
An approximation algorithm for labelled Markov
processes: towards realistic approximation

Alexandre Bouchard-Ĉoté, Norm Ferns, Prakash Panangaden, and Doina Precup
School of Computer Science

McGill University
Montréal, Qúebec

Canada.
Email: alexandre.bouchard@mcgill.ca

{nferns, prakash, dprecup }@cs.mcgill.ca

Abstract— Approximation techniques for labelled Markov pro-
cesses on continuous state spaces were developed by Desharnais,
Gupta, Jagadeesan and Panangaden about 5 years ago. However,
it has not been clear whether this scheme could be used
in practice since it involves inverting a stochastic kernel. We
describe a Monte-Carlo-based implementation scheme for this
approximation algorithm. This is, to the best of our knowledge,
the first implementation of this approximation scheme. The
implementation involves some novel ideas about how to estimate
infs using sampling and also replacing the explicit description
of subsets of the state space by tests for membership. It is
hoped that this work will enable more applications of continuous
probabilistic LMP theory to emerge.

I. I NTRODUCTION

Labelled Markov processes (LMPs) are a theoretical for-
malism that generalizes both process algebra as well as
traditional Markov chains. LMPs are processes that combine
nondeterminism with probabilistic transitions. LMPs provide a
foundation for interacting with discrete probabilistic systems.
The interaction is synchronized on labels, just like in process
algebras. There have been significant theoretical advances
recently with the development of a notion of bisimulation
for continuous LMPs, a logical characterization of bisim-
ulation [1], metrics [2]–[5] and approximation theory [6].
The approximation theory developed by Desharnais, Gupta,
Jagadeesan and Panangaden [6] has very appealing theoretical
properties: it converges in the metric and also in the domain
of LMPs and it captures exactly the logical properties of the
original system in the limit. However, until now it has been
unclear how to implement it in practice.

The initial study of labelled Markov processes in continuous
state spaces was motivated by the potential for important
practical applications in performance analysis and verification.
This hope was based on the initial approximation schemes
of Desharnais et. al. cited above as well as further improve-
ments presented in [7]. Unfortunately, the development of
concrete applications was slowed by obstacles that arose in
the implementation of continuous state space approximation
algorithms. Indeed, these algorithms are grounded in measure-
theoretic ideas, some of which offer no direct algorithmic
content. The biggest obstacle was that one had to invert an
arbitrary measurable function. One could imagine that it was

reasonable to assume conditions on the transition probability
function—perhaps continuity or even piecewise linearity—in
order to make progress. Indeed, a few examples were worked
out by hand in this way. However, a general scheme to realize
these approximations was lacking until now.

This paper describes a working implementation of the
continuous state space approximation algorithm of [6]. This
algorithm creates a finite state approximation of a given contin-
uous process. The implementation relies heavily on techniques
from probability theory, especially Monte Carlo methods, and
eliminates the need for inverting exactly the transition proba-
bility function. The idea that Monte Carlo techniques could be
useful was suggested in another paper on approximation [8],
[9] where it was proposed that averaging should be used as
an approximation method. However no concrete ideas were
proposed there. The technique of the present paper has been
developed for the approximation scheme of [6] rather than that
of [8].

The first part of this paper summarizes the main elements
of (continuous-state) labelled Markov process theory: bisim-
ulation and approximation techniques. The reader interested
in a in-depth exposition of these topics should refer to [6]
and [3]. The key ideas on which the implementation is based
are discussed in section III. More concrete implementation
information can be found in section IV. Finally, some tests
and applications of the code are described in section IV.

II. BACKGROUND

In this section we give the basic background about LMPs
and approximation. We assume that the reader is familiar with
measure theory and elementary real analysis, as described, e.g.,
by Folland [10]. A basic reference for Monte Carlo methods
is by Fox [11].

The basic mathematical object that we want to study is a
model for interactive probabilistic systems:

Definition 1. A labelled Markov processS is a triple
(S,M, τ), whereS is a state space,M is a σ-algebra onS1

and τ is a family
{
τa : S ×M→ [0, 1] , a ∈ A

}
of transition

sub-probability kernels indexed by a finite set of actions (or
labels)A.

The “choice” of actions dictates which kernel will be used
to perform the transition from the current state to the next one
(we use sub-probabilities to express disabled actions: action
a0 disabled at states0 is equivalent toτa0(s0, ·) ≡ 0). This
choice of action is made outside of the system description,
and is external to the system. It could be, for instance, an
agent picking actions so that it can reach some desirable
state—this is the typical situation of interest in AI applications
where the agents are following a policy—, or two distinct
processes synchronizing their labels. We will call the object
hence described anLMP.

