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Abstract

This paper proposes a definition of categorical model of the deep
inference system BV, introduced by Guglielmi. Our definition is based
on the notion of a linear functor, due to Cockett and Seely.

A BV-category is a linearly distributive category, possibly with
negation, with an additional tensor product which, when viewed as
a bivariant functor, is linear with a degeneracy condition. We show
that this simple definition implies all of the key isomorphisms of the
theory.

We show that coherence spaces, with Retoré’s noncommutative ten-
sor, is a model.We then consider Girard’s category of probabilistic co-
herence spaces and show that it contains a self-dual monoidal structure
in addition to the %-autonomous structure exhibited by Girard. This
structure makes the category a BV-category, but is also of independent
interest.

*Research supported in part by National Science and Engineering Research Council,
CANADA.



1 Introduction

This paper is an examination of deep inference proof theory [17, 7] from
the perspective of categorical logic. In particular, we will propose a general
notion of categorical model and give several examples of such structures.

Deep inference is an important new approach to the syntax of logical
systems introduced by Guglielmi, and subsequently studied by a number
of researchers. We mention the website http://alessio.guglielmi.name as an
excellent source of information. Deep inference is not a single logical system,
but rather a new approach to considering logic, in which sequent calculus is
replaced by a new form of syntax with several attractive features.

There are a number of deep inference logical systems, some correspond-
ing to classical-style logics, and some to linear logics. The one that we
consider is BV. This is an extension of multiplicative linear logic, designed
to incorporate Retoré’s noncommutative, self-dual connective seq [23]. We
refer the reader to [17] for the inference rules and syntax of BV. As this is a
paper on semantics, they will not play a role here.

Proofs in deep inference systems are reversible in the sense that one may
invert them and dualize the connectives and still obtain a valid proof. This
sort of duality is of course in sharp contrast to the sequent calculus. (This
property is shared for example with the two-sided proof nets of [4].)

Also important is that deep inference systems allow for a very satisfac-
tory treatment of the notion of context. Within deep inference systems, one
can make substitutions within a proof at arbitrary depth. Formalizing a
notion of covariant context that allows for such substitutions in the sequent
calculus is notoriously difficult.

Perhaps even more importantly, deep inference allows for the considera-
tion of systems which seemingly cannot be considered with sequent calculus
at all. Here we are thinking particularly of Retoré’s pomset logic, which
is an extension of Girard’s multiplicative linear logic MLL [15] to include
a noncommutative self-dual connective. Retoré’s work was inspired by se-
mantic considerations. Such a connective, called seq, exists on the category
of coherence spaces [15], and pomset logic was an attempt to capture this
structure syntactically. However, pomset logic is not a sequent calculus in
any standard sense. Subsequent work of Tiu [26] shows that no sequent
calculus could capture this logical connective. However, the deep inference
system BV handles the structure quite easily.

One of our goals is to develop a categorical semantics for the various deep
inference systems. Here, we only consider the specific system BV. As far as
we know, the first person to discuss the categorical structure of the linear



logic deep inference systems was Hughes in [18]. Hughes, in considering
the deep inference system corresponding to MLL, argues that many of the
best features of deep inference are just as true of categorical proof theory. In
particular, the ability to make substitutions at arbitrary depth within a proof
corresponds categorically to the (bi)functoriality of the logical connectives.

But Hughes does not deal with the coherence issues at all. There is a
valid reason not to have considered coherence issues for deep inference, as the
usual techniques of categorical proof theory do not apply. Typically when
trying to develop categorical semantics, one determines coherence condi-
tions by examining the cut-elimination process. Cut-elimination is typically
algorithmic, and there is an evident method of turning the steps of the cut-
elimination process into coherence equations. Having done this, it is then
evident that the denotation of an arbitrary proof in the logic is equal to the
denotation of a cut-free proof.

