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Abstract

I give some examples of instances of ideas from semantics being
useful in machine learning.

1 Introduction

I am delighted to be able to contribute this short piece to celebrate yet an-
other milestone in Samson Abramsky’s illustrious career. Samson is known
for many things and I don’t want to compile another list of accomplishments
here. Rather, I would like to focus on one issue where he has been a forceful
advocate: bringing together the two wings of theoretical computer science.
These are often referred to as Theory A (algorithms, complexity, combina-
torics) and Theory B (logic, semantics, verification). There are some points
of contact between the two, finite model theory is a notable example, and
some areas that have drifted from one wing to the other, perhaps automata
theory is an example. However, culturally and socially, there is a big gap as
can be seen at once from a glance at the accepted papers at STOC, FOCS,
LICS, POPL and other conferences.

Samson was one of the prime movers in the Simons Institute thematic
semester in the Autumn of 2016 where, along with Anuj Dawar and Phokion
Kolaitis, we organised a programme specifically aimed at bringing the two
branches of theoretical computer science together. Apart from these organ-
isational initiatives he took a leading role in pushing research topics which
resulted in papers that gave a structural account of important topics in
combinatorics [ADW17, AW17, AS18, ABKM19].

Another theme that has been pursued by Samson and his collaborators
is the use of topological ideas in explaining features of quantum mechan-



ics [AMB11, AB11]. Thus, one understands contextuality as a manifesta-
tion of the nonexistence of global sections of an appropriate sheaf, ideas
like had appeared earlier [IB98], but the paper by Abramsky and Branden-
berger [AB11] made this particularly clear in a simple setting. It turned
out that this viewpoint could be brought to bear in other areas like logic or
the theory of relational databases [Abr14, ABK*15]. While topology is not
geometry, it does lead to visual thinking and intuition.

The most important influence on the present article is a recent paper called
“Whither! semantics” [Abr20] which appeared in a tribute volume to Mau-
rice Nivat. This paper is essentially a call to arms to those of us working
with structural approaches to use our methods to attack “hard” problems:
here “hard” means concrete quantitative problems. I am not going to sum-
marise that paper here but instead I will take up the challenge and talk
about structural methods in machine learning.

The siren song of machine learning has been seducing people from all sorts of
intellectual disciplines: probability theory, statistics, optimization, convex-
ity theory and other areas of mathematics, but also algorithms, complexity
theory, pattern recognition and numerical linear algebra from computer sci-
ence and even many branches of physics: Hamiltonian mechanics, statistical
mechanics and even quantum field theory.

I cannot resist recounting an incident that happened during the FLoC con-
ference in Oxford in 2018. I was in a pub and bumped into a friend from
graduate school days whom I had not seen in 30 years. We were both
physics graduate students at Chicago in the 1970s and he, unlike me, stayed
in physics and had become a well-known condensed-matter physicist. He
was with a group of Oxford physicists who graciously invited me to join
them for a drink. I was asked about my area of research and I replied,
“machine learning”, whereupon one of the physicists exclaimed, “oh yes, we
invented that!”

2 Probabilistic programming languages

One of the earliest papers to consider a probabilistic programming language
is a study of probabilistic LCF by Saheb-Djahromi [SD78]. This led to
work on the interplay between probability theory and domain theory [SD80]

1Spelled with two h’s.



and ultimately to probabilistic powerdomains [JP89] and integration on do-
mains [Eda95]. Shortly after Saheb-Djahromi, Dexter Kozen [Ko0z81] consid-
ered a typical imperative programming augmented with probabilistic choice
and gave a formal semantics in terms of measure theory.

In the world of verification and process algebra papers appeared in the
1980s [Var85] but the most significant step was a paper by Larsen and
Skou [LS91] which appeared as a conference paper in 1989. They intro-
duced a modal logic and proved a logical characterisation theorem. The
latter was subsequently refined and extended to continuous state spaces by
Desharnais et al. [DEP02].

The idea of modelling a stochastic process as a program in a programming
language is due to Gupta et al. [GJP99]. In this paper the language was in
the family of concurrent constraint programming languages [Sar89]. What
was significant here is the important role played by conditional probability
in the semantics.

It took about 10 years before these ideas really flowered. This happened
in a spectacular result due to Ackerman, Freer and Roy [AFRI11] where
they showed that one could have a computable probability distribution and
impose computable constraints but the resulting conditional distribution is
non-computable. This raised the question about what could be the included
in a probabilistic programming language. Clearly one needs some kind of
control on conditioning.

