgebras (A, a, b) satisfying the commutativity of the974

diagram975

TA A AE

T (AE) (TA)E

a b

λ

Tb (a)E (5)976

The bialgebras satisfying (5) are called, λ-bialgebras for the law λ : T (−E) ⇒ (T−)E (see e.g.,977

[2]). We show that the category of λ-bialgebras is identical to the category of commutative978

⟨T ⊗ (−)E⟩-bialgebras, that is, that the commutativity of the diagram above corresponds to979

either one of the equivalent conditions from Proposition 8.980

One direction is easy, as if we assume (A, a, b) to be a commutative ⟨T ⊗ (−)E⟩-bialgebra,981

then (5) is just the instantiation of (2) from Proposition 8 for h = id ∈ O(−)E (E) as, by982

definition of lifting, (A, a)E = (AE , (a)E ◦ λA).983

For the converse direction, assume (5) holds and let g ∈ OT (v), for some v ∈ Met.984

Then, asking that ag is a (−)E-homomorphism (i.e., condition (1) from Proposition 8)985

corresponds to the commutativity of the following diagram, as (A, b)v = (Av, bv ◦ σA) and986

(A, a)E = (AE , (a)E ◦ λA):987

(Av)E (AE)v Av

(TA)E T (AE) TA

AE A

σ

gE

bv

g g

aE

Tb

(a)E◦λ a

b

988



G. Bacci, R. Mardare, P. Panangaden, G. Plotkin 23:27

The bottom-left square is (5), so commutes by hypothesis; the top-right square commutes by989

naturality of g; and finally, the left square commutes by Proposition 38 as, by definitions of990

the strengths of (−)v and (−)E , σ : (Av)E ⇒ (AE)v coincides with the canonical isomorphism991

(denoted as χ in Proposition 38).992

Therefore, as the two categories of bialgebras coincide, by definition of tensor of monads,993

T ⊗ (−)E = (T−)E . ◀994

C.2 Quantitative Writer Algebras995

For any X ∈ Met, we define the quantitative ΣW -algebra (Λ□X,ωX) as follows, for arbitrary996

α, α′ ∈ Λ and x ∈ X997

ωX : ΣW(Λ □X) → Λ □X , ωX(inwα(α′, x)) = (α ∗ α′, x) .998
999

This quantitative algebra satisfies the quantitative theory W of writing computations.1000

▶ Proposition 42. ((Λ □X), ωX) ∈ K(ΣW ,W).1001

Proof. Let wωα = ωX ◦ inwα denote the interpretation of the operation wα : 1 ∈ ΣW in the1002

algebra (Λ □X,ωX). Proving the soundness for (wα-NE), for each α ∈ Λ, is equivalent to1003

show that the map ω is well-defined in Met. This follows as1004

d(Λ□X)(wωα(β, x),wωα(β′, x′))1005

= d(Λ□X)((α ∗ β, x), (α ∗ β′, x′)) (def. ω)1006

= dΛ(α ∗ β, α ∗ β′) + dX(x, x′) (def. □)1007

≤ max
{
dΛ(α, α), dΛ(β, β′)

}
+ dX(x, x′) (∗ non-exp)1008

= dΛ(β, β′) + dX(x, x′) (metric)1009

= d(Λ□X)((β, x), (β′, x′)) . (def. □)1010
1011

We are missing to prove that the algebra ((Λ □X), ωX) satisfies the axioms (Zero), (Mult),1012

and (Diff). The first one holds trivially as (α, x) = (0 ∗α, x) because 0 is the identity element1013

of the monoid Λ of output values. The soundness of (Mult) follows by definition of ω as1014

wωα(wωα′(β, x)) = wωα((α′ ∗ β, x)) .1015

Finally, soundness for (Diff) follows by1016

d(Λ□X)(wωα(β, x),wωα′(β′, x′))1017

= dΛ(α ∗ β, α′ ∗ β′) + dX(x, x′) (def. ω & □)1018

= dΛ(α ∗ β, α ∗ β′) + dΛ(α ∗ β′, α′ ∗ β′) + dX(x, x′) (triang. ineq.)1019

≤ dΛ(β, β′) + dΛ(α, α′) + dX(x, x′) (∗ non-exp)1020

≥ dΛ(α, α′) + d(Λ□X)((β, x), (β′, x′)) , (def. □)1021
1022

which concludes our proof. ◀1023

Moreover, the next result says that this algebra is actually the free quantitative ΣW-1024

algebra on X in K(ΣW ,W).1025
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▶ Theorem 43. For any ΣW-algebra (A, a) satisfying W and non-expansive map β : X → A,1026

there exists a unique homomorphism h : XE → A of quantitative ΣW-algebras making the1027

diagram below commute1028

X Λ □X ΣW(Λ □X)

