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Abstract—We study the problem of determining approximate

equivalences in Markov Decision Proceses with rewards using

bisimulation metrics. We provide an extension of the framework

previously introduced in Ferns et al. (2004), which computes

iteratively improving approximations to bisimulation metrics

using exhaustive pairwise state comparisons. The similarity

between states is determined using the Earth Mover’s Distance,

as extensively studied in optimization and machine learning. We

address two computational limitations of the above framework:

first, all pairs of states have to be compared at every iteration, and

second, convergence is proven only under exact computations.

We extend their work to incorporate “on-the-fly” methods,

which allow computational effort to focus first on pairs of

states where the impact is expected to be greater. We prove

that a method similar to asynchronous dynamic programming

converges to the correct value of the bisimulation metric. The

second relaxation is based on applying heuristics to obtain

approximate state comparisons, building on recent work on

improved algorithms for computing Earth Mover’s Distance.

Finally, we show how this approach can be used to generate

new algorithmic strategies, based on existing prioritized sweeping

algorithms used for prediction and control in MDPs.

I. INTRODUCTION

Bisimulation has been used as the canonical equivalence
in transition systems for analyzing behaviour, as well as for
clustering equivalent states to produce a reduced version of
a system. The probabilistic version of bisimulation was first
analyzed in the context of labeled Markov chains [1], and later
extended in the context of Markov Decision Processes with
rewards [2], with the intention of helping to compute optimal
policies in large systems.

Metrics, or more precisely, pseudometrics, based on bisim-
ulation were invented over a decade ago [3], [4] with the hope
that they would yield an approach for approximate reasoning
about probabilistic systems. These methods were extended
successfully to Markov Decision Processes (MDPs) [5] with
rewards, which are a standard way of modelling multi-stage
decision making in operations research and artificial intelli-
gence [6], [7]. Bisimulation metrics for MDPs [5] allowed
establishing bounds on the difference in the optimal long-term
value of states, based on the metric distance between them.
These results were the basis of several suggested algorithms
for state aggregation (i.e., clustering similar states in order
to reduce the size of the system) [5], policy transfer (i.e.,
taking the solution of a small system and extrapolating it
for a large system) [8] and re-formulating either the state
representation [9] or the action representation [10] to make
large MDPs easier to solve. The key attractive feature of using
bisimulation metrics in all these contexts is that they allow one
to construct smaller/transformed problems that can be solved
efficiently, while the solution obtained is still guaranteed to

be close to the optimal one at all states. This is a very strong
guarantee, which most other methods cannot provide [11].

Unfortunately, computing the metric is expensive, due to
two main factors. First, at each iteration of the computation, all
pairs of states must be compared; second, the metric for each
pair of states must be computed exactly, based on the previous
metric estimate. This leads to a computational complexity of
O(|S|4 log |S|) per iteration (using Orlin’s algorithm [12] for
minimum-cost flow to solve the required transportation prob-
lems, as will be discussed below), which is clearly prohibitive
for large state spaces – precisely the type of problem in which
using the metric to reduce the system is most helpful. In fact,
this complexity exceeds that of usual dynamic programming
algorithms for solving MDPs, such as value iteration and
policy iteration, which are typically O(|S|3). So it is specious
to motivate the use of bisimulation metrics on the grounds
that they can be used to reduce the size of the state space for
other analyses in which one might be interested. Nevertheless,
if one can compute approximations to bisimulation metrics
efficiently, it could still prove to be useful.

There are a couple of reasons for the high computational
cost in the framework of [5]: (a) information about the magni-
tude of the metric is incorporated for each pair of states under
a strict schedule: an additional update to one pair cannot be
performed unless all other pairs have been updated in between.
(b) The correctness of the framework is guaranteed only under
exact computation of a costly transportation problem (which
will be discussed later). Even if approximations to this problem
have been provided – and heuristics can easily be designed –
these do not fit the theoretical framework of [5].

Our main contribution is to provide a way to overcome
these obstacles. It is not only an algorithmic question: the
technique we use allows the intermediate steps to not even
compute a metric. To do this, we re-worked the theoretical
tools, including the all-important duality theorem.

• The first contribution of the paper is a strategy that allows
one to focus on certain pairs of states at each iteration,
where the changes are happening rapidly, so that the
computational effort can be expended more effectively.
This can be viewed as an on-the-fly technique [13].

On-the-fly techniques have been used with a lot of success
in the systems and verification literature. Popular examples
include garbage collection strategies for the SPIN verification
system originating from work by Gerald Holtzman [14], [15],
or bisimulation computation for finite deterministic transition
systems [13]. A similar type of strategy has been used with
great success in the artificial intelligence and optimization
literature to solve large decision problems; here, such methods



are called asynchronous or distributed dynamic program-
ming [16], [17], [18].

A result of doing “on-the-fly” computation is that the
framework does not rely on the metric property of the partial
results anymore; in the limit, however, we will compute the
same bisimulation metric.

• This leads to the second contribution of the paper:
approximate computation of the updates to the metric
estimate, relaxing the second restriction described above.
We also provide new theorems that guarantee that one
still gets the bisimulation metric in the limit.