The first tool we will use in our study of the structure
of LMPs is that of bisimulation. Bisimulation for discrete
systems was proposed and studied by Larsen and Skou [12]:
the present definition is an adaptation to the continuous case
where measure-theoretic conditions need to be imposed. Given
a binary relationR on a setX we say that a subsetY is R-
closed if {x ∈ X : ∃y ∈ Y.yRx} ⊆ Y ; i.e. Y contains
all points related byR to a point inY . If R happens to be
an equivalence relation then anR-closed set is a union of
equivalence classes.

Definition 2. We say that a binary relationR ⊆ S2 on a LMP
is a bisimulationif, for anys1, s2 ∈ S with s1Rs2, and for any
R-closed setX ∈M, we haveτa(s1, X) = τa(s2, X) ∀a ∈ A.
We say that two statess1, s2 are bisimilar if there exists a
bisimulation relationR0 such thats1R0s2.

In particular, bisimulation gives us a way to compare two
processes by first taking theirdirect sum: suppose(S,M, {τa :
S×M→ [0, 1] , a ∈ A}) and(T,N, {ρa : T×N→ [0, 1] , a ∈
A}) are two LMPs with initial statess ∈ S, t ∈ T . We
merge the two LMPs into a new LMP constructed such that
the new set of statesU is the disjoint union ofS and T ,
the newσ-algebraO is generated byM ∪ N, and the new
kernels{σa : U ×O → [0, 1] , a ∈ A} are as follows: for all
s ∈ S, t ∈ T , X ∈M andY ∈ N, σa(s,X ∪ Y) = τa(s,X)
andσa(t,X∪Y) = ρa(t, Y). In the further discussions, ee will
use whichever way of thinking is more convenient, depending
on the context.

In a finite state space LMP [12], this definition corresponds
to our intuition: two statess, t are bisimilar iff for all transi-
tions from s to s′, there is a transitiont to t′ with the same
probability with s′ and t′ bisimilar, and vice-versa.

For the continuous case, bisimulation, as described above,
is a generalization of this concept. The one-way counterpart

1We actually require thatS be an analytic space(S, T) and thatM =
σ(T). This is needed to prove, among other things, the logical characteriza-
tion [1] used in this paper. It will not, however, be used explicitly, so we will
not mention this condition in the rest of this paper. Analytic spaces are very
general and cover the vast majority of spaces encountered in practical—or
even impractical—situations.

of bisimulation is the concept ofsimulation:

Definition 3. A reflexive and transitive relation (a preorder)
R ⊆ S2 on a LMP is asimulation if whenevers1Rs2, with
s1, s2 ∈ S, we have that for alla ∈ A and everyR-closed
measurable set X,τa(s1, X) ≤ τa(s2, X)

The central theorem provided by continuous probabilistic
labelled Markov process theory is a characterization of bisim-
ulation in terms of a surprisingly simple logic [1]:

Theorem 1. Let L0 be the logic specified by the following
grammar:

L0 := T
∣∣φ1 ∧ φ2

∣∣〈a〉qφ,
wherea ∈ A, q ∈ Q ∩ [0, 1] and s |= 〈a〉qφ is deemed to be
true iff ∃X ∈M such thats′ |= φ ∀s′ ∈ X andτa(s,X) > q.

Then, two statess1, s2 are bisimilar iff they satisfy the same
formulas ofL0

This characterization is the basis of a collection of very use-
ful tools, enabling quantitative analysis of LMPs. Simulation
is characterized by a slightly extended logic:

Theorem 2. s1 is simulated bys2 iff for all formulasφ ∈ LW,
s1 |= φ impliess2 |= φ, where:

LW := L0

∣∣ ∞∨
i=1

φi.

We now present the approximation scheme that we imple-
mented.

Definition 4. LetS := (S,M, τ = {τa : S×M→ [0, 1] , a ∈
A}) be a LMP with starting states0. For n ∈ N, ε > 0,
we define itsrational approximation, S̃n,ε(P, 2P ,ρ = {ρa :
P × 2P → [0, 1] , a ∈ A}), as follow:
• P is a finite set whose elements are identified by

a level ∈ {0, 1, . . . , n} and a measurable subset of
S. At level 0, there is only one state,(S, 0). The
states at the other levels are defined inductively: given
{(C1, l), (C2, l), . . . , (Cm, l)}, the list of them states of
level l, we first partition the unit closed interval into
disjoint half-open intervals of lengthε/m, say(Bj)j∈I =
({0}, (0, ε/m], (ε/m, 2ε/m], . . . , (1−ε/m, 1]). Then, the
states {(Dk, l + 1)} of level l + 1 are obtained by
letting Dk be the different subsets ofS in the partition
generated by the setsτa(·, Ci)−1(Bj), for everya ∈ A,
i ∈ {1, . . . ,m} and j ∈ I.

• The transitions inS̃ occur only from states of leveli+1
to states of leveli. Transition probabilities are given by:

ρa((X, k), (B, l)) :=
{

inft∈X τa(t, B) if k = l + 1
0 otherwise.