However, deep inference systems do not have cut rules or satisfy cut-
elimination in the usual sense. Thus while it is evident what functorial
structure we will need to model the connectives of BV, the appropriate co-
herence conditions are far from clear. In this paper, we choose to model
BV by using standard categorical structures from which much of the de-
sired symmetry can then be derived. We believe that the simplicity of our
definition together with the observation that the key isomorphisms are con-
sequences imply that we have captured the structure correctly. In particular,
the self-duality of the noncommutative connective seq is a consequence of
our structure, as are the linear distributions relating tensor and seq, and seq
and par.

The typical starting point for modelling the multiplicative fragment of
linear logic is the notion of x-autonomous category, due to Barr [2, 24]. We
instead consider the equivalent notion of linearly distributive category with
negation [8, 4]. While this notion is equivalent, it is a more natural structure
to consider as the multiplicative disjunction par is taken as a primitive.
Further, the way that negation is added to an LDC is much closer to the way
negation is introduced in BV. Indeed the paper [4] introduces a two-sided
variant of Danos-Regnier proof nets as a way of analyzing the coherence
problem for such categories. These nets are quite close to the syntax of BV
and satisfy many of the same desirable symmetries.

We also make use of the notion of morphism between LDCs. These are
the linear functors of Cockett and Seely [10]. This is not simply a functor
commuting with the connectives and isomorphisms of an LDC, but rather a
pair of functors, one of which is monoidal with respect to tensor and the other
comonoidal with respect to par. There are also further natural transforma-



tions and coherence conditions required. The authors show that much of the
additional structure one adds to multiplicative linear logic can be described
as a linear functor. In particular, both the exponential and additive frag-
ments of linear logic can be viewed as linear functors. In the *-autonomous
case, the notion of linear functor reduces to that of monoidal functor, as
expected. Furthermore, in the case of x-autonomous categories or equiva-
lently LDCs with negation, the linear functor satisfies strong commutation
properties with respect to negation. We make use of this commutation to
derive the self-duality of our seq-connective.

We here introduce the notion of a degenerate linear functor, which is a
linear functor such that the two functor components are equal. There are
several consequences for the coherence conditions to this as well. Then we
define a BV-category to be an LDC C, together with an additional monoidal
structure, with functor part denoted @, such that the functor @: CxC — C,
is a degenerate linear functor. (There are some coherence requirements as
well.) We then show that all of the desired properties for our models hold as
a consequence of this simple definition. We also show that Retoré’s original
construction in coherence spaces gives an example.

Finally, to illustrate the generality of our definition, we also give a new
example of a seq connective, on Girard’s category of probabilistic coherence
spaces. Girard introduces the category of probabilistic coherence spaces with
the intent of using semantic and proof-theoretic ideas in the consideration
of structures arising in quantum mechanics.

It is ultimately hoped that the ideas of the present paper, especially the
semantic model of probabilistic coherence spaces, can be used to analyze the
discrete quantum causal dynamics of [6].

Acknowledgements-The authors would like to thank Robin Cockett,
Alessio Guglielmi, Francois Lamarche, Robert Seely and Lutz Strassburger

for numerous helpful conversations. All three authors received the support
of NSERC.

2 Linear functors

In [10], Cockett and Seely introduce the notion of a linearly distributive
functor, hereafter called linear functor. This is the proper notion of mor-
phism between linearly distributive categories (LDCs). This will provide the
foundation for our definition of model of BV. So we here review the basic
idea, and introduce the new notion of degenerate linear functor. We assume
familiarity with the notion of linearly distributive category. See [8, 4] where



they are called weakly distributive. Some information on them is contained
in the appendix.

Definition 2.1 Let X and Y be monoidal categories. Then a functor
F:X — Y is monoidal if equipped with natural transformations (denot-
ing the tensor unit for both X and Y by T):

me: F(A) ® F(B) < F(A® B)
mr: T — F(T)

satisfying standard equations. Conversely F' is comonoidal if equipped with
transformations:

ng: F(A® B) < F(A) ® F(B)
nt:F(T) < T

satisfying dual equations.
If the categories in question are also symmetric, then one must also
assume commutation with the symmetries, e.g.