The computation of the pseudometric analogue of bisimu-
lation relies on the Earth Mover’s Distance, a type of trans-
portation distance1 to compare probability measures over the
state space. Exact computation of the metric is important to
maintain Kantorovich duality [19], a crucial property in keep-
ing faithful to the framework of partition-refinement strategies:
any metric over the state space determines a partition of that
space and every iteration of the algorithm provides an increase
in all values of the metric, giving a refinement of the previous
partition. In our work, we relax this constraint using “on-
the-fly” computation of the bisimulation metric. Improving
approximations to an exact bisimulation metric are computed,
but now heuristics which incorporate domain information,
and which have been studied and shown to provide good
approximations [19], [20], [21], can be incorporated in the
process of metric computation.

In this paper, we develop the ideas, for concreteness, in
the context of Markov Decision Processes with rewards, but
the all the theoretical results and algorithmic suggestions apply
equally well to labelled Markov processes [22], in which there
are no rewards.

The paper is structured as follows. In Section II we review
the framework of Markov Decision Processes and the dynamic
programming approach to solving them. Sections III and IV
review existing methods to compute bisimulation metrics for
MDPs, as well as methods for computing Earth Mover’s
Distance metrics. Section V introduces new theoretical results
on a generalized framework in which bisimulation metrics
can be computed under a flexible schedule and with approxi-
mate transportation metric computations. Section VI presents
different algorithmic strategies that build on the theoretical
results. Section VII presents empirical results, illustrating the
computational savings of our approach. Finally, Section VIII
concludes and presents avenues for future work.

II. MARKOV DECISION PROCESSES

A. Problem definition

A (finite) discounted Markov Decision Process (MDP) with
rewards2 is represented as a tuple hS,A, P,R, �i. A system
transitions between states in the set S, under the effect of
actions in the set A. The transitions are governed by a

1Also known as the Kantorovich metric, the Wasserstein (or Vaserstein)
metric, the Monge-Kantorovich metric and the Hutchinson metric.

2In artificial intelligence and operation research, all MDPs have rewards.

probability distribution P : (S ⇥ A) ! (S ! [0, 1]);
we write P s0

sa 2 [0, 1] (instead of P (s, a)(s0)) to denote
the conditional probability of a transition to state s0 given
current state s and action a. This notation allows one to
write many relevant quantities in “matrix-like” form, which
is convenient for algorithms working with finite-state MDPs.
For each s and a,

P

s0 P
s0
sa = 1. The rewards are given by

R : (S ⇥ A) ! [0, 1]; without loss of generality, we assume
that rewards are non-negative and bounded by 1. We denote
by Rsa the reward for state s and action a. Lastly, � 2 (0, 1)
is a discount factor used to emphasize more rewards received
right away, compared to those received in the distant future.

A policy ⇡ : S ! (A ! [0, 1]) is a distribution over the
actions given the current state; we denote by ⇡a

s the conditional
probability of choosing action a given that the current state
is s. The policies we consider are Markovian (memoryless)
and probabilistic; note that since the systems themselves are
Markovian, the state is a sufficient statistic for the future
behaviour and strategies that use the past history do not help.
For each s,

P

a ⇡
a
s = 1.

Let s be an starting state for the random system, and (st, at)
the random state and action at time step t, generated by
choosing actions according to a fixed policy ⇡, and following
the environment’s state dynamics P . The value of state s under
⇡ is defined as:

V ⇡
(s) = E[Rsa1+· · ·+�t�1Rstat+...|at ⇠ ⇡st , st+1 ⇠ Pst,at ]

Value functions are important because they allow one to
compare different policies. In particular, in finite MDPs, there
exists at least one optimal policy ⇡⇤, whose value is best at all
states (i.e., V ⇡

(s)  V ⇡⇤
(s) for all s and for any other ⇡). For

simplicity, we will denote V ⇡⇤
by V ⇤. The goal of solving an

MDP is to find such an optimal policy, and computing value
functions is an important intermediate step in achieving this
goal. We note that the optimal value function V ⇤ is unique in
a finite MDP.

B. Iterative methods for computing value functions

Based on the definition above, it is easy to show that the
value function V ⇡ obeys the following set of linear equations,
also known as Bellman Equations:

V ⇡
(s) =

X

a

⇡a
s

 

Rsa + �
X

s0

P s0

saV
⇡
(s0)

!

, 8s 2 S (1)

A popular approach to solving the system uses fixed point
iterative methods similar to the Jacobi method:

1) for every s 2 S, initialize V0(s) = 0; k = 1

2) repeat:

Vk(s) =
X

a

⇡a
s

 

Rsa + �
X

s0

P s0

saVk�1(s
0
)

!

(2)

until maxs |Vk(s)� Vk�1(s)| < ✏, where ✏ is a desired
precision parameter.

More details can be found in [6].



A similar approach can be used to solve the Bellman
optimality equations which govern the optimal value function:

V ⇤
= max

a

 

Rsa + �
X

s0

P s0

saV
⇤
(s0)

!

, 8s 2 S (3)

Although (3) is a non-linear system, similar fixed point itera-
tions can be designed and shown to converge to its solution.
Let T denote the Bellman operator over value functions:

(TV )(s) = max

a

 

Rsa + �
X

s0

P s0

saV (s0)

!

(4)

It is easy to show that T is a contraction, whose unique fixed
point is V ⇤: TV ⇤

= V ⇤. Hence, V ⇤
= limn!1 Tn

(0)

C. Asynchronous Value Iteration

Traditional dynamic programming algorithms update all
states at every iteration, which can be inefficient for large
state spaces, especially if most rewards are 0. Asyn-
chronous/distributed dynamic programming algorithms relax
this requirement, allowing more flexible update schedules.