• The initial statep0 is the unique state(X,n) such that
s0 ∈ X.

Example 3 illustrates the result of the application of this
definition to a simple process.

This particular approximation scheme has very interesting
properties with respect to the logicL0, and hence with respect
to bisimulation:

Theorem 3. For everyε > 0, n ∈ N, S simulatesS̃ . More
precisely, every state(X, l) of S̃ is simulated inS by every
s ∈ X.

Theorem 4. If a states ∈ S satisfies a formulaφ ∈ L0, then
there is some approximationS̃n,ε such that(Xs, n) |= φ,
whereXs is the unique subset ofS in the n-th level that
containss.

These theorems tell us that every “finite piece of informa-
tion”, as embodied by a formula of the logic, is eventually
captured by some approximant and that the approximants
never describe any behaviour that is not a possible behaviour
of the main system being approximated.

It has been argued that bisimulation—or indeed any equiv-
alence relation—is not a robust notion in the presence of
probabilities: a small perturbation of the probabilities will
dramatically affect the relation. Accordingly metrics were
introduced [2] as suggested first by Jou and Smolka [13].
These metrics measure behavioural “closeness” and when
the processes are at zero distance2 they are bisimilar. These
metrics have a built-in discount factor so that actions in
the future are discounted in their effect on measuring the
distance between processes. We writedc for the metric with
discount factorc. The main theorem relating the metrics and
the approximation is [3]:

Theorem 5. If S involves a finite number of labels,̃Sn,cn/n

converges toS in the metricdc with c < 1.

The condition c < 1 is important in the calculation.
However, it has been pointed out to us that the restriction
to finite action sets could be weakened to countable sets if
we change slightly the definition of the metric. The proof is
in [14].

We have not introduced domains in the present paper but
elsewhere [6] it has been shown that LMPs can be organized
into a domain; it turns out that equality in the domain is
bisimulation and that the order is simulation (essentially). The
approximants constructed above form a directed set in this do-
main and their supremum gives the LMP being approximated.

III. M ONTE CARLO TECHNIQUES FORLMP
APPROXIMATION

The first question one must face before doing computation
in a continuous state space is the representation problem:
how should the transition probability kernels be expressed,
assuming an uncountable range of values? In the case in
which we have a “canonical” probability measureµ on (S,M)
(for instance, in many problems this would be the Lebesgue
measure), the most common solution to this question is to use
a family of sub-probability density functions.

2Technically they are pseudo-metrics, distinct processes can be at zero
distance.

Definition 5. A family of sub-probability density functions
fa : S2 → [0,∞), s ∈ S, a ∈ A, is simply a family of(M ⊗
M)-measurable functions such that∫

S

fa(s0, ·)dµ ≤ 1 ∀s0 ∈ S, a ∈ A.

Then, the kernels are given by:

τa(s0,M) :=
∫

M

fa(s0, ·)dµ ∀M ∈M, a ∈ A, s0 ∈ S.

It is not hard to show thatτa is then a labelled probability
kernel (the fact thatτa(s, ·) is a measure follows using the
monotone convergence theorem, the measurability ofτa(·,M),
using Fubini’s theorem). We will denote this construction
by dτa(s, ·) = fa(s, ·)dµ. Recall that this representation
is possible iff τa � µ (by the Lebesgue-Radon-Nikodym
theorem).

Example 1. We now show a toy example of this construction
that will be used later to test our algorithms. Consider a pair
of 2-dimensional aquaria, arranged side by side horizontally.
The first aquarium has horizontal coordinates[0, 1

2] and the
second, (1

2 , 1]. We are interested in the evolution of the
horizontal position of a stochastic fish that starts its life in
the first aquarium and has a choice of 2 actions:

• swim will change the position of the fish in its aquarium.
The new position is drawn uniformly from the interval
[0, 1

2].
• jump corresponds to an attempt to jump into the second

aquarium. If the fish is at distanced from aquarium 2, it
will fail and fall in the original aquarium with probability
2d (the next position will then be drawn uniformly from
the interval [12 − d, 1

2]). If the fish succeeds, its new
position is drawn uniformly from the interval(1

2 , 1].
Unfortunately, the fish does not know that the second
aquarium is filled with a liquid fatal for its metabolism.
The death of the fish is modeled by disabling both actions
in the second aquarium.

Schematically:

[0, 1
2]

a[1]

UU

b[∗]
		

b[∗] // (1
2 , 1]

where the labela[p] on an edge(si, sj) denotes that the
probability to transition fromsi to sj is p, given that action
a is selected.

Note that the probability distribution induced by selecting
action b is different for each state in[0, 1

2] from which the
action is taken. This is denoted byb[∗]. Hence, this LMP
cannot be lumped into a finite state system.

