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Abstract

Diffusion models are recent state-of-the-art methods for image generation and
likelihood estimation. In this work, we generalize continuous-time diffusion mod-
els to arbitrary Riemannian manifolds and derive a variational framework for
likelihood estimation. Computationally, we propose new methods for computing
the Riemannian divergence which is needed in the likelihood estimation. More-
over, in generalizing the Euclidean case, we prove that maximizing this variational
lower-bound is equivalent to Riemannian score matching. Empirically, we demon-
strate the expressive power of Riemannian diffusion models on a wide spectrum
of smooth manifolds, such as spheres, tori, hyperboloids, and orthogonal groups.
Our proposed method achieves new state-of-the-art likelihoods on all benchmarks.

1 Introduction

By learning to transmute noise, generative models seek to uncover the underlying generative
factors that give rise to observed data. These factors can often be cast as inherently geometric
quantities as the data itself need not lie on a flat Euclidean space. Indeed, in many scientific
domains such as high-energy physics (Brehmer & Cranmer, 2020), directional statistics (Mardia &
Jupp, 2009), geoscience (Mathieu & Nickel, 2020), computer graphics (Kazhdan et al., 2006), and
linear biopolymer modeling such as protein and RNA (Mardia et al., 2008; Boomsma et al., 2008;
Frellsen et al., 2009), data is best represented on a Riemannian manifold with a non-zero curvature.
Naturally, to effectively capture the generative factors of these data, we must take into account the
geometry of the space when designing a learning framework.

Recently, diffusion based generative models have emerged as an attractive model class that not
only achieve likelihoods comparable to state-of-the-art autogressive models (Kingma et al., 2021)
but match the sample quality of GANs without the pains of adversarial optimization (Dhariwal &
Nichol, 2021). Succinctly, a diffusion model consists of a fixed Markov chain that progressively
transforms data to a prior defined by the inference path, and a generative model which is another
Markov chain that is learned to invert the inference process (Ho et al., 2020; Song et al., 2021b).

While conceptually simple, the learning framework can have a variety of perspectives and goals.
For example, Huang et al. (2021) provide a variational framework for general continuous-time
diffusion processes on Euclidean manifolds as well as a functional Evidence Lower Bound (ELBO)
that can be equivalently shown to be minimizing an implicit score matching objective. At present,
however, much of the success of diffusion based generative models and its accompanying variational
framework is purpose built for Euclidean spaces, and more specifically, image data. It does not
easily translate to general Riemannian manifolds.

In this paper, we introduce Riemannian Diffusion Models (RDM)—generalizing conventional
diffusion models on Euclidean spaces to arbitrary Riemannian manifolds. Departing from diffusion
models on Euclidean spaces, our approach uses the Stratonovich SDE formulation for which the
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conventional chain rule of calculus holds, which, as we demonstrate in section §3, can be exploited
to define diffusion on a Riemannian manifold. Furthermore, we take an extrinsic view of geometry
by defining the Riemannian manifold of interest as an embedded sub-manifold within a higher
dimensional (Euclidean) ambient space. Such a choice enables us to define both our inference
and generative SDEs using the coordinate system of the ambient space, greatly simplifying the
implementation of the theory developed using the intrinsic view.

Main Contributions. We summarize our main contributions below:

• We introduce a variational framework built on the Riemannian Feynman-Kac representation and
Giransov’s theorem. In Theorem 2 we derive a Riemannian continuous-time ELBO, strictly gen-
eralizing the CT-ELBO in Huang et al. (2021) and prove in Theorem 4 that its maximization is
equivalent to Riemannian score matching for marginally equivalent SDEs (Theorem 3).

• To compute the Riemannian CT-ELBO it is necessary to compute the Riemannian divergence of
our parametrized vector field, for which we introduce a QR-decomposition-based method that is
computationally efficient for low dimensional manifolds as well a projected Hutchinson method
for scalable unbiased estimation. Notably, our approach does not depend on the closest point
projection which may not be freely available for many Riemannian manifolds of interest.

• We also provide a variance reduction technique to estimate the Riemannian CT-ELBO objective
that leverages importance sampling with respect to the time integral, which crucially avoids care-
fully designing the noise schedule of the inference process.

• Empirically, we validate our proposed models on spherical manifolds towards modelling natural
disasters as found in earth science datasets, products of spherical manifolds (tori) for protein
and RNA, synthetic densities on hyperbolic spaces and orthogonal groups. Our empirical results
demonstrate that RDM leads to new state-of-art likelihoods over prior manifold generative models.

2 Background

In this section, we provide the necessary background on diffusion models and key concepts
from Riemannian geometry that we utilize to build RDMs. For a short review of the latter, see
Appendix A or Ratcliffe (1994) for a more comprehensive treatment of the subject matter.

2.1 Euclidean diffusion models

A diffusion model can be defined as the solution to the (Itô) SDE (Øksendal, 2003),

dX = µdt+ σ dBt, (1)

with the initial condition X0 following some unstructured prior p0 such as the standard normal
distribution, where Bt is a standard Brownian motion, and µ and σ are the drift and diffusion coef-
ficients of the diffusion process, which control the deterministic forces driving the evolution and the
amount of noise injected at each time step. This provides us a way to sample from the model, via
numerically solving the dynamics from t = 0 to t = T for some fixed termination time T . To train
the model via maximum likelihood, we require an expression for the log marginal density of XT ,
denoted by log p(x, T ), which is generally intractable.

The marginal likelihood can be represented using a stochastic instantaneous change-of-variable for-
mula, by applying the Feynman-Kac theorem to the Fokker-Planck PDE of the density. An applica-
tion of Girsanov’s theorem followed by an application of Jensen’s inequality leads to the following
variational lower bound (Huang et al., 2021; Song et al., 2021a):

log p(x, T ) ≥ E

[
log p0(YT )−

∫ T

0

(
1

2
‖a(Ys, s)‖22 +∇ · µ(Ys, T − s)

)
ds

∣∣∣∣∣Y0 = x

]
(2)

where a is the variational degree of freedom, ∇· denotes the (Euclidean) divergence operator, and
Ys follows the inference SDE (the generative coefficients are evaluated in reversed time, i.e. T − s)

dY = (−µ+ σa) ds+ σ dB̂s (3)

with B̂s being another Brownian motion. This is known as the continuous-time evidence lower
bound, or the CT-ELBO for short.
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2.2 Riemannian manifolds

We work with a d-dimensional Riemannian manifold (M, g) embedded in a higher dimensional
ambient space Rm, for m > d. This assumption does not come with a loss of generality, since any
Riemannian manifold can be isometrically embedded into a Euclidean space by the Nash embedding
theorem (Gunther, 1991). In this case, the metric g coincides with the pullback of the Euclidean
metric by the inclusion map. Now, given a coordinate chart ϕ :M→ Rd and its inverse ψ = ϕ−1,
we can define Ẽj for j = 1, · · · , d to be the basis vectors of the tangent space TxM at point x ∈M.
The tangent space can be understood as the pushforward of the Euclidean derivation of the patch
space along ψ; i.e., for any smooth function f ∈ C∞(M), Ẽj(f) = ∂

∂x̃j
f ◦ ψ.

We denote by Px the orthogonal projection onto the linear subspace spanned by the column vectors
of the Jacobian Jx = dψ/dx̃. Specifically, Px can be constructed via Px = Jx(JTx Jx)−1JTx . Note
that this subspace is isomorphic to the tangent space TxM, which itself is a subspace of TxRm. As
a result, we identify this subspace with TxM. Lastly, we refer to the action of Px as the projection
onto the tangential subspace, and Px itself as the tangential projection.

2.3 SDE on manifolds

Unlike Euclidean spaces, Riemannian manifolds generally do not possess a vector space structure.
This prevents the direct application of the usual (stochastic) calculus. We can resolve this by defining
the process via test functions. Specifically, let Vk be a family of smooth vector fields onM, and let
Zk be a family of semimartingales (Protter, 2005). Symbolically, we write

dXt =
∑
k

Vk(Xt) ◦ dZkt if df(Xt) =
∑
k

Vk(f)(Xt) ◦ dZkt (4)

for any f ∈ C∞(M) (Hsu, 2002). The ◦ in the second differential equation is to be interpreted in
the Stratonovich sense (Protter, 2005). The use of the Stratonovich integral is the first step deviating
from the Euclidean diffusion model (1), as the Itô integral does not follow the usual chain rule.

Working with this abstract definition is not always convenient, so instead we work with specific
coordinates of M. Let ϕ be a chart, and let ṽ = (ṽjk) be a matrix representing the coefficients
of Vk in the coordinate basis—i.e. Vk(f) =

∑d
j=1 ṽjk

∂
∂x̃j

f ◦ ϕ−1
∣∣
x̃=ϕ(x)

. This allows us to
write dϕ(Xt) = ṽ ◦ dZ. Similarly, supposeM is a submanifold embedded in Rm, and denote by
v = (vik) the coefficients wrt the Euclidean basis. v and ṽ are related by v = dϕ−1

dx̃ ṽ. Then we can
express the dynamics of X as a regular SDE using the Euclidean space’s coefficients dX = v ◦ dZ.
Notably, by the relation between v and ṽ, the column vectors of v are required to lie in the span of
the column vectors of the Jacobian dϕ−1

dx̃ which restricts the dynamics to move tangentially onM.

3 Riemannian diffusion models

We now develop a variational framework to estimate the likelihood of a diffusion model defined on
a Riemannian manifold (M, g). Let Xt ∈M be a process solving the following SDE:

Generative SDE: dX = V0 dt+ V ◦ dBt, X0 ∼ p0 (5)

where V0 and the columns of the diffusion matrix1 V := [V1, · · · , Vw] are smooth vector fields
on M, and Bt is a w-dimensional Brownian motion. The law of the random variable Xt can be
written as p(x, t)µ(dx), where p(x, t) is the probability density function and µ is the d-dimensional
Hausdorff measure on the manifold associated with the Riemannian volume density. Let V · ∇ be
a differential operator defined by (V · ∇g)U :=

∑w
k=1(∇g · Uk)Vk, where ∇g · Uk denotes the

Riemannian divergence of the vector field Uk:

∇g · Uk = |G|− 1
2

d∑
j=1

∂

∂x̃j
(|G| 12 ũjk). (6)

Our first result is a stochastic instantaneous change-of-variable formula for the Riemannian SDE by
applying the Feynman-Kac theorem to the Fokker Planck PDE of the density p(x, t).