1) Gauss-Seidel methods: A popular improvement of the
Jacobi methods in solving linear equations is known as the
Gauss-Seidel method[23]. This exploits the well-known LU
factorization to allow a modification to Equation (2): in
updating Vk(s), one can use Vk(s

0
) instead of Vk�1(s

0
), for

all s0 for which Vk was already computed. As shown in [24],
this strategy can be extended to the non-linear system in (4).
Moreover, Gauss-Seidel scheduling based on a fixed ordering
of the states in S is not necessary: updates can be performed
according to any schedule that guarantees that all states will
be selected infinitely often.

2) Prioritized Sweeping: Many strategies can be used to
determine schedules for updating states in asynchronous al-
gorithms. For example, in reinforcement learning, states are
typically sampled from trajectories generated according to
randomized policies; [25] provides a comprehensive review of
such methods. For our work, however, we focus on a heuristic
called prioritized sweeping, which uses the magnitude of
changes in the value function to determine the state update
schedule [26]. The main idea is that if the value of a state
has changed a lot, its “predecessors” (i.e., the states which
transition to it) will also be subject to a big change in the next
iteration. Hence, if such states are given higher priority for
updating, the value function should converge quicker to good
estimates.

We describe below the algorithm, which uses a priority
queue Q of states for scheduling:

1) For all states s 2 S, let V0(s) = 0

2) For k = 0, 1, 2, ...

a) If queue is empty, initialize Q with a state of choice
b) Remove the top state s from the queue.
c) Vk(s) = (TVk�1)(s), and � = |Vk(s)� Vk�1(s)|
d) Vk(s

0
) = Vk�1(s

0
) for all s0 6= s

e) Add all states s0 which can transition to s to the
queue with priority:

�

X

a
⇡a
s0P

s
s0a

If the states were already in the queue, their priority
is updated to the maximum between the value
above and their current priority.

f) Stop when the maximum change over all states is
below a desired threshold.

This approach has been used successfully both in large discrete
MDPs, as well as in continuous robotics domains, e.g. [27],
[28].

III. BISIMULATION METRICS FOR MDPS

Suppose we are given an MDP and a partition S of the state
space S; this partition determines a probabilistic bisimulation
relation h·, ·iS , in which two states are related if they are in
the same partition, under the following conditions:

hs, s0iS () 8a, (Rsa = Rs0a and

8S00 2 S,
X

s002S00

P s00

sa =

X

s002S00

P s00

s0a)

One can generate an aggregated MDP based on S , MS =

hS, A, ¯P , ¯R, �i with

8S0, S00 2 S, 8a 2 A, ¯RS0a =

1

|S0|
X

s02S0

Rs0a and

¯PS00

S0a =

1

|S0|
X

s02S0

s002S00

P s00

s0a

The relaxation from a bisimulation relation to a metric and
subsequent bounds relating this metric to value functions have
been derived in [5], based on a partition refinement algorithm:
start with a metric that equates all states, d0 = 0(i.e. start with
a single cluster) and iteratively apply the following map F on
the distance metric:

F (h)(s, s0) := max

a
(|Rsa �Rs0a|+ �T (h, Psa, Ps0a)) (5)

where T is known as the Monge-Kantorovich optimal trans-
portation problem [19]. We will provide computational details
of this update in the next section. An important theoretical
result is that the above functional F has a fixed point d⇤:
F (d⇤) = d⇤, which is a bisimulation metric (i.e., a metric
whose kernel is the strong bisimulation relation) and the
procedure just described converges to this fixed point:

lim

n!1
Fn

(0) = d⇤

In addition to the partition refinement algorithm, Ferns et
al. [5] state bounds which allow one to assess the quality of
aggregate MDPs obtained not only using bisimulation metrics,
but also through other heuristics. Given any partition S (not
necessarily a bisimulation relation), the optimal value function
of the aggregate MDP MS (in which states in a partition
are forced to take the same action) and the optimal value



function of the original MDP are related through the following
inequality [5]:

|V ⇤ � V ⇤
S | 

�

(1� �)2
max

S02S
max

s2S0

1

|S0|
X

s02S0

d⇤(s, s0) (6)

where d⇤ is the bisimulation metric. Note that the bound above
is minimized by choosing partitions that put together states that
are “close” in terms of the bisimulation distance d⇤, i.e, states
that are close to being bisimilar. Moreover, the bound is 0 if
the aggregation respects the bisimulation relation faithfully.