Let µ = the Lebesgue measure on[0, 1]. We obtain easily
that the kernels corresponding to the actions described above
can be expressed using the following probability density func-

tions:

fswim(x, y) :=
{

1 if x ∈ [0, 1
2] and y ∈ [0, 1

2]
0 otherwise

fjump(x, y) :=

 2 if x ∈ [0, 1
2] and y ∈ [x, 1

2]
4x if x ∈ [0, 1

2] and y ∈ (1
2 , 1]

0 otherwise

Example 2. Let us consider now a more realistic situation.
Consider the onboard flight control system of a Cosmos-3MU
launcher, a 2-stage, UDMH-fueled dispensable rocket often
used to send small payloads into Earth orbit [15].

A hypothetical problem for which the approximation scheme
would be useful is the verification and/or evaluation of the
effectiveness of flight guidance software for the Cosmos-3MU
(In November 2000, and twice in January 2005, the second
stage of the launcher failed to form the final orbit because of
undiagnosed problems in this system. At least two commissions
tried unsuccessfully to isolate the source of this “bug”).
Suppose that the main controller must keep the launcher within
distancermax of the ideal trajectory by applying lateral speed
corrections. The controller is composed of a sampling loop,
the cyclic executive, that applies a thrust towards the ideal
trajectory if needed. This loop structure motivates the discrete-
time model of the problem. The state space is the cartesian
product of the velocity space with the distance-to-trajectory
space,R2 (with r = −r, v = −v). The actions are:
• actuate, which applies a velocity correction towards the

ideal trajectory. Due to the limited precision of these
corrections, the result of this action from state(r0, v0)
is modeled by a bivariate normal distribution centered
at

(
x0 + δ(v0 − aimpulse), v0 − aimpulse

)
with a strong,

positive correlation such that the major axis of the elliptic
isopleths of the density (that is, the locus of the points in
the plane wherefactuate(x, v) = c) has a slope of1/δ. The
variance parameters can be set using the large amount
of flight data available for this type of rocket (more than
400).

• stay, corresponds to the absence of velocity correction.
It is modeled by a normal distributionfstay, similar to
factuate except that the center is at

(
x0 + δ · v0, v0

)
.

If, at any point in the stage-2 propulsion sequence, the con-
troller fails to maintain the trajectory within distancermax of
the trajectory, a backup system takes control of the guidance.
This is represented by disabling all actions. If, on the other
hand, the controller successfully keeps the trajectory during
27 minutes, the orbit is reached and a special action,success,
is enabled to a specialsuccess state, ssuccess.

Given that the setM , over which the density functions
are to be integrated, can be an arbitrary measurable set, the
next difficulty is to compute algorithmically these integrals.
Numerical integration cannot be applied here becauseM could
be “too nasty” geometrically to allow a nice partitioning. The
solution comes from probability theory:

Lemma 1. Let (Ω,F , P), (S,M, λ) be probability spaces.
Assume that we can sample the random variablesX1, X2, . . . ,

Xi : Ω → S, identically and independently according to the
distribution λ. Then, iff : S → R is integrable andM ∈M
we have:

1
n

n∑
i=1

(χM · f) ◦Xi →
∫

M

fdλ (a.s.).

This standard result is the basis ofMonte Carlo integration.
Its proof is fairly simple:

Proof: We have the following picture:

f ◦Xi : (Ω,F , P) → (S,M, λ) → (R,BR)

Using the fact thatX1, X2, . . . are independent and thatf
is measurable, we obtain easily, using Fubini’s theorem, that
f ◦ X1, f ◦ X2, . . . are independent. They are also clearly
identically distributed andL1, so we can apply Khinchine’s
Strong Law of Large Numbers to obtain:

1
n

n∑
i=1

(χM · f) ◦Xi →
∫

Ω

(χM · f) ◦X1dP

=
∫

S

χM · fdPX1 (a.s.)

=
∫

M

fdPX1

=
∫

M

fdλ.

The other operations on measurable sets and functions that
we encountered in defintion 4 are:

1) Given a measurable setM and a measurable function
f , compute the infimum of the value attained byf ,

2) Given two measurable setsM1,M2, determine whether
their intersection is non-empty (is-∅ : Sets→ {0, 1},
is-∅(A) = 1 iff A = ∅),

3) Given a measurable functionf , compute the inverse
image of an interval.

We will see in section IV how point 3 can be avoided. The
basic idea is that, since we use Monte Carlo integration for
the representation of the kernels, the only operation we need
to impose on measurable sets is to test membership of a
given point (in particular, there is no need for an operation
that would express a measurable set as the union of intervals
plus a null set, as it would be the case if we were using
numerical integration, for instance). The two other points,
however, have to be handled. Note that both arbitraryinf ’s
and is-∅’s cannot be computed algorithmically in general (the
inf could be achieved on a set of measure zero), so we look
for “measure-theoretic” equivalents that are computable (in a
randomized computation model). For the case ofinfs, we use
the following concept:

Definition 6. Let (X,G, µ) be a measure space. We define
the essential infimumoverM ∈ G of a bounded measurable
functionf : (X,G)→ (R,BR) to be:

essinf
M
f := sup

{
a ∈ R : µ

({
x ∈M : f(x) < a

})
= 0

}
.

