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Abstract. In recent years, various metrics have been developed for measuring the behavioural similarity of
states in probabilistic transition systems [Desharnais et al., Proceedings of CONCUR, (1999), pp. 258-273, van
Breugel and Worrell, Proceedings of ICALP, (2001), pp. 421-432]. In the context of finite Markov decision processes,
we have built on these metrics to provide a robust quantitative analogue of stochastic bisimulation [Ferns et al.,
Proceedings of UAI, (2004), pp. 162-169] and an efficient algorithm for its calculation [Ferns et al., Proceedings of
UAI (2006), pp.174-181]. In this paper, we seek to properly extend these bisimulation metrics to Markov decision
processes with continuous state spaces. In particular, we provide the first distance-estimation scheme for metrics
based on bisimulation for continuous probabilistic transition systems. Our work, based on statistical sampling and
infinite dimensional linear programming is a crucial first step in formally guiding real-world planning, where tasks are
usually continuous and highly stochastic in nature, e.g. robot navigation, and often a substitution with a parametric
model or crude finite approximation must be made. We show that the optimal value function associated with a
discounted infinite-horizon planning task is continuous with respect to metric distances. Thus, our metrics allow
one to reason about the quality of solution obtained by replacing one model with another. Alternatively, they may
potentially be used directly for state aggregation. An earlier version of this work appears in the doctoral thesis of
Norm Ferns [McGill University, (2008)].
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1. Introduction. Markov decision processes (MDPs) offer a popular mathematical tool for
planning and learning in the presence of uncertainty [7]. They are a standard formalism for describ-
ing multi-stage decision making in probabilistic environments where the objective of the decision
making is to maximize a cumulative measure of long-term performance, called the return. Dy-
namic programming algorithms, e.g., value iteration, policy iteration [53], allow one to compute
the optimal expected return for any state, as well as the way of behaving, or policy, that generates
this return. However, in many practical situations the state space of an MDP may be too large,
possibly continuous, for the standard algorithms to apply. Similarly, MDPs with a high degree of
stochasticity, i.e., when there are many possible outcome states for probabilistic state transitions,
can be much more problematic to solve than those that are nearly deterministic [43]. Therefore,
one usually turns to model approximation to find a simpler relevant model. The hope is that this
can be done in such a manner so as to construct an “essentially equivalent” MDP with significantly
reduced complexity, thereby allowing the use of classical solution methods while at the same time
providing a guarantee that solutions to the reduced MDP can be extended to the original.

Recent MDP research on defining equivalence relations on MDPs [11, 32] has built on the
notion of strong probabilistic bisimulation from concurrency theory. Probabilistic bisimulation
was introduced by [41] based on bisimulation for nondeterministic systems due to [50] and [44].
Henceforth when we say “bisimulation” we will mean strong probabilistic bisimulation.

In a probabilistic setting, bisimulation can be described as an equivalence relation that relates
two states precisely when they have the same probability of transitioning to classes of equivalent
states. The extension of bisimulation to transition systems with rewards was carried out in the
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context of MDPs by [32] and in the context of performance evaluation by [3]. In both cases, the
motivation is to use the equivalence relation to aggregate the states and get smaller state spaces.
The basic notion of bisimulation is modified only slightly by the introduction of rewards.

However, it has been well established that the use of exact equivalences in quantitative systems
is problematic. A notion of equivalence is two-valued: two states are either equivalent or they are
not. For example, a small perturbation of the transition probabilities of a probabilistic transition
system can make two equivalent states no longer equivalent. In short, any kind of equivalence is
unstable - too sensitive to perturbations in the numerical values of the parameters of the model.

A natural remedy is to use pseudometrics. A pseudometric is almost the same as a metric,
except that two distinct points can be at zero distance. Given a pseudometric, we define an equiva-
lence relation by saying that two points are equivalent if they are at zero distance; this is called the
kernel of the pseudometric. We will just say “metric” henceforth. Metrics are natural quantitative
analogues of equivalence relations. The triangle inequality, for example, can be interpreted as a
quantitative generalization of transitivity: if states x1 and x2, and x2 and x3, are close in distance
then so too must be states x1 and x3. The metrics on which we focus here specify the degree to
which objects of interest behave similarly; usually we would like the kernel to be bisimilarity, the
largest bisimulation relation.

Much of this work has been done in a very general setting, using the labelled Markov process
(LMP) model [5, 15, 49]. Previously defined metrics [16, 59, 18, 17] are quantitative generalizations
of bisimulation; they assign distance zero to states that are bisimilar, distance one to states that
are easily distinguishable, and an intermediate distance to those in between.

Van Breugel and Worrell (2001) [59] showed how, in a simplified setting of finite state space
LMPs, metric distances could be calculated in polynomial time. This work, along with that of
others [18], was then adapted to finite MDPs [27]. The current authors used fixed-point theory
to construct metrics, each of which had bisimilarity as its kernel, was sensitive to perturbations in
MDP parameters, and provided bounds on the optimal values of states. We showed how to compute
the metrics up to any prescribed degree of accuracy and then used them to directly aggregate sample
finite MDPs. We subsequently discovered a more efficient method for estimating metrics based on
statistical sampling and network optimization [26].

In this paper, we present a significant generalization of these previous results to MDPs with
continuous state spaces. The linear programming arguments we used in our previous work no
longer apply, and we have to use measure theory and duality theory on continuous state spaces.
The mathematical theory is interesting in its own right. Although continuous MDPs are of great
interest for practical applications, e.g. in the areas of automated control and robotics, the existing
methods for measuring distances between states, for the purpose of state aggregation as well as other
approximation methods are still largely heuristic. As a result, it is hard to provide guaranteed error
bounds between the correct and the approximate value function. It is also difficult to determine the
impact that structural changes in the approximation technique would have on the quality on the
approximation. The metrics we define in this paper allow the definition of error bounds for value
functions. These bounds can be used as a tool in the analysis of existing approximation schemes.

An earlier version of this work appears in [25]. The existence of the metrics and some continuity
results in a continuous setting were originally presented in less polished form in [28]; here we unify
and strengthen those results. Specifically, the main contributions of this work are:

(i) We extend an approach to bisimulation metrics for finite state probabilistic transition
systems due to [59], based on linear programming, to bisimulation metrics for continuous state
space Markov decision processes using infinite dimensional linear programming (Theorem 3.12).
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This is a refinement of previous work [28].
(ii) We prove Lipschitz continuity of the optimal value function with respect to our bisim-

ulation metrics for continuous state space Markov decision processes (Theorem 3.20). This is a
refinement of previous work [28].

(iii) Our key result is to extend the metric approximation scheme, developed in [26] for finite
MDPs, to a continuous setting (compact metric spaces).

The rest of the paper is organized as follows: in § 2, we present a review of the theory of
finite Markov decision processes as it pertains to the standard reinforcement learning paradigm,
bisimulation, and bisimulation metrics. We also provide a brief survey of mathematics for continuous
spaces to set down the notations and results relevant for subsequent sections. Section 3 shifts the
discussion to Markov decision processes with infinite state spaces, introducing issues of measurability
and continuous analogues of concepts introduced in § 2. We use properties of the Kantorovich
functional, an infinite linear program that can be used to define a metric on probability measures,
to arrive at our first major result: existence of bisimulation metrics, along with several continuity
properties. We establish an important reinforcement-learning bound and a simple calculation,
illustrating the use of metric reasoning. In § 4 we provide a brief mathematical background of
empirical processes, including a crucial Glivenko-Cantelli theorem. In § 5 and § 6we then present
our central result: an approximation scheme for estimating distances for MDPs whose state spaces
are compact metric spaces. We attempt to bound the running time and estimation error of this
approximation scheme in § 7. Finally, in § 8 we conclude with a summary of our results, related
work, and directions for further research.

2. Background. In this section we first review the basics of finite Markov decision processes
with respect to reinforcement learning, bisimulation, and bisimulation metrics. We assume the
reader is familiar with basic discrete mathematics, including discrete probability theory and finite
metric spaces. Next we set down in some detail fundamental mathematical results for continuous
spaces relevant for subsequent sections. Some of the issues that arise there are quite subtle; thus,
we clearly set down the notation and results to be used to avoid any ambiguity.

2.1. Reinforcement Learning. We define reinforcement learning to be that branch of artifi-
cial intelligence that deals with an agent learning through interaction with its environment in order
to achieve a goal. The intuition behind reinforcement learning is that of learning by trial and error.
By contrast, in supervised learning an external supervisor provides examples of desired behaviour
from which an agent can learn, much as a student learns from a teacher.

Applications of reinforcement learning include optimal control in robotics [40], meal provision-
ing [34], scheduling, brain modelling, game playing, and more.

The interaction of an agent with its environment in reinforcement learning can be formally de-
scribed by the Markov decision process framework below: consider the sequential decision model rep-
resented in Figure 2.1 [56], depicting the interaction between a decision-maker, or agent, and its en-
vironment. We assume that time is discrete, and that at each discrete time step t ∈ {0, 1, 2, . . . , T },
the agent perceives the current state of the environment st from the set of all states S. We refer to
T as the horizon and note that it may be either finite or infinite. On the basis of its state observa-
tion the agent selects an action at from the set of actions allowable in st, Ast . As a consequence,
the following occurs immediately in the next time step: the agent receives a numerical signal rt+1

from the environment and the environment evolves to a new state st+1 according to a probability
distribution induced by st and at. The agent perceives state st+1 and the interaction between agent
and environment continues in this manner, either indefinitely or until some specified termination
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Fig. 2.1. Agent-environment interaction

point has been reached, in accordance with the length of the horizon. Here, we think of rt+1 as
a means of providing the agent with a reward or a punishment as a direct consequence of its own
actions, thereby enabling it to learn which action-selection strategies are good and which are bad
via its own behaviour.

We further suppose that the following conditions are true of the stochastic nature of the envi-
ronment: state transition probabilities obey the Markov property:

Pr(st+1 = s|s0, a0, s1, a1, . . . , st, at) = Pr(st+1 = s|st, at)

and are stationary; that is, independent of time:

for every t ∈ T, Pr(st+1 = s′|st = s, at = a) = P a
ss′

The state and action spaces together with the transition probabilities and numerical rewards
specified above comprise a discrete-time Markov decision process. Formally, we have the following:

Definition 2.1. A finite Markov decision process is a quadruple

(S, {As|s ∈ S}, {P (·|s, a)|s ∈ S, a ∈ As}, {r(s, a)|s ∈ S, a ∈ As})

where:
• S is a finite set of states,
• A = ∪s∈SAs is a finite set of actions,
• for every s ∈ S,As is the set of actions allowable in state s,
• for every s ∈ S and a ∈ As, P (·|s, a) : S → [0, 1] is a stationary Markovian probability
transition function; that is, for every s′ ∈ S, P (s′|s, a) is the probability of transitioning
from state s to state s′ under action a and will be denoted by P a

ss′ , and
• for every s ∈ S and a ∈ As, r(s, a) is the immediate reward associated with choosing action
a in state s, and will be denoted by ras .

We frequently take As = A, that is, all actions are allowable in all states, and write a finite Markov
decision process as (S,A, P, r).
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Fig. 2.2. State transition diagram for a simple finite MDP

A finite Markov decision process can also be specified via a state-transition diagram; Figure 2.2,
for example, depicts a finite MDP with 4 states and 1 action.

A Markov Decision Problem consists of an MDP together with some optimality criterion con-
cerning the strategies that an agent uses to pick actions. The particular Markov decision problem
we will be concerned with is known as the infinite-horizon expected discounted return reinforcement
learning task.

An action selection strategy, or policy, is essentially a mapping from states to actions, i.e. a
policy dictates what action should be chosen for each state. More generally, one allows for policies
that are stochastic, history-dependent, and even non-stationary. Here we will restrict our attention
to randomized stationary Markov policies. Formally, a policy is a mapping π : S ×A→ [0, 1], such
that π(s, ·) is a probability distribution on A for each s ∈ S.

The optimality criterion of the Markov decision problems is concerned with finding a policy that
maximizes the sum of the sequence of numerical rewards obtained through the agent’s interaction
with its environment. The most common optimality criterion, the infinite horizon total discounted
reward task, involves finding a policy π that maximizes for every state s ∈ S, limT→∞ E

π [Rt|st = s]

where Rt =
∑T−(t+1)

k=0 γkrt+k+1 for some γ ∈ [0, 1) and E
π is the expectation taken with respect to

the system dynamics following policy π. Such a maximizing policy is said to be optimal. Another
optimality criterion is the average reward criterion, wherein one seeks to maximize for every state
the cumulative sum of rewards averaged over the length of the horizon.

The total discounted reward criterion involves geometrically discounting the reward sequence.
The intuition is that rewards obtained in the future are less valuable than rewards received imme-
diately, an idea prevalent in economic theory; here the discount factor can be interpreted as a kind
of interest rate. Another point of view comes from population modeling, where the discount factor
γ can be viewed as the probability of an individual surviving to the next stage (and the process
dies off with probability 1 − γ). Alternatively, we may simply view it as a mathematical tool to
ensure convergence. In any case, the discounted reward model possesses many nice properties, such
as a simplified mathematics in comparison to other proposed optimality criteria and existence of
stationary optimal policies [53]. For this reason, it is the dominant criterion used for reinforcement
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learning tasks, and we concentrate on it in this work.
The expression limT→∞ E

π [Rt|st = s] that we seek to maximize in the infinite horizon dis-
counted model is known as the value of a state s under a policy π, and is denoted V π(s). For
finite MDPs, rewards are necessarily uniformly bounded; hence, the limit always exists and we may
rewrite V π(s) as E

π [
∑∞

k=0 γ
krt+k+1]. The induced map on states, V π, is called the state-value

function (or simply value function) for π. Much research is concerned with estimating these value
functions, as they contain key information towards determining an optimal policy.

In terms of value functions, a policy π∗ is optimal if and only if V π∗

(s) ≥ V π(s) for every s ∈ S
and policy π. As previously mentioned, an important fact about infinite horizon discounted models
for finite MDPs is that an optimal policy always exists.

Given policy π, one can use the Markov property to derive for any s ∈ S,

V π(s) =
∑

a∈As

π(s, a)(ras + γ
∑

s′∈S

P a
ss′V

π(s′)) (2.1)

The linear equations in 2.1 are known as the Bellman equations for policy π, and V π is their unique
solution. Note that while the value function for a given policy is unique, there may be many policies
corresponding to the same value function.

The optimal value function V ∗, corresponding to an optimal policy π∗, satisfies a more special-
ized family of fixed point equations,

V ∗(s) = max
a∈As

(ras + γ
∑

s′∈S

P a
ss′V

∗(s′)) for each s ∈ S (2.2)

of which it is the unique solution (see §6.1 and §6.2 of [53]). These are known as the Bellman
optimality equations.

It is worth remarking that the existence and uniqueness of the solutions in these Bellman
equations can be obtained from the Banach Fixed Point Theorem by applying the appropriate
contraction mapping over the space of bounded real-valued functions on S equipped with the metric
induced by the uniform norm (see Theorem 2.26 in § 2.4 ).

The Bellman equations are an important tool for reasoning about value functions and policies.
They allow us to represent a value function as a limit of a sequence of iterates, which in turn can
be used as the basis for dynamic programming algorithms for value function computation. Once
more as a consequence of the Banach Fixed Point Theorem, one obtains:

Theorem 2.2 (Policy Evaluation). Given a randomized stationary policy π on a finite Markov
decision process (S,A, P, r), define

• V π
0 (s) = 0 for every s ∈ S and

• V π
i+1(s) =

∑
a∈As

π(s, a)(ras + γ
∑

s′∈S P
a
ss′V

π
i (s′)) for every i ∈ N and s ∈ S.

Then (V π
i )i∈N converges to V π uniformly.

Theorem 2.3 (Value Iteration). Given a finite Markov decision process (S,A, P, r). Define
• V0(s) = 0 for every s ∈ S and
• Vi+1(s) = maxa∈As

(ras + γ
∑

s′∈S P
a
ss′Vi(s

′)) for every i ∈ N and s ∈ S.
Then (Vi)i∈N converges to V ∗ uniformly.

These results allow one to compute value functions up to any prescribed degree of accuracy. For
example, if one is given a positive ǫ then iterating until the maximum difference between consecutive

iterates is ǫ(1−γ)
2γ guarantees that the current iterate differs from the true value function by at most

ǫ [53].
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One can thus use value functions in order to compute optimal policies. For example, once one
has performed value iteration, one can then determine an optimal policy by choosing for each state
the action that maximizes its optimal value in the Bellman optimality equation, i.e.

π(s, a)← argmax
a∈A

(ras + γ
∑

s′∈S

P a
ss′V

∗(s′)).

In practice, however, the optimal policy may stabilize for a given optimal value iterate long before
the optimal value function itself has converged; in this case, the remaining iterations would serve
only to waste time. As an alternative, one can instead iterate over policies. Given an arbitrary
policy π, one can use policy evaluation to compute V π and thereby obtain a measure of its quality.
One can then attempt to improve π to π′ by setting

π′(s, a)← argmax
a∈A

(ras + γ
∑

s′∈S

P a
ss′V

π(s′));

this is known as policy improvement. If there is no improvement, that is, the policy is stable, then
the policy is optimal; otherwise, one may continue to iterate in this manner. This is known as
policy iteration: starting from an initial policy, one repeated performs policy evaluation and policy
improvement until a stable optimal policy is achieved.

These dynamic programming algorithms constitute a standard MDP solution method; many
alternative solution methods are based on them while aiming to improve computational efficiency.
The problem with dynamic programming algorithms is that they are subject to the curse of di-
mensionality: a linear increase in state-space dimension leads to an exponential increase in running
time. In general, such methods are impractical when dealing with large state spaces.

One typical method for overcoming such problems is state aggregation: one clusters together
groups of states in some manner and defines a smaller MDP over the set of clusters. The hope
is that one can recover a solution to the original MDP by solving the reduced model. However,
clustering together states with different reward and probability parameters can be detrimental. We
are thus led to the problem of how one should cluster states so as to recover good solutions; more
generally, how does one best assess the quality of a state aggregation? The solution we propose is
to use bisimulation metrics.

2.2. Discrete Bisimulation Metrics. Let (S,A, {P a
ss′ |s, s

′ ∈ S, a ∈ A}, {ras |s ∈ S, a ∈ A})
be a given finite MDP. When should two states be placed in the same cluster of a state aggregation?
Equivalently, what is the best state equivalence for MDP model reduction?

