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Summary. Monoidal dagger categories play a central role in the abstract quantum
mechanics of Abramsky and Coecke. The authors show that a great deal of elemen-
tary quantum mechanics can be carried out in these categories; for example, the
Born rule emerges naturally.

In this paper, we construct a category of tame formal distributions with coeffi-
cients in a commutative associative algebra and show that it is a dagger category.
This gives access to a broad new class of models, with the abstract scalars in the
sense of Abramsky being the elements of the algebra.

We will also consider a subcategory of local formal distributions, based on the
ideas of Kac. Locality has been of fundamental significance in various formulations
of quantum field theory. Thus our work may provide the possibility of extending the
abstract framework to QFT.

We also show that these categories of formal distributions are monoidal and con-
tain a nuclear ideal, a weak form of adjunction appropriate for analyzing categories
such as the category of Hilbert spaces, where the nuclear maps are the Hilbert-
Schmidt maps.

By taking formal distributions with coefficients in the dual of a cocommutative
Hopf algebra, we obtain a categorical generalization of the Borcherds’ notion of
elementary vertex group.

1 Introduction

The Abramsky-Coecke notion of abstract quantum mechanics [2] is a proposal
to abstract quantum theory away from the usual category of (possibly finite-
dimensional) Hilbert spaces and determine the underlying structures which
should be taken as primitive. Unlike more traditional quantum logic, which
is based on lattice theory, the Abramsky-Coecke approach is explicitly cat-
egorical in nature. The authors argue that the minimal necessary structure
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for interpreting quantum theory is that of a (monoidal) dagger category, i.e.
a category with a strict involution which is the identity on objects.

They show that this framework provides a rich semantics for quantum com-
puting and quantum information theory. For example, the Born rule emerges
naturally from their axiomatization and one can express the correctness of
various protocols, such as teleportation [7], as the commutativity of certain
diagrams.

In subsequent work [3], the authors provide a diagrammatic language
which simultaneously gives the free such category and provides a graphical
language for reasoning about quantum systems.

Since their initial papers, the subject of abstract quantum theory and dag-
ger categories has become quite active, and has developed important results.
We mention in particular the work of Selinger [25]. Aside from developing an-
other graphical language, the author considers the construction of completely
positive maps in a general dagger category. CPMs are used, for example in the
axiomatic description of quantum operations as described in [10]. (We also
note that we use Selinger’s notation and terminology throughout.)

Also important is the work of Coecke and Pavlovic [11], where they show
that monoidal dagger categories even provide a framework for considering
the existence of classical objects in a quantum universe. This is the subject of
enormous research in quantum physics, see for example [15]. Furthermore, the
description of classical structure in this setting is extremely elegant. A classical
object in such a category is one with a compatible coalgebra structure. The
comultiplication then models copying, and the counit models deleting, the two
operations that define classical objects. Thus traditional algebraic/categorical
structures are brought into consideration. See also [12] for further work in this
direction.

Finally we mention Abramsky’s paper [5]. Aside from summarizing much
of the previous work discussed above, the author stresses the importance of
abstract scalars. In any monoidal category, the scalars are the endomorphisms
of the tensor unit. Traditionally, since quantum mechanics was carried out in
the category of Hilbert spaces, the scalars were the complex numbers, this
being the base field. But an abstract approach allows for considering other
possibilities for scalars and Abramsky emphasizes the importance of being
able to consider dagger categories with other choices for scalars. One of the
interesting properties of the construction in this paper is that we will consider
formal distributions with coefficients in an arbitrary commutative, associative
algebra A, and the elements of A will act as our scalars.

