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Abstract— Approximation techniques for labelled Markov pro-  reasonable to assume conditions on the transition probability
cesses on continuous state spaces were developed by DeShamafﬁjnction—perhaps continuity or even piecewise linearity—in
Gupta, Jagadeesan and Panangaden about 5 years ago. Howeverly jar to make progress. Indeed, a few examples were worked

it has not been clear whether this scheme could be used t by hand in thi H | sch ¢ i
in practice since it involves inverting a stochastic kernel. We out by hand In this way. However, a general scheme 1o realize

describe a Monte-Carlo-based implementation scheme for this these approximations was lacking until now.

approximation algorithm. This is, to the best of our knowledge, This paper describes a working implementation of the
the first implementation of this approximation scheme. The continuous state space approximation algorithm of [6]. This
implementation involves some novel ideas about how to estimate algorithm creates a finite state approximation of a given contin-

infs using sampling and also replacing the explicit description . : . . .
of subsets of the state space by tests for membership. It is YOUS ProCess. The implementation relies heavily on techniques

hoped that this work will enable more applications of continuous from probability theory, especially Monte Carlo methods, and
probabilistic LMP theory to emerge. eliminates the need for inverting exactly the transition proba-

bility function. The idea that Monte Carlo techniques could be

useful was suggested in another paper on approximation [8],
Labelled Markov processes (LMPs) are a theoretical foj9] where it was proposed that averaging should be used as

malism that generalizes both process algebra as well @as approximation method. However no concrete ideas were

traditional Markov chains. LMPs are processes that combipeoposed there. The technique of the present paper has been

nondeterminism with probabilistic transitions. LMPs provide developed for the approximation scheme of [6] rather than that

foundation for interacting with discrete probabilistic systemsf [8].

The interaction is synchronized on labels, just like in processThe first part of this paper summarizes the main elements

algebras. There have been significant theoretical advanoégcontinuous-state) labelled Markov process theory: bisim-

recently with the development of a notion of bisimulatiomlation and approximation techniques. The reader interested

for continuous LMPs, a logical characterization of bisimin a in-depth exposition of these topics should refer to [6]

ulation [1], metrics [2]-[5] and approximation theory [6].and [3]. The key ideas on which the implementation is based

The approximation theory developed by Desharnais, Guptae discussed in section Ill. More concrete implementation

Jagadeesan and Panangaden [6] has very appealing theoratib@mation can be found in section IV. Finally, some tests

properties: it converges in the metric and also in the domaamd applications of the code are described in section V.

of LMPs and it captures exactly the logical properties of the

original system in the limit. However, until now it has been

unclear how to implement it in practice. In this section we give the basic background about LMPs
The initial study of labelled Markov processes in continuoudnd approximation. We assume that the reader is familiar with

state spaces was motivated by the potential for importafigasure theory and elementary real analysis, as described, e.g.,

practical applications in performance analysis and verificatiopy Folland [10]. A basic reference for Monte Carlo methods

This hope was based on the initial approximation schemiésby Fox [11].

of Desharnais et. al. cited above as well as further improve-The basic mathematical object that we want to study is a

ments presented in [7]. Unfortunately, the development Bfodel forinteractive probabilistic systems

concrete applications was slowed by obstacles that arose in

the implementation of continuous state space approximation

algorithms. Indeed, these algorithms are grounded in measure-

theoretic ideas, some of which offer no direct algorithmic

content. The biggest obstacle was that one had to invert an

arbitrary measurable function. One could imagine that it was

I. INTRODUCTION

Il. BACKGROUND



Definition 1. A labelled Markov processS is a triple of bisimulation is the concept cfimulation
. . i 1
(3,01, 7), where5'is a state spacell is a o-algebra onS Definition 3. A reflexive and transitive relation (a preorder)

andr is a famﬂy{ra : §x M —[0,1],a € A} of transition R C 82 on a LMP is asimulationif whenevers; Rss, with

f;bbe-lgr)ojablllty kernels indexed by a finite set of actions (%rl’;2 € S, we have that for allu € A and everyR-closed

measurable set X, (s1, X) < 74(s2, X)

The “choice” of ag'qons dictates which kemnel will be used The central theorem provided by continuous probabilistic
to perform the transition from the current state to the next on