Givan, Dean and Greig [32] investigated several notions of MDP state equivalence for MDP
model minimization: action-sequence equivalence, optimal value equivalence, and bisimulation.
Two states are deemed action-sequence equivalent if for any fixed finite sequence of actions, their
distributions over reward sequences are the same. Here let us remark that for any state, a fixed
finite sequence of actions of length n induces a probability distribution over reward sequences of
size n by means of the MDP’s system dynamics. As [32] note, the problem with action-sequence
equivalence is that it may equate states with different optimal values. To overcome such a limitation,
the authors consider optimal value equivalence, wherein states are deemed equivalent if they have
the same optimal value. Here again, however, problems arise: states deemed equivalent under
optimal value equivalence may have markedly different MDP dynamics; in particular, they may
have different optimal actions under an optimal policy and so are unsuitable for clustering. The
authors go on to argue that bisimulation, a refinement of the first two equivalences, is the best state
equivalence for model minimization.
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Bisimulation has its origins in the theory of concurrent processes [50]. Milner [44] utilized
strong bisimulation as a notion of process equivalence for his Calculus of Communicating Systems
(CCS), a language used to reason about concurrent processes. Bisimulation in this context can
informally be seen as a type of matching relation, i.e. processes p and q are related iff for every a-
labeled transition that process p can make to process p′, process q can make an a-labeled transition
to some process q′ related to p′, and vice versa. A remarkable theorem shows that bisimulation
equivalence on processes can be characterized by a modal logic known as Hennessy-Milner logic [36];
two processes are bisimilar if and only if they satisfy precisely the same formulas.

Remarkably, there was a precursor to the notion of bisimulation already available in the theory
of Markov chains; this was called lumpability [38]. It did not use the fixed-point formulation and
it did not make any connection with logic but, as its name suggests, it had the germ of the idea
of probabilistic bisimulation well before bisimulation appeared in concurrency theory. Larsen and
Skou [41] extended the notion of bisimulation to a probabilistic framework. Their probabilistic
bisimulation was developed as an equivalence notion for labeled Markov chains (LMCs). They
define probabilistic bisimulation both in terms of a maximal matching relation and establish a
logical characterization result using a probabilistic modal logic. The definition of bisimulation
by [32] is a simple extension of probabilistic bisimulation:

Definition 2.4. Let (S,A, P, r) be a finite Markov decision process. A stochastic bisimulation
relation R is an equivalence relation on S that satisfies the following property:

sRs′ ⇐⇒ for each a ∈ A, (ras = ras′ and for each C ∈ S/R, P a
s (C) = P a

s′(C))

where P a
s (C) =

∑
c∈C P

a
sc.

We say states s and s′ are bisimilar, written s ∼ s′, iff sRs′ for some stochastic bisimulation
relation R.

In other words, bisimilarity is the largest bisimulation relation on S, and roughly speaking, two
states s and s′ are bisimilar if and only if for every transition that s makes to a class of states, s′

can make the same transition with the same probability and achieve the same immediate reward;
and vice versa.

Bisimilarity was originally formulated by Park using fixed point theory [45]. This has been also
done for probabilistic bisimilarity [58, 18] and for finite MDPs [24]. Note that the existence of a
greatest fixed point in the definition below is guaranteed by an elementary theorem which asserts
that a monotone function on a complete lattice has a greatest fixed point1:

Definition 2.5. Let (S,A, P, r) be a finite Markov decision process, and let Rel be the complete
lattice of binary relations on S. Define F : Rel→ Rel by

sF(R)s′ ⇐⇒ for every a ∈ A, (ras = ras′ and for each C ∈ S/Rrst, P
a
s (C) = P a

s′(C))

where Rrst is the reflexive, symmetric, transitive closure of R.
Then s and s′ are bisimilar iff s ∼ s′ where ∼ is the greatest fixed point of F .

In the finite case, the operator F can be used to compute the bisimilarity partition: starting
from an initial equivalence relation, the universal relation S × S, iteratively apply F until a fixed
point is reached. As each application of F either adds cluster-states or results in a fixed point, and
there are only finitely many states, this procedure must stop.

1This is sometimes erroneously called the Knaester-Tarski Fixed Point Theorem. That is, however, a much more
general theorem asserting that the fixed points of a monotone function on a complete lattice form a complete lattice.
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Unfortunately, as an exact equivalence, bisimilarity suffers from issues of instability; that is,
slight numerical differences in the MDP parameters, {ras : s ∈ S, a ∈ A} and {P a

ss′ : s, s
′ ∈ S, a ∈ A},

can lead to very different bisimilarity partitions. Consider the sample MDP in Figure 2.3 with 4
states labeled x, x̂, y, and ŷ, and 1 action labeled a. Suppose raŷ = 0. Then all states share the

y ray = 0 ŷraŷ

x

rax = 0

x̂

rax̂ = 0

{a,1.0} {a,1.0}

{a, p} {a, 1− p}

{a, p′} {a, 1− p′}

Fig. 2.3. MDP demonstrating bisimilarity is too brittle

same immediate reward and transition amongst themselves with probability one. So all states are
bisimilar. On the other hand, if raŷ > 0 then ŷ is the only state in its bisimulation class since it
is the only one with a positive reward. Moreover, x and x̂ are bisimilar if and only if they share
the same probability of transitioning to ŷ’s bisimilarity class. Each is bisimilar to y if and only
if that probability is zero. Thus, y, x, and x̂ are not bisimilar to ŷ, x ∼ x̂ if and only if p = p′,
x ∼ y if and only if p = 1.0, and x̂ ∼ y if and only if p′ = 1.0. This example demonstrates that
bisimilarity is simply too brittle; if rŷ is just slightly positive, and p differs only slightly from p′

then we should expect x and x̂ to be practically bisimilar. However, an equivalence relation is too
crude to capture this idea. To get around this, one generalizes the notion of bisimilarity equivalence
through bisimulation metrics.

Metrics can be used to give a quantitative notion of bisimulation that is sensitive to variations
in the rewards and probabilistic transitions of an MDP. In [27, 28] we provided the following metric
generalization of bisimulation for finite MDPs. Results appear here in slightly modified form:

Theorem 2.6. Let (S,A, P, r) be a finite MDP and let c ∈ (0, 1) be a discount factor. Let met

be the space of bounded pseudometrics on S equipped with the metric induced by the uniform norm.
Define F : met → met by

F (h)(s, s′) = max
a∈A

((1 − c)|ras − r
a
s′ |+ cTK(h)(P a

s , P
a
s′))

Then :

1. F has a unique fixed point ρ∗,
2. ρ∗(s, s′) = 0 ⇐⇒ s ∼ s′, and
3. for any h0 ∈ met, ‖ρ∗ − Fn(h0)‖ ≤

cn

1−c
‖F (h0)− h0‖.
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Here TK(h)(P,Q) is the Kantorovich probability metric2applied to finite distributions P and Q.
We will introduce it in more generality in § 2.4.6 once we have set down some important concepts
in continuous mathematics. For now, it is sufficient to note that in the finite case, it reduces to the
following linear program:

max
ui

|S|∑

i=1

(P (si)−Q(si))ui

subject to: for every i, j, ui − uj ≤ h(si, sj)

It can also be specified by the dual linear program

min
λkj

|S|∑

k,j=1

λkjh(sk, sj)

subject to: for every k,
∑

j

λkj = P (sk)

for every j,
∑

k

λkj = Q(sj)

for every k, j, λkj ≥ 0

which can be rewritten as minλ Eλ[h] where λ is a joint probability function on S×S with projections
P and Q. This discrete minimization program has an interpretation as a Hitchcock transportation
problem, an instance of the minimum-cost flow network optimization problem as seen in Figure 2.4.

+P (1) +P (2) +P (N)

−Q(1) −Q(2) −Q(N)

h(1, 1) h(2, 2) h(N,N)

h(1, 2) h(2, N)

b b b

b b b

Fig. 2.4. Hitchcock network transportation problem (N = |S|)

Here we have |S| source nodes and |S| sink nodes. For each s ∈ S, there exists a source node
labeled with a supply of P (s) units and a sink node labeled with a demand (or negative supply) of

2Frustratingly, this metric likes to hide under a variety of names: Monge-Kantorovich, Kantorovich-Rubinstein,
Hutchinson, Mallows, Wasserstein, Vasserstein, Earth Mover’s Distance, Fortet-Mourier, and Dudley, to name a few.
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Q(s) units. Between each source node and each sink node, labelled respectively P (s) and Q(s′) for
some s, s′ ∈ S, there is a transportation arc labelled with the cost of transporting one unit from
the source to sink, given here by h(s, s′). A flow is an assignment of the number (nonnegative) of
units to be shipped along all arcs. One requires that the total flow exiting a source node be equal
to the supply of that node, and the total flow entering a sink node be equal to the demand at that
node. One also requires that the total supply equals the total demand, which in this case is 1. The
cost of a flow along an arc is simply the cost along that arc multiplied by the flow along that arc.
The cost of the flow for the entire network is taken to be the sum of the flows along all arcs. The
goal then is to find a flow of minimum cost.

There exist strongly polynomial algorithms to compute the minimum-cost flow problem [47, 61].
Therefore the Kantorovichmetric in the discrete case can be computed in polynomial time, assuming
of course that the pseudometric h is itself computable.

The key property of the Kantorovich metric is that it matches distributions, that is, assigns
them distance zero only when they agree on the equivalence classes induced by the kernel of the
underlying pseudometric cost function (see Lemma 3.7 in § 3). Therefore, it is not surprising that
it can be used to capture the notion of bisimilarity, which requires that probabilistic transitions
agree on bisimilarity equivalence classes.

Let us conclude with an example of the metric distances applied to the MDP in Figure 2.3.
Using uniqueness of ρ∗ and the identity TK(ρ∗)(δx, δy) = ρ∗(x, y) along with the fact that there is
only one action, it is not hard to see that solving for ρ∗ in the fixed point equations amounts to
solving a set of linear equations. We therefore find:

ρ∗(x, x̂) = c|p− p′|raŷ ρ∗(y, ŷ) = raŷ

ρ∗(x, y) = c(1− p)raŷ ρ∗(x, ŷ) = (1− cp)raŷ

ρ∗(x̂, y) = c(1− p′)raŷ ρ∗(x̂, ŷ) = (1− cp′)raŷ

Consider now the MDP in Figure 2.2. Even though states x and ŷ are not bisimilar, we see that for
any c they have ρ∗-distance 0.01− 0.0095c, which is much less than the maximum possible distance
of 1; that is, they are very close to being bisimilar.

The most important property of the metrics is that they show that similar states have similar
optimal values, and this relation varies smoothly with similarity. Formally, the optimal value
function is continuous with respect to the state-similarity metrics.

Theorem 2.7 ([27]). Let (S,A, P, r) be a finite MDP, c ∈ (0, 1) be a metric discount factor,
γ ∈ [0, 1) be a reward discount factor, and ρ∗ be the bisimulation metric given by Theorem 2.6.
Suppose γ ≤ c. Then V ∗ is 1

1−c
-Lipschitz continuous with respect to ρ∗, that is,

|V ∗(s)− V ∗(s′)| ≤
1

1− c
ρ∗(s, s′).

We can use this result to relate the optimal values of a state and its representation in an
approximant by considering the original model and its approximant as one MDP.

2.3. Computing Bisimulation Metrics. We were able to compute the bisimulation metric
by hand for the simple MDP pictured in Figure 2.3; but what can we say in the general case? In
fact, the fixed point nature of the metrics permits the use of a dynamic programming algorithm in a
manner analogous to the computation of the optimal value function: starting with the everywhere-
zero metric, denoted by ⊥, we iteratively apply the fixed point functional F until a desired level of
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accuracy is achieved. Since, as we noted, the Kantorovich operator can be computed in strongly
polynomial time, we have an algorithm to calculate the state-similarity metrics - though one subject
to the same shortcomings as traditional MDP dynamic programming algorithms. As only the dis-
tances are changing (and in fact converging) in the Kantorovich operator, and this object is itself an
instance of a minimum-cost flow linear program, one immediately applicable speedup is to use cost
re-optimization: that is, we can save the optimizing solutions for each Kantorovich linear program
between iterations and use them to begin the Kantorovich linear program in the next iteration.
The same idea was used in [64] to re-compute optimal network flows in the context of computing
probabilistic simulations for probabilistic automata. As in that work, we are thereby saving on
computation time at the cost of larger space requirements. This appears slightly more promising;
but, can we do better? Indeed: a promising approach to quick and efficient approximation of the
distances arises from the area of statistical sampling.

Suppose P and Q are approximated using the empirical distributions Pi andQi; that is, we sam-
ple i points X1, X2, . . . , Xi independently according to P and define Pi by Pi(x) =

1
i

∑i
k=1 δXk

(x).

Similarly, write Qi(x) =
1
i

∑i
k=1 δYk

(x). Remark that both Pi and Qi are random variables defined
over some ambient probability space. Then

TK(h)(Pi, Qi) = min
σ

1

i

i∑

k=1

h(Xk, Yσ(k)) (2.3)

where the minimum is taken over all permutations σ on i elements (see p. 5 of [60]). Now the
Strong Law of Large Numbers tells us that both (Pi(x))

∞
1 and (Qi(x))

∞
1 converge almost surely to

P (x) and Q(x). Let us write T i
K(h)(P,Q) for TK(h)(Pi, Qi) when the empirical distributions are

fixed. Then as a consequence of the Strong Law of Large Numbers, (T i
K(h)(P,Q))∞1 converges to

TK(h)(P,Q) almost surely; moreover replacing TK by T i
K in F yields a pseudometric,

ρ∗i (s, s
′) = max

a∈A
((1− c)|ras − r

a
s′ |+ cT i

K(ρ∗i )(P
a
s , P

a
s′)),

which converges almost surely to ρ∗ as i gets large [26].
The importance of this result stems from the fact that the expression in equation (2.3) is

an instance of the assignment problem from network optimization. This is a specialized network
flow problem in which the underlying network is bipartite and all flow assignments are either
0 or 1. In graph-theoretic terminology, this is the problem of optimal matching in a weighted
bipartite graph. Its specialized structure allows for fast, simple solution methods. For example, the
Hungarian algorithm runs in worst case time O(i3), where i is the number of samples. Still, is the
resulting sampling algorithm for estimating bisimulation distances really any better than the exact
algorithms?

We have compared the Monte Carlo algorithm for a fixed number of samples along with the
algorithms presented above, in terms of computational resources (space and time), and use in
aggregation [26]. For purposes of illustration, we present here some of these results.

Experiments were run on MDPs given by an n× n grid world with two actions (move forward
and rotate) and a single reward in the center of the room for n = 3, 5, and 7, and a flattened out
version of the coffee robot MDP [8] in which a robot has to get coffee for a user while having to
avoid getting wet. Each state in the grid world encodes both position as well as orientation of the
agent; thus, the gridworld MDPs have 36, 100, and 196 states respectively. Additionally, the actions
are deterministic. The coffee domain has 64 states and 4 actions, some with stochastic effects. For
each domain, we computed: 1

1−c
ρ∗, the same with cost re-optimization, and 1

1−c
ρ∗i via sampling.
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Exact computation of the Kantorovich metric in the first two methods was carried out using
the MCFZIB minimum-cost flow solver [30]. An implementation of the Hungarian algorithm for
the assignment problem was used to estimate the Kantorovich distances in the third method.

For each MDP, 10 transitions were sampled for each state and action, and this vector of samples
was then used to estimate the empirical distribution throughout the whole run. The distance metric
was obtained by averaging the distances obtained over 30 independent runs of this procedure.

Lastly, metrics were computed using three different values for the discount factor, here taking
the metric and value discount factors to be the same, i.e. c = γ with γ ∈ {0.1, 0.5, 0.9}.

Table 2.1 summarizes the running times in seconds for each method with the different discount
factors. A ‘-’ means that the algorithm failed to compute the metric.

Kantorovich Re-optimized Stochastic
3x3 gridWorld

γ = 0.1 2.067 1.563 5.883
γ = 0.5 5.223 2.944 14.406
γ = 0.9 41.089 15.231 85.725

5x5 gridWorld

γ = 0.1 - - 44.200
γ = 0.5 - - 109.473
γ = 0.9 - - 653.645

7x7 gridWorld

γ = 0.1 - - 168.853
γ = 0.5 - - 419.735
γ = 0.9 - - 2625.16

Coffee Robot

γ = 0.1 57.640 - 72.823
γ = 0.5 137.129 - 165.687
γ = 0.9 1024.42 - 1037.03

Table 2.1
Running times in seconds for different metric algorithms

We also compared the amount of space used by each method. This was measured using the
massif tool of valgrind (a tool library in Linux). Table 2.2 presents the maximum number of bytes
used by each algorithm when computing the distances for each MDP; an ‘*’ indicates an algorithm
terminated prematurely due to maximum memory usage. In those cases where all algorithms were
able to run to completion, the Monte Carlo algorithm either outperformed or performed comparably
to the exact algorithms. Moreover, we compared the quality of the estimated distances with that
of the exact distances by using each in simple aggregations schemes - and here too results were
comparable [26]. All in all, when considering the tradeoff between the computational requirements of
time and space, and the quality of the results, the Monte Carlo algorithm for calculating bisimulation
distances significantly outperforms the others. Therefore, extending this sampling algorithm is the
most promising approach to providing practical quantitative state-similarity for continuous Markov
decision processes.
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Kantorovich Re-optimized Stochastic
3x3 gridWorld 80Mb 180Mb 80Kb
5x5 gridWorld 1.8Gb∗ 1.8Gb∗ 500Kb
7x7 gridWorld 1.8Gb∗ 1.8Gb∗ 1.8Mb
coffee robot 1.6Gb 1.8Gb∗ 300Kb

Table 2.2
Memory usage in bytes for different metric algorithms

2.4. A Mathematical Review. Results will be stated without proof and can be found in
most classical texts in probability and analysis, such as [55], [29], [20], and [4]. The subsections on
metrics, convergence, topology, continuity and measure theory are elementary and can be skipped
by a knowledgable reader; we include it just in case the reader wants to check our terminology. The
subsection on probability metrics is perhaps less well known.

2.4.1. Metric Spaces. A metric is perhaps the simplest geometric structure that one can
impose on a space. It is essentially a distance function; that is, a means of assigning a nonnegative
numerical weight to pairs of points on a set in order to quantify how far apart they are.

Definition 2.8. A pseudometric on a set S is a map ρ : S × S → [0,∞) such that for every
s, s′, s′′ in S:

1. s = s′ ⇒ ρ(s, s′) = 0
2. ρ(s, s′) = ρ(s′, s)
3. ρ(s, s′′) ≤ ρ(s, s′) + ρ(s′, s′′)

If the converse of the first axiom holds as well, we say ρ is a metric.

A set S equipped with a metric (pseudometric) ρ is a metric (pseudometric) space.

Note that the kernel of a pseudometric when viewed as a real-valued function is an equivalence
relation on S. We will denote the kernel of a pseudometric h on set S by Rel(h).

Definition 2.9. Given a pseudometric h on a set S, the equivalence relation Rel(h) is defined
by sRel(h)s′ if and only if h(s, s′) = 0.

A typical means of constructing a metric space is through a normed vector space, where one
already has a notion of length of a vector through the norm function. Suppose (V, ‖ · ‖) is such a
space. Then d(v, v′) := ‖v − v′‖ is easily seen to define a metric on V.

A metric allows one to speak of the convergence of elements in a space: a sequence converges to
a limit point if the distance between that limit point and the points in the sequence can eventually
be made arbitrarily small.

Definition 2.10. A sequence of elements (xn)n∈N in a metric space (S, ρ) converges to an
element x in S if and only if for every positive ǫ there exists a natural number N , depending on ǫ,
such that for every n ≥ N , ρ(xn, x) < ǫ.