1The multiplication is interpreted similarly to matrix-vector multiplication, i.e. V ◦dBt =
∑w

k=1 Vk ◦dBk
t .
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Theorem 1 (Marginal Density). The density p(x, t) of the SDE (5) can be written as

p(x, t) = E

[
p0 (Yt) exp

(
−
∫ t

0

∇g ·
(
V0 −

1

2
(V · ∇g)V

)
ds

) ∣∣∣∣∣Y0 = x

]
(7)

where the expectation is taken wrt the following process induced by a Brownian motion B′s

dY = (−V0 + (V · ∇g)V ) ds+ V ◦ dB′s. (8)

For effective likelihood maximization, we require access to log p and its gradient. Towards this goal,
we prove the following Riemannian CT-ELBO which serves as our training objective and follows
from an application of change of measure (Girsanov’s theorem) and Jensen’s inequality.

Theorem 2 (Riemannian CT-ELBO). Let B̂s be a w-dimensional Brownian motion, and let
Ys be a process solving the following

Inference SDE: dY = (−V0 + (V · ∇g)V + V a) ds+ V ◦ dB̂s, (9)

where a : Rm × [0, T ]→ Rm is the variational degree of freedom. Then we have

log p(x, T ) ≥ E

[
log p0(YT )−

∫ T

0

1

2
‖a(Ys, s)‖22 +∇g ·

(
V0 −

1

2
(V · ∇g)V

)
ds

∣∣∣∣∣Y0 = x

]
,

(10)

where all the generative degree of freedoms Vk are evaluated in the reversed time direction.

3.1 Computing Riemannian divergence

Similar to the Euclidean case, computing the Riemannian CT-ELBO requires computing the diver-
gence “∇g·” of a vector field, which can be achieved by applying the following identity.

Proposition 1 (Riemannian divergence identity). Let (M, g) be a d-dimensional Rieman-
nian manifold. For any smooth vector field Vk ∈ X(M), the following identity holds:

∇g · Vk =

d∑
j=1

〈
∇Ẽj

Vk, Ẽ
j
〉
g
. (11)

Furthermore, if the manifold is a submanifold embedded in the ambient space Rm equipped
with the induced metric g = ι∗ḡ, then

(∇g · Vk)(x) = tr

(
Px

dvk
dx

Px

)
, (12)

where vk = (v1k, · · · , vmk) are the ambient space coefficients Vk =
∑m
i=1 vik

∂
∂xi

and Px is
the orthogonal projection onto the tangent space.

Intrinsic coordinates. The patch-space formula (6) can be used to compute the Riemannian diver-
gence. This view was adopted by Mathieu & Nickel (2020), where they combined the Hutchinson
trace identity and the internal coordinate formula to estimate the divergence. The drawbacks of this
framework include: (1) obtaining local coordinates may be difficult for some manifolds, hindering
generality in practice; (2) we might need to change patches, which complicates implementations;
and (3) the inverse scaling of

√
|G| might result in numerical instability and high variance.

Closest-point projection. The coordinate-free expression (11) leads to the closest-point projection
method proposed by Rozen et al. (2021). Concretely, define the closest-point projection by π(x) :=
arg miny∈M ‖x− y‖, where ‖·‖ is the Euclidean norm. Let Vk(x) be the derivation corresponding
to the ambient space vector vk(x) = Pπ(x)u(π(x)) for some unconstrainted u : Rm → Rm. Rozen
et al. (2021) showed that ∇g · Vk(x) = ∇ · vk(x), since vk is infinitesimally constant in the normal
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direction to TxM. This allows us to compute the divergence directly in the ambient space. However,
the closest-point projection map π may not always be easily obtained.

QR decomposition. An alternative to the closest-point projection is to instead search for an or-
thogonal basis for TxM. Let Q = [e1, · · · , ed, n1, · · · , nm−d] be an orthogonal matrix whose
first d columns span the TxM, and the remaining m − d vectors span its orthogonal complement
TxM⊥. To construct Q we can simply sample d vectors—e.g. from N (0, 1)–in the ambient space
and orthogonally project them to TxM using Px. These vectors, although not orthogonal yet, form
a basis for TxM. Next we concatenate them with m − d random vectors and apply a simple QR
decomposition to retrieve an orthogonal basis. Using Q we may rewrite equation (12) as follows:

(∇g · Vk)(x) = tr

(
QQ>Px

dvk
dx

Px

)
= tr

(
(PxQ)>

dvk
dx

PxQ

)
=

d∑
j=1

e>j
dvk
dx

ej (13)

where we used (1) the orthogonality of Q, (2) the cyclic property of trace, (3) and the fact that
Pxej = ej and Pxnj = 0. In practice, concatenation with the remaining m − d vectors is not
needed as they are effectively not used in computing the divergence, speeding up computation when
m� d. Moreover, the vector-Jacobian product can be computed in O(m) time using reverse-mode
autograd and importantly does not require the closest-point projection π.

Projected Hutchinson. When QR is too expensive for higher dimensional problems, the Hutchin-
son trace estimator (Hutchinson, 1989) can be employed within the extrinsic view representa-
tion (12). For example, let z be a standard normal vector (or a Rademacher vector), we have
(∇g ·Vk)(x) = Ez∼N ,z′=Pxz[z

′> dvk
dx z

′]. Different from a direct application of the trace estimator to
the closest-point method, we directly project the random vector to the tangent subspace. Therefore,
the closest-point projection is again not needed.

3.2 Fixed-inference parameterization

Following prior work (Sohl-Dickstein et al., 2015; Ho et al., 2020; Huang et al., 2021), we let the
inference SDE (9) be defined as a simple noise process taking observed data to unstructured noise:

dY = U0 dt+ V ◦ dB̂s, (14)

where U0 = 1
2∇g log p0 and V is the tangential projection matrix; that is, Vk(f)(x) =∑m

j=1(Px)jk
∂f
∂xj

for any smooth function f . This is known as the Riemannian Langevin diffu-
sion (Girolami & Calderhead, 2011). As long as p0 satisfies a log-Sobolev inequality, the marginal
distribution of Ys (i.e. the aggregated posterior) converges to p0 at a linear rate in the KL divergence
(Wang et al., 2020). For compact manifolds, we set p0 to be the uniform density, which means
U0 = 0, and (14) is reduced to the extrinsic construction of Brownian motion on M (Hsu, 2002,
Section 1.2). The benefits of this fixed-inference parameterization are the following:

Stable and Efficient Training. With the fixed-inference parameterization we do not need to opti-
mize the vector fields that generate Ys, and the Riemannian CT-ELBO can be rewritten as:

E[log p0(YT )]−
∫ T

0

EYs

[
1

2
‖a(Ys, s)‖22 +∇g ·

(
V0 −

1

2
(V · ∇g)V

) ∣∣∣∣∣Y0 = x

]
ds, (15)

where the first term is a constant wrt the model parameters (or it can be optimized separately if we
want to refine the prior), and the time integral of the second term can be estimated via importance
sampling (see Section 3.3). A sample of Ys can be drawn cheaply by numerically integrating (14),
without requiring a stringent error tolerance (see Section 5.2 for an empirical analysis), which allows
us to estimate the time integral in (15) by evaluating a(Ys, s) at a single time step s only.

Simplified Riemannian CT-ELBO. The CT-ELBO can be simplified as the differential operator
V · ∇g applied to V yields a zero vector when V is the tangential projection.

Proposition 2. If V is the tangential projection matrix, then (V · ∇g)V = 0.

This means that we can express the generative SDE V0 using the variational parameter a via

dX = (V a(X,T − t)− U0(X,T − t)) dt+ V ◦ dB̂t, (16)
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with the corresponding Riemannian CT-ELBO:

E[log p0(YT )]−
∫ T

0

EYs

[
1

2
‖a‖22 +∇g · (V a− U0)

∣∣∣∣∣Y0 = x

]
ds. (17)

3.3 Variance reduction

The inference process can be more generally defined to account for a time reparameterization. In
fact, this leads to an equivalent model if one can find an invariant representation of the temporal
variable. Learning this time rescaling can help to reduce variance (Kingma et al., 2021).

In principle, we can adopt the same methodology, but this would further complicate the parameteri-
zation of the model. Alternatively, we opt for a simpler view for variance reduction via importance
sampling. We estimate the time integral “

∫
. . . ds” in (17) using the following estimator:

I :=
1

q(s)

(
1

2
‖a‖22 +∇g · (V a− U0)

)
where s ∼ q(s) and Ys ∼ q(Ys | Y0), (18)

where q(s) is a proposal density supported on [0, T ]. We parameterize q(s) using a 1D monotone
flow (Huang et al., 2018). As the expected value of this estimator is the same as the time integral
in (17), it is unbiased. However, this means we cannot train the proposal distribution q(s) by max-
imizing this objective, since the gradient wrt the parameters of q(s) is zero in expectation. Instead,
we minimize the variance of the estimator by following the stochastic gradient wrt q(s)

∇q(s)Var(I) = ∇q(s)E[I2]−�����∇q(s)E[I]2 = ∇q(s)E[I2]. (19)

The latter can be optimized using the reparameterization trick (Kingma & Welling, 2014) and is a
well-known variance reduction method in a multitude of settings (Luo et al., 2020; Tucker et al.,
2017). It can be seen as minimizing the χ2-divergence from a density proportional to the magnitude
of EYs [I] (Dieng et al., 2017; Müller et al., 2019).

3.4 Connection to score matching

In the Euclidean case, it can be shown that maximizing the variational lower bound of the fixed-
inference diffusion model (16) is equivalent to score matching (Ho et al., 2020; Huang et al., 2021;
Song et al., 2021a). In this section, we extend this connection to its Riemannian counterpart.

Let q(ys, s) be the density of Ys following (14), marginalizing out the data distribution q(y0, 0).
The score function is the Riemannian gradient of the log-density ∇g log q. The following theorem
tells us that we can create a family of inference and generative SDEs that induce the same marginal
distributions over Ys and XT−s as (16) if we have access to its score.

Theorem 3 (Marginally equivalent SDEs). For λ ≤ 1, the marginal distributions of XT−s
and Ys of the processes defined as below

dY =

(
U0 −

λ

2
∇g log q

)
ds+

√
1− λV ◦ dB̂s Y0 ∼ q(·, 0) (20)

dX =

((
1− λ

2

)
∇g log q − U0

)
dt+

√
1− λ ◦ V dB̂t X0 ∼ q(·, T ) (21)

both have the density q(·, s). In particular, λ = 1 gives rise to an equivalent ODE.