But why were machine learning people interested in probabilistic program-
ming languages? For precisely the same reasons that the semantics com-
munity had been advocating all along: compositionality. It is clear that
graphical formalisms like Bayes nets will get hopelessly clumsy as they get
larger. Perhaps this lesson has not sunk in to the wider machine learning
community as graphical models are widely used and taught but at least the
idea of compositional construction of models has indeed entered the subject
and the explicit role played by programming language theory is acknowl-
edged.

At present one cannot say that the main stream of machine learning has em-
braced these ideas, but there are flourishing groups at the intersection of pro-
gramming languages and machine learning that are developing higher-order
probabilistic languages [GMRT08, TvdMYW16] and the theory needed to
understand the combination of probability distributions, higher-type pro-
grams and conditioning [SYW'17, HKSY17, CJ19]



3 Reinforcement learning and fixed-point theory

In statistical machine learning one is typically trying to learn some structural
information from randomly sampled data. A typical example is where one
has an unknown labelling function i.e. a map from L : X — ), where X is
the space from which samples are drawn and ) is the space of labels. The
machine-learning algorithm is presented with m samples, correctly labelled,
and tries to “learn” L. Reinforcement learning (RL), by contrast, is a more
active process.

The basic set up is a Markov decision process (MDP). One has an agent
that interacts with this process and is rewarded (or penalised) as actions are
chosen. The agent tries to learn a policy that will optimise the cumulative
reward. We formalise this a bit more precisely now. We write D(S) for the
set of probability distributions on a set S.

Definition 3.1. A Markov decision process M is a 4-tuple

(S, AVae A7, : S — D(S),R: S x A— DR)),

where, S is a finite set of states, A is a set of actions, 7, is a transition
probability function and R is the reward.

All kinds of minor variations may be seen in the literature. If the system
is in a state s and the action a is chosen, there is a transition to a new
state governed by the probability distribution 7,(s) and a reward is assigned
according to the probability distribution R(s,a). A numerical parameter vy €
(0,1), called the discount factor is often given as part of the description of the
MDP. In RL, the agent does not know the internal structure or dynamics
of the MDP and by choosing actions tries to learn a policy, a map 7w : S
— D(A), which will maximise the expected discounted reward:
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where ¢ represents the time step and r; is the reward at time ¢. Rewards
in the future are discounted, which ensures that the sum is finite if R is
reasonably well behaved. The basic paradigm is due to Bellman [Bel54] who
invented the basic algorithms, namely dynamic programming, to determine
optimal policies. A concise modern exposition is given in [Szel0] including
new algorithms invented since that time.



This subject is not an example of the semantics community influencing the
machine learning community, rather it is a case of two communities con-
verging onto a common mathematical paradigm: fixed-point theory. For
semanticists, fixed-point theory is a basic and beloved tool imported into
programming language theory by Dana Scott, Jaco de Bakker and others
from its roots in computability (Kleene) and lattice theory (Tarski). In RL
the existence of an optimal policy, and an algorithm to compute it is based
on the Banach fixed-point theorem.

Returning to the world of MDPs, we define a value function as a map from
states to expected rewards. The value function taken as parameter the policy
w. More precisely, we define V™ : § — R, for a policy 7 by

V() = Eamur(s) Ermrisa)[r] +7 Y 7a(s)(s)V7(5").]

s'eS

Here the notation E,.p means the expectation value when x is sampled
according to the distribution D. This can clearly be seen to be a fixed-point
equation for the function V; so it is even a higher-type entity.

The basic theorem that ensures the existence of V' is the Banach fixed-point
theorem.

Theorem 3.2. Let (X, d) be a complete metric space and let f: X — X
be a contractive function: 3y € (0,1), Va,y € X, d(f(x), f(y)) < vd(z,y).
Then there is a unique fixed point for f: a point g such that f(z¢) = xo.

The proof is easy, start from any point and keep iterating f. The contrac-
tiveness condition ensures that the sequence is Cauchy and the completeness
ensures that the sequence has a limit. It is easy to verify that this limit is
the unique fixed point. Indeed this iterative approach is the basis of many
of the algorithms for finding optimal policies. Here we have only talked
about the value function associated with a policy, but it is not hard to de-
fine an optimal value function and show that it too satisfies a fixed-point
equation.

Here is a case of a parallel evolution of similar ideas. The use of fixed-point
theory in these cases is more than a coincidence. The communities did not
interact and there was no cross fertilisation. It is also the case that fixed-
point theory was used in various areas of mathematics and economics and
there were many other fixed-point theorems available. However, next we
shall see a case where there was interaction with tangible results.