Monoidal dagger categories were considered by Abramsky, Blute and
Panangaden [1] under the guise of tensored ∗-categories, (using teminology
of Doplicher and Roberts [13]). We were interested in various extensions and
elaborations of the category Rel of sets and binary relations. In particular,
we were interested in developing a category whose objects are “continuously
varying relations”. So objects would be open subsets of Euclidean space, and
morphisms would be continuous functions α : X × Y → C (where C is the
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field of complex numbers.) Similarly, we wished to replace the usual relational
composition:

a(R;S)c if and only if ∃b such that aRb and bSc

with the following “continuous analogue”:

(α;β)(x, z) =
∫

Y

α(x, y)β(y, z)dy

This idea led to the construction of the category DRel described below,
and in [1]. Basically the objects of this category are open subsets of Euclidean
space, and morphisms are certain well-behaved distributions. Distributions
were introduced by Schwartz [24] to capture in a mathematically rigorous
fashion the Dirac delta “function”, which satisfied the relation

(α; δ)(x, y′) =
∫

Y

α(x, y)δ(y, y′)dy = α(x, y′)

and its symmetric variant. In fact, no such function exists [6], though physi-
cists made frequent use of such a δ. As a recent example, quantum fields
are today frequently modelled as operator-valued distributions in the Wight-
man axiomatization [18]. Schwartz axiomatizes the above δ as a generalized
function or function with singularities. The distributions described in [1] are
well-behaved in the sense that, when viewed as generalized functions, they
have only mild singularities.

In this paper, we introduce a “formal” analogue of the DRel construction.
Formal distributions, i.e. formal power series in both x and x−1, have played
a fundamental role in algebraic and axiomatic approaches to quantum field
theory. See, for example, [18, 22]. Indeed, they are the basis for the axiomati-
zation of the notion of vertex algebra [18] and the notion of locality [18, 20],
both of which figure in the present work. In this paper, we consider formal
distributions with coefficients in a commutative algebra. We show that there
is a formal notion of tameness inspired by the construction of DRel.

Previous work on formal distributions has focused on algebras of distri-
butions. See for example the works [18, 19]. However, in this paper, we wish
to build a category of such distributions. In keeping with the passage from
untyped to typed λ-calculus, we obtain a category by considering typed dis-
tributions. Atomic types are first assigned to the variables, and then a type
for the distribution is inferred from these atomic types. One thus obtains a
monoidal category, which we call ARel. We will see that the resulting category
is a monoidal dagger category,

We also demonstrate that this category has a nuclear ideal, in the sense
of [1]. In that paper, the authors observed that one of the key aspects of the
category of sets and relations, the most elementary example of a monoidal
dagger category, is that one has “transfer of variables” i.e. one can use the
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closed structure and the involution to move variables from “input” to “out-
put”. The category of Hilbert spaces does not allow such transfer of variables
arbitrarily. Instead, one has a large class of morphisms which can be trans-
posed in this fashion. These are the Hilbert-Schmidt maps. The notion of
nuclear ideal captures the idea of “partially defined transpose”. This idea was
suggested by the definition of a nuclear morphism between Banach spaces, due
to Grothendieck [16], and subsequent work of Higgs and Rowe [17]. Higgs and
Rowe axiomatized the notion of nuclearity for a symmetric monoidal closed
category, and is appropriate for the analysis of nuclearity for Banach spaces.
The concept of nuclearity in analysis can be viewed as describing when one
can think of linear maps as matrices. In the case of a compact closed dag-
ger category such as Rel, all morphisms are nuclear, while in the category of
Hilbert spaces, the nuclear morphisms are precisely the Hilbert-Schmidt maps
[21].

In the category DRel discussed above, the Schwartz kernel theorem pro-
vides an inclusion of the space of test functions into the space of tame dis-
tributions, and such distributions form a nuclear ideal. Thus, another way of
viewing the axioms of the definition of nuclear ideal is as an axiomitization of
categories of (possibly) singular functions, containing a class of nonsingular
functions. We show here that a formal analogue of this construction holds in
our category ARel of formal distributions.

Another goal of this paper is to relate the notions arising in this paper and
the vertex groups of Borcherds [9, 26]. Both can be viewed as axiomatizing
the notion of singular map. In the former case, we have a category of singular
maps, containing an ideal of nonsingular maps. In Borcherds’ work, singular
maps are viewed as an algebra over an algebra of nonsingular maps defined
on some “group”, (in fact, a Hopf algebra.). We show that when one considers
the category of tame formal distributions with coefficients in the dual of a
cocommutative Hopf algebra, one obtains examples of vertex categories, i.e.
“many-object vertex groups”.