I . . [$belled Markov process theory is a characterization of bisim-
(we use sub-probabilities to express disabled actions: action P y

ao disabled at state, is equivalent tor,,(so,-) = 0). This Ulation in terms of & surprisingly simple logic [1]:

choice of action is made outside of the system descriptiofheorem 1. Let .4, be the logic specified by the following

and is external to the system. It could be, for instance, gnammar:

agent picking actions so that it can reach some desirable L

state—this is the typical situation of interest in Al applications o = T|91 A ¢2[(a) g9,

where the agents are following a policy—, or two distincvherea € A, ¢ € QN [0,1] and s = <a>q¢> is deemed to be

processes synchronizing their labels. We will call the objetrue iff 3X € 91 such thats’ = ¢ Vs’ € X and,(s, X) > g.

hence described doVP. Then, two states;, s, are bisimilar iff they satisfy the same
The first tool we will use in our study of the structurgormulas of.%,

of LMPs is that of bisimulation Bisimulation for discrete This characterization is the basis of a collection of very use-

systems was pr_op_oseq and stud|eo! by Larsen anq Skou [thzja:tools, enabling quantitative analysis of LMPs. Simulation
the present definition is an adaptation to the continuous case

where measure-theoretic conditions need to be imposed. Gi\b%r?haractenzed by a slightly extended logic:

a binary relationR on a setX we say that a subséf is R- Theorem 2. s, is simulated by iff for all formulas¢ € .4,
closedif {r € X : 3y € Y.yRz} C Y; i.e. Y contains s; = ¢ impliess, |= ¢, where:

all points related byR to a point inY. If R happens to be o0

an equivalence relation then aR-closed set is a union of Ay =L \/ &;.

equivalence classes. i=1

Definition 2. We say that a binary relatio® C S2 on a LMP We now present the approximation scheme that we imple-
is a bisimulationif, for any sy, s € S with s; Rso, and for any mented.

R-closed sefX’ € M, we haver,(s1, X) = 7a(s2, X) Va € A. Definition 4. Let.# := (S, 9,7 = {7, : SxM — [0,1] ,a €

We say that two states;, s, are bisimilar if there exists a 4}) be a LMP with starting states;. For n € N,e > 0,

bisimulation relationRo such thatSlRQSQ. we define itsrational approximation%L7e(P’ 2P7p = {pa .

In particular, bisimulation gives us a way to compare twd X 27 —[0,1],a € A}), as follow:
processes by first takmg thalirect sum SUppOSdS, f)jg {Ta . e P is a finite set whose elements are identified by
SxIM —[0,1],a € A}) and(T, N, {po : TxN — [0,1],,a € a level € {0,1,...,n} and a measurable subset of
A}) are two LMPs with initial statess € S, t € T. We S. At level 0, there is only one statgs,0). The
merge the two LMPs into a new LMP constructed such that States at the other levels are defined inductively: given
the new set of state® is the disjoint union ofS and T, {(C1,1),(C2,1),...,(Cp, 1)}, the list of them states of
the newo-algebra® is generated by U 91, and the new level I, we first partition the unit closed interval into
kernels{o, : U x O — [0,1],a € A} are as follows: for all disjoint half-open intervals of lengitym, say(B;);cr =
seSteT, X eMandY € N, 04(s, X UY) = 7,(s, X) ({0}, (0,¢/m], (¢/m,2¢/m], ..., (1—¢€/m,1]). Then, the
ando, (t, XUY) = p,(t,Y). In the further discussions, ee will states {(Dy,l + 1)} of level [ + 1 are obtained by
use whichever way of thinking is more convenient, depending letting Dy, be the different subsets 6f in the partition
on the context. generated by the sets,(-,C;)~!(B;), for everya € A,

In a finite state space LMP [12], this definition corresponds @ € {1,...,m} andj € I.
to our intuition: two states, ¢ are bisimilar iff for all transi- ~ * The transitions ins” occur only from states of levéh-1
tions froms to ¢, there is a transition to ¢ with the same to states of level. Transition probabilities are given by:

probability with s and¢’ bisimilar, and vice-versa. infrey 7o(t, B)if k=141
For the continuous case, bisimulation, as described above, Pa((X; k), (B,1)) := { 0 otherwise.
is a generalization of this concept. The one-way counterpart

'We actually require tha§ be an analytic spaces, 7) and that™l = | The jnitial statep, is the unique statéX,n) such that
o (7). This is needed to prove, among other things, the logical characteriza-
tion [1] used in this paper. It will not, however, be used explicitly, so we will s0 € X.

not mention this condition in the rest of this paper. Analytic spaces are very . L .
general and cover the vast majority of spaces encountered in practical—otExampIe 3 illustrates the result of the application of this

even impractical—situations. definition to a simple process.