IV. EARTH MOVER’S DISTANCE METRIC

As mentioned above, computing the bisimulation metric
relies on the Monge-Kantorovich, or Earth Mover’s Distance
(EMD) metric for comparing probability distributions. The
Monge-Kantorovich’s optimal transportation problem al-
lows one to use a cost function h : S ⇥ S ! R+ to
obtain a numerical value characterizing the difference between
probability maps P,Q. The optimization is performed over the
following set :

⇧(P,Q) =

n

⇡ � 0 |
X

i
⇡ij = Q(j) ;

X

j
⇡ij = P (i)

o

and the objective is

T (h, P,Q) := inf

⇡2⇧(P,Q)

X

i,j

⇡ijh(i, j) (7)

Note that the definition applies with any cost function h,
although the iterative fixed-point framework presented in Sec-
tion III applies only to metrics (i.e., Fn

(0) is a metric for any
n � 0). The main advantage of maintaining metric costs (and
the crucial property in proving Equation (6)) is that it allows
the Kantorovich-Rubinstein duality property, which means that
one can compute another optimization problem instead. The
Kantorovich probability metric is obtained from solving the
following optimization:

K(h, P,Q) := sup

f2L(h)

X

i

(P (i)�Q(i))fi

L(h) = {f : S ! [0, 1] | fi � fj  h(i, j) 8i, j}

Theorem 1. [Kantorovich-Rubinstein] For any P,Q, if h is
a bounded pseudo-metric, then

T (h, P,Q) = K(h, P,Q)

A second important design quality of the fixed-point algo-
rithm is that the intermediate metrics Fn

(0) can be used to
generate intermediate partitions, which albeit not bisimulation
relations, still provide specifications which are “close enough”
to the original MDP. More details can be found in [5].

The transportation problem described in this section has
been extensively studied, mostly in the domain of optimiza-
tion, and also for popular special cases (e.g., quadratic cost
over Rn)[29], [19]. Moreover, the finite state space trans-
portation problem becomes a linear program, so different
exact methods have also been proposed [12], [30]. Recently,
it has been raising interest in machine learning as well,

where special cases have also been studied, especially for
applications in computer vision [31], [32]. Here, we are not
concerned with special cases, but focus on ideas for generating
efficient modifications of general problems. For example, [21]
proposes a threshold modification to a given metric to reduce
the number of transportation ways between the source and the
target, if this number is large. This strategy clearly provides
lower bounds, but, as we will see in the next section, becomes
useful because it does not rely on the metric property of the
cost function.

V. A GENERAL FRAMEWORK FOR BISIMULATION METRIC
COMPUTATION

We proceed to generalize the approach of [5] to a more
flexible procedure, which allows one to incorporate heuristics
and different types of information about the state space both
in scheduling the updates, as well as by allowing approximate
update rules.

For notational simplicity, in this section we will work with
symmetric maps h : S ⇥ S ! R+(i.e. 8(s, s0) h(s, s0) =

h(s0, s) and h(s, s) = 0). We can emulate this by working with
functions applied only on the following set: ⌦S := {(si, sj) :
i < j}, where {si}|S|

i=1 is any enumeration of S.
To accommodate a flexible schedule, we partition the state

space at each time step k into three subsets: S = ↵k[�k[�k.
The subset ↵k contains the pairs that will be updated without
broadcasting the new information: all recursive calls are based
on the same function. The subset �k contains all pairs that
will wait for broadcasting: i.e. not be updated at time-step k.
Finally, the subset �k contains the remaining pairs which will
provide noisy broadcasting at the end of time-step k. This is
done using any update function ˆhk (which might depend on
hk�1). We will show that if the latter is properly chosen, then
one can obtain convergence to the same bisimulation metric
as the original restrictive framework.

The pseudocode of the algorithmic approach we will follow
is given below:

1) Initialize h0 = 0

2) For k = 1, 2, ...

a) Perform the update

hk(s, s
0
) :=

8

<

:

F (hk�1)(s, s
0
) if (s, s0) 2 ↵k

hk�1(s, s
0
) if (s, s0) 2 �k

ˆhk(s, s
0
) if (s, s0) 2 �k

until a desired convergence criterion is reached.
We now proceed to show that, under the proper choices in
the approximation ˆh and the scheduling strategy, the above
framework will converge to d⇤ as described in Section III.
For this, we will first prove a few important properties related
to the functional F presented in Equation (5).

Lemma 1. Consider two functions h, h0
: S ⇥ S ! R+

such that h  h0 (i.e., h(s, s0)  h0
(s, s0) 8s, s0). Then

T (h, P,Q)  T (h0, P,Q), for any probability measures P,Q.



Proof: Fix two probability measures P,Q, and let ⇡̂ 2
⇧(P,Q). Then,

T (h, P,Q) 
X

i,j

⇡ijh(si, sj) 
X

i,j

⇡ijh
0
(si, sj), since ⇡ � 0

Note that the above holds for all ⇡̂ 2 ⇧(P,Q), so we can
conclude that

T (h, P,Q)  T (h0, P,Q)

Lemma 1 describes a simple property of the EMD metric: if
the costs of the transportation problem are increased, then the
corresponding optimal transport strategy is more expensive.
We will see in the next Lemma how this induces the mono-
tonicity of F . The latter will prove to be a crucial property in
proving that the algorithm is still convergent, even when the
metric property is not enforced.

Lemma 2. F is a monotone map: if

8s, s0, h(s, s0)  ¯h(s, s0)

then:
8s, s0, F (h)(s, s0)  F (

¯h)(s, s0)

Proof: Fix a tuple (s, s0, a), then:

|Rsa �Rs0a|+ �T (h, Psa, Ps0a)

 |Rsa �Rs0a|+ �T (

¯h, Psa, Ps0a)

 max

a
(|Rsa �Rs0a|+ �T (

¯h, Psa, Ps0a))

) max

a
(|Rsa �Rs0a|+ �T (h, Psa, Ps0a))

 max

a
(|Rsa �Rs0a|+ �T (

¯h, Psa, Ps0a))

The monotonicity of F has one obvious result: the frame-
work just described will provide a monotonic increase towards
the exact bisimulation metric. Importantly, we also want to
make sure that “over-shooting” will not occur. We present
below the first restriction on the approximate updates, aimed
to ensure this property: ˆhk  d⇤.