The notion of (monoidal) dagger category has appeared in a number of
guises. They appeared as tensored ∗-categories in the work of Doplicher and
Roberts [13, 14]. Their work involved considering categories of unitary rep-
resentations of compact groups, one of the most significant examples of a
monoidal dagger category. They considered such categories intheir analysis
of superselection sectors, and proved a fundamental represnetation theorem.
Any compact closed monoidal dagger category with certain normed structure
(making it a C∗-category), is equivalent tothe category of representations of a
compact group. Given the use of monoidal dagger categories and formal distri-
butions in several axiomatizations of quantum field theory, it is our hope that
the structures in this paper will be of use in extending the Abramsky-Coecke
framework to include QFT.
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2 Dagger categories and nuclear ideals

We here review the crucial definitions of monoidal dagger category and nu-
clear ideal. See [2, 25, 1] for more details, such as the appropriate coherence
conditions.

Definition 2.1 A category C is a †-category if it is equipped with a functor
(−)† : Cop → C, which is strictly involutive and the identity on objects. We will
also assume our †-categories are equipped with a conjugate functor ( ) : C → C.
A †-category is †-monoidal if it is symmetric monoidal, (f ⊗ g)† = f† ⊗ g†,
and the conjugate functor has natural isomorphisms A ∼= A, A⊗B ∼= A⊗B,
and I ∼= I. (We will generally take these to be equalities.) These must satisfy
evident equations, see [25].

Definition 2.2 Let C be a monoidal †-category. A nuclear ideal for C consists
of the following structure:

• For all objects A, B ∈ C, a subset N (A,B) ⊆ Hom(A,B). We will refer
to the union of these subsets as N (C) or N . We will refer to the elements
of N as nuclear maps. The class N must be closed under composition
with arbitrary C-morphisms, closed under ⊗, closed under ( )†, and the
conjugate functor.

• A bijection θ : N (A,B) → Hom(I, A⊗B). The bijection θ must be natural
and preserve the †-monoidal structure in an evident sense, see [1].

Examples

• The category Rel of sets and relations is a monoidal dagger category
for which the entire category forms a nuclear ideal. Indeed any compact
monoidal dagger category has this property.

• The category Hilb of Hilbert spaces and bounded linear maps maps is a
well-known monoidal dagger category , which, in fact, led to the axiomati-
zation [13]. Then the Hilbert-Schmidt maps form a nuclear ideal [1]. (This
is one of the only examples where the conjugate functor is not merely the
identity. Here it is the conjugate Hilbert space.)

• The category DRel of tame distributions on Euclidean space is a monoidal
dagger category. The ideal of test functions (viewed as distributions) is a
nuclear ideal. See [1] or the next section.

• We will define a subcategory of Rel called the category of locally finite
relations. Let R : A → B be a binary relation and a ∈ A. Then let Ra =
{b ∈ B|aRb}. Define Rb similarly for b ∈ B. Then we say that a relation
is locally finite if, for all a ∈ A, b ∈ B, Ra, Rb are finite sets. Then it is
straightforward to verify that we have a monoidal dagger category which
is no longer compact closed. It is also easy to verify that the finite relations
form a nuclear ideal.
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3 Distributions as Relations

In this section, we review the construction of the category of tame distri-
butions, denoted DRel [1]. We assume familiarity with basic notions from
distribution theory. Suitable references are [24, 27, 6].

The idea was to build a category where composition is given by the for-
mula:

ϕ(x, y);ψ(y, z) =
∫
ϕ(x, y)ψ(y, z)dy.