As an example, whenever we speak of a sequence of bounded real-valued functions converging
uniformly, we are implicitly invoking convergence in the space of bounded real-valued functions
equipped with the metric induced by the uniform norm, i.e., ‖f‖ := supx∈S |f(x)|.

Sometimes it is convenient to speak of the convergence of a sequence without having a definite
candidate for its limit in mind. Suppose instead that we had considered a sequence whose pairwise
distances could eventually be made arbitrarily small; we might expect that the sequence itself should
converge. Unfortunately, such is not always the case.
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Definition 2.11. A sequence (xn)n∈N in a metric space (S, ρ) is said to be Cauchy if and only
if for every positive ǫ there exists a natural number N depending on ǫ such that for every n,m ≥ N ,
ρ(xn, xm) < ǫ.

A metric space in which every Cauchy sequence converges is said to be Cauchy-complete or
simply complete. An important example in this work consists of those pseudometrics on a set S
that are bounded, i.e., any pseudometric h on S such that sups,s′ |h(s, s

′)| <∞.
Completeness is just one of many special properties that can be attributed to a subset of a

metric space. Here we consider a few more select sets and properties they might possess. First,
given a point x in (S, ρ) and a fixed positive ǫ, we can consider all those points that are within
ǫ-distance of x. These yield the open and closed balls, Bρ

ǫ (x) = {y ∈ S : ρ(x, y) < ǫ} and Cρ
ǫ (x) =

{y ∈ S : ρ(x, y) ≤ ǫ}, respectively. More generally, a subset E of S is said to be open if for every
point e ∈ E there is some open ball Bρ

ǫ (e) that is entirely contained in E. An open set containing x
is also known as an open neighborhood of x. On the other hand, a subset F of S is said to be closed
if its relative complement S\F is open. Closed subsets of a metric space can also be characterized
by the following property: F is closed if and only if for every point x that is the limit of a convergent
sequence in F\{x}, x belongs to F , i.e. F contains all its limit points. Formally, a point p is a
limit point of the set E if every open neighborhood of p contains some point of E other than p.
This leads us to a type of subset useful for approximating the whole space. We say a subset X of
S is dense in S if every point of S is a limit point of X or a point of X (or both). In particular,
a metric space is said to be separable if it has some countable dense subset. In this work, we will
be primarily interested in those metric spaces that are complete and separable, allowing us to work
with an at most countably infinite set of points.

Definition 2.12. A Polish metric space is a complete, separable metric space.
From the point of view of approximating the whole space, there are two more interesting types

of sets. A subset X is said to be totally bounded if for any positive ǫ it can be expressed as the union
of finitely many open balls of radius ǫ. More generally, a subset X is compact if for every open cover
of X , that is, for every collection of open subsets whose union contains X , there is a finite subcover
of X . It is trivial to see that a totally bounded metric space is separable. More importantly, a
metric space is compact if and only if it is totally bounded and complete. In particular, a compact
metric space is Polish.

2.4.2. Topology. This section is also elementary and can be skipped.
We note that different metrics can produce the same collection of open sets on a space, and

that some properties depend only on this collection of open sets, rather than on a given metric.
The set S equipped with a given collection of open sets is called a topological space.

Definition 2.13. A collection T of subsets of a set S forms a topology on S if and only if:
1. The empty set ∅ and the whole set S belong to T ,
2. T is closed under finite intersections, i.e. if {Ui}ni=1 is a finite collection in T then

⋂n
i=1 Ui ∈

T , and
3. T is closed under arbitrary unions, i.e. if {Uα}α∈J is a collection in T for some index set

J then
⋃

α∈J Uα ∈ T .
A set S with a topology T is known as a topological space.

If (S, T ) is a topological space then a subset U of S is an open set of S if U belongs to T and
a subset V of S is a closed set of S if its relative complement X − V is open in S. Properties that
refer only to the collection of open sets will be referred to as topological. It is not hard to show that
for any metric space, the collection of open sets as defined in § 2.4.1 forms a topology called the
metric topology.
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Given two sets X and Y , we can form the cartesian product X × Y . Naturally, if X and Y
have associated topologies, we would like to associate a topology to X × Y . The standard method
for doing so uses the coordinate or projection maps on the product.

Definition 2.14. Given the cartesian product X×Y of two sets X and Y , let π1 : X×Y → X
and π2 : X × Y → Y be defined by π1(x, y) = x and π2(x, y) = y. The maps π1 and π2 are called
the projections of X × Y onto its first and second coordinates, respectively.

Definition 2.15. A subbasis S for a topology on a set X is a collection of subsets of X whose
union equals X. The topology generated by the subbasis S is the collection T of all unions of finite
intersections of elements of S.

Definition 2.16. Let X and Y be topological spaces. The product topology on X × Y is the
topology generated by the subbasis S = {π−1

1 (U)|U is open in X} ∪ {π−1
2 (V )|V is open in Y }.

In particular, if X and Y are metric spaces with metrics ρX and ρY , respectively, then the
product metric ρX×Y defined by ρX×Y ((x1, y1), (x2, y2)) = max{ρX(x1, x2), ρY (y1, y2)} generates
the product topology on X × Y .

2.4.3. Continuity. Continuity is a crucial property for our work on approximating spaces and
functions on those spaces. Loosely speaking, a function is continuous if the output of the function
cannot change too abruptly with small changes in its input.

Continuity in topological spaces is defined as follows:
Definition 2.17. A function f : (X, TX) → (Y, TY ) be topological spaces is continuous if for

each open set OY ∈ TY , the preimage f−1(OY ) ∈ TX .
Continuity is important for defining equivalence of topological spaces; two topological spaces

are equivalent, or homeomorphic, if there exists a continuous bijection between them such that its
inverse is also continuous.

Definition 2.18. A Polish space is a topological space that is homeomorphic to a Polish metric
space.

Some important results can be established under weaker continuity conditions. One such con-
dition is lower semicontinuity.

Definition 2.19. Let (X, T ) be a topological space and let f : X → R ∪ {−∞,∞}. Then f is
lower semicontinuous if for each half-open interval of the form (r,∞), the preimage f−1(r,∞) ∈ T .

Continuity in metric spaces is defined as follows:
Definition 2.20. A function f : (X, ρX)→ (Y, ρY ) between metric spaces is continuous at a

point x ∈ X if for every ǫ > 0 there is a δ > 0, depending on x and ǫ, such that for every x′ ∈ X
with ρX(x, x′) < δ we have ρY (f(x), f(x

′)) < ǫ.
We say f is continuous if it is continuous at every point of X.
If the topologies TX and TY are generated by metrics ρX and ρY respectively, then defintion 2.17

and definition 2.20 coincide.
If the δ in definition 2.20 can be chosen so as to depend on ǫ alone, i.e. independent of the point

x, then f is said to be uniformly continuous. A stronger form of uniform continuity is Lipschitz
continuity, which plays an important part in this work.

Definition 2.21. A function f(X, ρX)→ (Y, ρY )between metric spaces is Lipschitz continuous
if for some constant α, ρY (f(x), f(x

′)) ≤ αρX(x, x′) for every x, x′ ∈ X.
Any such constant α is known as a Lipschitz constant for this mapping; the greatest lower

bound of all such Lipschitz constants is itself a Lipschitz constant, known as the Lipschitz constant.
For either case, we will sometimes write that f is α-Lipschitz continuous.

Obviously every Lipschitz continuous function is uniformly continuous, and every uniformly
continuous function is continuous, but the converse is not generally true in either case. For compact
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metric spaces, however, the situation is much more well-behaved. Here, every continuous function
is indeed uniformly continuous. Moreover, if f is real-valued then it has a minimum value and a
maximum value, each of which is attained.

Continuity in metric spaces can alternatively be characterized in terms of convergent sequences:
f is continuous if for every convergent sequence (xn)n∈N in X with limit x, the sequence (f(xn))n∈N

is convergent with limit f(x). One can analogously defined a sequential version of lower semiconti-
nuity.

Definition 2.22. A function f : (X, ρ) → R ∪ {−∞,∞} on a metric space is sequentially
lower semicontinuous if for any sequence (xn)n∈N converging to x in X, lim infn→∞ f(xn) ≥ f(x).

Again, if the topology T on a space X is generated by the metric ρ then Definition 2.19 and 2.22
coincide. We will make more use of the sequential definitions of continuity.

One can analogously define f to be upper semicontinuous by requiring lim supn→∞ f(xn) ≤
f(x). It is easily seen that a real-valued function is continuous if and only if it is both lower
semicontinuous and upper semicontinuous. The intuition behind these definitions is that semicon-
tinuous functions allow for abrupt (discontinuous) jumps in one vertical direction; this can be seen
through the prototypical examples of semicontinuous functions: the indicator function of an open
set is always lower semicontinuous while the indicator function of a closed set is always upper semi-
continuous. In this work, we will be particularly interested in lower semicontinuous functions due
to several important properties; for example, the pointwise supremum of an arbitrary collection of
uniformly bounded lower semicontinuous functions on a metric space is itself lower semicontinuous,
and a lower semicontinuous function on a compact space attains its minimum. The statement of
the following theorem can be found as part a) of Theorem B.5 in [53] and by noting that f is lower
semicontinuous if and only if −f is upper semicontinuous.

Theorem 2.23. Let X be a Polish metric space, Y a compact subset of a Polish metric
space, and f : X × Y → R be a lower semicontinuous function. Then g : X → R defined by
g(x) = miny∈Y f(x, y) is lower semicontinuous on X.

Sometimes we need to speak of continuity of a family of functions such that they collectively
have equal variation over a given neighborhood.

Definition 2.24. A family of functions F between metric spaces (X, ρX) and (Y, ρY ) is
equicontinuous at a point x ∈ X if for every ǫ > 0 there is a δ > 0, depending on x and ǫ, such
that for every x′ ∈ X with ρX(x, x′) < δ and for every f ∈ F , we have ρY (f(x), f(x

′)) < ǫ.

2.4.4. Fixed Point Theory. Fixed point theory plays a major role in this paper. Here we
recall some basic definitions and a theorem from fixed point theory on lattices, which can be found
in any basic text [63].

Let (L,�) be a partial order. If it has least upper bounds and greatest lower bounds of arbitrary
subsets of elements, then it is said to be a complete lattice. A function f : L → L is said to be
monotone if x � x′ implies f(x) � f(x′). A point x in L is said to be a prefixed point if f(x) � x, a
postfixed point if x � f(x) and a fixed point if x = f(x). The importance of these definitions arises
in the following theorem.

Theorem 2.25 (Knaster-Tarski Fixed Point Theorem). Let L be a complete lattice, and
suppose f : L → L is monotone. Then f has a least fixed point, which is also its least prefixed
point, and f has a greatest fixed point, which is also its greatest postfixed point.

This is an elementary theorem sometimes called the Knaster-Tarski theorem in the literature.
In fact the Knaster-Tarski theorem is a much stronger statement to the effect that the collection of
fixed points is itself a complete lattice.
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A more common fixed point theorem comes from the theory of metric spaces and has the
advantage of being constructive in nature; its proof can be found in most basic texts in analysis,
e.g. [55].

Theorem 2.26 (Banach Fixed Point Theorem). Suppose (X, d) is a complete metric space
and T : X → X is a contraction mapping; that is, for some c ∈ [0, 1)

d(Tx, Tx′) ≤ c · d(x, x′)

for every x, x′ in X. Then:
1. T has a unique fixed point, x∗, and
2. for any x0 ∈ X, d(x∗, T nx0) ≤

cn

1−c
d(Tx0, x0).

In particular, limn→∞ T nx0 = x∗.

2.4.5. Probability and Measure. A rather unfortunate consequence of moving to uncount-
ably infinite state spaces is that we can no longer specify transition probabilities point-to-point;
one needs to specify probabilities on sets of points and even then not all sets can be “measured” in
this way.

Definition 2.27. A σ-algebra or σ-field on a set S is a collection Σ of subsets of S satisfying
the following axioms:

1. The empty set ∅ and the whole set S belong to Σ,
2. Σ is closed under complements, i.e. if E ∈ Σ then S\E ∈ Σ, and
3. Σ is closed under countable unions, i.e. if (Ei)

∞
i=1 is a sequence in Σ then

⋃∞
1 Ei ∈ Σ.

The members of Σ are known as the measurable sets. The pair (S,Σ) is known as a measurable
space. Given a topological space (S, T ), there is a unique smallest σ-algebra B(T ) that contains all
the open sets; this is known as the Borel σ-algebra. Its members are said to be Borel measurable
sets.

More generally, if E is any collection of subsets of a set S, there is a unique σ-algebraM(E)
containing E . It is called the σ-algebra generated by E .

Given two spaces X and Y with associated σ-algebras, we can again form the cartesian product
X × Y and associate to it a σ-algebra.

Definition 2.28. Let (X,ΣX) and (Y,ΣY ) be measurable spaces and let π1 and π2 be the
coordinate maps defined in Definition 2.14. The product σ-algebra ΣX ⊗ ΣY on X × Y is the
σ-algebra generated by the set E = {π−1

1 (E)|E ∈ ΣX} ∪ {π
−1
2 (F )|F ∈ ΣY }.

Now suppose that X and Y are two topological spaces. There are two ways of defining a
σ-algebra on X × Y : the Borel σ-algebra generated by the product topology, and the product
σ-algebra on X and Y each equipped with its Borel σ-algebra. In general, these need not be equal.
However, in the case of separable metric spaces, they are.

Proposition 2.29. Let X and Y be metric spaces and let X × Y be equipped with the product
metric. If X and Y are separable then the product σ-algebra on X×Y is equal to the Borel σ-algebra
of X × Y .

Definition 2.30. Given a measurable space (S,Σ), a measure is a set function µ : Σ→ [0,∞]
such that

1. µ(∅) = 0, and
2. for any pairwise disjoint sequence of sets (Ei)

∞
i=1 in Σ, µ(

⋃∞
1 Ei) = Σ∞

1 µ(Ei).
If µ take values in [0, 1] then it is a subprobability measure; if in addition µ(S) = 1 then it is a
probability measure . The triple (S,Σ, µ) is known as a measure space (respectively, subprobability
space, probability space).
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Sometimes we need to assign weights of a probabilistic type to all subsets of a space, at the
cost of losing some of the nice properties of a probability measure; such is frequently the case in
the theory of empirical processes, where one cannot guarantee that all the sets one may encounter
in practice will be measurable.

Definition 2.31. An outer probability measure on a set S is a set function φ : 2S → [0, 1]
satisfying

1. φ(∅) = 0,
2. E ⊂ F implies φ(E) ≤ φ(F ), and
3. for any sequence (Ei)

∞
i=1 of subsets of S, φ(

⋃∞
1 Ei) ≤ Σ∞

1 φ(Ei).

Every probability measure can be extended to an outer probability measure, and conversely,
every outer probability measure can be used to construct a σ-algebra on which it is a probability
measure. Note as well that any set of outer probability zero has complement with outer probability
one.

Definition 2.32. A probability measure on a metric space is tight, or inner regular, if it can
be approximated from within by compact sets, that is, µ is tight if for every Borel measurable set E,
µ(E) = supK µ(K) where the supremum is taken over all compact subsets K contained in E.

Theorem 2.33 (Ulam’s Tightness Theorem). Every probability measure on a Polish metric
space is tight.

Measures can be extended to act on functions through the process of integration. We will
assume the reader is familiar with the basic ideas of integration, if not the details, as the details
are involved and add nothing to the exposition here. Suffice it to say that, just as only certain
subsets can be measured, so too can only certain functions be integrated. Formally, a function f
between measurable spaces (X,ΣX) and (Y,ΣY ) is said to be measurable if the preimage of every
ΣY -measurable set is ΣX -measurable, i.e. {f−1(E) : E ∈ ΣY } ⊆ ΣX . A real-valued function f on a
measurable space (S,Σ) is measurable, or in the language of probability theory, a random variable,
if it is measurable as just defined, where R is equipped with its usual Borel σ-field. The prototypical
measurable functions are the simple functions : finite linear combinations of indicator functions on
measurable sets. Real-valued measurable functions can be approximated in a nice way by simple
functions.

Theorem 2.34 (p.47 of [29]). Let (S,Σ) be a measurable space. If f : S → [0,∞] is measurable,
then there is a sequence (φn)n∈N of simple functions such that 0 ≤ φ1 ≤ φ2 ≤ · · · ≤ f , (φn)n∈N

converges to f pointwise, and (φn)n∈N converges to f uniformly on any set on which f is bounded.

If S is a metric space and Σ its Borel σ-field, then every continuous function on S is measurable.
Given a sequence of measurable functions, its pointwise supremum, infimum, and limit (when it
exists) are all measurable. Lastly, if the integral of the absolute value of a measurable function f
with respect to a measure µ exists and is finite, then f is said to be integrable. The collection of
all such f for a given µ is denoted by L1(µ) (here it is standard to identify functions that differ on
a set of µ-measure zero).

Let us now consider convergence of probability measures on a metric space. Since probability
measures are essentially just set functions, it is natural to attempt to analyze their convergence
properties through pointwise converge, that is, to say that a sequence of probability measures
(µn)n∈N converges to probability measure µ if (µn(E))n∈N converges to µ(E) for every measurable
set E. However, such convergence is too strong: consider the Dirac measure δx, which assigns a
value of 1 if and only if a given measurable set contains the point x and 0 otherwise. Take [0, 1]
with its Borel σ-algebra and consider the sequence of Dirac measures on { 1

n
: n ∈ N}. It would be

quite natural to expect, if not demand, that this sequence converges to the Dirac measure at zero.
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However, taking the Borel measurable singleton {0} in the definition of pointwise convergence would
yield limn→∞ δ 1

n
({0}) = 0 = δ0({0}) = 1, which is clearly not the case. It is not hard to show

here that pointwise convergence over the measurable sets is equivalent to pointwise convergence
over bounded measurable functions, that is, convergence of (µn(f))n∈N to µ(f) for every bounded
measurable function f . Therefore, one way of weakening convergence is to consider a similar
pointwise convergence, but over a smaller class of functions. Formally, we say that {µn} converges
weakly to µ if (µn(f))n∈N converges to µ(f) for every bounded continuous real-valued function f .
It is clear that the Dirac measures on { 1

n
: n ∈ N} do indeed converge weakly to the Dirac measure

at 0.
Theorem 2.35 ([51]). Let X be a separable metric space and (µn)n∈N be any sequence of

measures on X. Let A0 ⊆ C(X) be a family of functions which is equicontinuous at every point
x ∈ X and uniformly bounded, that is, for some constant M , |f(x)| ≤ M for every x ∈ X and
f ∈ A0. Then µn ⇒ µ if and only if

lim
n→∞

sup
f∈A0

∣∣∣∣
∫
fdµn −

∫
fdµ

∣∣∣∣ = 0.

2.4.6. Probability Metrics. There are numerous ways of defining a notion of distance be-
tween probability measures on a given space [31]. Two typical ones are the total variation distance,
capturing strong convergence of probability measures, and the Kullback-Leibler divergence, cap-
turing certain information-theoretic properties of the measures. Note that the Kullback-Leibler
divergence fails to satisfy the symmetry and triangle inequality axioms for a metric. As previously
mentioned, however, the particular probability metric of which we make use is known as the Kan-
torovich metric. Its use in defining metrics for bisimulation was first demonstrated by van Breugel
and Worrell [58]. We present it here in greater generality; all results are taken from the books by
Rachev and Rueschendorf [54] and Villani [60], unless otherwise stated.