Lemma 3. Let k > 0. Assume that ˆhk0  d⇤ for all k0  k.
Then hk  d⇤.

Proof: We will use induction over k. Since h0 is 0, the
statement clearly holds. Now, assume hk  d⇤. Then, for
(s, s0) 2 ↵k+1,

hk+1(s, s
0
) = F (hk)(s, s

0
) by definition

 F (d⇤)(s, s0) by monotonicity of F
on the induction hypothesis

= d⇤(s, s0) because d⇤ is a fixed point of F

As for the pairs in �k+1, the statement holds as required by
the theorem, and again by the inductive assumption the same
holds for pairs in �k+1. Hence, the statement of the theorem
is proven.

If the above lemma describes the relationship to the limiting
metric, we introduce the second requirement on ˆhk that will
allow to relate our framework to the sequence of metrics
described in the previous section. For this, we will need to
define two important quantities:

#(k, s, s0) := |{k0  k : (s, s0) 2 ↵k0}|
⌘(k) := min

(s,s0)
#(k, s, s0)

The first quantity keeps track of the number of exact updates
that have been performed on every pair. The second quantity,
⌘(k), contains the number of updates that is guaranteed for
all pairs in ⌦S . A last quantity will be defined under the
assumption that an update schedule is chosen such that the
distances between all pairs of states are updated infinitely often
as we increase the total number of updates. For a fixed integer
m, we define km to be

km = min

k
{⌘(k) � m}

That is, km is the earliest time in the schedule when the
guaranteed number of updates over the entire space ⌦S is m.
Under these definitions, the following lemma can be proven:

Lemma 4. Let m > 0 and assume that ⌘(k) ! 1 as
k ! 1. Further assume that ˆhk � hk. Then, for any integer
m, Fm

(0)  hkm .

Proof: We will prove the statement by induction on m.
The statement clearly holds for m = 0 since both values are
equal to 0:

k0 = 0 ) hk0 = h0 = 0 F 0
(0) = 0

Now, assume Fm
(0)  hkm , and we proceed to study

changes between consecutive values of

k 2 {km + j | 0  j  km+1 � km}

For these values of k, we prove, by nested induction on j, that

Fm+1
(0)(s, s0)  hk(s, s

0
) 8(s, s0) 2

k
[

k0=km+1

↵k0

In the base case for the nested induction (i.e., j = 0), the above
statement clearly applies since the set for which we want the
property to hold is empty.

Now, for any other l in the desired interval, assume that the
statement is true for all 0  j0 < l� km. Let (s, s0) 2 ↵l. We
would like to apply the monotonicity of F in Lemma 2, but
for this we need to analyse hl�1. There are a few cases that
have to be considered for the choice of partitions (↵,�, �) in
previous steps (i.e., j < l � k +m).

If (s̄, s̄0) 2
Sl�1

l0=km+1 ↵l0 , then

hl�1(ŝ, ŝ
0
) � Fm+1

(0)(s̄, s̄0) by hypothesis of
the nested-induction

� Fm
(0)(s̄, s̄0) by monotonicity of F



If (s̄, s̄0) 62
Sl

l0=km+1 ↵l0 , then for every j0 such that (s̄, s̄0) 2
�j0 , the following holds

hj0(s̄, s̄
0
) � hj0�1(s̄, s̄

0
)

and for every j0 such that (s̄, s̄0) 2 �j0 ,

hj0(s̄, s̄
0
) = hj0�1(s̄, s̄

0
)

By a simple inductive argument, it must hold that

hl�1(s̄, s̄
0
) � hkm(s̄, s̄0)

� Fm
(0)(s̄, s̄0) by hypothesis of

the induction on m

This concludes the fact that hl�1 � Fm
(0). We now go back

to the pair (s, s0) from ↵l.

hl(s, s
0
) = F (hl�1)(s, s

0
) by definition

� F (Fm
(0))(s, s0) by monotonicity of F

on the induction hypothesis
= Fm+1

(0)(s, s0)

Note that the case when (s, s0) 2
Sl�1

l0=km+1 ↵l0 \↵l is simpler
to analyze, since the value either increases relative to hl�1, or
it does not change. Therefore, the assumption of the nested-
induction is carried over, and the nested-induction proof is
done.

At the same time, by definition of km,

km+1
[

k0=km+1

↵k0
= ⌦S

So that the statement proved with the nested induction can be
used to declare that

Fm+1
(0)(s, s0)  hkm+1(s, s

0
) 8(s, s0) 2 ⌦S .

Therefore, Fm+1  hkm+1 , which completes the induction on
m.

The following Theorem describes the main theoretical result
of our work: on-the-fly methods of bisimulation computation
can be used to generate a sequence of functions (not necessar-
ily metrics) which converge to the same bisimulation metric.

Theorem 2. Assume that all pairs of states are picked in-
finitely often for an update, based on F (i.e., ⌘(k) ! 1 as
k ! 1). Under the further assumptions of Lemmas 3 and 4,
hk ! d⇤.

Proof: By Lemma 3 and Lemma 4, under the definitions
given already,

Fm
(0)  hkm  d⇤

As k ! 1, the number of updates on every state goes to 1,
so m ! 1, and hkm becomes bounded above and below by
d⇤. This concludes the proof.