The intuition that guided our original work was that integration should
generalize the existential quantification that appears in the definition of rela-
tional composition. The proper framework for constructing such a category is
the theory of distributions. Recall that if Ω denotes a nonempty open subset
of Rn, then D(Ω) denotes the smooth (complex-valued) functions of compact
support on Ω. We will refer to the elements of D(Ω) as test functions. D(Ω)
is given the structure of a topological vector space [6, 27]. Then a distribu-
tion on Ω is a continuous, linear (complex-valued) functional on D(Ω). Let
D′(Ω) denote the space of all distributions on Ω, equipped with the topology
of pointwise convergence. We have a canonical inclusion

ι : D(X) ↪→ D′(X)

given as follows:

φ(x) 7→ [ψ(x) ∈ D(X) 7→
∫
φ(x)ψ(x)dx]

This inclusion prompts one to consider distributions as singular or gen-
eralized functions. The δ-function is often explicitly described this way. Also
adding to the strength of this interpretation are results showing that arbitrary
distributions can be obtained as limits of test functions. The representation
of the δ-function in this way is of special interest. See [6].

There is a canonical (dense) inclusion of D(X) ⊗ D(Y ) into D(X × Y )
given by:

ϕ⊗ ψ 7→ [(x, y) 7→ ϕ(x)ψ(y)]

The construction of DRel also makes essential use of the Schwartz ker-
nel theorem. We need the following notations to state the theorem. If f is a
distribution on X × Y and φ ∈ D(X) then f∗(φ) will be the function from
D(Y ) to the base field given by ψ ∈ D(Y ) 7→ f(φ⊗ ψ) and f∗(ψ) is the map
φ ∈ D(X) 7→ f(φ⊗ ψ) The Schwartz kernel theorem states [27]:

Theorem 3.1 Let X and Y be two open subsets of Rn and Rm. Let f be a
distribution on X × Y . For all functions φ ∈ D(X) the linear map f∗(φ) is a
distribution on Y . Furthermore, the map φ 7→ f∗(φ) from D(X) to D′(Y ) is
continuous. There is also a converse to this statement.
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Definition 3.2 A tame distribution onX×Y is a distribution f onX×Y such
that each of f∗ and f∗ factor continuously through the appropriate ι, where
ι is the inclusion of the space of test functions into the space of distributions.
Explicitly, there exist continuous linear maps

fL : D(X) → D(Y ) fR : D(Y ) → D(X)

such that for every φ ∈ D(X) and ψ ∈ D(Y ), we have:

f∗(φ)(ψ) = f∗(ψ)(φ) = f(φ⊗ ψ) =
∫
fL(φ)ψdy =

∫
φfR(ψ)dx

We write T (X,Y ) for the tame distributions on X × Y .

Intuitively, tame distributions are allowed to be mildly singular, in that
composing with a test function “tames” the singularity.

Examples

• Let X be an open subset of Rn. The trace distribution on X ×X is given
by Tr(η) =

∫
η(x, x)dx where η(x, x′) ∈ D(X×X). From this definition it

follows that Tr∗(φ)(ψ) = Tr∗(ψ)(φ) = Tr(φ ⊗ ψ) =
∫
φ(x)ψ(x)dx. Thus

we clearly have TrL(φ) = TrR(φ) = φ, which shows that δ is tame. This
tame distribution will act as the identity in our category.

• A regular distribution on X is a distribution of the form

α(x) 7→
∫

X

α(x)β(x)

for some fixed function β on X. β is called the kernel of the distribution.
Suppose that T is a regular distribution on X × Y with a test function
β(x, y) as its kernel, that is to say:

T (α(x, y)) =
∫

X×Y

β(x, y)α(x, y)

Then T is tame with its associated functions being given by:

TL(φ) =
∫

X

β(x, y)φ(x) TR(ψ) =
∫

Y

β(x, y)ψ(y)

We denote the space of all such distributions by N (Y, Z).

Given tame distributions we can define the following operation which will
serve as composition. Suppose that f ∈ T (X,Y ), g ∈ T (Y,Z). We define
f ; g ∈ T (X,Z) as follows. Given that f is tame, we have a continuous function
fL : D(X) → D(Y ). Applying the Schwartz kernel theorem to g, we obtain a
morphism g∗ : D(Y ) → D′(Z). Composition gives a continuous map D(X) →
D′(Z). By the kernel theorem again, we obtain a distribution on X × Z.
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Definition 3.3 The category DRel has as objects open subsets on Rn, and,
as morphisms, tame distributions. Composition is as described above.

Theorem 3.4 DRel is a monoidal †-category.