This particular approximation scheme has very interestimefinition 5. A family of sub-probability density functions
properties with respect to the logi&,, and hence with respect f, : 5?2 — [0,0), s € S,a € A, is simply a family of M ®

to bisimulation: 9)-measurable functions such that
Theorem 3. For everye > 0,n € N, . simulates.s”. More

precisely, every stateX, ) of . is simulated in¥ by every /Sfa(sm Jdp < 1Vsg € S,a € A
se X.

Theorem 4. If a states € S satisfies a formula € %, then Then, the kernels are given by:

there is some approximatioﬁ’?n,ﬁ such that(X,,n) E ¢,

where X, is the unique subset of in the n-th level that  7a(s0, M) 1:/ fa(s0,-)dp VM € M,a € A, s € S.
containss. M

t is not hard to show that, is then a labelled probability

These theorems tell us that every “finite piece of inform ¢ X
ernel (the fact thatr,(s,-) is a measure follows using the

tion”, as embodied by a formula of the logic, is eventuall o
captured by some approximant and that the approximafQnotone convergence theorem, the measurability 6f M),

never describe any behaviour that is not a possible behavigﬁ}ng Fubini's theorem). We Willll orl]enotre]_ this construc_tion
of the main system being approximated. Y dra(s,:) = fa(s,-)dp. Recall that this representation

It has been argued that bisimulation—or indeed any equi. . possible iff r, < (by the Lebesgue-Radon-Nikodym

alence relation—is not a robust notion in the presence orem).

prObabiIitieS: a small perturbation of the pl’obabilities WilExamp|e 1. We now show a toy examp|e of this construction
dramatically affect the relation. Accordingly metrics werghat will be used later to test our algorithms. Consider a pair
introduced [2] as suggested first by Jou and Smolka [13f 2-dimensional aquaria, arranged side by side horizontally.
These metrics measure behavioural “closeness” and wheie first aquarium has horizontal coordinatés %] and the
the processes are at zero disténtieey are bisimilar. These second, (1,1]. We are interested in the evoiution of the
metrics have a built-in discount factor so that actions iRorizontal position of a stochastic fish that starts its life in
the future are discounted in their effect on meaSUring tlﬁﬁe first aquarium and has a choice of 2 actions:

distance between processes. We witefor the metric with
discount factore. The main theorem relating the metrics and
the approximation is [3]:

« swimwill change the position of the fish in its aquarium.
The new position is drawn uniformly from the interval

_ [0, 3.
Theorem 5. If . involves a finite number of labels?), .~ /, « jump corresponds to an attempt to jump into the second
converges to¥ in the metricd® with ¢ < 1. aquarium. If the fish is at distanaéfrom aquarium 2, it

will fail and fall in the original aquarium with probability

2d (the next position will then be drawn uniformly from
the interval [3 — d, 1]). If the fish succeeds, its new
position is drawn uniformly from the intervad%, 1].
Unfortunately, the fish does not know that the second
aquarium is filled with a liquid fatal for its metabolism.
The death of the fish is modeled by disabling both actions
in the second aquarium.

The conditionc < 1 is important in the calculation.
However, it has been pointed out to us that the restriction
to finite action sets could be weakened to countable sets if
we change slightly the definition of the metric. The proof is
in [14].

We have not introduced domains in the present paper but
elsewhere [6] it has been shown that LMPs can be organized
into a domain; it turns out that equality in the domain is
bisimulation and that the order is simulation (essentially). The Schematically:
approximants constructed above form a directed set in this do- o]
main and their supremum gives the LMP being approximated. C
[0, %} —b[x]> (%7 1]
[1l. M ONTE CARLO TECHNIQUES FORLMP ()

APPROXIMATION al1]

The first question one must face before doing computatigfhere the labelalp] on an edge(s;,s;) denotes that the

in a continuous state space is the representation problefppapility to transition froms; to s; is p, given that action
how should the transition probability kernels be expressed,s selected.