Now suppose thatS := (S,M, τ) is a LMP such thatτa �
µ for all kernelτa in τ (in which case we will write “τ � µ”),
whereµ is a measure onS from which we can sample points.
In this situation, essential infima have the advantage of being
computable:

Lemma 2. Let (Ω,F , P) be a probability space and assume
that we can sample the random variablesX1, X2, . . . , Xi :
Ω → M , identically and independently according to the
distribution µ, where M ∈ M and µ(M) > 0. Then if
f : S → R is bounded and measurable we have:

min
{
f ◦Xi : 1 ≤ i ≤ n

}
→ essinf

M
f (in P-probability).

Proof: First note that essinfM f < ∞ if and only if
µ(M) > 0. Let ε > 0 be given. By definition of supremum,
we have that

p0 := µ
({
s ∈M : f(s)− essinf

M
f ≤ ε

})
must be positive. Then for anyi ∈ N,

P
({
ω ∈ Ω : |f ◦Xi(ω)− essinf

M
f | > ε

})
= µ

({
s ∈M : |f(s)− essinf

M
f | > ε

})
= µ

({
s ∈M : f(s)− essinf

M
f > ε

})
= 1− p0 < 1.

Hence, by the independence of theXi’s, the probability of the
intersection of these events asi ∈ {1, 2, . . . , n} can be made
arbitrarily small by sampling enoughXi’s (i.e. by pickingn
large enough).

Similarly, we do not attempt to decide whether sets are
empty, we rather restrict ourselves to deciding whether they
have measure zero. This is done using the obvious Monte
Carlo algorithm which returns true iff all the points sampled
from the canonical measureµ do not belong toN . This clearly
decides with high probability whetherN hasµ-measure zero
or not. We shall call this algorithm is-null.

We now show thatinf ’s and is-∅’s can be replaced by
essinf ’s and is-null’s in the rational approximation algorithm
presented in section II, and that without altering the important
properties possessed by the resulting approximations (theo-
rems 3 and 4).

Theorem 6. Let S = (S,M, τ) be a LMP, τ := {τa :
S × M → [0, 1], a ∈ A}, and (S,M, µ) be a probability
measure from which we can sample points and such that
τ � µ. Assume also that the start state ofS is µ-randomly
selected (A property that is modeled in the following way:
we add a states0 to S, which will be the starting state. The
transition froms0 to S isµ for all a ∈ A, and the transitions
from s′ ∈ S to s0 are all set to 0).

Then for allε ∈ Q, ε > 0, n ∈ N, the Monte Carlo rational
approximationQ̃ε,n (i.e., the approximation corresponding to
definition 4 withinf ’s replaced by essinf ’s and is-∅ replaced
by is-null) is computable and has the following properties:

1) every state(X, l) of Q̃ε,n is simulated inS by every
s ∈ X,

2) if a states ∈ S satisfies a formulaφ ∈ L0, then there
is some approximationQ̃ε0,n0 such that(Xs, n) |= φ,

3) given c ∈ (0, 1), let Q̃n be Q̃ε,n with ε = cn/n. Then
Q̃n converges toS with respect to the metricdc.

Proof: The computability statement is already established
by lemma 1 and 2.

To show 1, 2 and 3, we will use the following construction:

S

"""b
"b

"b
"b

"b

���
�
� Q

���
�
�

S̃ε,n Q̃ε,n

where the dashed lines denote approximation by the non
Monte Carlo method, curved lines, approximation by the
Monte Carlo method, and plain lines, bisimulation.

We first construct, for a givenε ∈ Q, ε > 0 andn ∈ N, a
new LMP Q = (S ∩ Zc, σ(S ∩ Zc), τ

∣∣
S∩Zc×σ(S∩Zc)

) which
differs only on a setZ of µ-measure zero. We define this set
Z as follows:

Z :=
⋃

Pε,n

⋃ {
x ∈ X : τa(x,B) < essinf

t∈X
τa(t, B)

}
,

wherePε,n = (P, 2P , ρ) ranges over all (non Monte Carlo)
rational tree approximations ofS , and the inner union, over
all (X, l+1), (B, l) ∈ P . It is easy to see thatZ is a countable
union of µ-null sets, and hence is indeed itselfµ-null. It
is easily seen thatZ covers all the sets inS that cause a
disagreement between the Monte Carlo approximation and the
(standard) approximation. More precisely, by the wayQ is
constructed, we have:

Q̃ε,n = Monte Carlo approximation ofS

= (non Monte Carlo) approximation ofQ,

where “=” stands here for equality of the probability transition
matrices.