The tensor product is given as follows. Given objects X and Y we define
X ⊗ Y as the cartesian product space X × Y . Given morphisms in DRel
f : X → Y and g : X ′ → Y ′ we can define f ⊗ g : X ⊗X ′ → Y ⊗Y ′ as follows.
We first define f ⊗ g as a distribution on D(X)⊗D(X ′)⊗D(Y )⊗D(Y ′) by
the formula (f ⊗ g)(φ(x)⊗ φ′(x′)⊗ ψ(y)⊗ ψ′(y′)) = f(φ⊗ ψ)g(φ′ ⊗ ψ′). It is
routine to verify that this is tame. Finally the †-structure is the identity on
objects. On morphisms, the only thing that changes is the role of fL and fR.
The conjugate functor is taken to be the identity. We then have:

Theorem 3.5 The sets N (Y, Z) form a nuclear ideal for DRel.

4 Categories of formal distributions

We now review the basic theory of formal distributions. Much of this theory
was developped by Kac. Suitable references are [18, 19]. In the following, A
will always denote a commutative, associative, unital algebra over some field
k.

An expression of the form α(z) = Σn∈Zαnz
n, where Z is the set of integers,

αn ∈ A and z is a variable, is called a formal distribution with coefficients in
A. Similarly, one can speak of formal distributions in several variables. The set
of formal distributions in a fixed set of variables forms an infinite dimensional
vector space, denoted A[[z, z−1, w, w−1, . . .]].

The space of distributions has a great deal of structure, much of which
is analogous to Schwartz’s original theory of distributions. The key to defin-
ing such structure is the residue operation, defined by Resz(α(z)) = α−1 ∈
A, i.e. the residue of α is the coefficient of z−1. Similarly, if α(z, w) ∈
A[[z, z−1, w, w−1]], we can define Resz(α(z, w)) ∈ A[[w,w−1]].

We now observe that the space of Laurent polynomials A[z, z−1] can be
viewed as the test functions for these formal distributions, with the evaluation
A[[z, z−1]]×A[z, z−1] → A being defined by

< α(z), f(z) >= Reszf(z)α(z)

There is a formal analogue of the injection D(Y ) → D′(Y ) which is given
simply by the inclusion A[y, y−1] ⊆ A[[y, y−1]], and similarly in the multivari-
able case. There is a corresponding version of the Shwartz kernel theorem as
well.

The formal Dirac delta is given by the distribution:

δ(z, w) = z−1
∑
n∈Z

(
z

w
)n
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We have the fundamental property that for all f(z) ∈ A[z, z−1]

< δ(z, w), f(z) >= f(w)

Note that, in this equation, we are multiplying two distributions. In gen-
eral, this cannot be done even formally, due to the possibility of infinite coeffi-
cients. We must have a notion of “tameness” to perform such multiplications.
We will see that the Dirac delta is indeed tame.

One can also reiterate the process of taking residues. If α is a distribution,
and x1, x2, . . . , xn are among its variables, then we define

Resx1,x2,...,xn
α = Resx1(Resx2(. . . Resxn

α)) . . .)

One can readily check that this is well-defined and independent of the
order in which the residues are taken.

We also note that the space of formal distributions allows formal differen-
tiation, i.e. we have operators:

∂ = ∂z : A[[z, z−1, w, w−1, . . .]] → A[[z, z−1, w, w−1, . . .]]

and that these satisfy equations analogous to those for differentiation of dis-
tributions, e.g.

Resz∂α(z)β(z) = −Reszα(z)∂β(z)

This is a formal analogue of integration by parts. Consult [18] for these and
other results, such as the representation of distributions in terms of derivatives
of deltas.

4.1 Tameness for formal distributions

We will now define a category which will be the formal analogue of DRel, and
this category will have much of the same structure. We assume throughout
the remainder of this section that A is a fixed associative unital algebra over
a field k.