F(A® B) —2 5 p(A) © F(B)

P Je

F(Be A) —2 5 F(B) @ F(A)

Definition 2.2 Let X and Y be symmetric LDCs. A linear functor F: X —
Y is a pair of functors Fig: X — Y and Fo: X — Y such that Fig is symmet-
ric monoidal with respect to tensor and Fis is symmetric comonoidal with
respect to par. There must be natural transformations:

vg: Fg(A9B) — Fo(A)9Fg(B)
vg: Fg(A) @ Fig(B) — Fg(A® B)

All of this data must satisfy a number of coherence conditions as specified
in [10].

In [10], it is demonstrated that much of the crucial structure of linear
logic falls into the framework of linear functor. For example, both the ex-
ponentials and the additives form linear functors. But it is also a familiar
notion in the following sense:



Theorem 2.3 (Cockett-Seely) A linear functor between *-autonomous
categories (viewed as LDCs) is the same thing as a monoidal functor.

We are interested in a special case of this definition, in which the two
functors are equal. We call this a degenerate linear functor. In this situation,
one can take vy = msp and vy = ng. These assumptions also greatly
simplify the coherence conditions.

We now record the complete definition:

Definition 2.4 Let X and Y be symmetric LDCs. Then a degenerate linear
functor from X to Y is a functor F: X — Y such that F' is symmetric
monoidal with respect to tensor and symmetric comonoidal with respect to
par. This means that there are maps meg, mT,no and n as in Definition
2.1. (We will generally drop the subscripts when this causes no confusion.)
We further require the following diagrams to commute (noting that as usual
J is the linear distribution):

FlA) ® F(BeC) L2 b4y o (F(BY9F(C))

m| %5

F(A® (B®C)) (F(A)® F(B))=F(C)

F(é)l lm’?z‘d
F((A® B)=C) — F(A® B

FawB) @ F(0) "2 (r(a)2F(B)) © F(C)

m| |s

F((A®B)® C) F(A)ye(F(B))® F(C))
F(é)l lid?m
F((A9(B®C)) ——— F(A)F(B®C)

One of the consequences of this definition is that such a functor commutes
with any existing negations:



Lemma 2.5 Let X and Y be symmetric LDCs with negation. If F: X —Y

>~

is a degenerate linear functor, then for all objects A, one has F(A): =
F(AL).

Proof. This can be proved directly, but it also follows from Remark 6 of
[10]. The isomorphisms are constructed as follows.

The map F(A') — F(A)* is the transpose of the map F(A') ®
F(A) — L obtained by
F(AN)@F(A) - F(AT®A) - F(L) L

where each map is evident.
The map F(A)t — F(A") is the transpose of the map T — F(A)9F(A'L)
obtained by

T e F(T) & F(A9AT) & F(AygF(AY)

2.1 Linear natural transformations

We now review the appropriate notions of transformation between linear
functors.

Definition 2.6 e Let X and Y be monoidal categories. Let F,G: X —
Y be monoidal functors. A monoidal transformation 6: F — G is a
natural transformation such that

mg;0 =000;mg: FAQFB «— G(A® B) mT;0 =m7: T — G(T)

The notion of comonoidal transformation is defined dually.

e Let X and Y be LDCs. Let F,G: X — Y be linear functors. A linear
transformation is a pair of natural transformations

9®ZF® HG@ H?ZG? <—>F>g

such that fg is monoidal with respect to tensor, 6 is comonoidal with
respect to par and several coherence conditions are satisfied. See [10].



2.2 Definition of BV-category

The fundamental structure which our models of BV will carry is what we
call a weak interchange structure on an LDC. Basically, this will consist of
an additional monoidal structure for which the tensor product, viewed as a
2-variable functor, is degenerate linear and the structure maps are all linear
natural transformations.

Definition 2.7 A pre-BV-structure on a symmetric LDC C is an additional
monoidal structure (C, @, I) such that the functor (called seq):

0:CxC—C
is a symmetric degenerate linear functor, and the structure isomorphism:
aAo(BoC)— (AoB)oC

is a linear natural transformation, where A © (B @ C) is given the evident
degenerate linear functor structure.