The next step is to show thatS and Q are bisimilar, or
equivalently, that for eachφ ∈ L0 and s ∈ S ∩ Zc, s |=S φ
iff its copy in Q also satisfiesφ (in Q). The proof is by
induction on the structure of formulas. The casesφ = T and
φ = ψ1 ∩ψ2, ψ1, ψ2 ∈ L0 are trivial, so supposeφ = 〈a〉qψ,
with q > 0 andψ ∈ L0. If s ∈ S ∩ Zc satisfiesφ in Q, then
by the fact the state space ofQ is included in the state space
of S , we have that the copy ofs in the state space ofS
also satisfiesφ. Conversely, supposes ∈ S satisfiesφ in S .
Let [[ψ]]S denotes the set of states inS that satisfyψ. In
particular,τa(s, [[ψ]]S) > q. We thence have:

τa(s, [[ψ]]Q) = τa(s, [[ψ]]S ∩ Zc)
= τa(s, [[ψ]]S)− τa(s, [[ψ]]S ∩ Z)
= τa(s, [[ψ]]S) > q,

using the fact thatτ � µ.

Now that all the edges of the diagram are established, the
theorem follows directly from theorems 1, 2, 3, 4, and 5. For
instance, to establish 1, note that∀φ ∈ LW:

(X, l) |=Q̃ε,n
φ =⇒ (s |=Q φ ∀s ∈ X)

=⇒ (s |=S φ ∀s ∈ X),

where the first implication is backed by theorem 3, and the
second, by theorem 1. Since this is true for allφ ∈ LW,
1 follows using theorem 2.

IV. EXPERIMENTS

The aproximation scheme described in the previous section
was implemented in the Java™ programming language. The
structure of our object-oriented library mimics the measure-
theoretic formulation of the theory. The most important types
are the interfaces3 LMP, MeasurableFunction, MeasurableSet,
Measure, State and TransitionKernel and they compose in
the standard way (e.g., given aMeasurableSet, a Measure
can associate it with a positive real number, namely its
measure). The most useful implementations of these interfaces
are included in the package (DensityKernel, DiscreteKernel,
BorelMeasure, etc, which behave as their names suggest).

We summarize the structure of the classLMPApproximator,
the core of our implementation of the Monte Carlo rational
tree approximation. As mentioned earlier, it does not explicitly
compute the inverse images of the formτa(·, Ci)−1(Bj). In-
stead, it uses an auxiliary class,InverseSet, which implements
MeasurableSet. The only method specified byMeasurableSet
is contains(State s), which returns yes or no depending on
whether or not a given measurable set contains states. In
this way InverseSetcan be computed by simply maintaining
Ci andBj in memory, and given a states, testing whether
τa(s, Ci) ∈ Bj . Note that the assumptions onMeasurableSet
can be kept so simple (only one method is required) because
we use Monte Carlo techniques rather than standard numerical
methods (which often require creating a partition using more
stringent assumptions on the geometry of the sets in consid-
eration). Pseudocode for computing the approximant is shown
in figure 1.

Note that generatePartition(A1, A2, . . . , An) can be im-
plemented by computing, for each subset{i1, i2, . . . , ik} of
{1, 2, . . . , n}, is-null(Ai1 ∩ Ai2 ∩ · · · ∩ Aik

), and creating a
block for each non-µ-null set. Observe, however, that this way
of generating a partition is very inefficient. Fortunately, this
can be easily optimized by using the inclusion properties of the
sets in the approximation; indeed, at each successive level, the
new partition forms a refinement of the previous one, so that
many of the intersections ingeneratePartitioncan be declared
µ-null without actually computing is-null. The fact that for
each action, the generators already form a partition can also
be used to speed-up considerably the asymptotic running time.

Similarly, additional important optimizations of the other
Monte Carlo computations can be performed. This is partic-
ularly important when deep approximations (inn or ε) are

3We adopt the Java object-oriented terminology

needed, for in this case the set over which Monte Carlo inte-
gration or essinf is carried out can very be small (in measure)
compared to the whole space. This slows down convergence
of the Monte Carlo methods because large numbers of points
must be sampled before getting an “interesting” point, that is,
one that belongs to the given set. However, once more through
the inclusion of the successive partitions, it is possible to use
a new measureλ in the Monte Carlo algorithms,µ� λ, that
is more dense around points that are sampled in the enclosing
partition.

We note that for many applications, not all of the in-
formation in the tree is required. Therefore, another crucial
optimization consists of computing certain properties of the
approximation dynamically, that is, as they are requested by
the user of the approximation. For instance, the transitions in
the tree approximation do not need to be known to compute
the state space of the tree. They can be computed on demand.