We assume the existence of an infinite set of atomic types. These will be
type variables denoted A1, A2, B, . . . . Then the set of all types consists of all
words of the form A1 ⊗ A2 . . .⊗ An. We refer to n as the length of the word.
We also assume the existence of a unique word of length 0, denoted I. I is the
tensor unit, and acts as the identity in the monoid of words. (Thus we will
be working in a strict monoidal category). We also assume that we have an
infinite stock of variables for each atomic type. These will be denoted x : A,
but we will generally not write the type, if there is no danger of confusion.

Now we can talk about typed distributions. A formal distribution of type
A1 ⊗ A2 . . . ⊗ Am is an element of A[[x1, x

−1
1 , . . . , xm, x

−1
m ]], where xi is of

type Ai. We say that a formal distribution α(x1, x2, . . . , xm, y1, y2, . . . , yn) of
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type A1 ⊗ A2 . . . Am ⊗ B1 ⊗ . . . Bn is tame with respect to the type splitting
A1 ⊗A2 . . . Am||B1 ⊗ . . . Bn if, for all f ∈ A[x1, x

−1
1 , . . . , xm, x

−1
m ],

Resx1,x2,...,xm
(fα) ∈ A[y1, y−1

1 , . . . , yn, y
−1
n ]

and dually for all g ∈ A[y1, y−1
1 , . . . , yn, y

−1
n ].

In other words, a tame distribution takes Laurent polynomials to Laurent
polynomials. This is the obvious analogue of the notion of tameness used in
[1], given that in the formal setting we are using Laurent polynomials as test
functions.

Remark 4.1 We note that we consider two distributions (of the same type)
equivalent if they are identical up to α-conversion, i.e. up to change of variable
name (within the same type).

We are now ready to define the category ARel.

Definition 4.2 The category ARel is defined as follows. Objects are types. A
morphism
α : A1 ⊗ A2 ⊗ . . . ⊗ An → B1 ⊗ B2 . . . Bm is (the equivalence class of) a
distribution of type A1 ⊗A2 ⊗ . . .⊗An ⊗B1 ⊗B2 . . . Bm which is tame with
respect to the type splitting A1⊗A2⊗ . . .⊗An||B1⊗B2 . . . Bm Composition
is defined as follows. Suppose that α : A1 ⊗ A2 ⊗ . . .⊗ An → B1 ⊗ B2 . . . Bm

and that β : B1 ⊗B2 ⊗ . . .⊗Bm → C1 ⊗ C2 . . .⊗ Cp. Then we have

βα(x1, x2, . . . , xn, y1, . . . , yp) =

Resz1,z2,...,zm
[α(x1, . . . , xn, z1, . . . , zm)β(z1, . . . , zm, y1, . . . , yp)]

Note that one must always be careful to use distinct variables in the two
distributions being composed.

The identity is defined as:

id : A1 ⊗A2 ⊗ . . .⊗An → A1 ⊗A2 ⊗ . . .⊗An = Πn
i=1δAi

Also note that we set Hom(I, I) = A, and more generally Hom(I, A) is the
space of Laurent polynomials on A. The justification for this is as in [1].

Theorem 4.3 ARel is a category.

Proof. There are a number of things to check here, most are more or less
straightforward. One must check that δ is tame, and that the product of δ’s
does indeed act as identity. One must check that the composite of two tame
distributions is again tame, and finally associativity of composition follows
from the observation that αReszβ = Reszαβ, when z is not among α’s vari-
ables. ut
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Theorem 4.4 ARel is a monoidal †–category.

Proof. The tensor on objects is obvious. On morphisms, the tensor is given
by multiplication. Again, when multiplying two distributions together, one
must always make sure that the two distributions use distinct variables. The
conjugate functor is taken to be the identity, and the †-functor reverses the
order of variables. The necessary equations are straightforward to verify. ut

Finally, we may state the following result which is also straightforward.

Theorem 4.5 The Laurent polynomials form a nuclear ideal for ARel.

Proof. The bijection θ : N (A,B) → Hom(I, A⊗B) is the obvious injection of
the test functions into the corresponding space of distributions. The necessary
equations are all evident. ut

4.2 Locality for formal distributions.

We now review one of the crucial topics in formal distribution theory, the
notion of locality of a formal distribution. This notion has been emphasized
heavily by Kac [18, 19, 20]. These are a fundamental class of distributions
which were inspired by the notion of locality in quantum field theory.