We call a symmetric LDC with a pre-BV-structure a pre-BV-category.

A BV-category is a pre-BV-category together with an isomorphism m: I —
T such that

id id id
Tol O™ poT [T MW BOM Lo

il I NT /

TN ———>1 T

A

The first equation says that m is an isomix map. (For more on this, see the
appendix.) The second says that m ™! acts as a counit for the comultiplica-
tion wt. Together we call these equations the m-equations.

Here A and p are the structure isomorphisms. While the definitions of
pre-BV-category and BV-category are quite concise, they contain a large
amount of information, which we now unpack. The key is the notion of a
weak interchange structure. We begin by focussing on the monoidal case.



3 Weak interchange structure

The following seems to be a new example of a structure for categories with
(multiple) monoidal structures. It obviously takes its name from the inter-
change rule for double categories, although there we have an equality, and
here just a natural transformation. We note that Melliés has also used dou-
ble categories for the semantics of linear logic, although the setting seems
to be entirely different [22].

3.1 Weak interchanges in monoidal categories

Definition 3.1 Suppose that a category (C, ®, T) is a symmetric monoidal
category. Then a weak interchange is an additional monoidal structure
(C,@,I) and natural transformations:

w=wg: (RoU)@(ToV)— (RT)2(UV)
wt: T ToT

such that several diagrams commute which we specify now.

e We must first make sure that the weak interchange commutes with the
associativities. This amounts to:

(RoU) @ (ToV)]e(SoW) —2 > RoU)a[(ToV)a (So W)
w®idl lid@w
(ReT)o (U V))e(SoW) (RoU)[(T®S)o (VeW)]

w] |

[(R@T)@S]@[(U@V)@W]L>[R®(T®S)]@[U®(V®W)]



e The weak interchange must commute with the unit isomorphisms.
This amounts to the following equation, and its dual (with the unit
on the right):

)\—1
T®(A0B) —>— > A0QB

wT®idl TA*@A*
(T@T)@(A@B)?(T@;A)@(T@B)

e The weak interchange must commute with the commutativity isomor-
phism of ®. (We remind the reader that only ® is assumed to be
commutative, and not ©.)

(RoU)® (ToV) ——> (ToV)o(RoU)

Jv ‘|

(R®T)®(U®V)W>(T®R)®(V®U)

e The associativity isomorphism for @ must be monoidal with respect
to ®. This leads two equations:

[Ao(BoO)e[A o (B o) widowy

a®al

[(AoB)oCle[(A o B) ol

(A Ao [(BeB)o (Cad

|

wiw @ id (A Ao (BeB) o (CeC)

e The map wT must be coassociative, i.e.

T YT ToT

le lld QwT

TOQT ——=ToToT
wT @ id

10



We have the following evident observation:

Theorem 3.2 Let C be a monoidal category. Weak interchanges on C cor-
respond bijectively to monoidal structures (2,1) on C such that the functor
©:C x C — C is symmetric monoidal, and the associativity isomorphism
for @ is a monoidal natural transformation.

3.2 Weak interchanges in LDCs

So far, we have only been describing a weak interchange structure on a
monoidal category. In the case of a symmetric LDC, we also assume duals
of the form

w' =w: (C9F) © (D9F) « (CoD)9(EQF)
wilole L

satisfying the duals to the above equations. We then also require the fol-
lowing diagram and its symmetric dual:

(A2 B)® [(C®FE) @ (D®F)] LN [A® (CoFE)] ©[B® (D9F)]
id® w’l l& @
(A2 B)®[(CoD)e(E o F) (AR C)YRFE] 0 [(B® D)gF)|

5i iw’
idRw

[(AoB)®@(CoD)(EoF) ——=[(A®C)2 (B D)e(E0F)

Theorem 3.3 Let C be a symmetric LDC. Then weak interchange struc-
tures correspond bijectively to pre-BV-structures on C.