.rNote that the probability distribution induced by selecting

assuming an uncountable range of values? In the case i
which we have a “canonical” probability measyr@n (5,9)  4ction j is different for each state if0, 1] from which the

(for instance, in many problems this would be the Lebesglé%tion is taken. This is denoted Wjx]. Hence, this LMP
measure), the most common solution to this question is to USE ot be lumped into a finite state system '
a family of sub-probability density functions. Let ;1 — the Lebesgue measure @ 1). We obtain easily

2Technically they are pseudo-metrics, distinct processes can be at Ahgt the kernels corre:sponding to t_he actions_gjescribefd above
distance. can be expressed using the following probability density func-



tions: X; : Q — S, identically and independently according to the

' 1if z € [0, %] andy € [0, %] distribution A. Then, iff : S — R is integrable andM € M
Fsuim(@,9) = 3 () otherwise we have:
2if x € [0,3] andy € [z, 1] IRS /
. ’ I — T - X’L dA O ).
fiump(z,y) =< dxif z €[0,4] andy € (3,1] n ;(XM foXi= Mf (a)
0 otherwise

. S This standard result is the basisMbnte Carlo integration
Example 2. Let us consider now a more realistic situationjts proof is fairly simple:

Consider the onboard flight control system of a Cosmos-3MU  proof: We have the following picture:
launcher, a 2-stage, UDMH-fueled dispensable rocket often
used to send small payloads into Earth orbit [15]. foXi: (7, P) = (S,M,A) — (R, Zr)

A hypothetical problem for which the approximation schemgsing the fact thatX;, X,,... are independent and that
would be useful is the verification and/or evaluation of th% measurab'e’ we Obtain eas”y, using Fubini’s theorem, that
effectiveness of flight guidance software for the Cosmos-3MU, x, f o X,.... are independent. They are also clearly
(In November 2000, and twice in January 2005, the secokntically distributed and.?, so we can apply Khinchine's
stage of the launcher failed to form the final orbit because frong Law of Large Numbers to obtain:
undiagnosed problems in this system. At least two commissions n
tried unsuccessfully_ to isolate the source of this “bug_”)._ 1 Z(XM foX; — /(XM - f) o X,dP
Suppose that the main controller must keep the launcher within ni— Q
distancermax Of the ideal trajectory by applying lateral speed
corrections. The controller is composed of a sampling loop, = /SXM - fdPx, (a.s.)
the cyclic executive, that applies a thrust towards the ideal '
trajectory if needed. This loop structure motivates the discrete- = fdPx,
time model of the problem. The state space is the cartesian
product of the velocity space with the distance-to-trajectory = fdA.
space,R? (with r = —r, v = —v). The actions are: M

« actuate which applies a velocity correction towards the ) =

ideal trajectory. Due to the limited precision of these The other oper.atlons. on measurable sets and functions that

corrections, the result of this action from statey,v,) ‘W€ encountered in defintion 4 are: _

is modeled by a bivariate normal distribution centered 1) Given a measurable sét and a measurable function

at (360 + 6(vo — dimpuise), Vo — aimpulse) with a strong, f,. compute the infimum of the value atta!ned By

positive correlation such that the major axis of the elliptic 2) Given two measurable seid,, M5, determine whether

isopleths of the density (that is, the locus of the points in Fheir interse_ction is non-empty (i5- Sets— {0,1},

the plane whergacwad ., v) = ) has a slope of /5. The is-)(A) = 1iff A=10),

variance parameters can be set using the large amount3) Given a measurable functiofi, compute the inverse

of flight data available for this type of rocket (more than image of an interval.