This suggests if we can approximate the score function, and plug it into the reverse process (21), we
obtain a time-reversed process that induces approximately the same marginals.

Theorem 4 (Score matching equivalency). For λ < 1, let E∞λ denote the Riemannian CT-
ELBO of the generative process (21), with∇g log q replaced by an approximate score Sθ, and
with (20) being the inference SDE. Assume Sθ is a compactly supported smooth vector. Then

EY0
[E∞λ ] = −C1

∫ T

0

EYs

[
‖Sθ −∇g log q‖2g

]
ds+ C2 (22)
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Figure 1: Density of models trained on earth datasets. Red dots are samples from the test set.

where C1 > 0 and C2 are constants wrt θ.

The first implication of the theorem is that maximizing the Riemannian CT-ELBO of the plug-in
reverse process is equivalent to minimizing the Riemannian score-matching loss. Second, if we set
λ = 0, from (135) (in the appendix), we have V a = Sθ, which is exactly the fixed-inference training
in §3.2. That is, the vector V a trained using equation (17) is actually an approximate score, allowing
us to extract an equivalent ODE by substituting V a for ∇g log q in (20,21) by setting λ = 1.

4 Related work
Diffusion models. Diffusion models can be viewed from two different but ultimately complimentary
perspectives. The first approach leverages score based generative models (Song & Ermon, 2019;
Song et al., 2021b), while the second approach treats generative modeling as inverting a fixed noise-
injecting process (Sohl-Dickstein et al., 2015; Ho et al., 2020). Finally, continuous-time diffusion
models can also be embedded within a maximum likelihood framework (Huang et al., 2021; Song
et al., 2021a), which represents the special case of prescribing a flat geometry—i.e. Euclidean—to
the generative model and is completely generalized by the theory developed in this work.

Riemannian Generative Models. Generative models beyond Euclidean manifolds have recently
risen to prominence with early efforts focusing on constant curvature manifolds (Bose et al., 2020;
Rezende et al., 2020). Another line of work extends continuous-time flows (Chen et al., 2018a) to
more general Riemannian manifolds (Lou et al., 2020; Mathieu & Nickel, 2020; Falorsi & Forré,
2020). To avoid explicitly solving an ODE during training, Rozen et al. (2021) propose Moser
Flow whose objective involves computing the Riemannian divergence of a parametrized vector field.
Concurrent to our work, De Bortoli et al. (2022) develop Riemannian score-based generative models
for compact manifolds like the Sphere. While similar in endeavor, RDMs are couched within the
the maximum likelihood framework. As a result our approach is directly amenable to variance
reduction techniques via importance sampling and likelihood estimation. Moreover, our approach
is also applicable to non-compact manifolds such as hyperbolic spaces, and we demonstrate this in
our experiments on a larger variety of manifolds including the orthogonal group and toroids.

5 Experiments

We investigate the empirical caliber of RDMs on a range of manifolds. We instantiate RDMs by
parametrizing a in (16) using an MLP and maximize the CT-ELBO (17). We report our detailed
training procedure—including selected hyperparameters—for all models in §D.

5.1 Sphere

For spherical manifolds, we model the datasets compiled by Mathieu & Nickel (2020), which consist
of earth and climate science events on the surface of the earth such as volcanoes (NGDC/WDS,
2022b), earthquakes (NGDC/WDS, 2022a), floods (Brakenridge, 2017), and fires (EOSDIS, 2020).

7



Volcano Earthquake Flood Fire

Mixture of Kent −0.80±0.47 0.33±0.05 0.73±0.07 −1.18±0.06

Riemannian CNF (Mathieu & Nickel, 2020) −0.97±0.15 0.19±0.04 0.90±0.03 −0.66±0.05

Moser Flow (Rozen et al., 2021) −2.02±0.42 −0.09±0.02 0.62±0.04 −1.03±0.03

Stereographic Score-Based −4.18±0.30 −0.04±0.11 1.31±0.16 0.28±0.20

Riemannian Score-Based (De Bortoli et al., 2022) −5.56±0.26 −0.21±0.03 0.52±0.02 −1.24±0.07

RDM −6.61±0.97 −0.40±0.05 0.43±0.07 −1.38±0.05

Dataset size 827 6120 4875 12809

Table 1: NLL scores for each method on earth datasets. Bold shows best results (up to statistical significance).
Means and standard deviations are calculated over 5 runs. Baselines taken from De Bortoli et al. (2022).

Figure 2: Variance reduction with
importance sampling.

Figure 3: Direct sampling vs numerical integration of Brownian mo-
tion. Numbers in legends indicate the number of time steps.

Figure 4: Ramachandran contour plot of the model density for protein datasets. Red dots are set test samples.

In Table 1 for each dataset we report average and standard deviation of test negative log likelihood
on 5 different runs with different splits of the dataset. In Figure 1 we plot the model density in blue
while the test data is depicted with red dots.

Variance reduction. We demonstrate the effect of applying variance reduction on optimizing the
Riemannian CT-ELBO (17) using the earthquake dataset. As shown in Figure 2, learning an impor-
tance sampling proposal effectively lowers the variance and speeds up training.

5.2 Tori

For tori, we use the list of 500 high-resolution proteins compiled in Lovell et al. (2003) and select
113 RNA sequences listed in Murray et al. (2003). Each macromolecule is divided into multiple
monomers, and the joint structure is discarded—we model the lower dimensional density of the
backbone conformation of the monomer. For the protein data, this corresponds to 3 torsion angles
of the amino acid. As one of the angles is normally 180°, we also discard it, and model the density
over the 2D torus. For the RNA data, the monomer is a nucleotide described by 7 torsion angles in
the backbone, represented by a 7D torus. For protein, we divide the dataset by the type of side chain
attached to the amino acid, resulting in 4 datasets, and we discard the nucleobases of the RNA.

In Table 2 we report the NLL of our model. Our baseline is a mixture of 4, 096 power spherical
distributions (De Cao & Aziz, 2020, MoPS). We observe that RDM outperforms the baseline across
the board, and the difference is most noticeable for the RNA data, which has a higher dimensionality.

Numerical integration ablation. We estimate the loss (17) by integrating the inference SDE onM.
To study the effect of integration error, we experiment with various numbers of time steps evenly
spaced between [0, s] on Glycine. Also, as we can directly sample the Brownian motion on tori

8



General Glycine Proline Pre-Pro RNA

MoPS 1.15±0.002 2.08±0.009 0.27±0.008 1.34±0.019 4.08±0.368

RDM 1.04±0.012 1.97±0.012 0.12±0.011 1.24±0.004 −3.70±0.592

Dataset size 138208 13283 7634 6910 9478
Table 2: Negative test log-likelihood for each method on Tori datasets. Bold shows best results (up to statistical
significance). Means and standard deviations are calculated over 5 runs.

without numerical integration, we use it as a reference (termed direct loss) for comparison. Figure
3 shows while fewer time steps tend to underestimate the loss, the model trained with 100 time
steps is already indistinguishable from the one trained with direct sampling. We also find numerical
integration is not a significant overhead as each experiment takes approximately the same wall-clock
time with identical setups. This is because the inference path does not involve the neural module a.

5.3 Hyperbolic Manifolds

Figure 5: Hyperbolic Manifold. Top: data.
Bottom: learned Density

Hyperbolic manifolds provide an example whose closest-
point projection is not cheap to obtain, and a claimed
closest-point projection in recent literature is in fact not
the closest Euclidean projection (Skopek et al., 2019)
(see §C for more details). To demonstrate the general-
ity of our framework, we model the synthetic datasets in
Figure 5, first introduced by Bose et al. (2020); Lou et al.
(2020). Since hyperbolic manifolds are not compact, we
need a non-zero drift to ensure the inference processs is
not dissipative. We define the prior as the standard normal
distribution on the yz-plane and let U0 be 1

2∇g log p0, so that Ys will revert back to the origin.

5.4 Special Orthogonal Group

Figure 6: SO(3). Left: synthetic multi-
modal density. Right: learned density.

Another example whose closest-point projection is ex-
pensive to compute is the orthogonal group, as it requires
performing the singular value decomposition. To evalu-
ate our framework on this matrix group, we generate data
using the synthetic multimodal density defined on SO(3)
from Brofos et al. (2021). We view it as a submanifold
embedded in R3×3, therefore d = 3 and m = 9. We
use the projected Hutchinson to estimate the Riemannian
divergence. Since the data are 3D rotational matrices, we can visualize them using the Euler an-
gles. We plotted the data density and the learned model density in Figure 6, where each coordinate
represents the rotation around that particular axis.

6 Conclusion

In this paper, we introduce RDMs that extend continuous-time diffusion models to arbitrary
Riemannian manifolds—including challenging non-compact manifolds like hyperbolic spaces. We
provide a variational framework to train RDMs by optimizing a novel objective, the Riemannian
Continuous-Time ELBO. To enable efficient and stable training we provide several key tools such as
a fixed-inference paramterization of the SDE in the ambient space, new methodological techniques
to compute the Riemannian divergence, as well as an importance sampling procedure with respect
to the time integral to reduce the variance of the loss. On a theoretical front, we also show deep
connections between our proposed variational framework and Riemannian score matching through
the construction of marginally equivalent SDEs. Finally, we complement our theory by constructing
RDMs that achieve state-of-the-art performance on density estimation on geoscience datasets,
protein/RNA data on toroidal, and synthetic data on hyperbolic and orthogonal-group manifolds.
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A Riemannian manifolds

Notation Convention. There are a number of different notations used in differential geometry
and all have their place. The most abstract level is with tensors (of which forms and vectors are
special cases) and it is the best for establishing general properties. We used an index-free notation
in the main paper. A coordinate-based, but still intrinsic, description that uses local charts which
describe explicit coordinate systems for patches of the manifold: for the most part we use intrinsic
coordinates in the main paper. For computational purposes it is convenient to view manifolds as
hypersurfaces embedded in Rm even though this obscures the geometric meaning; these are called
extrinsic coordinates which we use for actual implementations.

We use capital letters to denote vectors, and tilded letters to denote vectors and variables defined on
the local patch.

A.1 Smooth manifolds and tangent vectors

We recall some preliminaries of smooth manifolds. See Lee (2013) for a more detailed and compre-
hensive account.