11



3.3 Consequences of BV-structure

Theorem 3.4 Suppose (C,®, T) and (C,@,I) are monoidal categories con-
nected by a weak interchange, and an isomorphism m: 1 — T satisfying the
m-equations of Definition 2.7. Then the natural transformation 6y, defined
by

(RoU)eV A (R@U)@(I@V)M(R®U)®(T®V)
p @ id

L>(R<8>T)®(U®V) Ro(U®V)

together with the symmetric variant ér defined by evident analogy determine
a linear distribution.

Proof. This is a lengthy exercise in diagram chasing. We verify one of the

equations. Refering to the numbering of [8], equation 5 of the definition of
LDC is:

(T®A)oB———>A0B

A toid
In our system, this becomes:
)\—1
T®(AoB) ———— > A0B
P& z’di
(Tol)® (Ao B) Aot

(id@m)@idl
(T@T)@(A@B)ﬁ(T@A)@(T@B)

This follows from the observation that wt = (id @ m) o p, and then one
of the basic equations for BV-category. O

12



Corollary 3.5 In the case of a BV-category, the resulting linearly distribu-
tive structure is isomiz. (For information on isomiz categories, see the
Appendiz.)

Proof. This follows immediately from the definition of an isomix LDC, as
described in the Appendix. O

Also, we have the following fundamental property of Retoré’s seq con-
nective.

Theorem 3.6 Given a pre-BV-category C with negation, the functor @,
hereafter called seq, is self-dual. Fxplicitly, the isomorphism is given by the
transpose of the map:

/
R oUHeRo) % ReRY oW et X2% 101 %1

Exploiting the dualities of a category with negation, we can claim:

Theorem 3.7 Given a BV-category with negation, we have the following:

o A linearly distributive structure from (C,2,I) to (C,’®, L), obtained
as the dual of that of Lemma 3.4.

e (C,0,1I) and (C,%9, L) are connected by a weak interchange.
e An isomorphism m': L — I giving an isomiz structure from @ to 3.
e The composite mom’: L — T makes the original LDC an isomiz cat-

egory.

4 Retoré’s noncommutative operator on coherence
spaces

We assume the reader is familiar with Coh, the category of coherence spaces
and linear maps, as well as the x-autonomous structure of Coh. Christian
Retoré in [23] exhibited an additional monoidal structure on Coh.

13



Definition 4.1 Suppose that X = (|X|,<x) and Y = (|Y|,Zy) are coher-
ence spaces. Define a new coherence space X @ Y by defining a symmetric,
reflexive relation on | X| x |Y| by the rule:

(z,y) < (2,y) if and only if (z ~ 2" and y =¢) or y —~ ¢/
We call this connective seq.
Theorem 4.2 (Retoré) The seq-connective has the following properties:

e (0 1s noncommutative.

e © is coherently associative, with unit given by the one-point coherence
space. This gives an additional monoidal structure to Coh.

o 0 is self-dual, i.e. (X0Y)t=XtoY"t,

e There are canonical linear morphisms:
XQRY - XY — XY
In each case, the morphism has the identity as its underlying relation.

We can now more succinctly state:
Theorem 4.3 Coh is a BV-category.

Proof. All of the necessary structure maps are certainly present. The only
issue is the commutativity of the coherence equations. This is straightfor-
ward. Note in particular that all of the necessary diagrams commute in the
category of relations. O

5 Probabilistic coherence spaces

Jean-Yves Girard, in [16], introduced the notion of a probabilistic coherence
space, with an eye towards applying ideas from linear logic to the analysis
of quantum structure. We begin by reviewing the basic definitions.

14



Definition 5.1 (Girard) Let X be a finite set. In keeping with the language
of coherence spaces, we will refer to X as the carrier. Let R(X) denote the
set of all functions of the form f: X — R™ where RT denotes the nonnegative
reals. These will be referred to as measures. Then two elements of f,g €
R(X) are said to be polar (notation: f L g) if

> fla)gle) <1

zeX

We will denote Y .y f(x)g(x) by (f,9).
Then, if A is a subset of R(X), one defines AL in the obvious way, i.e.

At ={f e R(X)|Vg e R(X)f L g}

A probabilistic coherence space (PCS) is a set X with an A C R(X) such
that A = AL, The elements of A will be called allowable measures.