Definition 2.36. Let S be a Polish metric space, h a bounded pseudometric on S that is
lower semicontinuous on S × S with respect to the product topology, and Lip(h) be the set of all
bounded functions f : S → R that are measurable with respect to the Borel σ-algebra on S and that
satisfy the Lipschitz condition f(x)− f(y) ≤ h(x, y) for every x, y ∈ S. Let P and Q be probability
measures on S. Then the Kantorovich distance TK(h) is defined by

TK(h)(P,Q) = sup
f∈Lip(h)

(P (f)−Q(f)).

The Kantorovich metric arose in the study of optimal mass transportation. The following de-
scription is due to Villani [60]: assume we are given a pile of sand and a hole, occupying measurable
spaces (X,ΣX) and (Y,ΣY ), each representing a copy of (S,Σ) (figure 2.5). The pile of sand and
the hole obviously have the same volume, and the mass of the pile is assumed to be normalized to
1. Let P and Q be measures on X and Y respectively, such that whenever A ∈ ΣX and B ∈ ΣY ,
P [A] measures how much sand occupies A and Q[B] measures how much sand can be piled into
B. Suppose further that we have some measurable cost function h : X × Y → R, where h(x, y)
tells us how much it costs to transfer one unit of mass from a point x ∈ X to a point y ∈ Y .
Here we consider h satisfying the conditions of Definition 2.36. The goal is to determine a plan
for transferring all the mass from X to Y while keeping the cost at a minimum. Such a transfer
plan is modelled by a probability measure λ on (X × Y,ΣX ⊗ ΣY ), where dλ(x, y) measures how
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Fig. 2.5. Kantorovich optimal mass transportation problem

much mass is transferred from location x to y. Of course, for the plan to be valid we require that
λ[A × Y ] = P [A] and λ[X × B] = Q[B] for every measurable A and B. A plan satisfying this
condition is said to have marginals P and Q, and we denote the collection of all such plans by
Λ(P,Q).

Definition 2.37. Let S, P , and Q be as in Definition 2.36. Then Λ(P,Q) consists of all
measures on the product space S × S with marginals P and Q. We can now restate the goal
formally as:

minimize h(λ) over λ ∈ Λ(P,Q)

This is actually an instance of an infinite linear program. Fortunately, under very general circum-
stances, it has a solution and admits a dual formulation.

Let us first note that measures in Λ(P,Q) can equivalently be characterized as those λ satisfying:

P (φ) +Q(ψ) = λ(φ+ ψ)

for every (φ, ψ) ∈ L1(P )× L1(Q), where φ+ ψ refers to the map that takes (x, y) to φ(x) + ψ(y).
As a consequence of this characterization we have the following inequality:

sup
f∈Lip(h,Cb(S))

(P (f)−Q(f)) ≤ TK(h)(P,Q) ≤ inf
λ∈Λ(P,Q)

h(λ) (2.4)

where
Definition 2.38. A function f : S → [0, ‖h‖] on a topological space S belongs to Lip(h,Cb(S))

if and only if it is continuous and bounded on S (in fact, bounded by ‖h‖) and 1-Lipschitz continuous
with respect to h.

Note that h need not generate the topology on S, and so Lipschitz continuity with respect to
h does not immediately imply continuity on S.

The leftmost and rightmost terms in inequality (2.4) are examples of infinite linear programs
in duality. It is a highly nontrivial result that there is no duality gap in this case (see for example
Theorem 1.3 and the proof of Theorem 1.14 in [60]).
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Theorem 2.39 (Kantorovich-Rubinstein Duality Theorem). Assume the conditions of Defini-
tion 2.36, Definition 2.37, and Definition 2.38. Then there is no duality gap in equation 2.4, that
is,

TK(h)(P,Q) = sup
f∈Lip(h,Cb(S))

(P (f)−Q(f)) = inf
λ∈Λ(P,Q)

h(λ) (2.5)

Note that for any point masses δx, δy, we have TK(h)(δx, δy) = h(x, y) since δ(x,y) is the only
measure with marginals δx and δy. As a result, we obtain that any bounded lower semicontinuous
pseudometric h can be expressed as h(x, y) = supf∈F (f(x)− f(y)) for some family of continuous
functions F (we used this property at the end of § 2.2 to compute the state-similarity metric by
hand for a very simple finite MDP).

Suppose P and Q are finite sums of Dirac measures assigning equal mass to each of n points,
respectively, i.e. P = 1

n

∑n
k=1 δXk

and Q = 1
n

∑n
k=1 δYk

for points X1, X2, . . . , Xn and Y1, Y2, . . . , Yn
in S. Then the Kantorovich metric simplifies according to

TK(h)(P,Q) = min
σ

1

n

n∑

k=1

h(Xk, Yσ(k))

where the minimum is taken over all permutations σ on n elements. This is particularly useful for
measuring the distance between empirical measures.

The Kantorovich metric also admits a characterization in terms of the coupling of random
variables. We may write TK(h)(P,Q) = min(X,Y ) E[h(X,Y )] where the expectation is taken with
respect to the joint distribution of (X,Y ) and the minimum is taken with respect to all pairs of
random variables (X,Y ) such that the marginal distribution of X is P and the marginal distribution
of Y is Q.

3. Bisimulation Metrics for Continuous MDPs. The first thing we have to deal with in
moving to infinite state spaces3 is the issue of measurability; simply put, we can no longer specify
probabilities point-to-point. One needs to look at the probabilities of sets of states, and even then,
not all sets can be measured in this way. Formally, we have a potentially uncountably infinite
state space, S, equipped with a σ-algebra of measurable sets, Σ. We may think of Σ as providing
some sort of “information resolution” - that is, the only pertinent sets of states are those that are
measurable (and we ignore the rest). Following along these lines, we need to ensure that the reward
and probability functions satisfy certain measurability conditions, that is, that they behave well
with respect to measurable sets. Formally, we have the following:

Definition 3.1. A Markov decision process (MDP) is a tuple (S,Σ, A, P, r), where (S,Σ) is a
measurable space, A is a finite set of actions, r : S × A→ R is a measurable reward function, and
P : S ×A× Σ→ [0, 1] is a labeled stochastic transition kernel, i.e.

• for every a ∈ A and s ∈ S, P (s, a, ·) : Σ→ [0, 1] is a probability measure, and
• for every a ∈ A and X ∈ Σ, P (·, a,X) : S → [0, 1] is a measurable function.

We will use the following notation: for a ∈ A and s ∈ S, P a
s denotes P (s, a, ·) and ras denotes

r(s, a). Given measure P and integrable function f , we denote the integral of f with respect to P
by P (f).

We also make the following assumptions:
1. S is Polish space equipped with its Borel σ-algebra, Σ,

3We will still assume finitely many actions; what to do when this is not the case is beyond the scope of this work.
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2. the image of r is contained in [0, 1]
3. for each a ∈ A, r(·, a) is continuous on S.
4. for each a ∈ A, P a

s is (weakly) continuous as a function of s, that is, if sn tends to s in S
then for every bounded continuous function f : S → R, P a

sn
(f) tends to P a

s (f).
Our presentation of bisimilarity here amounts to little more than a mild extension through the

addition of rewards to the definition of bisimilarity given by [17] in their work on labelled Markov
processes (LMPs).

Let R be an equivalence relation on S. We now have two notions of “visibility” on S: the mea-
surable sets, as determined by the σ-algebra on S, and the sets built up from the equivalence classes
of R. Naturally, we are interested in those sets that are visible under both criteria - measurability
and equivalence. Let us formalize these concepts.

Definition 3.2. Given a relation R on a set S, a subset X of S is said to be R-closed if
and only if the collection of all those elements of S that are reachable by R from X, R(X) = {s′ ∈
S|∃s ∈ X, sRs′}, is itself contained in X.

Definition 3.3. Given a relation R on a measurable space (S,Σ), we write Σ(R) for the set
of those Σ-measurable sets that are also R-closed, {X ∈ Σ|R(X) ⊆ X}.

When R is an equivalence relation then to say that a set X is R-closed is equivalent to saying
that X is a union of R-equivalence classes. In this case Σ(R) consists of those measurables that
can be partitioned into R-equivalence classes.

Definition 3.4. Let (S,Σ, A, P, r) be an MDP satisfying the conditions of Definition 3.1. An
equivalence relation R on S is a bisimulation relation if and only if it satisfies

sRs′ ⇔ for every a ∈ A, ras = ras′ and for every X ∈ Σ(R), P a
s (X) = P a

s′(X).

Bisimilarity is the largest of the bisimulation relations.
Note that it is not immediately clear that bisimilarity itself is a bisimulation relation (transitiv-

ity is not obvious); that this is indeed the case will be shown in the proof of Theorem 3.10 through
a fixed point characterization of bisimilarity. By contrast, [17] prove transitivity through a logical
characterization of bisimilarity.

As in Theorem 2.6, we will develop a metric anaologue of bisimilarity over a certain space of
pseudometrics on S; here, however, continuity and measurability conditions come into play.

Definition 3.5. Let S be a Polish space. Then we define met to be the set of bounded
pseudometrics on a S equipped with the metric induced by the uniform norm. We define lscm to be
the set of bounded pseudometrics on S that are lower semicontinuous on S × S endowed with the
product topology.

Here we remark that since S is a separable metric space then by Proposition 2.29 the Borel
σ-algebra on S×S is the same as the product σ-algebra. Hence, we note that lower semicontinuous
pseudometrics in lscm are product measurable with respect to the unique σ-algebra on S × S.
Moreover, we have:

Proposition 3.6. The spaces met and lscm are complete metric spaces when endowed with the
metric induced by the uniform norm.

Proposition 3.6 follows immediately by first noting that the set of bounded real-valued functions
on S×S with the uniform norm metric is a complete metric space, and that met and lscm are closed
subsets of this space.

Thus, once more we have a rich structure on our space of pseudometrics, admitting the use
of important fixed point theorems, provided we construct an appropriate map on lscm. Doing
so requires the use of a suitable probability metric; in light of the definition of bisimilarity, the
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importance of using the Kantorovich distance is made evident in the following lemma. Insofar as
we know, this is an original result.

Lemma 3.7. Let h ∈ lscm as defined in Definition 3.5 and let Rel(h) be the kernel of h as in
Definition 2.9. Then TK(h)(P,Q) = 0 if and only if P (X) = Q(X), for every X ∈ Σ(Rel(h)).

Proof. ⇐ Fix ǫ > 0 and let f ∈ Lip(h) such that TK(h)(P,Q) < P (f)−Q(f)+ǫ. WLOG f ≥ 0.
Choose ψ a simple approximation (see Theorem 2.34) to f so that TK(h)(P,Q) < P (ψ)−Q(ψ)+2ǫ.
Let ψ(S) = {c1, . . . , ck} where the ci are distinct, Ei = ψ−1({ci}), and R = Rel(h). Then each Ei

is R-closed, for if y ∈ R(Ei) then there is some x ∈ Ei such that h(x, y) = 0. So f(x) = f(y) and
therefore, ψ(x) = ψ(y). So y ∈ Ei. So by assumption P (ψ)−Q(ψ) =

∑
ciP (Ei)−

∑
ciQ(Ei) = 0.

Thus, TK(h)(P,Q) = 0.
⇒ Let X ∈ Σ(R). Let Y ⊆ X be compact. Define f(x) = infy∈Y h(x, y). Since a lower

semicontinuous function has a minimum on a compact set, we may write f(x) = miny∈Y h(x, y). In
fact, f is itself lower semicontinuous by Theorem 2.23. Since f is measurable, R(Y ) = f−1({0}) ∈
Σ(R). By Theorem 2.33 and since S is a Polish metric space, P is tight, and hence P (X) =
supP (Y ) where the supremum is taken over all compact Y ⊆ X . However, Y ⊆ X implies
Y ⊆ R(Y ) ⊆ R(X) = X . Since R(Y ) is measurable, we have P (X) = supP (R(Y )). Similarly,
Q(X) = supQ(R(Y )). Define gn = max(0, 1−nf) for n ∈ N. Then the sequence (gn)n∈N decreases
to the indicator function on R(Y ). Also, for each n ∈ N, gn/n ∈ Lip(h). So by assumption
P (gn/n) = Q(gn/n) for every n ∈ N. Multiplying by n and taking the limit as n tends to infinity
gives P (R(Y )) = Q(R(Y )).

The next result, which is original, essentially tells us that given the continuity assumptions on
the MDP parameters, the limit of a sequence of pairs of bisimilar states is itself a pair of bisimilar
states. First we need the following definitions:

Definition 3.8. Let S be a Polish space. Then we define Equ to be the set of equivlance
relations on S equipped with subset ordering. We define CloE to be the set of equivalence relations
on S that are closed subsets of S × S endowed with the product topology.

Proposition 3.9. The sets Equ and CloE are complete lattices when equipped with the subset
ordering.

Clearly when we equip each set with the subset ordering, we obtain partial orders. The greatest
lower bound of a set of equivalence relations is simply their intersection. Moreover, an arbitrary
intersection of closed sets is closed. Hence, both spaces are complete lattices. Note that existence
of least upper bounds follows from that of greatest lower bounds: least upper bounds are obtained
as greatest lower bounds on the set of upper bounds.

Theorem 3.10. Let (S,Σ, A, P, r) be an MDP satisfying the conditions of Definition 3.1. Then
bisimilarity is a closed subset of S × S

Proof. Define F : Equ→ Equ by

sF(R)s′ ⇔ for every a ∈ A, ras = ras′ and for every X ∈ Σ(R), P a
s (X) = P a

s′(X).

Then the greatest fixed point of F is bisimilarity.
That F(E) is an equivalence relation for a given E is obvious. That F has any fixed points

at all is a consequence of the Knaster-Tarski Theorem, Theorem 2.25. Next, simply note that the
fixed points of F are precisely the bisimulation relations. So the greatest fixed point is contained
in bisimilarity, and since every bisimulation relation is contained in the greatest fixed point, so is
bisimilarity.

We first claim that F maps CloE to CloE. To see that F(E) is closed, let (xn, yn)n∈N be a
sequence in F(E) converging to some pair of states (x, y). Let a ∈ A. By the definition of F(E),
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raxn
= rayn

for every n. Since the reward function is continuous, taking the limit as n tends to
infinity yields rax = ray . Next, let ρE be the discrete pseudometric assigning distance 1 to two
points if and only if they are not related by E. Since E is closed, ρE is lower semicontinuous.
So the Kantorovich metric, TK(ρE) is well-defined. Now we can invoke the leftmost equality in
equation 2.5 to obtain that the map (s, s′) 7→ TK(ρE)(P

a
s , P

a
s′) is lower semicontinuous; for since

P a
s is continuous with respect to the topology of weak convergence, P a

s (f) is continuous in the
usual sense for every bounded continuous f in Lip(ρE). So P

a
s (f)− P

a
s′(f) is continuous on S × S,

and hence, lower semicontinuous. Finally, taking the supremum over every f yields that the map
taking a pair of states to its Kantorovich distance with respect to ρE is lower semicontinuous.
Let X be an E-closed measurable set. Then by definition of F(E), P a

xn
(X) = P a

yn
(X), which by

Lemma 3.7 means TK(ρE)(P
a
xn
, P a

yn
) = 0 for every n. Since TK(ρE)(P

a
s , P

a
s′) is lower semicontinu-

ous, TK(ρE)(P
a
x , P

a
y ) = 0. Again using Lemma 3.7, P a

x (X) = P a
y (X). So (x, y) belongs to F(E),

that is, F(E) is closed.
Now let ∼CloE

be the least upper bound of bisimilarity in CloE. By monotonicity, we have
∼ = F(∼) ⊆ F(∼CloE

). So ∼CloE
⊆ F(∼CloE

), that is, ∼CloE
is a postfixed point of F ; but then

∼CloE
⊆ ∼, the latter being the greatest postfixed point.

Therefore, ∼ = ∼CloE
, that is, bisimilarity is closed.

Definition 3.11. A pseudometric ρ on the states of an MDP is a bisimulation metric if it
satisfies ρ(s, s′) = 0 ⇐⇒ s ∼ s′.

All of the preceding theory comes together in the following crucial result. It is worth noting
that our presentation is a significant extension of the work carried out by [58, 59] in their work on
bisimulation metrics for labelled Markov processes.

Theorem 3.12. Let M = (S,Σ, A, P, r) be an MDP satisfying the conditions in Definition 3.1,
c ∈ (0, 1) be a metric discount factor, and lscm be as in Definiton 3.5. Define F : lscm → lscm by

F (h)(s, s′) = max
a∈A

((1 − c)|ras − r
a
s′ |+ cTK(h)(P a

s , P
a
s′))

Then
1. F has a unique fixed point ρ∗ : S × S → [0, 1],
2. ρ∗ is a bisimulation metric,
3. for any h0 ∈ lscm, limn→∞ Fn(h0) = ρ∗,
4. ρ∗ is continuous on S × S,
5. ρ∗ is continuous in r and P , and
6. ρ∗ scales with rewards, that is, if MDP M ′ = (S,Σ, A, P, k · r) for some k ∈ [0, 1] then

ρ∗M ′ = k · ρ∗M .

3.1. Proof of Theorem 3.12. The rest of this subsection will be dedicated to proving The-
orem 3.12; however, let us first make a few remarks. The first three properties of the theorem tell
us that a quantitative notion of bisimilarity exists, and that it can be approximated. The conti-
nuity results tell us that we only need to know the metric on a dense subset, and that distances
are insensitive to perturbations in the MDP parameters. The last property is not surprising, and
reflects the fact that the actual numbers are not as important as the qualitative structure arising
from the metric. The topological or even uniform structures - see for example [20] - yield the same
distinguishing information with respect to bisimilarity; our specific choice of pseudometric here is
influenced by Theorem 3.20.

Lemma 3.13. Let (S,Σ, A, P, r) be an MDP satisfying the conditions of Definition 3.1, c ∈ (0, 1)
be a metric discount factor, and F be as in the statement of Theorem 3.12. Then F has a unique
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fixed point ρ∗ : S × S → [0, 1], such that for any h0 ∈ lscm,

‖ρ∗ − Fn(h0)‖ ≤
cn

1− c
‖F (h0)− h0‖.

Proof.
We first need to ensure that F maps lscm to lscm. Let h be a member of lscm. As in the proof

of Theorem 3.10, we first note that for each action a ∈ A, the map taking (s, s′) to TK(h)(P a
s , P

a
s′)

is lower semicontinuous, as is the map taking (s, s′) to |ras − ras′ |. It follows that F (h) is lower
semicontinuous, since the sum of lower semicontinuous functions is lower semicontinuous and the
maximum of lower semicontinuous functions is again lower semicontinuous.