Definition 4.6 A formal distribution α(x, y) is local if there exists a positive
integer N such that (x− y)Nα(x, y) = 0.

The formal Dirac delta is local, as (x−y)δ(x, y) = 0. Similarly, any deriva-
tive of the delta is local. We here collect some basic identities on derivatives
of delta which are useful in proving such results.

Lemma 4.7 ([18], p. 16)

• δ(x, y) = δ(y, x)
• ∂j

xδ(x, y) = (−∂y)jδ(x, y)
• (x− y)j+1∂j

xδ(x, y) = 0

Now with the above formulas, one may characterize completely the local
formal distributions:

Theorem 4.8 (Kac [18],p.18) The local distributions are precisely those of
the form:

α(x, y) =
∑

j∈Z+

cj(y)∂(j)
y δ(x, y)

where the above sum is finite and cj(y) = A[[y, y−1]]. The series cj(y) can be
calculated by the formula:

cj(y) = Resxα(x, y)(x− y)j
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It is now straightforward to verify that the tame local distributions form
a †-subcategory. The only thing remaining to verify is the following:

Lemma 4.9 Suppose that α(x, y) and β(y, z) are tame local distributions.
Then Resy[α(x, y)β(y, z)] is local as well. (In particular, it is well-defined.)

Proof. This follows from the above characterization of local distributions,
and repeated application of the “integration by parts” formula. ut

Now we define a category Loc-ARel, whose objects are atomic formal types,
and morphisms are local distributions. Loc-ARel has an evident †-category
structure.

4.3 Monoidal structure for Loc-ARel

We now describe a tensor structure for the category Loc-ARel. This first re-
quires defining an n-ary version of locality:

Definition 4.10 We suppose that α : A1 ⊗ A2 ⊗ . . . An → B1 ⊗ B2 ⊗
. . . Bn is a tame distribution, and that the corresponding variables are
x1, x2, . . . , xn, y1, y2, . . . , yn. Then we say that α is local if there is a per-
mutation σ of the set {1, 2, . . . , n} such that for all i ∈ {1, 2, . . . , n}, there
exists a natural number Ni such that:

(xi − yσ(i))Niα = 0

Lemma 4.11 Loc-ARel is a monoidal †-subcategory of ARel.

Note however that there is no longer a nuclear ideal. However a slight
modification of the notion of locality does yield a subcategory with a nuclear
ideal. We say that a tame distribution α : A→ B is stable if it is of the form
α = α1 + α2, where α1 is (tame) local, and α2 is a Laurent polynomial. Thus
the stable distributions only fail slightly to be local. It is straightforward to
verify that we indeed have a category.

Lemma 4.12 Let α(x, y) and β(y, z) be stable distributions. Then Resy[α(x, y)β(y, z)]
is as well.

Proof. One simply notes that the composition of two tame local distribu-
tions is tame and local, the composition of two nuclear morphisms is nuclear,
and the compostion of a tame local distribution and a nuclear distribution is
nuclear. The result now follows from the bilinearity of composition. ut

So we define a category S-ARel whose objects are formal types and mor-
phisms are stable distributions. It is evidently a monoidal †-subcategory of
ARel. S-ARel is essentially the smallest extension of Loc-ARel for which there
is a nuclear ideal.

Theorem 4.13 The Laurent polynomials form a nuclear ideal in S-ARel.
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5 Vertex groups and categories

In this section, we review Borcherds’ notion of an elementary vertex group
[9], and then give a minor generalization of this notion, that being the notion
of a vertex category, i.e. a many-object vertex group. We demonstrate that
the category ARel of the previous section gives an example of a vertex cate-
gory, whenever A is taken to be the dual of a cocommutative Hopf algebra
H. We show further that when considering the algebra determined by the
endomorphisms of an object of a vertex category, one obtains a vertex group
in the Borcherds sense. We first review some basic facts about duals of Hopf
algebras.

Before getting into the technical details of vertex groups, we recall some
facts about duals of Hopf algebras. See [23] for details.