VI. NEW STRATEGIES TO COMPUTE BISIMULATION
METRICS

Theorem 2 opens the door to various computational
improvements towards computing bisimulation metrics for
MDPs. In this section, we describe different choices for the
partitions (↵,�, �) of ⌦S , inspired by asynchronous dynamic
programming methods.

First, note that the framework we developed in the previous
section is indeed a strict generalization of the original compu-
tational scheme presented in [5], which we can emulate using
the simplest partitioning strategy:

(↵k = ⌦S ,�k = ⌦S \ ↵k) for all k

We will refer to this choice as the “all pairs exact update”

scheme.
The simplest modification to the existing framework is

inspired by the Gauss-Seidel method for linear systems, as
presented in Section II. The recursive update in 5 illustrates
the distinction which is persistent in the “all pairs exact update
rule” between h and F (h). We remove this by working with
a function h which only gets updated “on-the-fly”: we choose
an ordering (s1, s

0
1), (s2, s

0
2), ... on ⌦S and cycle the update

through ⌦S . Hence, we choose the following partition:

(↵k = {(sj , s0j)},�k = ⌦S \ ↵k) for k = i|⌦S |+ j

We will call this approach the “Gauss-Seidel update”.
An alternative to a fixed ordering on the set ⌦S would be

to use any random sequence that is guaranteed to select every
pair infinitely often. For example, we will study in the next
section the “uniform asynchronous update”, which picks
states using the uniform distribution U(⌦S) assigning equal
probability to all states.

(↵k = {(s, s0)},�k = ⌦S \ ↵k) (s, s0) picked from U(⌦S)

While all the strategies described so far can be used within
our theoretical framework, they are oblivious to any partial
information from the current distance metric estimate hk; such
information is not used to select the pairs to be updated.
Using this information has the potential to lead to more
significant gains. Hence, we propose to use an approach
similar to prioritized sweeping: changes at a pair (s, s0) should
be propagated to pairs that are influenced by this update.
From the definition of the Monge-Kantorovich transportation
problem we can deduce that in Equation (7), ⇡ij = 0 for all
i, j such that P (i) = 0 or Q(j) = 0. It then becomes clear that
T (h, Psa, Ps0a) depends only on h(s̄, s̄0) such that P s

s̄a > 0 for
some a, and P s

s̄0a0 > 0 for some a0, and Equation (5) is only
relevant for these pairs. Under the computational framework
presented in the previous section, the above information can
be used to design an informed update rule, which we’ll denote
by “prioritized sweeping update” (the recursive definition is
using a queue Q of pairs from ⌦S):

1) For k = 1, 2, ...

a) If queue is empty, initialize Q with a pair picked
from U(⌦S)



b) Assign ↵k = {(s, s0)}, where the (s, s0) is the top
of Q (and remove it from Q) and �k = ⌦S \ ↵k

c) � = hk(s, s
0
)� hk�1(s, s

0
)

d) Add all pairs (s̄, s̄0) to the queue with priority

�

X

a

⇣

P s
s̄a + P s0

s̄0a

⌘

only if both P s
s̄a, P

s0

s̄0a > 0; if the pair is already in
the queue, increase its priority to the above.

The priority is designed as follows: one should be eager to
update the distance information of a pair (s̄, s̄0) if the cost
between states that are important in its transportation problem
has increased substantially.

For the prioritized sweeping update, the fact that pairs are
picked infinitely often follows from the property hk  d⇤ of
Lemma 3, and as a consequence, � ! 0 and the priority of
all states goes to 0 as well.

VII. EMPIRICAL RESULTS

In this section we present an illustrative example of the
proposed approach, and we show the empirical advantage of
on-the-fly bisimulation updates. We use the standard grid-
world domain, which has been used extensively in artificial
intelligence, as a model for navigation tasks in environments
with obstacles. This domain is simple and intuitive, and at the
same time, it provides a convenient testbed for comparisons
based on the exact bisimulation metric. Grid-world MDPs have
sparse transition maps: under any state-action pair, the next
state is stochastically chosen from a relatively small subset
of S. This suits well the purpose of the current presentation,
which is to show how different scheduling for bisimulation
updates can lead to better performance, independent of the
transportation problem (whose complexity is directly related
to the size of state neighbourhood).

As illustrated in Figure 1, we work with stochastic grid-
worlds, where reward is received only upon entering a given
goal state; all other transitions are neither rewarded, nor
penalized. However, using a discount factor � < 1 means
that an optimal policy has to reach the goal state in minimum
expected time. The actions are directional navigation moves
(North, South, East and West). All actions are stochastic: with
probability 0.9, an action moves the system to the next state in
the desired direction, while with the remaining probability 0.1 ,
the movement is a uniform choice in any of the other directions
allowed (see Figure 2 for a visual representation of this effect).
Also, if a corresponding transition results in collision with a
wall, then the state does not change. The reward is 1 when
the system moves into the goal state, and 0 everywhere else.

First, we investigate the behaviour of the strategies dis-
cussed in Section VI in the smaller 9⇥11 MDP, where all
methods are expected to converge quickly to the exact bisim-
ulation metric. The standard algorithm, “all pairs update”, is
run as an iterative method, where each iteration consists of
|S| ⇥ (|S| � 1)/2 updates, one for every distinct pair. The
“Gauss-Seidel update” is almost identical in structure. For the
other algorithms, we grouped |S| ⇥ (|S| � 1)/2 consecutive

updates and we have analyzed the quality of the metric after
each group was processed(i.e. one iteration).