Thus we obtain the result as a simple application of the Banach Fixed Point Theorem, Theo-
rem 2.26, since lscm is a complete metric space (Proposition 3.6). Here we use the dual minimization
form of TK(·), as given in equation 2.5. Note that for every h, h′ ∈ lscm, and for every s, s′ ∈ S,

F (h)(s, s′)− F (h′)(s, s′) ≤ cmax
a∈A

(TK(h)(P a
s , P

a
s′)− TK(h′)(P a

s , P
a
s′))

≤ cmax
a∈A

(TK(h− h′ + h′)(P a
s , P

a
s′)− TK(h′)(P a

s , P
a
s′ ))

≤ cmax
a∈A

(TK(‖h− h′‖+ h′)(P a
s , P

a
s′)− TK(h′)(P a

s , P
a
s′ ))

≤ cmax
a∈A

(‖h− h′‖+ TK(h′)(P a
s , P

a
s′)− TK(h′)(P a

s , P
a
s′ ))

≤ c‖h− h′‖

In the third inequality, we have used monotonicity of the minimization form of TK(·)(P a
s , P

a
s′)

with respect to the cost function.
Thus, ‖F (h)− F (h′)‖ ≤ c‖h− h′‖, so that F is a contraction mapping and has a unique fixed

point ρ∗.
Note that for any s, s′ ∈ S,

ρ∗(s, s′) = F (ρ∗)(s, s′) = max
a∈A

((1 − c)|ras − r
a
s′ |+ cTK(ρ∗)(P a

s , P
a
s′))

≤ max
a∈A

((1 − c) · 1 + cTK(‖ρ∗‖)(P a
s , P

a
s′))

≤ max
a∈A

((1 − c) + c‖ρ∗‖)

≤ (1− c) + c‖ρ∗‖

whence it follows that ‖ρ∗‖ ≤ (1− c) + c‖ρ∗‖ and we conclude ‖ρ∗‖ ≤ 1.
The following is an original continuity result.
Lemma 3.14. Let (S,Σ, A, P, r) be an MDP satisfying the conditions of Definition 3.1 and let

ρ∗ be the pseudometric given by Lemma 3.13 with metric discount factor c ∈ (0, 1). Then ρ∗ is a
continuous function on S × S.

Proof. Since the set of bounded continuous pseudometrics on S is a closed subset of lscm, we
need only show that F maps it to itself. So let ρ be a bounded continuous pseudometric on S. Let
a ∈ A. Then continuity of r on S implies |rax − r

a
y | is continuous on S × S. For the continuity of

TK(ρ)(P a
x , P

a
y ), we appeal to Theorem 2.35. This theorem implies that TK(ρ) metrizes the topology

of weak convergence, provided Lip(ρ, Cb(S)) is equicontinuous and uniformly bounded. Here we
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are using the leftmost equality in Theorem 2.39. Since ρ is bounded, Lip(ρ, Cb(S)) is uniformly
bounded, as each member f of Lip(ρ, Cb(S)) maps to the interval [0, ‖ρ‖]. As for equicontinuity at
a point x, let ǫ > 0. Continuity of the function ρ(x, ·) implies that there is a neighborhood Nx of
x such that for every y in Nx, ρ(x, y) = |ρ(x, y) − ρ(x, x)| < ǫ. Then for any f ∈ Lip(ρ, Cb(S)),
|f(x)− f(y)| ≤ ρ(x, y) < ǫ. Thus, Lip(ρ, Cb(S))) is equicontinuous. Since

|TK(ρ)(P a
x , P

a
y )− TK(ρ)(P a

xn
, P a

yn
)| ≤ TK(ρ)(P a

x , P
a
xn
) + TK(ρ)(P a

y , P
a
yn
)

we have that for any (xn, yn)n∈N converging to (x, y), TK(ρ)(P a
xn
, P a

yn
) converges to TK(ρ)(P a

x , P
a
y ).

Thus, continuity of F (ρ) is immediate.

As an immediate consequence of Lemma 3.14, we have the following:

Corollary 3.15. Let (S,Σ, A, P, r) be an MDP satisfying the conditions of Definition 3.1 and
let ρ∗ be the pseudometric given by Lemma 3.13 with metric discount factor c ∈ (0, 1). Then the
topology induced by ρ∗ on S is coarser than the original.

Next we show that we have indeed quantitatively captured bisimilarity. The proof of this result
is original.

Lemma 3.16. Let (S,Σ, A, P, r) be an MDP satisfying the conditions of Definition 3.1 and let
ρ∗ be the pseudometric given by Lemma 3.13 with metric discount factor c ∈ (0, 1). Then ρ∗ is a
bisimulation metric

Proof. It follows from Lemma 3.7 that for any h in lscm, Rel(F (h)) = F(Rel(h)). Thus,
Rel(ρ∗) = F(Rel(ρ∗)) is a fixed point and so is contained in bisimilarity. For the other direction,
we consider the discrete bisimilarity pseudometric that assigns distance 1 to pairs of non-bisimilar
states; call it ρ. Since bisimilarity is closed (Theorem 3.10), ρ is lower semicontinuous. So ∼ =
F(∼) = F(Rel(ρ)) = Rel(F (ρ)), which implies F (ρ) ≤ ρ. Since F is monotone, iterating F and
taking limits yields ρ∗ ≤ ρ, whence it follows that Rel(ρ∗) contains bisimilarity.

Before moving on, let us give meaning to the iterates {Fn(⊥) : n ∈ N}. Define inductively
∼0= S × S, and ∼n+1= F(∼n). Finally, let ∼ω= ∩n ∼n represent the limit of this sequence.

The best way to view this is once more in terms of “information resolution”. At first, we know
nothing; this is represented by the relation that equates all states, ∼0. Applying F corresponds to
a one-step lookahead refinement, and similarly for n steps. Our intuition naturally tells us that in
the limit, we should have a “strong matching”, that is, bisimilarity; however, it is not immediately
clear that this is so. Not surprisingly, a proof once more makes itself evident through the use of
metrics.

Simply note that by induction Rel(Fn(⊥)) =∼n (here, we are once again using the fact that
Rel(F (h)) = F(Rel(h))). Since it is easily seen that ∩nRel(Fn(⊥)) = Rel(supn F

n(⊥)) and
supn F

n(⊥) = ρ∗, we have ∼ω= Rel(ρ∗), which is bisimilarity.

Thus, the nth iterate corresponds to an n-step approximation to bisimilarity. Let us note
that we now have three equivalent formulations of bisimilarity, making this more in line with
the traditional presentation of bisimilarity for labeled nondeterministic transition systems: as a
maximal relation, as a greatest fixed point, and as an intersection of an infinite family of equivalence
relations [44].

Lemma 3.17. LetM = (S,Σ, A, P, r) andM ′ = (S,Σ, A, P, r′) be two MDPs satisfying the con-
ditions of Definition 3.1 and let ρ∗M and ρ∗M ′ be their respective pseudometrics given by Lemma 3.13
with common metric discount factor c ∈ (0, 1). If r′ = k·r for some scalar k > 0, then ρ∗M ′ = k·ρ∗M .

Proof. It is not hard to see that k · ρ∗M is a solution to the fixed point equation for M ′; thus,
the result follows by uniqueness.
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The following original result shows that, by contrast with bisimilarity, the bisimilarity distances
vary smoothly with the MDP parameters.

Lemma 3.18. Let M = (S,Σ, A, r, P ) and M̂ = (S,Σ, A, r̂, Q) be two MDPs with common state
and action spaces, and satisfying the conditions of Definition 3.1. Let ρ and ρ̂ be the corresponding
bisimulation metrics given by Lemma 3.13 with discount factor c ∈ (0, 1). Then

‖ρ− ρ̂‖ ≤ 2‖r − r̂‖+
2c

(1− c)
sup
a,s

TV (P a
s , Q

a
s),

where TV is the total variation probability metric, as defined by

TV (P,Q) = sup
X∈Σ
|P (X)−Q(X)|.

Proof. Let d be the discrete pseudometric that assigns distance 1 to all pairs of non-equal states.
Using the triangle inequality along with the fact that Lip(h) is contained in Lip(d) for h ∈ {ρ, ρ̂},
we first obtain:

TK(h)(P a
x , P

a
y )− TK(h)(Qa

x, Q
a
y) ≤ TK(h)(P a

x , Q
a
x) + TK(h)(P a

y , Q
a
y)

≤ TK(d)(P a
x , Q

a
x) + TK(d)(P a

y , Q
a
y)

≤ TV (P a
x , Q

a
x) + TV (P a

y , Q
a
y)

(3.1)

Here we have used the fact that TK(d) = TV [60]. Next, using monotonicity of TK(·) with respect
to the cost function, we have

TK(ρ)(P a
x , P

a
y )− TK(ρ̂)(P a

x , P
a
y ) = TK(ρ− ρ̂+ ρ̂)(P a

x , P
a
y )− TK(ρ̂)(P a

x , P
a
y )

≤ TK(‖ρ− ρ̂‖+ ρ̂)(P a
x , P

a
y )− TK(ρ̂)(P a

x , P
a
y )

= inf
λ∈Λ(Pa

x ,Pa
y )

∫

S×S

(‖ρ− ρ̂‖+ ρ̂)dλ − TK(ρ̂)(P a
x , P

a
y )

= inf
λ∈Λ(Pa

x ,Pa
y )
(‖ρ− ρ̂‖+

∫

S×S

ρ̂dλ) − TK(ρ̂)(P a
x , P

a
y )

= ‖ρ− ρ̂‖+ TK(ρ̂)(P a
x , P

a
y )− TK(ρ̂)(P a

x , P
a
y )

≤ ‖ρ− ρ̂‖

(3.2)

Finally

ρ(x, y)− ρ̂(x, y)

≤ max
a∈A

((1− c)|rax − r
a
y |+ cTK(ρ)(P a

x , P
a
y ))−max

a∈A
((1 − c)|r̂ax − r̂

a
y |+ cTK(ρ̂)(Qa

x, Q
a
y))

≤ max
a∈A

((1− c)(|rax − r
a
y | − |r̂

a
x − r̂

a
y |) + c(TK(ρ)(P a

x , P
a
y )− TK(ρ̂)(Qa

x, Q
a
y)))

≤ max
a∈A

((1− c)(|(rax − r
a
y)− (r̂ax − r̂

a
y)|)

+ c(TK(ρ)(P a
x , P

a
y )− TK(ρ̂)(P a

x , P
a
y )) + c(TK(ρ̂)(P a

x , P
a
y )− TK(ρ̂)(Qa

x, Q
a
y)))

≤ max
a∈A

((1− c)(|rax − r̂
a
x|+ |r

a
y − r̂

a
y |) + c‖ρ− ρ̂‖+ 2c sup

s
TV (P a

s , Q
a
s)))

≤ max
a∈A

(2(1− c)‖ra − r̂a‖+ c‖ρ− ρ̂‖+ 2c sup
s
TV (P a

s , Q
a
s))

≤ 2(1− c)‖r − r̂‖+ c‖ρ− ρ̂‖+ 2c sup
a,s

TV (P a
s , Q

a
s)))
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Now suppose we are given an MDP and another MDP is alleged to be a good approximation. We
would ideally like to measure the distance between a state in the original model and its equivalent
state in the approximation using a bisimulation metric. The next results tells us that we can do so
in a well-defined manner.

Theorem 3.19. Let M1 = (S1,Σ1, A, r1, P1) and M1 = (S2,Σ2, A, r2, P2) be two MDPs that
satisfy the conditions of Definition 3.1. Suppose S1 and S2 are disjoint. Define the disjoint union
of M1 and M2 to be M = (S,Σ, A, r, P ) where

• S = S1 ⊔ S2 is the disjoint union of S1 and S2,
• Σ is the Borel σ-algebra on S,
• r : S ×A→ [0, 1] is defined by r(x, a) = ri(x, a) if x ∈ Si for i = 1, 2, and
• P : S ×A× Σ→ [0, 1] is defined by P (x, a,B) = Pi(x, a,B ∩ Si) if x ∈ Si for i = 1, 2.

Then M is an MDP satisfying the conditions of Defintion 3.1. Moreover, if ρ∗M1
, ρ∗M2

, and ρ∗M are
the bisimulation metrics guaranteed by Lemma 3.13 with metric discount factor c ∈ (0, 1) then the
restriction ρ∗M ↾Mi

= ρ∗Mi
for i = 1, 2.

Proof. Let d1 and d2 be metrics inducing the respective topologies of S1 and S2 as Polish
spaces. Endow S with the metric d defined by d(x, y) = di(x, y) if x, y ∈ Si and 1 otherwise. Then
it is not hard to see that (S, d) is Polish metric space, and S is Polish. So it makes sense to speak
of its Borel σ-algebra Σ.

Let (xn)n∈N be a convergent sequence in S converging to some point x ∈ S. By Definition 2.10,
we can choose N ∈ N such that for each n ≥ N , d(xn, x) <

1
2 . So (xn)n≥N and x must belong

solely to one of S1 and S2 and continuity of r and P follow immediately from the sequential version
of continuity in each of the spaces S1 and S2. Let us outline the argument for P .

First note that P is a well-defined stochastic transition kernel follows from P1 and P2 being
stochastic transition kernels. Let (xn)n∈N be a sequence in S converging to a point x ∈ S. Without
loss of generality, we can assume that these belong entirely to S1. Let f be a bounded continuous
function on S. Its restriction f ↾S1

is easily seen to be a bounded continuous function on S1 (again,
use the sequential version of continuity). Then

∫

S

fdP a
xn

=

∫

S1

f ↾S1
dP a

1,xn
+

∫

S2

f ↾S2
dP a

2,xn
=

∫

S1

f ↾S1
dP a

1,xn
+ 0 =

∫

S1

f ↾S1
dP a

1,xn

Similarly,
∫
S
fdP a

x =
∫
S1
f ↾S1

dP a
1,x. Hence,

lim
n→∞

∫

S

fdP a
xn

= lim
n→∞

∫

S1

f ↾S1
dP a

1,xn
=

∫

S1

f ↾S1
dP a

1,x =

∫

S

fdP a
x

Therefore M satisfies the conditions of Defintion 3.1. By Theorem 3.12, bisimulation metrics ρ∗M1
,
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ρ∗M2
, and ρ∗M exist and are unique. Let us show that ρ∗M ↾M1

= ρ∗M1
. First let x, y ∈ S1. Then

TK(ρ∗M )(P a
x , P

a
y ) = sup

f∈Lip(ρ∗

M )

(

∫

S

fdP a
x −

∫

S

fdP a
y )

= sup
f∈Lip(ρ∗

M
)

(

∫

S1

f ↾S1
dP a

1,x +

∫

S2

f ↾S2
dP a

1,x −

∫

S1

f ↾S1
dP a

1,y −

∫

S2

f ↾S2
dP a

1,y)

= sup
f∈Lip(ρ∗

M
)

(

∫

S1

f ↾S1
dP a

1,x + 0−

∫

S1

f ↾S1
dP a

1,y − 0)

= sup
f∈Lip(ρ∗

M )

(

∫

S1

f ↾S1
dP a

1,x −

∫

S1

f ↾S1
dP a

1,y)

≤ TK(ρ∗M ↾M1
)(P a

1,x, P
a
1,y)

Now fix ǫ > 0. Then there exists an f ∈ Lip(ρ∗M ↾M1
) such that

TK(ρ∗M ↾M1
)(P a

1,x, P
a
1,y)− ǫ <

∫

S1

fdP a
1,x −

∫

S1

fdP a
1,y

Define g : S → R by g(z) = infs∈S1
(f(s) + ρ∗M (z, s)). Then g ∈ Lip(ρ∗M ) and g ↾S1

= f . Note by
Lemma 3.14 that since g is Lipschitz continuous with respect to ρ∗M then g is in fact continuous on
S with its given topology, and hence measurable. Next,

TK(ρ∗M ↾M1
)(P a

1,x, P
a
1,y)− ǫ <

∫

S1

fdP a
1,x −

∫

S1

fdP a
1,y

=

∫

S1

g ↾S1
dP a

1,x + 0−

∫

S1

g ↾S1
dP a

1,y − 0

=

∫

S1

g ↾S1
dP a

1,x +

∫

S2

g ↾S2
dP a

1,x −

∫

S1

g ↾S1
dP a

1,y −

∫

S2

g ↾S2
dP a

1,y

=

∫

S

gdP a
x −

∫

S

gdP a
y

≤ TK(ρ∗M )(P a
x , P

a
y )

Since ǫ is arbitrary, we conclude TK(ρ∗M )(P a
x , P

a
y ) = TK(ρ∗M ↾M1

)(P a
1,x, P

a
1,y). Therefore, for any

s, s′ ∈ S1,

ρ∗M (s, s′) = max
a∈A

((1− c)|ras − r
a
s′ |+ cTK(ρ∗M )(P a

s , P
a
s′))

= max
a∈A

((1− c)|ra1,s − r
a
1,s′ |+ cTK(ρ∗M ↾M1

)(P a
1,s, P

a
1,s′))

= FM (ρ∗M ↾M1
)(s, s′)

where FM1
is the fixed-point operator for ρ∗M1

. Thus, it follows that FM1
(ρ∗M ↾M1

) = ρ∗M ↾M1
. By

uniqueness, we conclude ρ∗M ↾M1
= ρ∗M1

.
Thus, existence of the state-similarity metrics for a continuous MDP is established, along with

several important properties. However, as in the finite case, perhaps the most important property
of the metrics is showing that similar states have similar optimal values, and that this relation varies
smoothly with similarity. We must emphasize that in contrast with the work on LMPs, where the
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underlying motivation has been to analyze the validity of testing properties expressed in a modal
logic on similar systems, a primary focus here is in analyzing the validity of computing optimal
values (and hence, optimal policies) on similar MDPs.

3.2. Value Function Bounds. In moving to continuous state spaces, we must address the
validity of the continuous analog of the optimality equations:

V ∗(s) = max
a∈A

(ras + γP a
s (V

∗)) for each s ∈ S.

In general, such a V ∗ need not exist. Even if it does, there may not be a well-behaved, that is to
say measurable, policy that is captured by it. Fortunately, there are several mild restrictions under
which this is not the case; and in fact, Theorem 6.2.12. of [53] states that the optimality equations
are valid provided the state space is Polish and the reward function is uniformly bounded, as is
indeed the case here. Just as before, the optimal value function V ∗ can be expressed as the limit of
a sequence of iterates V n; we can use these to show that the optimal value function is continuous
with respect to the state-similarity metrics.

Theorem 3.20. Let M = (S,Σ, A, P, r) be an MDP satisfying the conditions of Definition 3.1,
ρ∗ be the pseudometric given by Theorem 3.12 with metric discount factor c ∈ (0, 1), and V ∗ be the
optimal value function for M with discount factor γ ∈ [0, 1). Suppose γ ≤ c. Then V ∗ is Lipschitz
continuous with respect to ρ∗ with Lipschitz constant 1

1−c
, i.e.

|V ∗(s)− V ∗(s′)| ≤
1

1− c
ρ∗(s, s′).

Proof. Each iterate V n is continuous, and so each |V n(s)− V n(s′)| belongs to lscm. The result
now follows by induction and taking limits.