Example 3. We come back to example 1 to illustrate how
the Monte Carlo approximation algorithm behaves in practice.
By the very simple form that the kernels have (continuous
except for a finite set of points), it is easy, for this special
case, to work out by hand then = 3, ε = 1/2 rational tree
approximation. We compare it with the result of our algorithm:

{0}

[0, 1]

s[1]
��
��
��
�

����
��
��
��

j[1]
��
��
��
�

����
��
��
��

(0, 1
4)

s[1]oo
j[34]oo •

����
��
��
��
��
��
��
��

����
��
��
��
��
��
��
��

•oooo

{ 1
4}

S (1
4 ,

1
2)

s[1]3333333

YY33333333 j[12]3333333

YY33333333

j[14]
��

��
��

�

����
��
��
��

• •

����
��
��
��
��
��
��
��
�

VV,,,,,,,,,,,,,,,,

VV,,,,,,,,,,,,,,,,

{ 1
2}

(1, 2] ... • ...

{1}

(1, 2] •

The left hand side represents the result of the manual compu-
tation, the right hand side, the one generated by the package.
We see that their structure is the same, except for some sets
of measure zero (which do not allow non-zero transitions).
Moreover, a modest 200 iterations on the Monte Carlo oper-
ations yields a precision of0.2 on the transition probabilities.

APPROXIMATE(lmp, ε,n)

1 approxStateSpace ← ∅
2 previousLevel ← ∅
3 approximationKernels ←newDiscreteKernel [lmp . labels . size]
4 startState ←newApproximationState(lmp . stateSpace, 0)
5 previousLevel . add(startState)
6 approxStateSpace . add(startState)
7 for l ∈ {1, . . . , n}
8 do generators ← ∅
9 m ← previousLevel . size

10 intervalPartition ← {{0}, (0, ε /m], (ε /m, 2 ε /m], . . . , (1− ε /m, 1]}
11 for (C , l −1) ∈ previousLevel andcurrentInterval ∈ intervalPartition anda ∈ lmp . labels
12 do for currentInterval ∈ intervalPartition anda ∈ lmp . labels
13 do generators . add(
14 new InverseSet(lmp . transitionKernel(a). transitionFunction(C),
15 currentInterval))
16 currentLevel ← generatePartition(generators)
17 for (X , l) ∈ currentLevel and (B , l −1) ∈ previousLevel anda ∈ lmp . labels
18 do approximationKernel[a].transition((X , l), (B , l −1))←
19 essinfX lmp . transitionKernel(a). transitionFunction(B)
20 approximationStateSpace ← approximationStateSpace ∪ currentLevel
21 previousLevel ← currentLevel
22 return (approximationStateSpace, approximationKernels, startState)

Fig. 1. Pseudocode for the algorithm.

Preliminary tests with a version of the package equipped with
some of the optimizations described in the previous paragraph
indicate that this precision can be greatly improved without
too much difficulties.

Example 4. How can this scheme be useful in concrete
situations? Let us go back to example 2 now. An important
quantity to assess in this case is the expected number of
actuateactions required to complete the task. Because of the
continuity of the state space, finite-state approximations are
needed in order to carry out the integral. This illustrates the
need for finite state approximation with good properties with
respect to the metric introduced previously.

Using our package and the densities described in the first
part of this example, an approximation of small depth was
easily and automatically constructed (in a matter of minutes).
We are confident that simple optimizations will enable us
to produce approximations that are deep enough to perform
nontrivial validations and performance evaluations.

V. RELATED WORK

The problem of approximating a continuous system with
a discrete one is of great interest in the control community
as well, especially for people working on Markov Decision
Processes (MDPs) and similar models. MDPs are very similar
to LMPs, but they also allow a notion of reward for each
label. The goal is usually to find an assignment of labels
to states such that the total (discounted) reward obtained is

maximized. In this case, fixed-resolution discretizations are
very poor, since the long-term return may be very flat in part
of the state space and very variable in others.

A variable-resolution heuristic discretization method has
been proposed by [16]. They rely on a kd-tree data structure to
maintain the approximate return values, and to compute new
values quickly. They propose several discretization criteria and
evaluate them empirically. The solution they obtain converges
to the true value function as the size of the discretization
cells approaches 0. In practice, they can handle continuous-
state MDPs with states described by up to 10 dimensions.
This result is considered state-of-the-art in the MDP literature.
A discretization method based on a tree representation was
also presented in [17]. They construct a tree that provides a
discretization of the state space from trajectories of the system,
generated using Monte Carlo sampling.

The similarity with our approach is that they also use Monte
Carlo techniques to sample. In our case we use the sampling
to estimate the inverse of the transition probability function
while they are estimating the trajectories. In both cases we
are looking at dynamical aspects of the systems rather than
just the geometry of the state space as is sometimes done in
robotics applications. However, we are trying to construct an
approximate model whereas Munos and Moore are trying to
estimate value functions and optimal policies. The goals and
constructions are thus quite different.