4 A role for bisimulation metrics

Bisimulation is one of the triumphs of semantics. Its origins in process al-
gebra have been well described by Sangiorgi [San09] and the books [Sanll1,
SR11] give an up-to-date account of the state of the art including proba-
bilistic bisimulation introduced by Larsen and Skou [LS91]. The machine
learning community working with MDPs independently invented probabilis-
tic bisimulation [GDGO3] though they did acknowledge the priority of Larsen
and Skou; unfortunately, everyone else in machine learning seems to be un-
aware of the work of Larsen and Skou.

Shortly after the introduction of probabilistic bisimulation, it became clear
that the concept was not robust [GJS90]. Bisimulation is a binary relation:
it holds or not, whereas the parameters on which it depends vary continu-
ously. The idea of a metric measuring behavioural equivalence was mooted
by Giacalone et al. Unfortunately, it is not easy to define such a concept:
a naive “up to €” definition does not work. The definition was finally given
by Desharnais et al. [DGJP99, DGJP04] based on an earlier logical char-
acterisation result [DEP98]. A fixed-point definition more in the spirit of
the bisimulation relation as a greatest-fixed-point was then given by van
Breugel and Worrell [vBWO01b, vBWO01a]. This version of the definition is
what has spurred most of the subsequent developments and in particular
the use of ideas from optimal transport theory and Kantorovich-Rubinstein
duality [Vil08].

These metrics were defined for labelled Markov processes: transition systems
with no notion of “reward” or “optimal policy.” A bisimulation metric for
MDPs was forthcoming shortly thereafter [FPP04, FPP05]. In these papers
the definition of bisimulation is given by adding a term that reflects the
reward. This tiny change had a significant impact: it was proven that the
difference in the optimal value function between two different states: |V (s)—
V(s")] is bounded by the bisimulation metric d(s,s"). This showed a very
tight relation between the bisimulation metric and the quantities of interest
in reinforcement learning. Indeed later Ferns and Precup [FP14] showed
that bisimulation metrics are optimal value functions for an appropriate
MDP.



5 A recent success story

Recently a striking use of metric arguments is in a recent paper in The 23rd
International Conference on Artificial Intelligence and Statistics (AISTATS
2020) conference [APPB20]. A number of algorithms in RL proceed by
sampling from the MDP: so the assumption is that the dynamics of the MDP
are not known but one can obtain samples of trajectories from the MDP.
The algorithms then proceed by iteratively computing an approximation to
the fixed point. There are many such algorithms, the general class of such
algorithms is called stochastic approxrimation algorithms.

Proofs of convergence of these algorithms can be quite difficult; see the
references in [APPB20] for details. In the AISTATS paper however, we
took the perspective that one should view the algorithms themselves as
Markov processes of higher type: that means the state space is the space of
distributions. Then using coupling techniques we showed that many of the
algorithms define contractive maps on the space of distributions equipped
with the Kantorovich-Wasserstein? metric. Thus many of the difficult proofs
found in the literature can be done in a simple and more uniform way.
One has to find a coupling; this may be more or less difficult, but all our
examples (there are seven algorithms that we treat) are dealt with with
simple-minded couplings. This is, in my opinion, a pleasing application of
ideas from the semantics world to RL and one which is appreciated by the
RL community.

We proceed to some of the details of this work. The first innovation, which is
due to the last-named author of [APPB20] and other co-workers [BDM17], is
to view reinforcement learning as working with the distribution of possible
rewards rather than the expected reward. This is called “distributional
reinforcement learning” and there seems to be experimental support that
one gets better performance using this type of learning.

In [APPB20] the basic idea is to try to show that the update rule defined
on the distributions is a contraction in suitable metric. This metric is the
Kantorovich metric obtained by lifting the metric induced by the infinity
norm.

Given an MDP as defined above with a discount factor ~, we introduce the

2This should just be called the Kantorovich metric. It is usually called just the Wasser-
stein metric; this is a historical mistake.



Bellman operator T™ which is dependent on a choice of policy 7 by:
(V) = )‘S'EaNW(s),rwR(s,a) [r + VEs’NP(s,a) [V(SI)H

The fixed-point of T™ is the value function V™ described above. The value
function of the optimal policy n* is the fixed-point of what is called the
Bellman optimality operator:

T(V) = As. HléiX ErwR(s,a) [T + ’Y}E’S/NP(S,(Z) [V(sl)“

These operators are contractions on the space RIS with the metric induced
by the infinity norm.