We can use this result to relate the optimal values of a state and its representation in an
approximant by considering the original model and its approximant as one MDP. More directly,
we can use the distances themselves for aggregation with error bounds. Let us consider a simple
illustration, first presented in [28], of metric-based reasoning: let S = [0, 1] with the usual Borel
σ-algebra, A = {a, b}, ras = 1− s, rbs = s, P a

s be uniform on S, and P b
s the point mass at s. Clearly,

these MDP parameters satisfy the required assumptions.
Given any c ∈ (0, 1), we claim ρ∗(x, y) = |x − y|. Define h by h(x, y) = |x − y|, and note that

TK(h)(P a
x , P

a
y ) = 0 and TK(h)(P b

x , P
b
y ) = h(x, y). Thus, F (h)(x, y) = max((1− c)|x− y|+ c · 0, (1−

c)|x − y| + c · h(x, y)) = (1 − c)h(x, y) + c · h(x, y) = h(x, y). By uniqueness, ρ∗ = h as was to be
shown.

Now consider the following approximation. Given ǫ > 0, choose n large enough so that 1
n
<

(1 − c)ǫ. Partition S as Bk = [ k
n
, k+1

n
), Bn−1 = [n−1

n
, 1], for k = 0, 1, 2, . . . , n − 2. Note that the

diameter of each Bk with respect to ρ∗, diamρ∗ Bk, is
1
n
< (1 − c)ǫ. The n partitions will be the

states of a finite MDP approximant. We obtain the rest of the parameters by averaging over the
states in a partition. Thus, raBk

= 1 − 2k+1
2n , rbBk

= 2k+1
2n , P a

Bk,Bl
= 1

n
, and P b

Bk,Bl
= 1 if k = l and

0 otherwise.
Assume γ is given and choose c = γ. Note that for every x, y in Bk,

|V ∗(x) − V ∗(y)| ≤
1

1− c
diamρ∗ Bk ≤ ǫ.

Thus, we would expect that by averaging, and solving the finite MDP, V ∗(Bk) should differ by at
most ǫ from V ∗(x), for any x ∈ Bk. In fact, in this case the value functions of the original MDP
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and of the finite approximant can be computed directly and we can verify this. For x ∈ S, Bk, we
find:

V ∗(x) =

{
1− x+ γ

2(1−γ) if 0 ≤ x < 1
2

x
1−γ

if 1
2 ≤ x ≤ 1

V ∗(Bk) =

{
1− 2k+1

2n + γ
2(1−γ) if 0 ≤ k < n−1

2
2k+1

2n

1−γ
if n−1

2 ≤ k ≤ n− 1

Therefore, for x ∈ Bk,

|V ∗(x) − V ∗(Bk)| ≤
1

1− γ

∣∣∣∣x−
2k + 1

2n

∣∣∣∣ ≤
1

1− c
diamρ∗ Bk ≤ ǫ.

In fact, we can somewhat generalize this result.

Theorem 3.21. Let M = (S,Σ, A, r, p) be an MDP satisfying the conditions of Definition 3.1.
Let µ be a measure on S, and P a finite partition of S such that each equivalence in P has positive
µ-measure. Let [−] : S → P be the map that takes s ∈ S to its equivalence class in P. Define the
µ-average finite MDP MP by (P , A, r, P ) where

raB =
1

µ(B)

∫

x∈B

raxdµ(x) and P a
BB′ =

1

µ(B)

∫

x∈B

P a
x (B

′)dµ(x).

Let ρ∗M⊔MP
be the bisimulation metric for the disjoint union of M and MP with metric discount

factor c ∈ (0, 1) as given by Theorem 3.19. Let V ∗
M and V ∗

P be the optimal value functions for M
and MP respectively with discount factor γ ∈ [0, 1). Suppose γ ≤ c. Then for every s ∈ S,

(1− c) · |V ∗
M (s)− V ∗

MP
([s])| ≤ ρ∗M⊔MP

(s, [s]) ≤
1

1− c
sup
y∈s

1

µ([y])

∫

x∈[y]

ρ∗M (y, x)dµ(x). (3.3)

In other words, we can bound the distance between a state and its equivalence class by the maximum
average distance between a state and all the other states in its equivalence class.

Proof. First note that since P is a finite set, we can endow it with the discrete metric assigning
distance 1 to all pairs of non-equal states to make it a Polish space. Then MP trivially satisfies
the conditions of Definition 3.1. So by Theorem 3.19 the disjoint union of M and MP exists, as
does the bisimulation metric ρ∗M⊔MP

. Therefore, the lefthand equality in equation 3.3 follows from
Theorem 3.20. Here we note that the value function is defined over the disjoint union MDP, but
agrees on values restricted to the individual MDPs, just as is the case for the bisimulation metrics.

For the righthand equality, let s ∈ S and a ∈ A. Let ǫ > 0. Then there exists an f in
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Lip(ρ∗M⊔MP
) such that

TK(ρ∗M⊔MP
)(P a

s , P
a
[s])− ǫ <

∫

S⊔P

fdP a
s −

∫

S⊔P

fdP a
[s] =

∫

x∈S

f(x)dP a
s (x)−

∫

B∈P

f(B)dP a
[s](B)

=

∫

x∈S

f(x)dP a
s (x) −

∑

B∈P

f(B)P a
[s](B)

=

∫

x∈S

f(x)dP a
s (x) −

1

µ([s])

∫

z∈[s]

(

∫

x∈S

f(x)dP a
z (x))dµ(z)

+
1

µ([s])

∫

z∈[s]

(

∫

x∈S

f(x)dP a
z (x))dµ(z) −

∑

B∈P

f(B)
1

µ([s])

∫

z∈[s]

P a
z (B)dµ(z)

=
1

µ([s])

∫

z∈[s]

(

∫

x∈S

f(x)dP a
s (x)−

∫

x∈S

f(x)dP a
z (x))dµ(z)

+
1

µ([s])

∫

z∈[s]

(

∫

x∈S

f(x)dP a
z (x)−

∑

B∈P

f(B)P a
z (B))dµ(z)

≤
1

µ([s])

∫

z∈[s]

TK(ρ∗M )(P a
s , P

a
z )dµ(z)

+
1

µ([s])

∫

z∈[s]

(

∫

x∈S

f(x)dP a
z (x)−

∑

B∈P

∫

x∈B

f(B)dP a
z (x))dµ(z)

≤
1

µ([s])

∫

z∈[s]

TK(ρ∗M )(P a
s , P

a
z )dµ(z)

+
1

µ([s])

∫

z∈[s]

(

∫

x∈S

f(x)dP a
z (x)−

∫

x∈S

f([x])dP a
z (x))dµ(z)

≤
1

µ([s])

∫

z∈[s]

TK(ρ∗M )(P a
s , P

a
z )dµ(z) +

1

µ([s])

∫

z∈[s]

∫

x∈S

(f(x)− f([x]))dP a
z (x)dµ(z)

≤
1

µ([s])

∫

z∈[s]

TK(ρ∗M )(P a
s , P

a
z )dµ(z) +

1

µ([s])

∫

z∈[s]

∫

x∈S

ρ∗M⊔MP
(x, [x])dP a

z (x)dµ(z)

≤
1

µ([s])

∫

z∈[s]

TK(ρ∗M )(P a
s , P

a
z )dµ(z) + sup

x∈S

ρ∗M⊔MP
(x, [x])

Then

ρ∗M⊔MP
(s, [s]) = max

a∈A
((1 − c)|ras − r

a
[s]|+ cTK(ρ∗M⊔MP

)(P a
s , P

a
[s]))

≤ max
a∈A

((1− c)
1

µ([s])

∫

z∈[s]

|ras − r
a
z |dµ(z)

+ c(
1

µ([s])

∫

z∈[s]

TK(ρ∗M )(P a
s , P

a
z )dµ(z) + sup

x∈S

ρ∗M⊔MP
(x, [x])))

≤
1

µ([s])

∫

z∈[s]

max
a∈A

((1 − c)|ras − r
a
z |+ cTK(ρ∗M )(P a

s , P
a
z ))dµ(z) + c · sup

x∈S

ρ∗M⊔MP
(x, [x]))

≤
1

µ([s])

∫

z∈[s]

ρ∗M (s, z)dµ(z) + c · sup
x∈S

ρ∗M⊔MP
(x, [x]))
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Taking the supremum on both sides with respect to s, we find

sup
s∈S

ρ∗M⊔MP
(s, [s]) ≤

1

1− c
sup
s∈s

1

µ([s])

∫

z∈[s]

ρ∗M (s, z)dµ(z)

4. More Mathematical Review. When dealing with infinite state spaces in practice, we
still need to find some finite structure with which to work; therefore, we restrict our attention here
to those Markov decision processes whose state spaces are compact metric spaces. As we will be
sampling in such spaces, we will also need some results on empirical processes. We present here
some mathematical definitions and results for empirical processes valid on compact metric spaces.
These can be found in [29] and [19].

4.1. A Compactness Theorem. Theorem 4.1 (Arzelà-Ascoli). Let X be a compact Haus-
dorff space and C(X) be the space of continuous complex-valued functions on X. If F is an equicon-
tinuous, pointwise bounded subset of C(X), then F is totally bounded in the uniform metric, and
the closure of F in C(X) is compact.

4.2. Weak Convergence and Empirical Processes. Definition 4.2. Let n ∈ N and
let (Ω,A,P) be an ambient probability space over which we sample n points {X1, X2, . . . , Xn} with
values in (S,Σ) independently and with identical distribution µ; that is, each Xi is a measurable
map from (Ω,A,P) to (S,Σ) such that P({ω ∈ Ω : Xi(ω) ∈ E}) = P(X−1

i (E)) = µ(E) for every E
in Σ. Define the nth empirical probability measure µn of µ to be the average of the Dirac measures
at each Xi; that is, µn := 1

n

∑n
i=1 δXi

.
Each µn is in effect a random measure; that is, for each ω ∈ Ω, µn(ω) :=

1
n

∑n
i=1 δXi(ω) is a

probability measure. Does this sequence of random probability measures (µn)n∈N converge?
Definition 4.3. Let (Yn)n∈N be a sequence of random variables and let Y be a random variable.

Then (Yn)n∈N converges to Y in probability, if for every ǫ > 0,

lim
n→∞

P({ω ∈ Ω : |Yn(ω)− Y (ω)| ≥ ǫ}) = 0,

and almost surely if

P({ω ∈ Ω : lim
n→∞

Yn(ω) = Y (ω)}) = 1.

The Weak Law of Large Numbers (Strong Law of Large Numbers) tells us that for each real-
valued bounded continuous f , the sequence of random variables (µn(f))n∈N = ( 1

n

∑n
i=1 f(Xi))n∈N

converges to µ(f) in P-probability (P-almost surely). If the convergence was uniform over the set
F of all bounded continuous functions, that is, if supf∈F |µn(f) − µ(f)| converged to zero , then
it would follow that the empirical measures themselves converged weakly. This turns out to be a
useful property in itself. Let us note that the maps ω 7→ supf∈F |µn(ω)(f) − µ(f)| need not be
measurable since they involve taking a supremum over the possibly uncountable collection F . Thus,
we will need to use the outer probability P

∗ when speaking of their convergence.
Definition 4.4. Let F be a class of integrable functions for probability measure µ. Then

F is a weak Glivenko-Cantelli class for µ if supf∈F |µn(f) − µ(f)| converges to zero in P
∗-outer

probability. It is a strong Glivenko-Cantelli class for µ if convergence is P
∗-almost sure.

Definition 4.5. If F is a Glivenko-Cantelli class for every probability measure on (S,Σ) then
it is said to be a universal Glivenko-Cantelli class. Lastly, if the rate of P∗-convergence can be made
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to be uniform over all µ, that is, if for every positive ǫ there exists a natural number N depending
only on ǫ such that for every µ and every n ≥ N , P∗(supf∈F |µn(f) − µ(f)| > ǫ) < ǫ, then F is
said to be a a strong uniform Glivenko-Cantelli class.

An equivalent formulation says that F is a strong uniform Glivenko-Cantelli class if and only if

for every ǫ > 0 lim
i→∞

sup
µ

P
∗(sup

m≥i

sup
f∈F
|µ(f)− µm(f)| > ǫ) = 0,

where the outermost supremum is taken over all probability measures on the state space.
The following definitions are needed to set up a Glivenko-Cantelli theorem, which will be used

to establish that a certain class of functions, Lip(ρ∗, Cb(S)), is a strong uniform Glivenko-Cantelli
class when S is a compact metric space.

Definition 4.6. A topological space is an analytic space, also known as a Suslin space, if it
is the continuous image of a Polish space under a map between Polish spaces.

Definition 4.7. Let (Ω,A) be a measurable space and F a set. Then a real-valued function
X : (f, w) 7→ X(f, w) will be called image admissible Suslin via (Y,S, T ) if and only if (Y,S) is
a Suslin measurable space, T is a function from Y onto F , and the map (y, ω) 7→ X(T (y), ω) is
jointly measurable on Y × Ω.

If F is a set of functions on Ω and X(f, ω) = f(ω) is the evaluation map then F will be called
image admissible Suslin if X is image admissible Suslin via some (Y,S, T ) as above.

Definition 4.8. Let X be a set, x = (x1, . . . , xn) ∈ Xn for n = 1, 2, . . ., and F be a family of
real-vaued functions on X Define the pseudometric ex,∞ on F by

ex,∞(f, g) = max
1≤i≤n

|f(xi)− g(xi)| for f, g ∈ F

Let N(ǫ,F , ex,∞) denote the ǫ-covering number of (F , ex,∞) for ǫ > 0. Then we define, for n =
1, 2, . . . and ǫ > 0, the quantity

Hn,∞(ǫ,F) = sup
x∈Xn

logN(ǫ,F , ex,∞)

The following is the relevant part of Theorem 6 from [21].
Theorem 4.9. Let F be a uniformly bounded family of functions on (X,Σ) that is also image

admissible Suslin. Then F is a strong uniform Glivenko-Cantelli class if and only if

lim
n→∞

Hn,∞(ǫ,F)/n = 0

for every ǫ > 0.

5. Distance Approximation Schemes. We saw in § 2.3 that amongst a number of bisimu-
lation distance-estimation schemes for finite MDPs, the most promising appeared to be a method
based on sampling. Therefore, we propose to extend this to the case of continuous MDPs. One
would sample all probability mass functions, replace each with an empirical distribution built from
the resulting samples, and repeatedly apply the fixed-point bisimulation functional to the new MDP.
Supposing for the moment that one can enumerate and sample from a compact metric space with
full-fledged probability measures, the only problem in this procedure is the validity of replacing the
original MDP with the sampled version. In other words, if we replace the probability measures in
our MDP with empirical measures, is it still true that the bisimulation metric on the sampled MDP
will converge to the true bisimulation metric as the number of samples increases?
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Fortunately, with some minor modifications the answer is yes. In order to prove this, we will
need to make use of a uniform Glivenko-Cantelli theorem, Theorem 4.9. Such theorems typically
characterize uniform convergence of empiricals to means, and are ubiquitous throughout machine
learning [2]. Let us first take a moment to consider what this means in the context of the Kantorovich
distances. Suppose Lip(h) is a uniform Glivenko-Cantelli class for pseudometric h. Then the
uniform Glivenko-Cantelli property tells us that TK(h)(µ, µi) converges to zero P-almost surely
for every µ and this convergence is uniform over all µ. Ideally then, we would like at least one
of Lip(ρ∗) and Lip(ρ∗, Cb(S)) to be a uniform Glivenko-Cantelli class. The question as to which
classes constitute uniform Glivenko-Cantelli classes and under what conditions is an important area
of active research. Fortunately, we have the following:

Lemma 5.1. Let (S, d) be a compact metric space and let Lip(ρ∗, Cb(S)) be as in Definition 2.38.
Then Lip(ρ∗, Cb(S)) is a uniform Glivenko-Cantelli class.

Proof. We will essentially follow the proof of Proposition 12 in [21]: if we can show that
Lip(ρ∗, Cb(S)) is image admissible Suslin and that limn→∞Hn,∞(ǫ, Lip(ρ∗, Cb(S)))/n = 0 for every
ǫ > 0 then the result will follow by Theorem 4.9.

As we saw in the proof of Lemma 3.14, Lip(ρ∗, Cb(S)) is equicontinuous at all points. It is
uniformly bounded by ‖ρ∗‖ by definition, and it is easily seen to be closed with respect to the
uniform norm metric. Therefore, by Theorem 4.1 it is compact space, and hence also a Polish space
and a Suslin space.

Now we have both (S, d) and Lip(ρ∗, Cb(S)) equipped with the uniform norm metric are com-
pact, and hence separable metric spaces. Equip each with its Borel σ-algebra and note that by
separability, the Borel σ-algebra of their product is the product of their Borel σ-algebras. Let T be
the identity mapping on Lip(ρ∗, Cb(S)). Define X : S × Lip(ρ∗, Cb(S)) → R to be the evaluation
map, that is, X(f, s) = f(s). Define Γ : S × Lip(ρ∗, Cb(S)) → R by Γ(f, s) = X(T (f), s) = f(s).
Then since Lip(ρ∗, Cb(S)) is equicontinuous it follows that Γ is jointly continuous on the product
space, and hence product measurable. Therefore, Lip(ρ∗, Cb(S)) is image admissible Suslin.

Finally note, that for any n = 1, 2, . . . and s ∈ Sn, es,∞ is bounded above by the uniform
norm metric. Thus, N(ǫ, Lip(ρ∗, Cb(S)), es,∞) ≤ N(ǫ, Lip(ρ∗, Cb(S)), ‖ · ‖), the latter term being
finite and independent of n for every ǫ > 0 as Lip(ρ∗, Cb(S)) with the uniform norm is a compact
metric space. So for every ǫ > 0, Hn,∞(ǫ, Lip(ρ∗, Cb(S))) is uniformly bounded in n. Therefore,
limn→∞Hn,∞(ǫ, Lip(ρ∗, Cb(S)))/n = 0 for every ǫ > 0, as was to be shown.

How does this help us? Recall that as a first step in our distance approximation scheme, we
would like to replace each probability measure on the space with an empirical measure and use
Theorem 3.12 to guarantee existence of bisimulation metrics. However, in order to use that we
require the map taking states to empirical measures to be continuous - and in general this need
not be the case. We may circumvent this issue by replacing the Kantorovich operator with one
that is defined on all real-valued functions, not just the measurable ones. For a fixed i, define for
empiricals µi =

1
i

∑i
j=1 δXj

and νi =
1
i

∑i
j=1 δYj

and bounded-pseudometric h,

T i
K(h)(µi, νi) = min

σ

1

i

i∑

k=1

h(Xk, Yσ(k))

(note that if h is measurable, then T i
K(h)(µi, νi) = TK(h)(µi, νi)). With this in mind, we may once

more apply the Banach Fixed Point Theorem to obtain:

Proposition 5.2. Let M = (S,Σ, A, P, r) be an MDP satisfying the conditions in Defini-
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tion 3.1, c ∈ (0, 1) be a metric discount factor, and i ∈ N. Define Fi : met → met by

Fi(h)(s, s
′) = max

a∈A
((1 − c)|ras − r

a
s′ |+ cT i

K(h)(P a
i,s, P

a
i,s′ ))

Then :
1. Fi has a unique fixed point ρ∗i , and
2. for any h0 ∈ met, limn→∞(Fi)

n(h0) = ρ∗i .
Note that technically, we have a random mapping here; that is, for each ω in Ω there is a

mapping Fi(ω) from met to itself with fixed point ρ∗i (ω). So each ρ∗i is really a (not necessarily
measurable) mapping from Ω to met. Therefore, when speaking of convergence of the family {ρ∗i }i∈N,
we assume that convergence to be almost surely or in probability with respect to P

∗. We will omit
the explicit use of ω in the rest of this work for the sake of convenience; however, the reader should
make careful note of its existence.