A smooth d-manifold is a topological spaceM (assumed to be paracompact, Hausdorff and second
countable) and a family of pairs {(Ui, ϕi)}, where the Ui are open sets that together cover all ofM
and each ϕi is a homeomorphism from Ui to an open set in Rd; these pairs are called charts. They
are required to satisfy a compatibility condition: if Ui and Uj have non-empty intersection, say V ,
then ϕi ◦ ϕ−1

j |V has to be an infinitely differentiable map from ϕj(V ) ⊂ Rd to ϕi(V ) ⊂ Rd. The
use of charts allows one to talk about differentiability of functions or vectors fields, by moving to
Rd as needed. A smooth function f onM has typeM → R and is such that for any chart (U,ϕ)
the map f ◦ ϕ−1 : Rd → R is smooth 2. The set of smooth functions onM is denoted C∞(M).

Let M be a smooth manifold, and fix a point x in M. A derivation at x is a linear operator
D : C∞(M)→ R satisfying the product rule

D(fg) = f(x)D(g) + g(x)D(f) (23)

for all f, g ∈ C∞(M). The set of all derivations at x is a d-dimensional real vector space called the
tangent space TxM, and the elements of TxM are called the tangent vectors (or tangents) at x.
For the Euclidean spaceM = Rd, we have that TxRd = span{ ∂

∂x1
, · · · , ∂

∂xd
}. We now see how to

use the Euclidean derivations to induce the tangent space of arbitrary Riemannian manifolds.

Let N be another smooth manifold. For any tangent V ∈ TxM and smooth map ϕ :M→ N , the
differential dϕx : TxM→ Tϕ(x)N is defined as the pushforward of V acting on f ∈ C∞(N):

dϕx(v)(f) = V (f ◦ ϕ). (24)

Note that, if ϕ is a diffeomorphism, dϕx is an isomorphism between TxM and Tϕ(x)N , and the
inverse map satisfies (dϕx)−1 = d(ϕ−1)ϕ(x). Furthermore, differentials follow the chain rule, i.e.
the differential of a composite is the composite of the differentials.

Let x̃ = (x̃1, · · · , x̃d) = ϕ(x) be a local coordinate. Since dϕx : TxM → Tϕ(x)Rd is an isomor-
phism, we can characterize TxM via inversion. We define the basis vector Ẽi of TxM by

Ẽi = (dϕx)−1

(
∂

∂x̃i

)
= (dϕ−1)ϕ(x)

(
∂

∂x̃i

)
, (25)

which means

Ẽi(f) =
∂

∂x̃i
f(ϕ−1(x̃)). (26)

The tangent space TxM ofM at x is spanned by
{
Ẽ1, · · · , Ẽd

}
. This means any tangent vector V

can be represented by
∑d
i=1 ṽiẼi for some coordinate-dependent coefficients ṽi.

2Strictly speaking this map has to be restricted to ϕ(U) but we will assume that the appropriate restrictions
are always intended rather than cluttering up the notation with restrictions all the time.
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A manifoldM is said to be embedded in Rm if there is an inclusion map ι : M → Rm such that
M is homeomorphic to ι(M) and the differential at every point is injective. Every smooth manifold
can be embedded in some Rm with m > d for some suitably chosen m.

WhenM is embedded in Rm, we can view TxM as a linear subspace of TxRm; note that this map
has trivial kernel. Let ι : M → Rm denote the inclusion map, i.e. ι(x) = x ∈ Rm for x ∈ M.
Then

Ẽi = (dϕ−1)ϕ(x)

(
∂

∂x̃i

)
= (dι−1)ι(x)(dι ◦ ϕ−1)ϕ(x)

(
∂

∂x̃i

)
=

m∑
j=1

∂ϕ−1
j

∂x̃i

∂

∂xj
. (27)

This means we can rewrite a tangent vector using the ambient space’s basis

d∑
i=1

ṽiẼi =

d∑
i=1

m∑
j=1

ṽi
∂ϕ−1

j

∂x̃i

∂

∂xj
=

m∑
j=1

v̄j
∂

∂xj
(28)

where v̄j =
∑d
i=1 ṽi

∂ϕ−1
j

∂x̃i
is the coefficient corresponding to the j’th ambient space coordinate.

What exactly is ϕ−1
j ? Note that ι ◦ (ϕ−1) is a map from Rd to Rm and it takes ϕ(x) to ι(x). It is

this that we are writing as ϕ−1
j .

In matrix-vector form, we can write v̄ = dϕ−1

dx̃ ṽ, where v̄ is a vector that represents the m-
dimensional coefficients in the ambient space. This also means v̄ lies in the linear subspace spanned
by the column vectors of the Jacobian ∂ϕ−1

∂x̃i
. This linear subspace is isomorphic to TxM, which

itself is a subspace of TxRm. We refer to this linear subspace as the tangential linear subspace
Intuitively, this means a particle traveling at speed v̄ and position x can only move tangentially on
the surface. Therefore it is restricted to move on the manifold.

A vector field V is a continuous map that assigns a tangent vector to each point on the manifold;
that is V (x) ∈ TxM. We abuse the notation a bit and use capital letters to denote both vector fields
and vectors. It should be clear in the context whether it it meant to be a function of points on the
manifold or not. Such a vector field can also map a smooth function to a function, via the assignment
x ∈ M 7→ V (x)(f) ∈ R. If it maps smooth functions to smooth functions we say that the vector
field is smooth. The space of smooth vector fields onM is denoted by by X(M).

A.2 Riemannian metric

A Riemannian manifold (M, g) is a d-dimensional smooth manifold M equipped with an inner
product gx : TxM× TxM→ R on the tangent space of each x ∈ M (Lee, 2018). gx is called the
metric tensor at x.

A metric tensor field is an assignment of a metric tensor to each point x ofM; we denote it by g.
The metric tensor field g is said to be smooth if for any smooth vector fields u and v, g(U, V )(x) =
gx(U(x), V (x)) is a smooth function of x. When it is clear from the context, we suppress the
subscript for simplicity. Since g is an inner product, we also write g(u, v) = 〈u, v〉g .

The Euclidean metric ḡ for Rm is defined as the Euclidean inner product, characterized by the delta
function 〈

∂

∂xi
,
∂

∂xj

〉
= δij , (29)

which is equal to 1 if i = j; otherwise it is equal to 0. This means for any U, V ∈ TxM,

〈U, V 〉ḡ =

〈
m∑
i=1

ūi
∂

∂xi
,

m∑
j=1

v̄j
∂

∂xj

〉
ḡ

=

m∑
i=1

ūiv̄i = ū>v̄. (30)

Generally, given a set of basis vectors, such as Ẽi, the metric tensor can be represented in a matrix
form, via

gij := 〈Ẽi, Ẽj〉g (31)
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This allows us to write the metric using the patch coordinates

〈U, V 〉g =
∑
i,j

ũiṽj〈Ẽi, Ẽj〉g =
∑
i,j

ũiṽjgij = ũ>Gṽ (32)

where G is a matrix whose i’th row and j’th column corresponds to gij .

Using the components of the metric tensor, we can define the dual basis Ẽi =
∑
j g

ijẼj , where
gij stands for the (i, j)’th entry of the inverse matrix G−1. (Ẽ1, · · · , Ẽd) is called the dual basis for
(Ẽ1, · · · , Ẽd) since they form a bi-orthogonal system, meaning

〈Ẽi, Ẽj〉g =

〈∑
k

gikẼk, Ẽj

〉
g

=
∑
k

gik〈Ẽk, Ẽj〉g =
∑
k

gikgkj = (G−1G)ij = δij . (33)

If M is a submanifold, e.g. if it is embedded in an ambient space, it automatically inherits the
ambient manifold’s metric. SupposeM ⊂ Rm, where m > d is the dimensionality of the ambient
space. Then g = ι∗ḡ is a metric induced by the inclusion map, defined by

gx(u, v) = ḡ(dιx(u), dιx(v)).

Unwinding the definitions, we have

gij =
〈
dιx(Ẽi), dιx(Ẽj)

〉
ḡ

=

〈
m∑
k=1

∂ϕ−1
k

∂x̃i

∂

∂xk
,

m∑
k′=1

∂ϕ−1
k′

∂x̃j

∂

∂xk′

〉
ḡ

=

m∑
k=1

∂ϕ−1
k

∂x̃i

∂ϕ−1
k

∂x̃j
. (34)

That is, if ψ = ϕ−1 is the inverse map of ϕ, we can write G = dψ
dx̃

> dψ
dx̃ , which can be equivalently

deduced from equating (30) and (32).

An important use of the metric is to define a measure over measurable subsets of the manifold. Let
(U,ϕ) be a chart and consider all functions smooth functions f supported in U . Then

f 7→
∫
ϕ(U)

(f
√
|detG|) ◦ ϕ−1 dx̃

is a positive linear functional. SinceM is Hausdorff and locally compact, by the Riesz representa-
tion theorem (Rudin, 1987, Theorem 2.14), there exists a unique Borel measure µg (over U ) such
that

∫
U
f dµg is equal to the evaluation of the functional above. We can then apply a partition of

unity (Lee, 2013, Theorem 2.23) to extend this construction of µg to be defined over the entire
M, which says that for any open cover {Ui} of M, there exists a set of continuous functions Φi
satisfying the following properties:

1. 0 ≤ Φi(x) for all x ∈M.

2. supp Φi ⊆ Ui.

3.
∑
i Φi(x) = 1 for all x ∈M.

4. Any x ∈M has a neighborhood that intersects with only finitely many supp Φi.

By means of the partition, we can consider the following positive linear functional instead:

f ∈ Cc(M) 7→
∑
i

∫
ϕ(Ui)

(Ψif
√
|detG|) ◦ ϕ−1 dx̃, (35)

which is always well-defined since f is compactly supported inM (only finitely many summands
are non-zero).

√
|detG| is called the volume density. We write |G| = |detG| for short. A

probability density p over M can be thought of as a non-negative integrable function satisfying∫
M p dµg = 1.
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A.3 Riemannian gradient and divergence

Riemannian gradient Another crucial structure closely related to the metric is the Riemannian
gradient. The definition of Riemannian gradient∇g : f ∈ C∞(M) 7→ ∇gf ∈ X(M) is motivated
by the directional derivative in Euclidean space, satisfying

〈∇gf, V 〉g = V (f) (36)

for any V ∈ X(M).