Theorem 5.2 (Girard) Let (X, A) be a PCS. Then

e A is nonempty.
o A is a closed, conver subset of R(X).

e A is downward closed under the pointwise order on RX.
Conversely, any subset satisfying these properties is a PCS.

We have the following standard result for constructions of this sort. It
can be seen as an instance of the general notion of abstract orthogonality
due to Hyland and Schalk [19].

Lemma 5.3 Every subset of R(X) of the form At is a PCS.

In contrast to ordinary coherence spaces, it is easier to define linear

implication first, and then use de Morgan duality to define tensor.
Let ® € R(X xY) and f € R(X). Define [®|f € R(Y) by:

[@1f(y) =D ®(x,9)f(x)
reX
This formula defines a bijection between R(X x Y) and the linear maps
from R(X) to R(Y).

15



Theorem 5.4 The set of linear maps from R(X) to R(Y') which take A to
B is a PCS, when viewed as a subset of R(X xY'). This PCS will be denoted
A — B.

This is straightforward, since
A—oB={foglfcAgeB}+
Then one defines
A®B=(A— BH*t

One can equivalently define A® B as the convex closure of {f®g|f € A,g €
B}.

We obtain a category by taking as morphisms from (X, A) to (Y, B) the
linear maps in A —o B. This category will be denoted PCS. We have:

Theorem 5.5 (Girard) PCS is an isomiz x-autonomous category.

Proof. All of the necessary structure is contained in Girard’s constructions
defined above. We note that the tensor product and closed structure have
already been defined. The unit for the tensor is I = ({x},[0,1]), i.e. the
carrier is the one-point set and the allowable measures are those mapping
to the closed unit interval.

One can readily verify that this is also the unit for par, as well as a
dualizing object. O

We will in fact restrict to a subcategory which is more appropriate for
our purpose.

Definition 5.6 Let A = (X, A) be a PCS. Then A is bounded if for all
9 € R(X),

sup(f, g) < oo
feA
A is replete if for all g € R(X), there exists f € A with (f,g) > 0.

A PCS which is bounded and replete will be called a brPCS. The full
subcategory of bounded replete spaces will be denoted BRPCS.

Lemma 5.7 The properties of being bounded and replete are dual, i.e. if A
is bounded, then AL is replete, and vice-versa. In particular, if A is bounded
and replete, so is AL

16



We also note that the bounded, replete objects are closed under these
operations, and so:

Corollary 5.8 BRPCS is a *-autonomous subcategory.

5.1 The seqg-connective for bounded, replete PCS

Before giving our definition of the seq operator in BRPCS, we note that
since X and Y are finite, we have the isomorphism of positive cones of vector
spaces:

R(X xY) 2 R(X) ® R(Y)

So we will now represent elements of R(X) ® R(Y) by Xiecrfi ® gi, with
fi € R(X) and ¢g; € R(Y).

Definition 5.9 We define the seq functor on the category PCS by the
formula:

A@B:{Zfi@)gi]WfieAand ZgiEB}

el i€l

It would seem that the the self-duality of the @-connective follows from
the structure of being a BV-category, but in fact we need it to see that we
do in fact have an object in BRPCS. Hence we give a direct proof.

Theorem 5.10 For any bounded, replete PCS, we have the equation:
(Ao B)t = At o B+

Proof. We first show that At@B+ C (A2B)*. Solet Y fi®vg; € AtoB*.
Thus for all i, f; € A+ and >.9i € B*t. Let Y. hj®kj € Ao B. So for all
J, hj € Aand ) k; € B. We have

(D Ffi0gi, ) hj@ky) = (fihs) (g k;) < [Hg&}X(fuhﬁ]'Z@nkﬁ <1
i J ’

i3 (2]
SoY fi®g € (A@B)J‘.