We now give a more explicit description of the Kantorovich metric [Vil08].
Suppose that we wish to compare two probability measures P, () defined
on a metric space (X, p) with the Borel sets induced by the metric. What
can one “see” about a measure? Integrals! So we can think of something

like
SI}p\/fdP— [ sacl

But over what class of functions should one take the sup? If we don’t restrict
the functions, it is easy to see that the sup can be made infinite always.
Kantorovich restricted to non-expansive functions or 1-Lipschitz functions:
(f(x) = f(y))| < p(z,y). This is where the metric p plays a crucial role. We
call the set of such functions 1 — Lip. Then we define

K(P.Q = sw | [ fap~ [ faql
fel—Lip

There is a beautiful duality theorem known as Kantorovich-Rubinstein du-
ality, which gives a description of K as a minimum.

Definition 5.1. A coupling between probability distributions P, on a
space (X, p) is a probability measure v defined on X x X such that the
marginals coincide with P and ). This means that for any Borel set A C X
we have 7(A x X) = P(A) and v(X x A) = Q(A).

Intuitively, one thinks of this as a transport plan. Think of the measures
as defining piles of sand. One wishes to move the sand so that the pile P
becomes the pile Q. The quantity 7(A x B) defines how much must be
moved from region A to region B. The cost of moving the sand depends on
how far the sand is to be moved. Thus we are led to define the total cost

) / p(x,y)dr.
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Let us write I'( P, Q) for the set of all possible couplings between P and Q.
The Kantorovich-Rubinstein duality theorem states:

Wi(P,Q) = inf / z,y)dy = K(P,Q).
1(P,Q) o Xxxp( y)dy (P,Q)

The notation Wj is much more common and in view of the duality theorem
it is the same as K. The key point is that the W; metric is defined using
optimal couplings. Thus any old coupling gives an upper bound on the W;
distance.

Now let us consider a typical RL algorithm, called T'D(0) [Szel0]. The TD
stands for “temporal difference” and the 0 need not concern us. It has a
simple update rule for the value function. If the value function after n steps
is written as V,, we have

Via1(8) == (1 — a)Viu(s) + a(R(s,a) + yVp(s'))

which should be viewed as a distributional equation in our setting. Here
R(s,a) is the distribution over the possible rewards defined by the MDP,
a is sampled from the actions according to the distribution defined by the
policy and s’ is the new state sampled according to the MDP dynamics.
The parameter «, called the “step size”, tells us the extent we use the old
value function as opposed to the one generated after one transition. The
coinductive character of these kind of value function updates makes it a
natural to compare it with a bisimulation metric and, indeed, in [FPP04]
such bounds are given.

We take the view that a learning algorithm is itself a Markov chain whose
state space is the space of probability distributions over the underlying MDP.
The update rule for a particular learning algorithm like 7"D(0) then defines
a Markov kernel. A Markov kernel K can be viewed as a map from a
probability distribution P to a new distribution K (P) given by

K(P)=Aw / K(z, A)dP(z)
X

where A is a Borel set. In our paper [APPB20] we proved that the T'D(0)
kernel, call it K, for step size «, defines a contractive map:

Wi(Ka(P), Ka(Q)) < (1 — a+ay)Wi(P,Q)

for any step size a € (0, 1].



The idea of the proof is to start with an optimal coupling of the initial
distributions and then we use this to construct a coupling for the updated
distributions. This latter coupling may not be optimal but it suffices to
produce an upper bound and prove contractiveness.

Using essentially the same method we were able to cover 6 more algorithms
in the same way. The technique depends on one’s ability to find suitable
couplings for the updates. What is particularly pleasing is that the construc-
tion of the couplings was ridiculously easy. Of course, we then encountered
examples where it was not at all clear that we could find suitable couplings
for the updates. However, the example that we did do were all notable ex-
amples in the literature and had been proved to converge earlier by much
more painful methods. A little structural thinking can go a long way.

6 Conclusions

This short note is a response to a question raised by Samson in “Whither
Semantics”: do we want to lead or follow? I would like to suggest that
indeed there is a role for semantics-based ideas in machine learning. I hope
that the examples described above will give the semantics community some
motivation to interact with the machine learning community. I must take
this opportunity to say that in my case machine learning people, Doina
Precup and Joelle Pineau, came knocking on my door and sought me out
rather than the other way around.

There is plenty more to be done. One of the big mysteries of machine learn-
ing is why do neural networks work so well? All the theory of optimization
is geared towards convex situations but in deep neural networks are very
non-convex. They are also massively overparametrised so why do they seem
to generalise so well? People are invoking ideas from physics and high-
dimensional geometry to try to explain these things: most of these ideas are
in flux and largely experimental so it would not do much good to cite a lot
of papers here. As far as I can see, any decent ideas are worth investigating:
higher-order programming, monoidal categories and the algebra of string
diagrams, ideas from causality and many other things.
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