To obtain an explicit formula for the Riemannian gradient, we expand both sides of (36):

〈∇gf, V 〉g =

d∑
i,j=1

ũiṽjgij (37)

where we let ũi and ṽj denote the coefficients of the gradient and V respectively. And,

V (f) =

d∑
j=1

ṽj
∂

∂x̃j
f ◦ ϕ−1. (38)

Since v is arbitrary, this means for all j

d∑
i=1

ũigij =
∂

∂x̃j
f ◦ ϕ−1 =⇒ ũi =

d∑
j=1

gij
∂

∂x̃j
f ◦ ϕ−1. (39)

Riemannian divergence Recall that we define the Riemannian divergence using the patch coor-
dinates in (6), which we later show has a coordinate-free form (11) and can be computed in the
ambient space (12) if the manifold is embedded. The following theorem extends the Stokes theorem
to Riemannian manifolds.

Theorem 5 (Divergence theorem). For any compactly supported f ∈ X(M),
∫
M∇g ·

f dµg = 0.

Proof. Let {(Ψi, Ui)} be a partition of unity. By compactness, we can choose a finite subcover over
the support of f , so the index set of i is finite.∫

M
∇g · f dµg =

∫
M
∇g ·

(∑
i

Ψif

)
dµg (40)

=
∑
i

∫
Ui

∇g · (Ψif) dµg (41)

=
∑
i

∫
ϕi(Ui)

∇ · (|G| 12 Ψif) ◦ ϕ−1 dx̃. (42)

All of the finitely many summands equal 0 by an application of Stokes’ theorem in Rd (Rudin et al.,
1976, Theorem 10.33). This is because the support of Ψi ◦ϕ−1

i is contained in ϕi(Ui)); therefore at
the boundary of ϕi(Ui), Ψi ◦ ϕ−1

i is equal to 0.

The Riemannian divergence satisfies the following product rule.

Proposition 3 (Product rule). Assume V ∈ X(M) and f ∈ C∞(M). Then

∇g · (fV ) = V (f) + f∇g · V. (43)
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Proof. Using (11), the product rule of the Affine connection (see Appendix A.4),

∇g · (fV ) =

d∑
j=1

〈∇Ẽj
(fV ), Ẽj〉g (44)

=

d∑
j=1

〈f∇Ẽj
V + Ẽj(f)V, Ẽj〉g (45)

= f

d∑
j=1

〈∇Ẽj
V, Ẽj〉g +

d∑
j=1

Ẽj(f)

〈
d∑

j′=1

ṽj′Ẽj′ , Ẽ
j

〉
g

(46)

= f∇g · V +

d∑
j,j′=1

Ẽj(f)ṽj′〈Ẽj′ , Ẽj〉g (47)

= f∇g · V +

d∑
j,j′=1

Ẽj(f)ṽj′δjj′ (48)

= f∇g · V +

d∑
j

Ẽj(f)ṽj = f∇g · V + V (f). (49)

Proposition 4 (Expanding Riemannian gradient). Let V denote the tangential projection
matrix in the sense of Proposition 2. Then for any f ∈ C∞(M)

d∑
k=1

Vk(f)Vk = ∇gf. (50)

A.4 Covariant derivative

An affine connection allows us to compare values of a vector field at nearby points. It is a dif-
ferential operator denoted by ∇ : X(M) × X(M) → X(M) and written as U, V 7→ ∇UV for
U, V ∈ X(M), satisfying the following defining properties:

1. Linearity in U : ∇fU1+gU2
V = f∇U1

V + g∇U2
V for f, g ∈ C∞(M) and U1, U2, V ∈

X(M).

2. Linearity in V : ∇U (aV1 + bV2) = a∇UV1 + b∇UV2 for a, b ∈ R and U, V1, V2 ∈ X(M).

3. Product rule: ∇U (fV ) = f∇UV + U(f)V for f ∈ C∞(M) and U, V ∈ X(M).

∇UV is called the covariant derivative of V in the U -direction.

If U, V ∈ X(Rm), the Euclidean connection∇ is defined as

∇UV =

m∑
i=1

m∑
j=1

ūj
∂v̄i
∂xj

∂

∂xi
. (51)

It can be verified that the Euclidean connection is indeed an affine connection.

We can express a connection internally in terms of a coordinate system Ẽi. For any pair of indices i
and j, we define the connection coefficients of∇, denoted by Γ, as d3 smooth functions satisfying

∇Ẽi
Ẽj =

d∑
k=1

ΓkijẼk. (52)
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Then for any U, V ∈ X(M), we have

∇UV = ∇U
d∑
j=1

ṽjẼj (53)

=

d∑
j=1

ṽj∇U Ẽj + U(ṽj)Ẽj (54)

=

d∑
i,j=1

ũiṽj∇Ẽi
Ẽj +

d∑
j=1

U(ṽj)Ẽj (55)

=

d∑
i,j,k=1

ũiṽjΓ
k
ijẼk +

d∑
j=1

U(ṽj)Ẽj . (56)

Now given a metric tensor, we say that∇ is a Levi-Civita connection of g if it is

1. Compatible with g: U(g(V,W )) = g(∇UV,W ) + g(V,∇UW ).

2. Symmetric: ∇uv−∇V U = [U, V ], where [U, V ] :=
∑d
i=1 U(Vi)Ẽi−V (Ui)Ẽi is the Lie

bracket.

The first condition looks messy but it essentially says that the Levi-Civita connection leaves the
metric invariant. It is equivalent to saying that the covariant derivative of g in any direction is
zero.

Theorem 6 (Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Rieman-
nian manifold. There exists a unique Levi-Civita connection of g.

See Lee (2018, Theorem 5.10) for proof. The connection coefficients of the Levi-Civita connection
are called the Christoffel symbols of g. They are symmetric in the lower indices, i.e. Γkij = Γkji. A
by-product of the proof of the fundamental theorem is the following identity, which will turn out to
be useful in deriving the identity for the Riemannian divergence:

∂

∂x̃j
gki =

d∑
l=1

Γljkgli + Γljiglk. (57)

An example of a Levi-Civita connection is the Euclidean connection of (Rd, ḡ). It can be checked
that∇ is both symmetric and compatible with ḡ. Furthermore, for any d-submanifoldM embedded
in Rm for m > d, we can define a tangential connection

∇>UV = P∇UV (58)

for U, V ∈ X(M), where U and V are any3 smooth extensions of U and V to Rm. P is the
tangential projection defined as

(PV )(x) =

m∑
j=1

(Pxv̄)j
∂

∂xj
(59)

for any V ∈ X(Rm). Recall that Px is the orthogonal projection onto the tangent space spanned
by ∂ψ

∂x̃i
. The tangential connection ∇> is the Levi-Civita connection on the embedded submanifold

M (Lee, 2018, Proposition 5.12).

3The value of the tangential connection is independent of the extensions chosen, so∇> is well-defined.
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B Proofs

Theorem 1 (Marginal Density). The density p(x, t) of the SDE (5) can be written as

p(x, t) = E

[
p0 (Yt) exp

(
−
∫ t

0

∇g ·
(
V0 −

1

2
(V · ∇g)V

)
ds

) ∣∣∣∣∣Y0 = x

]
(7)

where the expectation is taken wrt the following process induced by a Brownian motion B′s

dY = (−V0 + (V · ∇g)V ) ds+ V ◦ dB′s. (8)

Proof. Our first step is to express the time derivative of the density using derivations (spatial deriva-
tives); this gives us a partial differential equation (PDE) on the manifold. Second, we apply the
Feynman-Kac formula (Thalmaier, 2021, Proposition 3.1) to the solution of the PDE.

We denote by dX̃t = ṽ0 dt+ ṽ ◦ dBt the Stratonovich SDE defined on the patch. The density p of
the process satisfies the Fokker-Planck equation (Chirikjian, 2009, Equation (8.16)):

∂tp(x̃, t) = −|G|− 1
2∇ · (|G| 12 ṽ0p)︸ ︷︷ ︸

first term

+
1

2
|G|− 1

2

d∑
i=1

d∑
j=1

∂

∂x̃i

( w∑
k=1

ṽi,k
∂

∂x̃j

(
|G| 12 ṽj,kp

))
︸ ︷︷ ︸

second term

(60)

We would like to re-express the RHS using the abstract vectors V0 and V . Note the first term can
be written as −∇g · (pV0). We now show that we can also rewrite the second term in terms of the
Riemannian divergence.

1

2
|G|− 1

2

d∑
i=1

d∑
j=1

∂

∂x̃i

( w∑
k=1

ṽi,k
∂

∂x̃j

(
|G| 12 ṽj,kp

))
(61)

=
1

2
|G|− 1

2

w∑
k=1

d∑
i=1

∂

∂x̃i

(
ṽi,k

d∑
j=1

∂

∂x̃j

(
|G| 12 ṽj,kp

))
(62)

=
1

2
|G|− 1

2

w∑
k=1

d∑
i=1

∂

∂x̃i

(
ṽi,k|G|

1
2 |G|− 1

2

d∑
j=1

∂

∂x̃j

(
|G| 12 ṽj,kp

))
(63)

=
1

2
|G|− 1

2

w∑
k=1

d∑
i=1

∂

∂x̃i

(
ṽi,k|G|

1
2∇g · (pVk)

)
(64)

=
1

2

w∑
k=1

|G|− 1
2

d∑
i=1

∂

∂x̃i

(
|G| 12 ṽi,k∇g · (pVk)

)
(65)

=
1

2

w∑
k=1

∇g ·

((
∇g · (pVk)

)
Vk

)
(66)

Summing these two terms give us

∂tp(x, t) = −∇g · (pV0) +
1

2

w∑
k=1

∇g ·

((
∇g · (pVk)

)
Vk

)
(67)

Next, we expand the above formula using the product rule (43):
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∂tp(x, t) = −∇g · (pV0) +
1

2

w∑
k=1

∇g ·

((
∇g · (pVk)

)
Vk

)
(68)

= −V0(p)− p∇g · (V0) +
1

2

w∑
k=1

∇g ·

((
Vk(p) + p∇g · (Vk)

)
Vk

)
(69)

= −V0(p)− p∇g · (V0) +
1

2

w∑
k=1

∇g ·

((
Vk(p) + p∇g · (Vk)

)
Vk

)
(70)

= −V0(p)− p∇g · (V0) +
1

2

w∑
k=1

(
Vk

(
Vk(p) + p∇g · (Vk)

)
+
(
Vk(p) + p∇g · (Vk)

)
∇g · (Vk)

)
(71)

= −V0(p)− p∇g · (V0) +
1

2

w∑
k=1

(
Vk(Vk(p)) + Vk(p∇g · (Vk)) + Vk(p)∇g · (Vk) + p∇g · (Vk)∇g · (Vk)

)
(72)

= −V0(p)− p∇g · (V0) +
1

2

w∑
k=1

(
Vk(Vk(p)) + Vk(p∇g · (Vk)) + Vk(p)∇g · (Vk) + p(∇g · (Vk))2

)
(73)