A ΣWA

β

τX

h

ωX

ΣWh

a

1029

Proof. Let (A, a) be a ΣW-algebra satisfying W and β : X → A a non-expansive map, We1030

define the map h : Λ □X → A as follows, for arbitrary α ∈ Λ and x ∈ X1031

h((α, x)) = a(inwα
(β(x))) .1032

Non-expansiveness of h follows by the fact that (A, a) satisfies the axiom (Diff) as shown1033

below, where waα = a ◦ inwα
denotes the interpretation of wα : 1 ∈ ΣW in (A, a),1034

dA(h((α, x)), h((α, x)))1035

= dA(waα(β(x)),waα′(β(x′))) (def. h)1036

≤ dΛ(α, α′) + dA(β(x), β(x′)) (Diff)1037

≤ dΛ(α, α′) + dX(x, x′) (β non-exp)1038

= dΛ□X((α, x), (α′, x′)) . (def. □)1039
1040

Next we prove h ◦ τX = β and h ◦ ωX = a ◦ ΣWh.1041

Let x ∈ X. Then,1042

(h ◦ τX)(x) = h((0, x)) (def. τ)1043

= wa0(β(x)) (def. h)1044

= β(x) . (Zero)1045
1046

Let x ∈ X and α, α′ ∈ Λ. Then,1047

(h ◦ ωX)(inwα
(α′, x))1048

= waα∗α′(β(x)) (def. h and ω)1049

= waα(waα′(β(x))) (Mult)1050

= waα(h(α′, x)) (def. h)1051

= (a ◦ ΣWh)(inwα(α′, x)) . (def. waα and ΣW)1052
1053

Thus, h is a ΣW-homomorphism.1054

It remains to prove uniqueness of h. Notice first that, for any α ∈ Λ and x ∈ X,1055

(α, x) = wωα(τ(x)), where wωα = ωX ◦ inwα
denotes the interpretation of wα : 1 ∈ ΣW in1056

(Λ □X,ωX). Indeed, the following holds1057

(α, x) = (α ∗ 0, x) (0 identity)1058

= wωα(0, x) (def. ω)1059

= wωα(τ(x)) . (def. τ)1060
1061
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Assume there exists g : Λ □X → A such that g ◦ τX = β and g ◦ ωX = a ◦ ΣWg. Then, the1062

following holds:1063

h((α, x)) = h(wωα(τ(x)))1064

= waα(h(τ(x))) (h homo)1065

= waα(β(x)) (h ◦ τ = β)1066

= waα(g(τ(x))) (g ◦ τ = β)1067

= g(wωα(τ(x))) (g homo)1068

= g((α, x))1069
1070

Therefore, h = g. ◀1071

Proof. (of Theorem 26) By Theorem 41, the functors (Λ□−) and TW are isomorphic and the1072

units of the two monads coincide (up-to iso). We are left to prove that also the multiplications1073

coincide (up-to iso). By Theorem 41, this follows by showing that the following diagram1074

commutes1075

(Λ □X) (Λ □ (Λ □X)) ΣW(Λ □ (Λ □X))

Λ □X ΣW(Λ □X)
id

τΛ□X

ςX

ωΛ□X

ΣW ςX

ωX

1076

ςX ◦ τX = id holds since (Λ □ −) is a monad. The right square diagram commutes as shown1077

below1078

(ςX ◦ ωΛ□X)(inwα
(α′, (α′′, x)))1079

= ςX((α ∗ α′, (α′′, x))) (def. ω)1080

= (α ∗ α′ ∗ α′′, x) (def. ς)1081

= ωX(inwα
(α′ ∗ α′′, x)) (def. ωX)1082

= ωX(inwα
(ςX(α′, (α′′, x)))) (def. ς)1083

= (ωX ◦ ΣWςX)(inwα
(α′, (α′′, x))) (def. ΣW)1084

1085

for arbitrary x ∈ X and α, α′, α′′ ∈ Λ. ◀1086

Proof. (of Lemma 31) Similar to [1, Lemma 8.4]. ◀1087
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