For the converse, let > f; ® g € (A @ B)*. We may suppose that the
set {g;} is linearly independent, and thus there exists a dual basis {h;} such
that

17



(hi,gj) = 0ij

We also suppose that, for all 4,

Si =sup(fi, f) =1
feA

This is allowable, since we know that S; # oo because A is bounded.
Also S; # 0, since A is replete. So if S; # 1 for some ¢, we can replace the
original element with

Z%fi®5igi

We note that given this assumption, we have that f; € AL, as desired.
Also since A is a closed set, for every i, there exists an F; € A with (f;, F;) =
1. It remains to show that > g; € B*.

For contradiction, suppose that this is not the case. Then there exists
a g € B with (3 gi,g) > 1. Let g = > A;jhj. We note that this implies
Y F; ® \h; € A@ B. We now calculate as follows:

(ZFi ® Aihi,ij ® g;) = Z<Fz‘,fi><>\ihi,gi> = Z(AihuQD >1

K3 3

But this contradicts that Y f; ® g; € (A @ B)*. O

Corollary 5.11 If A and B are bounded, replete PCS, that so is A® B.

Proof. The bounded and replete properties are straightforward. The fact
that the space is a PCS follows from the self-duality of the connective.
Evidently, (4@ B)*+ = Ao B. a

Note that we have also proven the following, which will be required in
the next theorem:

Lemma 5.12 FEach element of A® B can be written in the form ), f; ® g;,
where f; € A, Y. g; € B and the set {g;}icr is linearly independent.

18



Theorem 5.13 The structure (BRPCS, @, 1) is a monoidal category.

Proof. Let v=>3,(3_; fij ® 9i;j) ® hi € (A© B) © C, where

Zhl eC, Vi Zgij € B, and Vij fij €A
i J

Then we have

Zgij®hi:Z(Zgij)®hieB@Cand v:Zfij®(gij®h,~)
Sove Ao (BoO).

Conversely. let v=>". fiow; € Ao (BoC). So fic Aand w =), w; €
B @ C. We note that w = . g; ® h; with g; € B and ) ; h; € C. By
the previous lemma, we may assume the set {h;};c is linearly independent,
and hence may be completed to a basis. Then for each w;, we may write:

wi:Zgi]—@)hj
J

So:
Zwi = Zgij ® h; = Z(Zgw) ® hj with Zgij =9, €B
: ij i ’
Hence:

v=>Y £ g;0h)=> O fi®g)®h

J

It is straightforward to verify that this last expression describes an element

of Ao (B ().
The unit is a one-point set, with the unit interval as its allowable mea-
sures. 0
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Note that the unit is the same for all three connectives. We next note
that the seg-connective is indeed intermediate to tensor and par, i.e.

Theorem 5.14 In the category PCS, we have inclusions:
A®@BC Ao BC A®%B

Proof. We will show that A® B C At — B. Solet Y. fi®g; € A2 B. Let
h € AL. Then

[Z fiogl(h)(y) = Zfi(l’)gi(y)hi(x) = Zgi(y) > fil@)hi(x) < Zgi(y)

By downward closure, we conclude that the lefthand side is in B.
For the other inclusion, one can simply apply the dualizing functor to
the first inequality to obtain:

AteBt=At =Bt c(AoB*r=4t0Bt

Next we demonstrate the existence of the crucial map that we need:

Lemma 5.15 The category BRPCS has a weak interchange, i.e. a map:
w:(RoU)@(ToV)—=(RT)o(UV)
satisfying the previously stated conditions.

Proof. A typical element of (RO U)® (T'@V) is of the form v = ), s; ® wj,
with s; € RoU and w; € TQV. Thus s; = Zj rj®ujand r; € R, Zj uj € U.
Also w; = ) ) t, ® vy, satisfying similar conditions. Then such an element
is mapped by the weak interchange to

> (rj @te) @ (uj ® vg)
7.k

It is then straightforward to verify that this vector isin (RQT)@(URV')
O

We now claim the main result for this section.
Theorem 5.16 BRPCS is a BV-category.