= −V0(p)− p∇g · (V0) +
1

2

w∑
k=1

(
V 2
k (p) + Vk(p∇g · (Vk)) + Vk(p)∇g · (Vk) + p(∇g · (Vk))2

)
(74)

= −V0(p)− p∇g · (V0) +
1

2

w∑
k=1

(
V 2
k (p) + Vk(p)∇g · (Vk) + pVk(∇g · (Vk)) + Vk(p)∇g · (Vk) + p(∇g · (Vk))2

)
(75)

= −V0(p)− p∇g · (V0) +
1

2

w∑
k=1

(
V 2
k (p) + Vk(p)∇g · (Vk) + pVk(∇g · (Vk)) + Vk(p)∇g · (Vk) + p(∇g · (Vk))2

)
(76)

= −V0(p)− p∇g · (V0) +

w∑
k=1

Vk(p)∇g · (Vk) +
1

2

w∑
k=1

(
V 2
k (p) + pVk(∇g · (Vk)) + p(∇g · (Vk))2

)
(77)

= −V0(p)− p∇g · (V0) +

w∑
k=1

(
Vk∇g · (Vk)

)
(p) +

1

2

w∑
k=1

(
V 2
k (p) + pVk(∇g · (Vk)) + p(∇g · (Vk))2

)
(78)

= −V0(p)− p∇g · (V0) +
(
(V · ∇g)V

)
(p) +

1

2

w∑
k=1

(
V 2
k (p) + pVk(∇g · (Vk)) + p(∇g · (Vk))2

)
(79)

= −V0(p)− p∇g · (V0) +
(
(V · ∇g)V

)
(p) +

1

2

w∑
k=1

(
V 2
k (p) + p∇g · ((∇g · Vk)Vk)

)
(80)

= −V0(p)− p∇g · (V0) +
(
(V · ∇g)V

)
(p) +

1

2

w∑
k=1

(
V 2
k (p) + p∇g · ((∇g · Vk)Vk)

)
(81)

= −V0(p)− p∇g · (V0) +
(
(V · ∇g)V

)
(p) +

1

2

w∑
k=1

V 2
k (p) +

1

2

w∑
k=1

p∇g · ((∇g · Vk)Vk) (82)

= −V0(p)− p∇g · (V0) +
(
(V · ∇g)V

)
(p) +

1

2

w∑
k=1

V 2
k (p) +

1

2
p∇g · ((V · ∇g)V ) (83)
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In order to apply the Feynman-Kac formula, we group all the terms by the order of differentiation
(of p), which gives us

∂tp(x, t) = −V0(p)− p∇g · (V0) +
(
(V · ∇g)V

)
(p) +

1

2

w∑
k=1

V 2
k (p) +

1

2
p∇g · ((V · ∇g)V )

(84)

= p

(
−∇g · (V0) +

1

2
∇g · ((V · ∇g)V ))

)
︸ ︷︷ ︸

V

+

(
−V0 +

(
(V · ∇g)V

))
(p) +

(
1

2

w∑
k=1

V 2
k

)
(p)

(85)

Now the above is a parabolic PDE, which can be solved using the Feynman-Kac formula (Thalmaier,
2021, Proposition 3.1). Let Y be induced (8) restated below{

dY = (−V0 + (V · ∇g)V )dt+
∑w
k=1(Vk) ◦ dB′s

k

Y0 = x
(86)

Then p(x, t) is given by

p(x, t) = E

[
exp

(∫ t

0

V (Ys(x)) ds

)
p0 (Yt)

∣∣∣∣∣Y0 = x

]
(87)

where p0 = p(x, 0) is the prior distribution.
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Theorem 2 (Riemannian CT-ELBO). Let B̂s be a w-dimensional Brownian motion, and let
Ys be a process solving the following

Inference SDE: dY = (−V0 + (V · ∇g)V + V a) ds+ V ◦ dB̂s, (9)

where a : Rm × [0, T ]→ Rm is the variational degree of freedom. Then we have

log p(x, T ) ≥ E

[
log p0(YT )−

∫ T

0

1

2
‖a(Ys, s)‖22 +∇g ·

(
V0 −

1

2
(V · ∇g)V

)
ds

∣∣∣∣∣Y0 = x

]
,

(10)

where all the generative degree of freedoms Vk are evaluated in the reversed time direction.

Proof. Let P be the probability measure under which B′ is a Brownian motion. Let

dB̂ = −a ds+ dB′s, (88)

where a is the variational degree of freedom. Let Q be defined as

dQ = exp

(∫ T

0

a(Ys, s)dB
′
s −

1

2

∫ T

0

‖a(Ys, s)‖22 ds

)
dP. (89)

Note that the first term is an Itô integral. Then by the Girsanov theorem (Øksendal, 2003, Theo-
rem 8.6.3), B̂ is a Brownian motion wrt Q. Therefore, changing the measure from P to Q to the
expression in Theorem 1 yields

log p(x, t) = logEQ

[
dP
dQ
· p0 (Yt) exp

(
−
∫ T

0

∇g ·
(
V0 −

1

2
(V · ∇g)V

)
ds

) ∣∣∣∣∣Y0 = x

]
,

which by Jensen’s inequality, is lower bounded by

EQ

[
log

dP
dQ

+ log p0 (Yt)−

(∫ T

0

∇g ·
(
V0 +

1

2
(V · ∇g)V

)
ds

) ∣∣∣∣∣Y0 = x

]
. (90)

Now under the expectation, the Radon-Nikodym derivative can be simplified:

EQ

[
log

dP
dQ

∣∣∣∣∣Y0 = x

]
= EQ

[
−
∫ T

0

a(Ys, s)dB
′
s +

1

2

∫ T

0

‖a(Ys, s)‖22 ds

∣∣∣∣∣Y0 = x

]
(91)

= EQ

[
−
∫ T

0

a(Ys, s)dB̂s −
1

2

∫ T

0

‖a(Ys, s)‖22 ds

∣∣∣∣∣Y0 = x

]
(92)

= EQ

[
−1

2

∫ T

0

‖a(Ys, s)‖22 ds

∣∣∣∣∣Y0 = x

]
(93)

where we used the definition of Q (89), the definition of dB̂ (88), and the Martingale property of
the Itô integral (Øksendal, 2003, Corollary 3.2.6). This concludes the proof.
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Proposition 1 (Riemannian divergence identity). Let (M, g) be a d-dimensional Rieman-
nian manifold. For any smooth vector field Vk ∈ X(M), the following identity holds:

∇g · Vk =

d∑
j=1

〈
∇Ẽj

Vk, Ẽ
j
〉
g
. (11)

Furthermore, if the manifold is a submanifold embedded in the ambient space Rm equipped
with the induced metric g = ι∗ḡ, then

(∇g · Vk)(x) = tr

(
Px

dvk
dx

Px

)
, (12)

where vk = (v1k, · · · , vmk) are the ambient space coefficients Vk =
∑m
i=1 vik

∂
∂xi

and Px is
the orthogonal projection onto the tangent space.

Proof. We drop the index on k (since the statement is for any smooth vector). Using product rule,
the LHS of (11) is equal to

d∑
j=1

∂ṽj
∂x̃j

+ ṽj |G|−
1
2
∂

∂x̃j
|G| 12 (94)

Using the chain rule, Jacobi’s formula, and the identity (57), we have

ṽj |G|−
1
2
∂

∂x̃j
|G| 12 =

1

2
ṽj |G|−1 ∂

∂x̃j
detG (95)

=
1

2
ṽj tr

(
G−1 ∂G

∂x̃j

)
(96)

=
1

2
ṽj

d∑
i,k=1

gik
∂gki
∂x̃j

(97)

=
1

2
ṽj

d∑
i,k=1

gik

(
d∑
l=1

Γljkgli + Γljiglk

)
(98)

=
1

2
ṽj

 d∑
i,k,l=1

Γljkg
ikgli + ṽj

d∑
i,k,l=1

Γljig
ikglk

 (99)

=
1

2
ṽj

d∑
k,l=1

Γljkδkl +
1

2
ṽj

d∑
i,l=1

Γljiδil (100)

=
1

2
ṽj

d∑
k=1

Γkjk +
1

2
ṽj

d∑
i=1

Γiji (101)

= ṽj

d∑
k=1

Γkjk (102)

Therefore, the LHS reduces to
d∑
j=1

(
∂ṽj
∂x̃j

+ ṽj

d∑
k=1

Γkjk

)
(103)

Now we express the covariant derivative on the RHS using the connection coefficients (56)

∇Ẽj
V =

d∑
i,k=1

ṽiΓ
k
jiẼk +

d∑
i=1

∂ṽi
∂x̃j

Ẽi (104)
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which means

〈∇Ẽj
V, Ẽj〉g =

d∑
i,k=1

ṽiΓ
k
ji〈Ẽk, Ẽj〉g +

d∑
i=1

∂ṽi
∂x̃j
〈Ẽi, Ẽj〉g (105)

=

d∑
i,k=1

ṽiΓ
k
jiδkj +

d∑
i=1

∂ṽi
∂x̃j

δij (106)

=

d∑
i=1

ṽiΓ
j
ji +

∂ṽj
∂x̃j

. (107)

Now summing all terms yields

d∑
j=1

〈∇Ẽj
V, Ẽj〉g =

d∑
i,j=1

ṽiΓ
j
ji +

d∑
j=1

∂ṽj
∂x̃j

. (108)

Relabeling i→ j and j → k in the term term shows this is equal to the LHS.

For the second half of the theorem, recall that the Levi-Civita connection is equal to the tangential
connection. Therefore, changing the basis via Ẽj =

∑m
k=1

∂ψk

∂x̃j

∂
∂xk

, we can rewrite it as

(∇Ẽj
V )(x) =

(
P

(
m∑
i=1

m∑
k=1

∂ψk
∂x̃j

∂v̄i
∂xk

∂

∂xi

))
(x) =

m∑
i=1

(
Px

dv̄

dx

dψ

dx̃

)
ij

∂

∂xi
. (109)

On the other hand,

Ẽj =

d∑
k=1

gkjẼk =

m∑
i=1

d∑
k=1

(
dψ

dx̃

> dψ

dx̃

)−1

kj

∂ψi
∂x̃k

∂

∂xi
=

m∑
i=1

dψ

dx̃

(
dψ

dx̃

> dψ

dx̃

)−1

ij

∂

∂xi
.