First recall that if H is a Hopf algebra, then H∗, the linear dual of H,
is generally not a Hopf algebra, unless H is finite-dimensional. However, we
have:

Lemma 5.1 The dual of the comultiplication ∆ : H → H ⊗ H induces an
algebra structure on H∗, when composed with the canonical inclusion H∗ ⊗
H∗ → (H ⊗H)∗. If H is cocommutative, then H∗ is a commutative algebra.
Thus, if f, g ∈ H∗ and h ∈ H, then

(fg)(h) =
∑

h

f(h1)g(h2)

using the usual Sweedler notation, i.e.

∆(h) =
∑

h

h1 ⊗ h2

We will also make use of the fact that H∗ has a canonical structure as a
two-sided H-module via the formulas:

(hf)(h′) = f(h′h) (fh)(h′) = f(hh′)

Remark 5.2 Finally we note that the existence of an involutive antipode
gives a second possible monoidal †-structure on ARel. If α(x, y) =

∑
αijx

iyj

is a morphism from A to B, then define

α =
∑

S∗(αij)xiyj

and

α† =
∑

S∗(αij)yjxi

In this section, we will always mean this monoidal †-structure.
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The following definition is due to Borcherds [9]. It has been studied and
elaborated on extensively by Snydal [26]. For examples, see either of these two
references.

Definition 5.3 Let H be a cocommutative Hopf algebra over a field k. A
vertex group onH consists of a k-vector spaceK, the ring of singular functions
on H, with the following additional structure:

• K is an associative, unital algebra over the algebra H∗.
• K is a two-sided H-module. Further, the unit map η : H∗ → K is a map

of 2-sided H-modules.
• The product map on K, µ : K ⊗K → K is equivariant under the left and

right actions of H.
• There is a morphism SK : K → K such that SK ◦ η = η ◦ S∗.

We further require that SK be an antialgebra map, and that S2
K = id. If the

algebra K is also commutative, then we say that we have a commutative
vertex group.

Borcherds and Snydal only consider the commutative case, but the present
work yields several natural noncommutative examples.

We now provide a categorical generalization of the previous definition by
introducing the notion of a vertex category. This is the correct generalization
in that a one-object vertex category is indeed a vertex group.

Definition 5.4 Let H be a cocommutative Hopf algebra. An H-vertex cate-
gory consists of a †-category C such that:

• For all objects A,B in C, we have that Hom(A,B) is an H∗- module, a
2-sided H-module, and composition is H∗-bilinear.

• Composition also satisfies the following H-invariance property: If f : A→
B and g : B → C, then we have (. and / denote the actions of H.)

h . (gf) = Σh(h1 . g)(h2 . f)

(gf) / h = Σh(g / h1)(f / h2)

• We must also have the following antipode condition. First note that there
is a canonical morphism η : H∗ → Hom(A,A) which takes f ∈ H∗ to
f . id. We require that η be a map of H-modules and that the following
diagram commutes.

H∗ η- Hom(A,A)

H∗

S∗

? η- Hom(A,A)

( ) †

?
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The following results are all straightforward. All actions are defined by
acting on coefficients.

Theorem 5.5 • A one-object vertex category is a vertex group, with SK

being given by the dagger operation on Homsets.
• When A is the dual of a cocommutative Hopf algebra, then ARel is a vertex

category.
• In any vertex category C, if C ∈ C, then Hom(C,C) is a vertex group.

6 Conclusion

The primary goal of the theory of formal distributions is to develop a more
purely algebraic version of the Schwartz theory of distributions. Then the issue
becomes the extent to which the original theory lifts to the algebraic setting.
This is for example one of the goals of the monograph [18]. One is particularly
interested in the many applications of distribution theory in quantum physics.
In this paper, we have shown that the structure of the category DRel lifts to
this formal setting in a straightforward way. Thus one is able to view these
formal distributions as generalized relations, as discussed in [1]. We hope to
explore this idea in the future.

Along the same lines, we have introduced the notion of a vertex category
or multiobject vertex algebra. Connecting this idea with the original work of
Borcherds [9] and Snydal [26] is also work we intend to explore.
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