VI. CONCLUSIONS ANDFUTURE WORK

This paper describes a concrete realization of the approx-
imation scheme of Desharnais et. al. [6]. We emphasize that
there were theoretical problems that needed to be solved; this
paper does not merely describe a “program” to implement the
algorithm of Desharnais et. al. The main problems were as
follows.

• Stochastic kernels had to be inverted to compute the parti-
tions of the state space. This was solved by not computing
the inverse but rather implementing procedures for testing
whether an element belonged to a particular block of the
partition. This was done using sampling.

• To compute the inf of a transition probability function
by sampling one has the danger that the inf is realized
on a very improbable set and hence not seen in the
sampling process. This was solved by using the essential
inf and by the results that we proved showing that the
approximations obtained this way also converge to the
right result.

• The problem of deciding whether a given set is empty was
solved similarly (using sampling, and testingµ-nullity
instead).

The implementation was done in Java and preliminary
experiments were carried out using this implementation. How-
ever, this implementation is a proof of concept and is not
claimed to be ready for general use. We are very opti-
misitic that number of simple improvements will greatly
improve the performance and is the subject of study in the
coming weeks. We are also planning a large scale experi-
mental investigation—involving a robotics motion planning
application—with this improved version of the system. These
results will be reported in a paper in preparation.

ACKNOWLEDGEMENT

The authors have been supported by a grant from NSERC
during the course of this work.

REFERENCES

[1] J. Desharnais, A. Edalat, and P. Panangaden, “Bisimulation for labeled
Markov processes,”Information and Computation, vol. 179, no. 2, pp.
163–193, Dec 2002.

[2] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, “Metrics for
labeled Markov systems,” inProceedings of CONCUR99, ser. Lecture
Notes in Computer Science, no. 1664. Springer-Verlag, 1999.

[3] ——, “A metric for labelled Markov processes,”Theoretical Computer
Science, vol. 318, no. 3, pp. 323–354, June 2004.

[4] F. van Breugel and J. Worrell, “Towards quantitative verification of
probabilistic systems,” inProceedings of the Twenty-eighth International
Colloquium on Automata, Languages and Programming. Springer-
Verlag, July 2001.

[5] ——, “An algorithm for quantitative verification of probabilistic sys-
tems,” in Proceedings of the Twelfth International Conference on
Concurrency Theory - CONCUR’01, ser. Lecture Notes In Computer
Science, K. G. Larsen and M. Nielsen, Eds., no. 2154. Springer-Verlag,
2001, pp. 336–350.

[6] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, “Approxi-
mating labeled Markov processes,”Information and Computation, vol.
184, no. 1, pp. 160–200, July 2003.

[7] V. Danos and J. Desharnais, “Labeled Markov Processes: Stronger and
faster approximations,” inProceedings of the 18th Symposium on Logic
in Computer Science. Ottawa: IEEE, 2003.

[8] V. Danos, J. Desharnais, and P. Panangaden, “Conditional expectation
and the approximation of labelled markov processes,” inCONCUR
2003 - Concurrency Theory, ser. Lecture Notes In Computer Science,
R. Amadio and D. Lugiez, Eds., vol. 2761. Springer-Verlag, 2003, pp.
477–491.

[9] ——, “Labelled markov processes: Stronger and faster approximations,”
Electronic Notes in Theoretical Computer Science, vol. 87, pp. 157–203,
November 2004.

[10] G. B. Folland,Real analysis : modern techniques and their applications.
Wiley, 1999.

[11] B. L. Fox, Strategies for quasi-Monte Carlo. Kluwer Academic, 1999.
[12] K. G. Larsen and A. Skou, “Bisimulation through probablistic testing,”

Information and Computation, vol. 94, pp. 1–28, 1991.
[13] C.-C. Jou and S. A. Smolka, “Equivalences, congruences, and complete

axiomatizations for probabilistic processes,” inCONCUR 90 First In-
ternational Conference on Concurrency Theory, ser. Lecture Notes In
Computer Science, J. Baeten and J. Klop, Eds., no. 458. Springer-
Verlag, 1990.

[14] J. Desharnais, “Labelled Markov processes,” Ph.D. dissertation, McGill
University, November 1999.

[15] “http://www.russianspaceweb.com/cosmos3.html,” Web site.
[16] R. Munos and A. Moore, “Variable resolution discretization in optimal

control,” Machine Learning, vol. 49, pp. 291–323, 2002.
[17] W. T. B. Uther and M. M. Veloso, “Tree based discretization for

continuous state space reinforcement learning,” inProceedings of AAAI-
98, Madison, WI, July 1998.