(110)

Since g is the induced metric, the summation over j = 1, · · · , d is equivalent to the Frobenius inner
product 〈·, ·〉F of the two m× d matrices

d∑
j=1

〈∇Ẽj
V, Ẽj〉g =

〈
Px

dv̄

dx

dψ

dx̃
,

dψ

dx̃

(
dψ

dx̃

> dψ

dx̃

)−1〉
F

(111)

= tr

Px dv̄

dx

dψ

dx̃

(
dψ

dx̃

> dψ

dx̃

)−1
dψ

dx̃

>
 (112)

= tr

(
Px

dv̄

dx
Px

)
. (113)

Proposition 2. If V is the tangential projection matrix, then (V · ∇g)V = 0.

Proof. By definition,

(V · ∇g)V =

m∑
j=1

Vj∇g · Vj . (114)
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Denote by the j’th column of Px by (Px):j . Applying the resulting tangent vector to any smooth
function f (evaluated at x) and applying (12) gives

((V · ∇g)V )(f)(x) =

m∑
j=1

(∇g · Vj)(x)Vj(f)(x) (115)

=

m∑
j=1

tr

(
Px

d(Px):j

dx
Px

) m∑
i=1

(Px)ij
∂f

∂xi
(116)

=

m∑
i=1

m∑
j=1

(Px)ij tr

(
Px

d(Px):j

dx
Px

)
∂f

∂xi
. (117)

That is, the resulting tangent vector’s coefficients correspond to the tangential projection of the
vector 

tr
(
Px

d(Px):1
dx Px

)
...

tr
(
Px

d(Px):m
dx Px

)
 (118)

which we claim is orthogonal to the tangential linear subspace.

To prove the claim, we first note that we can rewrite Px as

Px = I − nxn>x (119)

where nx is of type Rm×(m−d), and the column vectors of nx are orthonormal, and orthogonal to
the tangential linear subspace; that is to say, Pxnx = 0. Using this representation, we can write the
Jacobian as (

d(Px):j

dx

)
kl

= −
m−d∑
r=1

∂

∂xl
(nx)kr(nx)jr (120)

= −
m−d∑
r=1

(nx)jr
∂

∂xl
(nx)kr + (nx)kr

∂

∂xl
(nx)jr. (121)

Now multiplying by the projection matrix from both sides gives

Px
d(Px):j

dx
Px = −

m−d∑
r=1

(nx)jrPx

∇x(nx)>1r
...

∇x(nx)>mr

Px + Px(nx):r︸ ︷︷ ︸
0

∇x(nx)>jrPx. (122)

Lastly, let

τr = tr

Px
∇x(nx)>1r

...
∇x(nx)>mr

Px
 (123)

which means (118) is simply

−
m−d∑
r=1

(nx):rτr. (124)

This implies the claim is true, since this is nothing more than a linear combination of the column
vectors of nx, which is orthogonal to the tangential linear subspace.
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Theorem 3 (Marginally equivalent SDEs). For λ ≤ 1, the marginal distributions of XT−s
and Ys of the processes defined as below

dY =

(
U0 −

λ

2
∇g log q

)
ds+

√
1− λV ◦ dB̂s Y0 ∼ q(·, 0) (20)

dX =

((
1− λ

2

)
∇g log q − U0

)
dt+

√
1− λ ◦ V dB̂t X0 ∼ q(·, T ) (21)

both have the density q(·, s). In particular, λ = 1 gives rise to an equivalent ODE.

Proof. We work with the derivation version of (14):

dY = U0 dt+ V ◦ dB̂s, (125)

That is, U0(f) =
∑
k(Pr)k

∂
∂x̃k

f ◦ ψ, and V is the tangential projection. The marginal density q
follows the Fokker-Planck PDE

∂sq = −∇g · (qU0) +
1

2

m∑
k=1

∇g · ((∇g · (qVk))Vk) (126)

= −∇g · (qU0) +
1

2

m∑
k=1

∇g · ((Vk(q) + q∇ · Vk)Vk) (127)

= −∇g · (qU0) +
1

2

m∑
k=1

∇g · (Vk(q)Vk) (128)

= −∇g · (qU0) +
1

2

m∑
k=1

∇g · (qVk(log q)Vk) (129)

= −∇g · (qU0) +
1

2
∇g · (q∇g log q) , (130)

where we have used the product rule, and Proposition 2, the chain rule, and Proposition 4.

For λ ≤ 1, we can rearrange the Fokker-Planck and get

∂sq = −∇g ·
(
q

(
U0 −

λ

2
∇g log q

))
+

1− λ
2
∇g · (q∇g log q) , (131)

which is the Fokker-Planck equation of the process (20).

To construct a reverse process inducing the same family of marginal densities, we mirror the diffu-
sion term around 0:

∂sq = −∇g ·
(
q

(
U0 −

(
1− λ

2

)
∇g log q

))
− 1− λ

2
∇g · (q∇g log q) (132)

Now we apply a change of variable of time via p(x, t) = q(x, T − t), which means ∂tp =
−∂sq|s=T−t and thus

∂sp = −∇g ·
(
q

((
1− λ

2

)
∇g log q − U0

))
+

1− λ
2
∇g · (q∇g log q) , (133)

which is the Fokker-Planck of (21).

Theorem 4 (Score matching equivalency). For λ < 1, let E∞λ denote the Riemannian CT-
ELBO of the generative process (21), with∇g log q replaced by an approximate score Sθ, and
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with (20) being the inference SDE. Assume Sθ is a compactly supported smooth vector. Then

EY0
[E∞λ ] = −C1

∫ T

0

EYs

[
‖Sθ −∇g log q‖2g

]
ds+ C2 (22)

where C1 > 0 and C2 are constants wrt θ.

Proof. Approximating ∇g log q in (21) using Sθ and plugging it in (5) and (20) in (9), we get

V0 =

(
1− λ

2

)
Sθ − U0 (134)

√
1− λV a = (1− λ)Sθ +

λ

2
(Sθ −∇g log q) . (135)

Also, as we only need to focus on the tangential components of a, note that

‖V a‖2g =

〈∑
k

Vkak,
∑
k′

Vk′ak′

〉
g

(136)

=
∑
kk′

akak′ 〈Vk, Vk′〉g (137)

=
∑
kk′

akak′

〈∑
j

PjkEj ,
∑
j′

Pj′k′Ej′

〉
g

(138)

=
∑
kk′jj′

akak′PjkPj′k′ 〈Ej , Ej′〉g (139)

=
∑
kk′j

akak′PjkPjk′ = ‖Pa‖22 , (140)

where Ej denote the ambient space Euclidean derivation ∂
∂xj

.

Thus, we have

1

2
‖Pa‖22 =

1

2(1− λ)

[
(1− λ)

2 ‖Sθ‖2g + (1− λ)λ〈Sθ, Sθ −∇g log q〉g +
λ2

4
‖Sθ −∇g log q‖2g

]
=

(
1− λ

2

)
1

2
‖Sθ‖2g +

λ

2

(
1

2
‖Sθ‖2g − 〈Sθ,∇g log q〉g

)
+

λ2

4(1− λ)

1

2
‖Sθ −∇g log q‖2g

∇ · V0 =

(
1− λ

2

)
∇ ·
(
Sθ −

(
2

2− λ

)
U0

)
Summing up these two parts gives us E∞λ . Taking the expectation over q(·, 0) and applying the
divergence theorem give us the desired identity.

C Manifolds

We provide some background on the manifolds used in this paper.

C.1 Spheres and tori

Spheres are defined as submanifolds in an Euclidean space of points with unit Euclidean norm.
Precisely, an d-sphere is Sd = {x ∈ Rd+1 : ‖x‖2 = 1}. Therefore the ambient space dimensionality
of a d sphere is m = d + 1. Tori are products of 1-spheres (or circles); that is Td = Πd

i=1S1.
Naturally, we can embed a d-torus in a m = 2d-dimensional ambient space.
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Tangential projection Without loss of generality, we derive the orthogonal projection to the tan-
gent space of spheres. The tangential projection of tori is just the same linear operator applied to d
R2 vectors independently.

To derive the tangential project, we note that any any incremental change in x, denoted by dx, will
need to leave the norm ‖x‖2 unchanged. That is,

d ‖x‖22 = 2x dx = 0. (141)

This means x is normal to the tangential linear subspace. We can find the orthogonal projection onto
the tangent space by subtracting the normal component, via Px = I − xx>

‖x‖22
.

Closest-point projection The closest-point projection onto the sphere is π(x) = x
‖x‖2

. One can

verify this is the point on Sd that minimizes the Euclidean distance from x ∈ Rd+1 \ {0}.

C.2 Hyperbolic spaces

We work with the Lorentzian model of the hyperbolic manifold, which, like the d-spheres, is a
d-manifold embedded in Rd+1, defined as

HdK := {x = (x0, . . . , xd) ∈ Rd+1 : 〈x, x〉L = 1/K, x0 > 0}, (142)

where K < 0 is the curvature of the manifold, and 〈·, ·〉L is the Lorentzian inner product

〈x, y〉L = −x0y0 + x1y1 + · · ·+ xnyn. (143)

In our experiments, K = −1.

The d+ 1-dimensional Euclidean space endowned with the Lorentzian inner product (Rd+1, 〈·, ·〉L)
is known as the Minkowski space. The Lorentz inner product is in general indefinite. Therefore,
technically it is not an inner product. But it is positive definite when restricted to HdK , and as a result
induces a valid Riemannian metric gL. Equation (12), however, relies on the Euclidean geometry
of the ambient space. Therefore, we model the density pE associated with the metric tensor gE
induced by the regular Euclidean inner product. That is, pE is a probability density of the manifold
(HdK , gE). Note that all the data points still lie on the same topological space HdK , and the density

can be translated via pE = pL

√
|GL|
|GE | , where GL and GE are the components of the matrix gL

and gE , and pL is the actual density on the Hyperbolic manifold (HdK , gL). This change-of-volume
relation implies instead of maximizing the likelihood log pL, we can simply maximize log pE .

Alternatively, one can also compute the Riemannian divergence wrt the metric gL using the internal
coordinates, as is done in (Lou et al., 2020). In this case, the learned density will be the actual
density pL on the hyperbolic manifold.

Tangential projection Similar to the spheres, we analyze the contribution of the differential dx.

d〈x, x〉L = 2nx dx = 0, (144)

where nx = (−x0, x1, . . . , xd) is the normal vector. Subtracting the normal contribution gives rise

to the tangential projection Px = I − nxn
>
x

‖nx‖22
.