Figure 3 presents a summary of the results; we measured
the L1 distance (sum of absolute difference in each entry)
between the approximation and the exact bisimulation metric,
either as a function of the number of iterations performed,
or as a function of the clock running time of the algorithm.
Note that the environment is small enough to allow one to
compute the exact bisimulation metrics; in large domains,
this would not be the case. In such cases, one can plot the
sum of all distances (which is always increasing with more
iterations) in order to track the progress of the algorithm.
Both graphs show essentially the same behaviour. The uniform
heuristic performs worst, as expected; this shows that not
all “on-the-fly” algorithms are expected to help, and care
must be put into selecting the update schedule. The “Gauss-
Seidel” strategy provides a slight improvement over the “all-
pairs algorithm”. The “prioritized sweeping” strategy yields a
significant improvement over the previous methods, showing
that it is worthwhile to focus on state pairs where the distance
change is expected to be largest.

We repeated the same experimental procedure on a larger
MDP, of size 30⇥30. The results are presented in Figure 4.
Note that for this larger grid we did not plot the uniform
strategy, since its performance was significantly worse than of
the other methods. As before, prioritized sweeping generates a
good approximation to the bisimulation metric in significantly
fewer iterations, by focusing on important pairs of states.
However, in terms of computational time, at least using
our implementation, this advantage did not materialize in a
substantial reduction. Surprisingly, the “Gauss-Seidel” strategy
was virtually tied with the prioritized sweeping in terms of run-
ning time, despite requiring more iterations. The discrepancy
between the performance in terms of number of iterations vs
the running time is due to the fact that prioritized sweeping
requires a priority queue of the next state pairs that should be
processed. Hence, the quality of the queue implementation
becomes a factor in larger environments, where the queue
grows. We did not yet consider improvements to this aspect of
the algorithm, but this is clearly worth pursuing. It is important
to note that both “Gauss-Seidel” and “prioritized sweeping”
converged faster that the “all-pairs algorithm”, both in terms
of number of iterations and running time. In particular, “Gauss-
Seidel” was comparatively better in the large environment
than in the small environment. We expect that in even bigger
domains, such effects would be more pronounced. These
effects show that there can indeed be a significant benefit from
on-the-fly bisimulation metric evaluation.

VIII. CONCLUSION AND FUTURE WORK

We presented new theoretical results that establish the
foundation of on-the-fly bisimulation metric algorithms, lead-
ing to significant computational gains compared to previous
approaches. We presented the theoretical development in the
context of Markov Decision Proceses. However, all the theory



0 10 20 30 40
0

500

1000

1500

2000

Iterations

L
1
 e

rr
o
r

Small Grid −  Iterations vs. Error

 

 

All Pairs

Gauss−Seidel

Prioritized S.

Uniform

0 0.2 0.4 0.6 0.8
0

500

1000

1500

2000

Running time

L
1
 e

rr
o
r

Small Grid − Running time vs. Error

 

 

All pairs

Gauss−Seidel

Prioritized S.

Uniform

Fig. 3. 9⇥11-Grid World: Approximation error is graphed both in terms of the running time of each method, as well as the number of iterations(i.e. updates)
performed

10 20 30 40 50
0

2000

4000

6000

8000

10000

Number of iterations

L
1
 e

rr
o
r

Large Grid − Iterations vs. Error

 

 

All pairs

Gauss−Seidel

Prioritized S.

0 200 400 600 800 1000 1200
0

2000

4000

6000

8000

10000

Running Time

L
1
 e

rr
o
r

Large Grid − Running time vs. Error

 

 

All pairs

Gauss−Seidel

Prioritized S.

Fig. 4. 30⇥30-Grid World: The two best performing strategies are compared in a larger MDP. The difference between the two plots illustrates the fact that
the computational cost of maintaining an informed update schedule has to be controlled

Fig. 1. Small MDP of size 9⇥11 on the left, and larger MDP of size 30⇥30
on the right (for visual clarity, only the walls are depicted for the large task,
instead of all the cells). Reward is received upon entering the state at the
position indicated by the red dot.
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Fig. 2. Stochasticity of transitions in a grid (action in this case is South)

and empirical ideas can also be applied readily to bisimulation
metrics for Labelled Markov Processes.

We note that the computational savings depend on properties
of the system under scrutiny, such as the possible number
of successors from a given state. Such factors need to be

taken into account when deciding on the approach to be used.
Domain-dependent heuristics can be very useful to manage
well the transportation problems that need to be solved. Our
theoretical results allow many such approaches to be used,
but more empirical experience with different approaches is
needed, especially for models of real systems.

One of the open implementation issues is the management
of the priority queue for the prioritized sweeping heuristic.
We obtained the results presented here by using a standard
C++ library implementation. As seen in our results, even
though the number of updates with this approach may be
significantly smaller, the cost of maintaining the queue can
become large. Limiting the size of the queue or using a branch-
and-bound approach, in which only a fixed number of high-
priority predecessors are enqueued, could potentially improve
the running time a lot. We will explore such solutions in future
work.