Proof. Again, we have established all of the necessary morphisms, and the
commutativity of the coherence diagrams is straightforward. O
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6 Conclusion

6.1 Related work

There has been other work on categorical versions of various deep inference
systems prior to this. In addition to the Hughes work already mentioned
[18], there are the works of Fiihrmann-Pym [14], as well as McKinley [21].
(In particular, McKinley also noted that the inference rules for the seq-
connective amount to monoidality.) These both consider classical logic deep
inference systems rather than BV. The fundamental idea here is to replace
the usual notion of equivalence between proofs with inequalities, thereby
avoiding the semantic collapse which occurs in naive attempts to model
classical logic categorically.

Further work on categorical models of classical logic has focussed on the
significance of the medial rule as considered in [7]. We mention in particular
the works of Lamarche and Strassburger [20, 25]. The medial rule is of a
similar type as our weak interchange, and occurs in a very different context.

The category of probabilistic coherence spaces is also considered by
Danos and Ehrhard in [11]. In that paper, the authors show that this cat-
egory is not only *-autonomous, but supports the structure of a full model
of classical linear logic. In particular, they construct a comonad modelling
the exponential fragment. They then show that in the associated model of
the A-calculus, one can interpret a probabilistic version of PCF.

6.2 Future work

There are several ideas worth further exploration arising from this paper.
First would be the extension of the notion of probabilistic coherence space
to general measure spaces, as opposed to finite sets. It is likely that the
resulting category will no longer be closed, but rather have a nuclear ideal
in the sense of [1].

Also we would like to see how general our formula is. In particular, it
should be applicable to categories such as Girard’s category of quantum co-
herence spaces [16]. Ehrhard’s category of finiteness spaces [12], or Ehrhard’s
category of Kdthe spaces [13].

We are hopeful that we can use the structure of BV to improve upon
the discrete quantum causal dynamics of [6]. The additional connective
of BV should yield a better encoding than MLL, as used in [6]. This is the
subject of an ongoing discussion between Blute, Guglielmi, Panangaden and
Strassburger.
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Finally, it is reasonable to ask whether this definition of model of BV
is definitive. This will only be settled when the relationship between proof
nets for BV and the free BV-category is established. This issue must be
postponed for a later day. We claim here that our equations form a minimal
basis for the correct notion of model. Surely any notion of model will satisfy
these eqations. We claim here only that they are sufficient to generate the
key isomorphisms of the theory, and that the notion of degenerate linear
functor provides a succinct and convenient notion for organizing this data.
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7 Appendix: LDCs and the Mix rule

We assume the reader is familiar with the notion of linearly distributive
category with negation [8, 4]. This will be our starting point. In this first
definition, we will use neutral symbols for the connectives, as it will apply
to several combinations of connectives in BV. This first definition is due to
Cockett and Seely [9].

Definition 7.1 Let C be a category with monoidal structures (C, (), L)
and (C, 0, T), forming a linearly distributive category. So we have natural
transformations of the form

Sp: A (BOC) — (AQ BYOC

d:(AOB) O C — AQ(BO(C)

making the diagrams of [8] commute. We will hereafter refer to both maps
as d, since the type will always be clear from the context.

Then an isomix structure for this category consists of an isomorphism
m: L — T such that the following diagram commutes:

A0B—110% 4~ (1op) MOWMOB) 4 5 1op
e idl OR
(A0L) O B (AOT)OB
(idOm) O idl lu‘loid
(A0T)O B —L > A0(T O B) idOu”! AOB
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In the above, all of the isomorphisms are the coherent isos specified by
the monoidal structure. The map m is called the isomiz map

We mention the following result, which is stated in [9]. It deals with the
case in which the two units are equal, and not merely isomorphic.

Lemma 7.2 If Cis a LDC such that T = L, then C is an isomiz LDC.

We also mention an additional result not explicitly stated in [9] which
has proven to be useful. The importance of isomix categories has also been
noted by Strassburger and Lamarche [25, 20], which is where the following
result can be found. For them, isomix plays a large role in modelling classical
logic via the use of the medial rule [7].

Theorem 7.3 An isomophism m: L — T is an isomixz map if and only if
the following diagram commutes:

id®m
1ol —> 1T

o I
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