Thus, the proposed statistical estimates (ρ∗i )i∈N to ρ∗ exist; yet, how do we know that they
actually converge to ρ∗? It is not hard to see that

‖ρ∗i − ρ
∗‖ ≤

2c

1− c
sup

a∈A,s∈S

TK(ρ∗)(P a
i,s, P

a
s ). (5.1)

Simply note that

|ρ∗i (s, s
′)− ρ∗(s, s′)| ≤ cmax

a∈A
|T i

K(ρ∗i )(P
a
i,s, P

a
i,s′)− TK(ρ∗)(P a

s , P
a
s′)|

≤ cmax
a∈A
|T i

K(ρ∗i )(P
a
i,s, P

a
i,s′)− T

i
K(ρ∗)(P a

i,s, P
a
i,s′ )|

+ cmax
a∈A
|TK(ρ∗)(P a

i,s, P
a
i,s′ )− TK(ρ∗)(P a

s , P
a
s′)|

≤ c‖ρ∗i − ρ
∗‖+ cmax

a∈A
(TK(ρ∗)(P a

i,s, P
a
s ) + TK(ρ∗)(P a

i,s′ , P
a
s′))

≤ c‖ρ∗i − ρ
∗‖+ 2c sup

a,s
TK(ρ∗)(P a

i,s, P
a
s )

and the result follows. This is where the uniform Glivenko-Cantelli property comes into play:
we would like to use it to show that the quantity on the right-hand side of inequality 5.1 tends
to zero almost surely. Unfortunately, we face a problem in the form of the supremum over the
possibly uncountably infinite set S. While the uniform Glivenko-Cantelli theorem indeed tells us
that empiricals converge in Kantorovich distance to their measure almost surely for each measure,
and even over all measures almost surely for a countable set of measures, it does not dictate that
all measures converge at the same rate uniformly almost surely. Here compactness comes to the
rescue.

Let U be a countable dense subset of S, and let d be the metric on S. Recall that ρ∗ is
continuous on S × S; in fact, since S is compact we may take ρ∗ to be uniformly continuous. So
for a fixed ǫ > 0, there is a δc(ǫ) > 0 such that for any x, y in S, if d(x, y) < δc(ǫ) then ρ

∗(x, y) < ǫ.
In particular, we have

max
a∈A

TK(ρ∗)(P a
x , P

a
y ) ≤

1

c
ρ∗(x, y) <

ǫ

c
. (5.2)

Let [−] : S → U be a mapping such that d(s, [s]) < δc(ǫ) for every s in S and the image [S] is
finite; that this can be done is a consequence of U being dense in S and S being compact. Next, if
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µi =
1
i

∑i
j=1 δXj

, define [µi] to be 1
i

∑i
j=1 δ[Xj ]. Then for any µi

TK(ρ∗)(µi, [µi]) = min
σ

1

i

i∑

k=1

ρ∗(Xk, [Xσ(k)]) ≤
1

i

i∑

k=1

ρ∗(Xk, [Xk]) < ǫ (5.3)

Now we are ready to proceed. The idea is that we will use statistical estimates of the probability
measures as before; however, this time we will use [−] to shift S to close-by points in U , thus
restricting our calculations to the finite set [S].

Theorem 5.3. Let M = (S,Σ, A, P, r) be an MDP satisfying the conditions in Definition 3.1,
c ∈ (0, 1) be a metric discount factor, i ∈ N, and ǫ > 0. Further suppose that S is a compact metric
space. Define Fi,ǫ : met → met by

Fi,ǫ(h)(s, s
′) = max

a∈A
((1− c)|ra[s] − r

a
[s′]|+ cT i

K(h)([P a
i,[s]], [P

a
i,[s′]]))

Then :
1. Fi,ǫ has a unique fixed point ρ∗i,ǫ,
2. for any h0 ∈ met, limn→∞(Fi,ǫ)

n(h0) = ρ∗i,ǫ, and
3. ρ∗i,ǫ converges to ρ∗ as i→∞ and ǫ→ 0, P-almost surely.
Proof. The first two items once more follow from the Banach Fixed Point Theorem. As for the

last item, let us show that

‖ρ∗i,ǫ − ρ
∗‖ ≤

1

1− c
(2ǫ(2 + c) + 2c max

a∈A,u∈[S]
TK(ρ∗)(P a

i,u, P
a
u )). (5.4)

As in the previous proposition, let us note that

|ρ∗i,ǫ(s, s
′)−ρ∗(s, s′)| ≤ (1− c)max

a∈A
(|ra[s] − r

a
[s′]| − |r

a
s − r

a
s′ |)

+ cmax
a∈A
|T i

K(ρ∗i,ǫ)([P
a
i,[s]], [P

a
i,[s′]])− TK(ρ∗)(P a

s , P
a
s′)|

≤ max
a∈A

(1 − c)|ra[s] − r
a
s |+max

a∈A
(1− c)|ra[s′] − r

a
s′ |

+ cmax
a∈A
|T i

K(ρ∗i,ǫ)([P
a
i,[s]], [P

a
i,[s′]])− T

i
K(ρ∗)([P a

i,[s]], [P
a
i,[s′]])|

+ cmax
a∈A
|T i

K(ρ∗)([P a
i,[s]], [P

a
i,[s′]])− TK(ρ∗)(P a

s , P
a
s′)|

≤ ρ∗(s, [s]) + ρ∗(s′, [s′])

+ c‖ρ∗i,ǫ − ρ
∗‖

+ cmax
a∈A
|TK(ρ∗)([P a

i,[s]], [P
a
i,[s′]])− TK(ρ∗)(P a

s , P
a
s′)|

≤ ρ∗(s, [s]) + ρ∗(s′, [s′]) + c‖ρ∗i,ǫ − ρ
∗‖

+ cmax
a∈A
{TK(ρ∗)([P a

i,[s]], P
a
i,[s]) + TK(ρ∗)(P a

i,[s], P
a
[s]) + TK(ρ∗)(P a

[s], P
a
s )

+ TK(ρ∗)(P a
s′ , P

a
[s′]) + TK(ρ∗)(P a

[s′], P
a
i,[s′]) + TK(ρ∗)(P a

i,[s′], [P
a
i,[s′]])}

≤ ǫ+ ǫ+ c‖ρ∗i,ǫ − ρ
∗‖

+ cmax
a∈A
{ǫ+ TK(ρ∗)(P a

i,[s], P
a
[s]) +

ǫ

c
+
ǫ

c
+ TK(ρ∗)(P a

[s′ ], P
a
i,[s′]) + ǫ}

≤ c‖ρ∗i,ǫ − ρ
∗‖+ 4ǫ+ 2cǫ+ 2c max

a∈A,u∈[S]
TK(ρ∗)(P a

i,u, P
a
u )
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and the bound follows immediately. Note that in the fourth inequality we used the fact that ρ∗

is meaurable to replace T i
K by TK , and in the fifth inequality we have repeatedly made use of

inequalities 5.2 and 5.3.
By the Uniform Glivenko-Cantelli property, the rightmost term in inequality 5.4 tends to zero

P-almost surely (incidentally, dependent on ǫ); for, given a finite set U of measures, we have for a
given ε > 0

P
∗(sup

m≥i

sup
µ∈U

TK(ρ∗)(µm, µ) > ε) = P
∗(sup

µ∈U
sup
m≥i

TK(ρ∗)(µm, µ) > ε)

≤
∑

µ∈U

P
∗(sup

m≥i

TK(ρ∗)(µm, µ) > ε)

≤ |U| sup
µ

P
∗(sup

m≥i

TK(ρ∗)(µm, µ) > ε)

whence it follows that P
∗(lim supm supµ∈U TK(ρ∗)(µm, µ) > ε) = 0. Since ε is arbitrary, we then

have P
∗(lim supm supµ∈U TK(ρ∗)(µm, µ) 6= 0) = 0. Hence, for every ǫ > 0

lim
i→∞

‖ρ∗i,ǫ − ρ
∗‖ ≤

2ǫ(2 + c)

1− c
(5.5)

except for a set Nǫ of P-measure zero. Consider now only rational ǫ > 0, and let N be the union
of the collection {Nǫ} over all such ǫ. Then save for N , inequality 5.5 holds for every ǫ, and N has
P-measure zero. So letting ǫ tend to zero in the same inequality, we find that ρi,ǫ converges to ρ∗,
as was to be shown.

Let us note that this then is the crucial result: it tells us that we may approximate ρ∗ through
(Fn

i,ǫ)(⊥), that is, through sampling, discretization, and finite iteration and that we need only
compute this latter quantity on [S]. More to the point, we may choose [S] ⊆ U to be finite, since
the δ(ǫ)-balls of U form an open cover of compact S. We now have the seeds of an algorithm.

6. Towards an Algorithm: Representation and Choice. We will assume we are provided
with an “effective” representation of the state space S in terms of an enumeration of a countable
dense subset U of S; we will additionally require that a specific metric d on S be specified as part
of the input as a computable function on U × U . The set of actions is simply a finite set A, and
the reward function will be represented as an A-indexed family of computable functions from U to
[0, 1]. All that remains is to specify the transition probabilities.

How does one represent a probability measure on a continuous space? In the discrete setting,
one of two approaches traditionally suffices: either probabilities can be specified point-to-point in a
probability matrix, or one restricts attention to a parameterized class of probability mass functions.
This latter approach also applies to Euclidean spaces, where one typically works with probability
density functions. Although one may argue that both approaches can be suitably extended in the
setting of a compact metric space (the interested reader is directed to the works of [22] and [62])
we will focus on the approach taken by [6].

Let us suppose that (S, d) is supplied with a canonical probability measure µ. We may then
represent transition kernels inducing non-atomic probability measures by an A-indexed family of
product measurable probability density functions, fa : S×S → [0,∞), such P a

s (M) =
∫
M
fa(s, ·)dµ.

We will further suppose that µ(U) = 1 and for each a, fa is continuous in the first coordinate, and
bounded by a µ-integrable function in the second; it then follows from the dominated convergence
theorem that P a

s is (weakly) continuous in s, and finally, that we need only specify each fa on
U × U .
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To summarize:

Definition 6.1. A given continuous Markov decision process (S,Σ, A, P, r) with compact
metric space (S, d) will be represented by the sextuple (U, d, µ,A, P, r), where:

• U is an enumeration of a countable dense subset of S,
• the metric d is computable on U × U ,
• µ is a canonical sampling measure on S satisfying µ(U) = 1, and
• P a

s is represented by
⋄ an atomic measure, given by a finite sum of point masses subject to the continuity
constraint, or
⋄ a non-atomic measure, given by a probability density function fa : U × U → [0,∞)
continuous in the first coordinate, and bounded uniformly by a µ-integrable function
in the second coordinate

• r is a computable function from U ×A to [0, 1] and continuous on U

Lastly, we will assume that for a fixed positive rational ǫ we can enumerate a finite database
X ⊆ U , such that the ǫ-balls centered at the points of X cover the entire space. Such an X is
called an ǫ-covering. If X instead satisfies that all of its points are at least ǫ apart, then it is called
an ǫ

2 -packing. The ideal situation would be one in which we can find an X that satisfies both
properties; such an X is called an ǫ-net.

If a means of enumerating an ǫ-net for a given problem does not make itself obvious, then,
as noted by [10], an ǫ-net X can be constructed by the following greedy algorithm essentially
devised by [33] as an approximation algorithm for finding the smallest ǫ such that there is an ǫ-
covering with k members, for a given k: given input ǫ > 0 and maximum allowable ǫ-net size k,
pick s ∈ U arbitrarily, and set X := {s}. Then repeat the following: pick an s ∈ U − X that
maximizes d(s,X) = min{d(s, x) : x ∈ X}. If d(s,X) < ǫ or |X | ≥ k then stop; otherwise, set
X := X ∪ {s}, and continue. Then X is an ǫ′-net for some ǫ′ ≤ ǫ provided k is large enough;
specifically, ǫ′ := d(s,X − {s}) where s was the last state to be added to X . If U is finite with size
n = |U | then this approximation algorithm has worst case running time O(kn) with ǫ′ within two
times the optimal value.

The only problem in immediately applying this algorithm to the general case of a countably
infinite U , is in finding the element s in U that maximizes d(s,X). We can get around this by
sampling according to µ: as suggested in [6] replace the maximum with the essential-supremum with
respect to µ and approximate this via sampling according to µ and maximizing over the samples,
which converges to the essential-supremum in probability. The resulting heuristic should provide
an ample covering of U with high probability in time O(kI) where I is the maximum number of
samples used in estimating the essential-suprema provided an adequate number of samples is used.
We provide no bound on the number of samples required here; we only note that there are methods
for estimating an ǫ-net.

Our algorithm then is as follows: given a positive rational ǫ, enumerate a δc(ǫ) cover X . Define
[s] to be the nearest neighbor of s in X according to d. Sample the probability distributions induced
by X and use [−] to restrict them to X . Finally, perform the iteration algorithm on X , as in the
finite case. Figure 6.1 provides pseudocode for estimating distances to within an iteration error of
δ for a given ǫ and ǫ-net X .

Theorem 6.2. As in Definition 6.1, let (U, d, µ,A, P, r) be the respresentation of a given
continuous MDP (S,Σ, A, P, r), where P is represented by the family of density functions {fa :
U ×U → [0,∞)}a∈A. Let c ∈ (0, 1) be a metric discount factor, ǫ > 0 be a discretization parameter,
δ be an iteration error, and i be the number of samples to be used in sampling P . Let X ⊆ U be a
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INPUT: finite database X ⊆ U, finite action set A, number of samples i,

reward function r : U × A→ [0, 1], distance function d : U × U → [0,∞),
density functions {fa : U × U → [0,∞)}a∈A, sampling measure µ,

iteration error δ

OUTPUT: distance function ρ : X ×X → [0, 1]

METHODS:

NN(z, d,X) returns nearest neighbor of z in X according to d.

SAMPLE(µ, f) returns element of U sampled independently according to

probability measure induced by µ and density f.

HUNGARIAN ALG(ρ, ~x, ~y) returns value of minimum-cost assignment for

assignment problem with cost ρ and i-vectors ~x and ~y from X.

ALGORITHM:

(INITIALIZATION)

For s, s′ = 1 to |X| do
ρ(s, s′)← 0
For a = 1 to |A| do

For j = 1 to i do

z ←SAMPLE(µ, fa(s, ·))
Pa(s, j)←NN(z,X, d)

(MAIN LOOP)

For j = 1 to ⌈ ln δ

ln c
⌉ do

For s, s′ = 1 to |X| do
For a = 1 to |A| do

TKa(s, s
′)←HUNGARIAN ALG(ρ, Pa(s, ·), Pa(s

′, ·))
For s, s′ = 1 to |X| do

ρ(s, s′)← maxa((1− c)|r(s, a)− r(s′, a)|+ cTKa(s, s
′))

Fig. 6.1. Pseudocode for estimating bisimulation distances

finite database that is an ǫ-cover of S. Then the algorithm given by the pseudocode in Figure 6.1
computes an approximation ρ : X×X → [0, 1] to the bisimulation metric ρ∗ given by Theorem 3.12
in worst case running time O( ln δ

ln c
mn2i3) and with error bounded above by

δ +
2ǫ(2 + c)

1− c
+

2c

1− c
max

a∈A,x∈X
TK(ρ∗)(P a

i,x, P
a
x )

The next section is dedicated towards verifying the bounds on the running time and the ap-
proximation error, and trying to further provide error estimation guarantees.

7. Estimation Error. Let us analyze the error of our approximation algorithm for the 1-
bounded bisimulation metric ρ∗. Recall that we are approximating ρ∗ by Fn

i,ǫ(⊥) for large i and n,
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and small ǫ. So the approximation error is given by:

‖(Fi,ǫ)
n(⊥)− ρ∗‖ ≤ ‖(Fi,ǫ)

n(⊥)− ρ∗i,ǫ‖+ ‖ρ
∗
i,ǫ − ρ

∗‖ ≤
cn

1− c
‖Fi,ǫ(⊥)‖+ ‖ρ

∗
i,ǫ − ρ

∗‖

≤
cn

1− c
(1− c) +

1

1− c
(2ǫ(2 + c) + 2c max

a∈A,u∈[S]
TK(ρ∗)(P a

i,u, P
a
u ))

≤ cn +
2ǫ(2 + c)

1− c
+

2c

1− c
max

a∈A,u∈[S]
TK(ρ∗)(P a

i,u, P
a
u )

Let ε∼, ε[−], and εP denote cn, 2ǫ(2+c)
1−c

, and 2c
1−c

maxa∈A,u∈[S] TK(ρ∗)(P a
i,u, P

a
u ); these are, respec-

tively, the bisimilarity, discretization, and sampling errors. In the next few sections, we will try to
bound these to within some prescribed degree of accuracy.

7.1. Bisimulation Error. Bounding the error due to approximating bisimilarity in n steps
is simple enough. Suppose we want this error to be less than δ for some δ > 0. Choose n = ⌈ ln δ

ln c
⌉;

then ε∼ = cn ≤ c
ln δ
ln c = eln δ = δ. So we need only iterate for ⌈ ln δ

ln c
⌉ steps.

7.2. Discretization Error. In some sense, bounding the discretization error is hopeless - we
need to know how ρ∗ varies with d and in general, this is information that we just do not have.
However, there is some hope; recall that what we need is some way of specifying a δc(ǫ) so that
d(x, y) < δc(ǫ) implies ρ∗(x, y) < ǫ. Suppose we can bound ρ∗ from above by a continuous metric
m; define the modified metric dm to be max(d,m). Then, as d ≤ dm and dm is continuous with
respect to d, we have that dm and d are equivalent metrics; that is, they induce the same topology
on S. Therefore, we could use dm in place of d and simply take δc(ǫ) to be ǫ; but how do we find
m? More to the point - as ρ∗ is itself a candidate - how do we find an m that is easier to compute
than ρ∗?

We propose here a heuristic for computing such an m. We cannot hope to bound the discretiza-
tion error in computing m owing to the reasons mentioned above; however, we hope to shift the
focus of the discretization error onto how r and P vary with d. In other words, if we discretize the

state space using an ǫ-net with respect to dm then we will be able to set ε[−] =
2ǫ(2+c)
1−c

+ εm where
εm, the estimation error for dm, hopefully varies much more closely with d than does ρ∗.