One algorithmic idea that we are currently pursuing is
to work with subsets of states, rather than individual states,
and split these gradually during the metric computation. This
co-inductive splitting idea matches very well the prioritized
sweeping approach, and promises to bring significant further
computational gains.

This paper tackled finite-state environments. Bisimulation
metrics have been defined for continuous domains as well [4],
and their computation in this case is based on similar trans-
portation problems. It would be worthwhile to pursue an
extension of the theory presented here to the continuous case.



Prioritized sweeping and asynchronous dynamic programming
have already been used successfully in robotic environments
with continuous states, so this avenue is very promising.

ACKNOWLEDGMENTS

To be added after review.

REFERENCES

[1] K. G. Larsen and A. Skou, “Bisimulation through probablistic testing,”
Information and Computation, vol. 94, pp. 1–28, 1991.

[2] R. Givan, T. Dean, and M. Greig, “Equivalence notions and model
minimization in Markov decision processes,” Artificial Intelligence, vol.
147, no. 1-2, pp. 163–223, 2003.

[3] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, “Metrics for
labeled Markov systems,” in Proceedings of CONCUR99, ser. Lecture
Notes in Computer Science, no. 1664. Springer-Verlag, 1999.

[4] ——, “A metric for labelled Markov processes,” Theoretical Computer
Science, vol. 318, no. 3, pp. 323–354, June 2004.

[5] N. Ferns, P. Panangaden, and D. Precup, “Metrics for finite Markov de-
cision precesses,” in Proceedings of the 20th Conference on Uncertainty
in Artificial Intelligence, July 2004, pp. 162–169.

[6] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley, 1994.

[7] L. Kaelbling and M. Littman, “Reinforcement learning: a survey,”
Journal of Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

[8] P. S. Castro and D. Precup, “Using bisimulation for policy transfer
in mdps,” in Proceedings of the 24th AAAI Conference on Artificial
Intelligence. Association for the Advancement of Artificial Intelligence,
2010.

[9] G. Comanici and D. Precup, “Basis function discovery using spectral
clustering and bisimulation metrics,” in AAAI, 2011.

[10] P. Castro and D. Precup, “Automatic construction of temporally extended
actions for mdps using bisimulation metrics,” in Proceedings of the 9th
European Workshop on Reinforcement Learning, 2011.

[11] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning
domains : A survey,” Journal of Machine Learning Research, vol. 10,
pp. 1633–1685, 2009.

[12] J. B. Orlin, “A Faster Strongly Polynomial Minimum Cost Flow Algo-
rithm,” in ACM Symposium on Theory of Computing. ACM Press, Mar.
1988, pp. 377–387.

[13] J. Fernandez, L. Mounier, C. Jard, and T. Jeron, “On-the-fly verification
of finite transition systems,” Formal Methods in System Design, vol. 1,
no. 2-3, pp. 251–273, 1992.

[14] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[15] R. Iosif and R. Sisto, SPIN Model Checking and Software Verification,
ser. Lecture Notes In Computer Science. Springer-Verlag, 2000, vol.
1885, ch. Using garbage collection in model checking.

[16] D. Bertsekas, “Distributed dynamic programming,” IEEE Transactions
on Automatic Control, pp. 610–616, 1982.

[17] D.P.Bertsekas, “Distributed asynchronous computation of fixed points,”
Mathematical Programming, pp. 107–120, 1983.

[18] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[19] C. Villani, Topics in optimal transportation, ser. Graduate Studies in
Mathematics. American Mathematical Society, 2003, vol. 58.

[20] S. T. Rachev, Probability Metrics and the Stability of Stochastic Models.
J. Wiley, 1991.

[21] O. Pele and M. Werman, “Fast and robust earth mover’s distances,” in
Proceedings of the IEEE International Conference on Computer Vision,
2009, pp. 460–467.

[22] P. Panangaden, Labelled Markov Processes. Imperial College Press,
2009.

[23] L. A. Hageman and D. M. Young, Applied Iterative Methods. Academic
Press, 1981.

[24] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion. Prentice-Hall, 1989.

[25] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[26] A. W. Moore and C. G. Atkeson, “Prioritized sweeping: Reinforcement
learning with less data and less real time,” Machine Learning, vol. 13,
pp. 103–130, 1993.

[27] S. Chernova and M. Veloso, “Confidence-based policy learning from
demonstration using gaussian mixture models categories and subject
descriptors,” in Proceedings of the Twenty-Second AAAI Conference on
Artificial Intelligence, 2007.

[28] D. Ferguson and A. Stentz, “Focussed processing of MDPs for path
planning,” in Proceedings of the IEEE International Conference on Tools
with Artificial Intelligence. IEEE Press, 2004, pp. 310–317.

[29] L. C. Evans and W. Gangbo, “Differential Equations Methods for the
MongeKantorovich Mass Transfer Problem,” Mem. Amer. Math. Soc.,
vol. 137, no. 653, pp. viii+66, 1999.

[30] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” J. ACM, vol. 34, no. 3, pp.
596–615, Jul. 1987.

[31] Y. Rubner, C. Tomasi, and L. J. Guibas, “The Earth Movers distance as
a metric for image retrieval,” International Journal of Computer Vision,
vol. 40, no. 2, pp. 99–121, 2000.

[32] H. Ling and K. Okada, “An efficient Earth Mover’s Distance algorithm
for robust histogram comparison.” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 29, no. 5, pp. 840–853, 2007.