Note that this is different from the usual “Lorentz” orthogonal projection PLx (u) = u − 〈x,u〉L〈x,x〉L x

(Ratcliffe, 1994); the latter is not orthogonal in the Euclidean inner product.

Closest-point projection We first derive the closest-point projection wrt the Lorentz inner prod-
uct. For any x ∈ {x′ : 〈x′, x′〉L < 0},

π(x) = arg min
y∈Hd

K

‖x− y‖2L , (145)

where ‖x‖L :=
√
〈x, x〉L is the Lorentz norm. To deal with the constraint y ∈ HdK , we can

introduce the Lagrange multiplier λ, and find the stationary point of the function

‖x− y‖2L + λ(〈y, y〉L − 1/K). (146)

30



Figure 7: Closest-point projection of the point (1.0, 0.9) onto the Hyperbolic manifold H1
−1 in the

Lorentz norm. This projection is clearly not the closest one in Euclidean distance.

Taking the gradient wrt y and setting it to be zero yield

−2nx−y + 2λny = 0 ⇐⇒ y =
1

λ+ 1
x. (147)

On the other hand, y ∈ HdK , which means λ+ 1 =
√
K ‖x‖L, and therefore

π(x) =
x√

K ‖x‖L
. (148)

This projection, however, is not the closest-point projection in Euclidean distance in general, as
depicted in Figure 7. This is contrary to the claim made by Skopek et al. (2019). In fact, following
the same derivation (using Euclidean distance in place of the Lorentz norm in (145)), we would end
up with a Lagrange multiplier that cannot be analytically solved, as it involves solving a root finding
problem.

This projection, albeit not the shortest one in Euclidean distance, is still a valid projection. We use
it in numerical integration to simulate the dynamics.

C.3 Orthogonal groups

The orthogonal groups are defined as O(n) = {X ∈ Rn×n : X>X = XX> = I}. The determi-
nant of X is either 1 or−1. The subgroup with determinant 1 is called the special orthogonal group,
denoted by SO(n). Naturally, Rn×n is an ambient space of the orthogonal groups.

Tangential projection Following the differential analysis,

d(XX>) = XdX> + dXX> = 0. (149)

That is, dXX> is skew-symmetric. Denote the set of skew-symmetric matrices by Skewn = {X ∈
Rn×n : X> = −X}.
Let U be an arbitrary matrix in Rn×n. We want to project it orthogonally onto TXO(n). The
orthogonal projection needs to be the closest-point projection onto the subspace. We can use the
Frobenius norm to induce the Euclidean distance metric over the entries of the matrix. Then finding
the closest-point projection V of U amounts to finding the stationary point of

‖U − V ‖2F + 〈Λ, XV > + V X>〉F , (150)

where Λ is the Lagrange multiplier. Taking the gradient wrt V yields
d

dV
〈U − V,U − V 〉F + 〈Λ, XV > + V X>〉F =

d

dV
tr((U − V )>(U − V ) + Λ>(XV > + V X>))

=
d

dV
tr(−2U>V + V >V + V X>Λ +XV >Λ)

= −2U + 2V + Λ>X + ΛX.
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Equating the last step with 0 yields

V = U +
Λ + Λ>

2
X. (151)

Since V needs to satisfy XV > + V X> = 0, we have

XV > + V X> = XU> +
Λ + Λ>

2
+ UX> +

Λ + Λ>

2
(152)

= XU> + UX> + Λ + Λ> = 0, (153)

which means

Λ + Λ> = −XU> − UX>. (154)

Substituting this into (151) yields

V =
U −XU>X

2
. (155)

That is, PX(U) = U−XU>X
2 for orthogonal groups.

Closest-point projection Again, using the Lagrange multiplier Λ for the constraint that the pro-
jection M of X should satisfy M>M = I , we try to find the stationary point of the following
quantity

‖M −X‖2F + 〈Λ,M>M − I〉F . (156)

Equating the gradient wrt M with 0 gives

d

dM
〈M −X,M −X〉F + 〈Λ,M>M − I〉F =

d

dM
tr((M −X)>(M −X) + (M>M − I)>Λ)

=
d

dM
tr(M>M − 2X>M +M>MΛ)

= 2M − 2X +MΛ +MΛ> = 0,

which means

M = 2X(2I + Λ + Λ>)−1. (157)

Since M is orthogonal, we have

M>M = 4(2I + Λ + Λ>)−TX>X(2I + Λ + Λ>)−1 = I, (158)

which means

4X>X = (2I + Λ + Λ>)2. (159)

Let X = UDV > be the singular value decomposition of X . Then

2V DV > = 2I + Λ + Λ>. (160)

Substituting this into (157), we get

M = XVD−1V > = UDV >V D−1V > = UV >. (161)

That is, π(X) = UV > for orthogonal groups, where U, V are the left and right singular matrices of
X .
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Manifold Activation Hidden layers Embedding size ActNorm first

Sphere Sine 5 512 False
Tori Swish 4 256 False
Hyperbolic Swish 2 512 True
Orthogonal group Swish 256 256 False

Table 3: The variational function a network architectures for different manifolds in our experiments.

Manifold Optimizer Learning rate β1 β2 Scheduler

Sphere Adam 2e− 4 0.9 0.999 Cosine
Tori Adam 3e− 4 0.9 0.999 None
Hyperbolic Adam 5e− 4 0.9 0.999 None
Orthogonal group Adam 1e− 3 0.9 0.999 None
Table 4: Optimization hyperparameters for experiments on different manifolds

D Experimental details

D.1 Architecture

In our experiments, we parameterize the a network as a multi-layer perceptron (MLP) with either the
sinusoidal or the swish activation function. For the hyperbolic experiments, the first layer of the MLP
has an additional ActNorm layer (Kingma & Dhariwal, 2018) which we find adds extra numerical
stability. The ActNorm layer is initialized before training with one batch such that its output has
a mean of zero and a standard deviation of one. In an analogous manner to training the MLP
the ActNorm parameters are updated via backpropagation. For the orthogonal group experiments
we flatten the input matrix into a vector before passing it to the MLP. The details of our various
model are given in Table 3. For our importance sampler which is used to represent a differentiable
distribution over [0, T ], we use a deep sigmoidal flow (Huang et al., 2018) (without the final logit
activation) followed by a fixed scaling flow, which represents the range [0, T ]. We disconnect the
gradient from the numerical solver to save compute; i.e. Ys is not differentiable. This would result
in slightly biased gradient updates for minimizing the variance of the importance estimator, but we
still observe substantial reduction in variance (see Figure 2). Finally, we use PyTorch (Paszke et al.,
2019) as our deep learning framework.

Computational Resources. We run all of our experiments either on a single NVIDIA Tesla V100
or a single NVIDIA Quadro RTX 8000 GPU for a maximum of 30 hours.

D.2 Optimization

We use the Adam (Kingma & Ba, 2015) optimizer to train the a network. The learning rate and mo-
mentum parameters used for each manifold is mentioned in the Table 4. For the sphere experiments,
we slowly decrease the learning rate during training using a cosine scheduler. For optimization of
our importance sampler, we use Adam with a fixed learning rate of 0.01. We update the importance
sampler every 500 steps of our training loop for the a network. Lastly, to optimize our mixture of
power spherical distributions for the tori experiments we use Adam with a learning rate of 0.03 with
β1 = 0.9 and β2 = 0.999.

D.3 KELBO

The gap between the exact likelihood of the data given the model, i.e. log p(x), and the Riemannian
CT-ELBO may be large. This evaluation gap makes empirical validation of the models using the
Riemannian CT-ELBO imprecise. We acquire a tighter lower bound by using K > 1 samples and
importance sampling similar to Burda et al. (2015). In details, we know from (90) that:

log p(x, t) = logEQ

[
dP
dQ
· p0 (Yt) exp

(
−
∫ T

0

∇g ·
(
V0 −

1

2
(V · ∇g)V

)
ds

) ∣∣∣∣∣Y0 = x

]
.

33



Manifold Integration steps during training

Sphere 100
Tori 1000
Hyperbolic 100
Orthogonal group 100

Table 5: Details of training integration.

rtol atol minimum step size

1e− 3 1e− 3 1e− 5

Table 6: Configuration of the adaptive step size integration used during evaluation.

We rewrite this as:

log p(x, t) = logEQL(Y ),

where L(Y ) is defined to be:

dP
dQ
· p0 (Yt) exp

(
−
∫ T

0

∇g ·
(
V0 −

1

2
(V · ∇g)V

)
ds

)
.

Then by Jensen’s inequality, we have that:

log p(x, t) = logEQL(Y ) = logEQ

K∑
i=1

1

K
L(Y i) ≥ EQ log

K∑
i=1

1

K
L(Y i),

where Y is are i.i.d. trajectories sampled from Q. We call this new lower bound KELBO. Note that
this is a tighter lower bound because we can write:

KELBO = EQ log

K∑
i=1

1

K
L(Y i) ≥ EQ

K∑
i=1

1

K
logL(Y i) = EQ logL(Y ) = Riemannian CT-ELBO.

In fact, this lower bound increases monotonically to the true likelihood asK →∞. We use KELBO
with K = 100 for evaluating all of our models. We have experimented with the K to be up to 1000
and found out the results stop changing much for K > 100.

D.4 Numerical integration of the SDEs

During training and evaluation, we numerically integrate the SDE on each respective manifold using
the Stratonovich-Heun method as described in Burrage et al. (2004). Each iteration is followed by
the closest-point projection (in the case of HdK , we use the closest-point project wrt the Lorentz inner
product). The number of integration steps for each manifold during training is reported in Table 5.

During evaluation, as described in D.3, we numerically integrate the data from s = 0 to s = T ,
and the Itô integral involved in the KELBO is approximated using the Euler-Maruyama scheme
(note that the dynamics is still generated using Stratonovich-Heun). As computing KELBO requires
forward passes through the a network, it may not be as smooth as just integrating the inference SDE.
Therefore, we use an adaptive step size for integration. We adapted the torchsde library (Kidger
et al., 2021; Li et al., 2020) to calculate errors and adapt the step size accordingly. The error tolerance
and minimum step size used in integration for all the experiments are reported in Table 6. Also, for
plotting densities we use the exact log likelihood of the equivalent ODE. To numerically integrate
the ODE for computing the exact likelihood, we use the default dopri5 solver from the torchdiffeq
library (Chen et al., 2018b, 2021). Finally, we use cartopy (Met Office, 2010 - 2015), matplotlib
(Hunter, 2007), and plotly (Inc., 2015) for visualization.
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