Let ctsm ⊆ lscm denote the space of bounded continuous pseudometrics on S. Define R ∈ ctsm
and the operator T : ctsm → ctsm by

R(x, y) = max
a∈A
|rax − r

a
y | and T (h)(x, y) = max

a∈A
(P a

x ⊗ P
a
y )(h),

where µ⊗ ν is the product measure of µ and ν. The fact that T (h) is symmetric follows from the
Fubini-Tonelli Theorem (see for example [29]), which allows one to change the order of integration
in an iterated integral. The fact that T (h) is continuous for h in ctsm follows from the fact that
for separable metric spaces the limit of the product of weakly converging measures is the product
of the limits of those measures: if µn ⇒ µ and νn ⇒ ν then µn ⊗ νn ⇒ µ⊗ ν [4]. We immediately
have that for any h ∈ ctsm, F (h) ≤ (1 − c)R + cT (h), where F is the fixed point operator for ρ∗.
Finally, we define

m := (1− c)
∞∑

k=0

ckT k(R).
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Note that by comparison with the geometric series (1 − c)
∑∞

k=0 c
k, m converges absolutely every-

where. Moreover, as the sequence of partial sums belong to ctsm and converge uniformly to m, m
too belongs to ctsm. Now for any x,y and a, the Monotone Convergence Theorem tells us that

(P a
x ⊗ P

a
y )(m) = (P a

x ⊗ P
a
y )((1− c)

∞∑

k=0

ckT k(R)) = (1− c)
∞∑

k=0

ck(P a
x ⊗ P

a
y )(T

k(R)).

Hence, taking the maximum over all actions yields T (m) ≤ (1−c)
∑∞

k=0 c
kT k+1(R). Thus, F (m) ≤

(1− c)R + cT (m) ≤ (1− c)R+ c(1 − c)
∑∞

k=0 c
kT k+1(R) = m, whence it follows that ρ∗ ≤ m.

Let us assume that we can compute (P a
x ⊗ P

a
y )(h) for any computable h, for example, through

numerical integration, sampling, etc. Then we can compute m for any pair of states by iterating
T until cn is less than some prescribed degree of accuracy and computing the nth partial sum.
This, of course, introduces the additional estimation error εm. Finally, dm can be computed as
the maximum of m and d, and can even be taken to be 1-bounded since m is bounded by 1. For
example, we may replace d with the compatible 1-bounded metrics d

1+d
or min(1, d).

7.3. Sampling Error. Let us first note that, strictly speaking, the expression denoted by εP
is not solely the error due to sampling; for it is dependent on the measures indexed by [S], i.e. it
measures error due to discretization as well. In addition, though this term does tend to zero almost
surely, it will be easier in practice to bound its convergence in probability. Let us suppose we want
εP to be less than or equal to ∆ with probability at least 1−α for some small positive constants ∆
and α. Note that

P
∗(εP > ∆) = P

∗
(

max
a∈A,u∈[S]

TK(ρ∗)(P a
i,u, P

a
u ) >

1− c

2c
∆
)

≤ |A||[S]| sup
a∈A,u∈[S]

P
∗
(
TK(ρ∗)(P a

i,u, P
a
u ) >

1− c

2c
∆
)
.

Thus, it will suffice to find a uniform Glivenko-Cantelli convergence bound for

sup
u∈[S]

P
∗
(
TK(ρ∗)(P a

i,u, P
a
u ) >

1− c

2c
∆
)
≤

α

|A||[S]|
. (7.1)

The lower bound on the number of samples required to achieve the specified level of accuracy with
the specified probability is known as the sample complexity. A large number of bounds exist in terms
of various notions of dimension: VC-dimension, the fat-shattering dimension, covering numbers [2];
in general, a specific bound will depend on the structure of the metric space in question. As such,
we are not able to provide specific bounds for the sample complexity in full generality. However, as
an example, the following asymptotic lower bound for 7.1 can be obtained from Theorem 3.6 of [1]:

i = O
( 1

ε2
(
β ln2 β

ε
+ ln

1

η

))
,

where ε = 1−c
2c ∆, η = α

|A||[S]| , and β is the fat-shattering dimension of Lip(ρ∗, Cb(S)) with scale
ǫ
24 : for a given class F of [0, 1]-valued functions on S and a given positive real number γ, one says
S′ ⊆ S is γ-shattered by F if there exists a function s : S′ → [0, 1] such that for every S′′ ⊆ S′ there
exists some fS′′ ∈ F that satisfies for every x ∈ S′\S′′, fS′′(x) ≤ s(x) − γ and for every x ∈ S′′,
fS′′(x) ≥ s(x) + γ. The fat-shattering dimension of F at scale γ is the maximum cardinality of a
γ-shattered set.
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7.4. Computational Complexity. Precise computational complexity results are difficult to
come by owing to the application of this work to general metric spaces. The particular performance
will depend on the structure of a given space – and this in turn can be represented by a number
of proposed measures of metric space dimension [10]. However, the previous sections do give an
idea of the space and time requirements in computing distances to a given level of accuracy with
a given probability. A quick glance will tell us that it would be very expensive to attempt to
compute distances to within a very small degree of error with high probability – but this is none
too surprising. Previous work [59] has shown that computing the bisimulation distances for a
given finite probabilistic system in tabular form can be done in polynomial time. In practice we
fix the number of samples in our sampling procedure and sacrifice accuracy for improved running
times; that is, for a fixed number of samples i and a given discretization [−], let n be the number
of discretized states in [S] and m be the number of actions; then computing the state-similarity
distances to within a bisimilarity error of δ requires time O( ln δ

ln c
mn2i3). In order to see this, let

us refer to the pseudocode in Figure 6.1: in the initialization phase, for every discrete state and
for every action, a sample is obtained and a nearest neighbour search is peformed, i times. let us
assume that sampling takes constant time; then this requires O(nmi(O(1)+n)), or O(mn2i) steps.
In the algorithm’s main loop, we iterate the following procedure for ⌈ ln δ

ln c
⌉ steps: for every pair of

states and for every action, peform the Hungarian algorthim on their induced empirical probability
distributions, taking O(i3) steps for each pair and leading to a total of O(n2mi3) steps. Then
for every pair of states a maximization must be performed over the m actions, requiring a total
of O(n2m) steps. So the main loop requires O( ln δ

ln c
(mn2i3 + mn2)), or O( ln δ

ln c
mn2i3) steps. The

entire algorithm then requires O(mn2i)+O( ln δ
ln c
mn2i3) = O( ln δ

ln c
mn2i3) steps. Future algorithmic

efficiency, however, will require the imposition of several structural/representational conditions and
learning just how to exploit these.

8. Conclusions. In this paper we have established a robust quantitative analogue of bisimi-
larity for Markov decision processes with continuous state spaces in the form of a continuous pseu-
dometric on the system states. More importantly, we have developed a novel distance-estimation
scheme for MDPs with compact metric state spaces, permitting for what we believe is the first time
the use of metric based reasoning for continuous probabilistic systems in practice.

The ability to estimate bisimulation distances for a wide class of continuous systems provides
an invaluable tool for finding solutions to a similarly wide class of problems. One can compare
the performance of several candidate state aggregation schemes in practice, or one can use the
distances themselves to aggregate; in either case the distances provide meaningful error bounds on
the quality of the models. Equally important, they provide tight error bounds on the quality of
solutions obtained from finite approximations through the continuity bounds we’ve obtained on the
optimal value function.

8.1. Related Work. This work has its roots in the work of Desharnais et al. [17] and van
Breugel and Worrell [59]. In the work of [16, 17] and mainly in the thesis of [14], the authors
developed bisimulation metrics for a probabilistic transition model similar to the Markov decision
process, namely the labeled Markov process (LMP) [5]:

Definition 8.1. A labeled Markov process is a quadruple

(S,Σ, A, {τa|a ∈ A})

where:
• S is an analytic set of states
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• Σ is the Borel σ-field on S
• A is a finite set of actions
• for every a ∈ A, τa : S × Σ→ [0, 1] is a stationary subprobability transition kernel:

⋄ for every X ∈ Σ, τa(·, X) is a measurable function and
⋄ for every s ∈ S, τa(s, ·) is a subprobability measure

An LMP can best be thought of here as a continuous state space MDP, with the difference
being that it allows for subprobability measures and lacks rewards. It is worth noting that the
authors develop their theory in the slightly more general setting of analytic spaces.

One may define bisimilarity for an LMP as follows: Recall Definition 3.2. A bisimulation
relation is an equivalence relation R on S that satisfies the following property:

sRs′ ⇐⇒ for every a ∈ A and R-closed X ∈ Σ, τa(s,X) = τa(s
′, X)

We say states two states are bisimilar if and only if they are related by some bisimulation relation.

One may also define bisimilarity for LMPs in terms of a modal logic: two states are bisimilar
if and only if they satisfy exactly the same formulas in some fixed logic [5, 14]. This forms the
basis for the metrics of [14, 16, 17], which are defined in terms of real-valued logical expressions.
The intuition in moving to metrics is that the bisimilarity of two states is directly related to the
complexity of the simplest formula that can distinguish them; the “more bisimilar” two states are,
the harder it should be to find a distinguishing formula; hence, such a formula should be necessarily
“big”. Of course, to formalize this one needs to find some quantitative analogue of logical formulas
and satisfaction. One idea of how to do this in the context of a probabilistic framework comes
from [39]:

Classical Logic Generalization
Truth values 0,1 Interval [0,1]

Propositional function Measurable function
State Measure

The satisfaction relation |= Integration
∫

The idea is that just as the satisfaction relation maps states and propositional formulas to truth
values, integration maps measures and measurable functions to extended truth values - values in
the closed unit interval [0, 1]. On the basis of these ideas, [14] developed a class of logical functional
expressions that could be evaluated on the state space of a given LMP to obtain values in the unit
interval. A family of bisimulation metrics is then constructed by calculating the difference of these
quantities for a fixed pair of states across all formulas. Formally, let c ∈ (0, 1] and let Fc be a
family of functional expressions whose syntax is given by the following grammar:

f := 1|min(f, f)|〈a〉f |f ⊖ q|⌈f⌉q

where a and q range over A and rationals in [0, 1] respectively. These functional expressions are
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evaluated on S as follows:

1(s) = 1

min(f1, f2)(s) = min(f1(s), f2(s))

(〈a〉f)(s) = c

∫

S

f(x)τa(s, dx)

(f ⊖ q)(s) = max(f(s)− q, 0)

⌈f⌉q(s) = min(f(s), q)

Lastly, define dc : S × S → [0, 1] by

dc(s, s′) = sup
f∈Fc

|f(s)− f(s′)|.

Theorem 8.2 ([14]). For every c in (0, 1], dc is a 1-bounded bisimulation metric.
In the finite case and with c < 1, Desharnais et al. [16] were able to construct a decision pro-

cedure for computing the metrics to any desired accuracy; one simply replaces Fc in the definition
above with a specially chosen finite subset of functions. However, in the general case no algorithm
was provided and it remained unclear as to whether or not d1 was computable.

Later on, van Breugel and Worrell [58, 59] worked with a slightly modified version of these
metrics in a categorical setting; they used fixed point theory in conjunction with the Kantorovich
probably metric to define metrics on LMPs. They were able to show that the metrics induced by
the logical characterization of bisimilarity and provided by Desharnais et al. [16] coincided with
their own fixed point metrics. Particularly important was their application of the Kantorovich
operator and subsequent use of network linear programming to develop the first polynomial-time
decision procedure for the metrics in the finite case. In recent years, van Breugel, Sharma and
Worrell [57] have developed both a theoretical framework and a decision procedure for finite LMP
metrics without discounting, that is, for c = 1. Still, no work has been carried out on estimating
distances for general LMPs with continuous state spaces.

In the context of MDPs, a number of methods have been proposed for analyzing state-similarity.
Li, Walsh and Littman [42], for example, survey a number of state aggregation techniques for finite
MDPs in an attempt to unify the theory of state abstraction: these include aggregation of states
based on bisimulation, homomorphisms, value equivalence, and policy equivalence, to name a few.
Muller [46] gave an early sensitivity analysis result in a spirit very similar to our own; he considers
abstract MDPs (with full measurable state and action spaces) in which only the stochastic transition
kernels differ. He then demonstrates continuity of a sort for the optimal value function with respect
to several integral probability metrics. However, these results are purely of a mathematical nature
– no algorithm is provided or even suggested. Goubault-Larrecq [35] introduces a hemi-metric
(such a function satisfies all properties of a pseudometric save for symmetry) for simulation in
prevision transition systems, a generalization of probabilistic transitions systems. There the setting
is again continuous state spaces, and the author presents a similar value function continuity result
(Proposition 4 of [35]) to Theorem 3.20 under continuity conditions similar to those found in
Definition 3.1.

In the realm of finite MDPs, several works have analyzed the error in perturbing the parameters
of a given Markov decision process. Dean, Givan and Leach [12] consider bounded-parameter MDPs,
in which reward and probability parameters are specified by intervals of closed reals, and define
ǫ-homogeneity: a loosening of bisimulation such that all states in the same equivalence class have
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reward parameters and probability parameters each differing by at most ǫ. In the paper of Even-Dar
and Mansour [23], this work was expanded upon by considering different norms on the probability
parameter in the definition of ǫ-homogeneity and providing performance results specifically showing
that the quality of an ǫ-homogeneous partition depended heavily on the norm in use. More recently,
Ortner [48] has expanded upon the notion of ǫ-homogeneity in terms of adequate pseudometrics and
used these results to analyze finite MDPs under an average reward optimality criterion.

8.2. Future Work. There are many interesting directions possible for future investigation.
Chief among these is the question of whether or not the results appearing in this work remain
valid with less stringent or alternative conditions on the Markov decision problem parameters. Let
us make a few quick remarks on this matter: firstly, the work of Desharnais et al. [14] for LMPs
provides ample evidence that existence of our metrics should remain valid in at least analytic
spaces. Following along the lines of Muller [46], we may replace uniform boundedness of rewards
with boundedness in terms of a bounding “weight” function, which controls the rate at which the
functions grow - this essentially amounts to replacing all uniform norms by weighted uniform norms
in the proofs of this work. Promising work on Kantorovich duality [13] may allow us to show that
the mapping of states to the Kantorovich distance of their induced distributions in Theorem 3.12
is a measurable mapping, thereby allowing us to remove continuity conditions on the reward and
probability parameters, at least in existence proofs.

There are problem instances where each time step is equally important, and discounting is
unsuitable; in these cases an average reward optimality criterion [53] is preferable for finding optimal
polices for a given Markov decision process. We conjecture that limc→1 ρ

∗ may yield a bisimulation
metric suitable for analyzing average reward Markov decision problems.

We could also consider applying our work to extensions of bisimilarity. Desharnais et al. [18], for
example, utilize weak bisimulation instead of bisimulation when developing a quantitative notion of
state-similarity for a finite probabilistic transition system: essentially, states are deemed equivalent
if they match over a sequence of transitions, rather than precisely at every step.

An immediate concern is that the algorithm proposed in this work was tested merely to illus-
trate its validity; a more extensive investigation will be carried out at a later stage. In practice,
however, MDPs are rarely represented explicitly; instead, researchers usually work with factored
representations [9], wherein the state space is represented by a family of state variables. Each MDP
parameter is then compactly represented in terms of these variables, for example through use of dy-
namic Bayes nets or multi-terminal binary decision diagrams, yielding a compact representation of
an MDP. If metric calculation can be adapted to work solely with the factored representation, and
it is our strong belief that this is the case, then one would expect a great savings in the performance
of such state-similarity algorithms.

Another natural extension is to apply this work to partially observable MDPs (POMDPs) [37].
A POMDP basically consists of an MDP in which the actual state of the system is hidden; instead
one has a visible set of observations and a probabilistic observation function. A finite POMDP is
a sextuple

(S,A, {ras |s ∈ S, a ∈ A}, {P
a
ss′ |s, s

′ ∈ S, a ∈ A},Ω, {Oa
so|s,∈ S, o ∈ O, a ∈ A})

where:
• (S,A, {ras |s ∈ S, a ∈ A}, {P

a
ss′ |s, s

′ ∈ S, a ∈ A}) is a finite MDP
• Ω is a finite set of observations, and
• for every s ∈ S, o ∈ Ω, and a ∈ A, Oa

so is the probability of observing observation o after a
transition to state s under action a
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Each POMDP induces a continuous state-space MDP from which a solution may be recovered.
This continuous MDP, the belief state MDP, is given by

(B, A, {rab |b ∈ B, a ∈ A}, {P
a
bb′ |b, b

′ ∈ B, a ∈ A})

where:
• B is the set of belief states on S, where a belief state b is defined to be a probability
distribution on S,
• A is the same set of actions
• for each b ∈ B, a ∈ A,

rab =
∑

s∈S

ras b(s)

• for each b, b′ ∈ B, a ∈ A,

P a
bb′ =

∑

o∈Ω

Pr(b′|a, b, o)
∑

s′∈S

Oa
s′o

∑

s∈S

P a
ss′b(s)

where Pr(b′|a, b, o) = 1 if b′ = b(a,b,o) and 0 otherwise, and

b(a,b,o)(s
′) =

Oa
s′o

∑
s∈S P

a
ss′b(s)

Pr(o|a, b)

the denominator being calculated as a normalizing constant.
Optimal policies for the belief state MDP are optimal policies for the original POMDP. In this
sense, our results for continuous MDPs would immediately apply; however, a more direct solution
would be preferable.

The most evident use of our metrics is in analyzing state aggregations; however, the original
motivation for a quantitative notion of bisimilarity was to study performance properties of a system,
specified in terms of a modal logic [16, 14]. In fact, the original LMP metrics were defined in terms
of a real-valued modal logic that captured properties of the system’s states. Though we have not
covered the logical approach for the continuous case in this work, it should easily be carried over
with only slight modification. Thus, our metrics have a potential use in reasoning about logical
properties of continuous MDPs too.

There has also been some preliminary work on knowledge transfer of policies in MDPs [52].
The basic idea is that if two MDPs have small overall bisimulation distance then how close a policy
is to optimality in one model bounds how close it is to optimality in the other:

Theorem 8.3 ([52]). Suppose Mi = (Si, A, {rai,s|s ∈ S, a ∈ A}, {P
a
i,ss′ |s, s

′ ∈ S, a ∈ A}) are
two finite MDPs for i = 1, 2 and suppose further there is a mapping [−] : S1 → S2 specifying for
each state in M1 its representative state in M2. Any policy π2 defined on M2 naturally defines a
policy π1on M1 given by π1(s, a) = π2([s], a), and in this way one can transfer policy π2 from M2 to
M1. Let γ and c be value and metric discount factors in (0, 1) respectively, with γ ≤ c. Let V ∗

1 and
V ∗
2 be the optimal value functions for M1 and M2, respectively. Let ρ∗ be the bisimulation metric

defined on the disjoint union of M1 and M2. Then

‖V π1 − V ∗
1 ‖ ≤ 2max

s∈S1

ρ∗(s, [s]) +
1 + c

1− c
‖V π2 − V ∗

2 ‖
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One could potentially solve a class of MDPs by using the solution to a base MDP to which they
are all similar, and modifying that policy accordingly.

Finally, it is natural to consider two extensions: models with continuous time and continuous
action spaces. This, in conjunction with the current work on continuous state spaces, is the subject
of ongoing work.
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