400). We will see in section IV how point 3 can be avoided. The

. stay corresponds to the absence of velocity correctioasic idea is that, since we use Monte Carlo integration for

It is modeled by a normal distributiotfsay, similar to  the representation of the kernels, the only operation we need

factate €Xcept that the center is dtcg + 0 - vo, vo). to impose on measurable sets is to test membership of a
If, at any point in the stage-2 propulsion sequence, the codiven point (in particular, there is no need for an operation
troller fails to maintain the trajectory within distancens of that would express a measurable set as the union of intervals
the trajectory, a backup system takes control of the guidanddus a null set, as it would be the case if we were using
This is represented by disabling all actions. If, on the othdlumerical integration, for instance). The two other points,
hand, the controller successfully keeps the trajectory durifipwever, have to be handled. Note that both arbitraifis

27 minutes, the orbit is reached and a special actiutcess and isé’s cannot be computed algorithmically in general (the
is enabled to a speciauccess Stat&success inf could be achieved on a set of measure zero), so we look

for “measure-theoretic” equivalents that are computable (in a

Given that the sefl/, over which the density functions angomized computation model). For the caseéné§, we use
are to be integrated, can be an arbitrary measurable set, tm@following concept:

next difficulty is to compute algorithmically these integrals.

Numerical integration cannot be applied here becddseould Definition 6. Let (X, &, ;) be a measure space. We define
be “too nasty” geometrically to allow a nice partitioning. Théhe essential infimunover M € & of a bounded measurable
solution comes from probability theory: function f : (X, 8) — (R, #g) to be:

Lemma 1. Let (©2,.7, P), (5,9, A) be probability spaces. esgnf f := Sup{a cR: u({m eM: flz) < a}) - 0},
Assume that we can sample the random variaBlesXo, . . ., M



Now suppose tha? := (5,90, 7) is a LMP such that, < 1) every state(X,!) of Qem is simulated in. by every
u for all kernelr,, in = (in which case we will write % < 1", s € X,
wherey is a measure o from which we can sample points.  2) if a states € S satisfies a formulap) € %, then there
In this situation, essential infima have the advantage of being is some approximatio®,, ,,, such that(X,,n) = ¢,
computable: 3) givenc € (0,1), let 2, be 2, with € = ¢"/n. Then

Lemma 2. Let (2,.%, P) be a probability space and assume <n converges to¥” with respect to the metria®.

that we can sample the random variabl&s, X5,..., X; : Proof: The computability statement is already established
Q — M, identically and independently according to théry lemma 1 and 2.

distribution p, where M € 9% and u(M) > 0. Then if To show 1, 2 and 3, we will use the following construction:
f:S — R is bounded and measurable we have:

S 2
min{foX;:1<i<n}— ess'}rc[f f (in P-probability). AN l
" | \ |
Proof: First note that esaf,; f < if and only if Y Y
M f o y yﬁ n QS n

w(M) > 0. Let e > 0 be given. By definition of supremum, ,

we have that where the dashed lines denote approximation by the non

PO = M({S € M: f(s) — essnf f < 6}) Monte Carlo method, curveql Ii_nes, a_pproximation by the
M Monte Carlo method, and plain lines, bisimulation.
must be positive. Then for any< N, We first construct, for a givean € (%e >0andn €N, a
new LMP 2 = (SN Z%0(SNZ°),T| g ze v 0snze)) WhICh
P({w €Q:|foXi(w)— eSS'lellf fl> 6}) differs only on a seZ of u-measure zero. We det)ine this set
) Z as follows:
= u({s € M :|f(s) —essnf f| > e})
M Z=|JJ{reX n@B) < essinf 74(t, B)},
— . _ ] [S
= ,u({s € M: f(s) essinf f > €}) >
=1-po <Ll where 2. ,, = (P,2, p) ranges over all (non Monte Carlo)

rational tree approximations of’, and the inner union, over

all (X,i41),(B,l) € P.Itis easy to see tha is a countable
union of p-null sets, and hence is indeed itselfnull. It

is easily seen thaZ covers all the sets i that cause a
pé'sagreement between the Monte Carlo approximation and the
g andard) approximation. More precisely, by the wayis
nstructed, we have:

Hence, by the independence of thg's, the probability of the
intersection of these events a& {1,2,...,n} can be made
arbitrarily small by sampling enougli;’s (i.e. by pickingn
large enough).

Similarly, we do not attempt to decide whether sets a
empty, we rather restrict ourselves to deciding whether th
have measure zero. This is done using the obvious Morit
Carlo algorithm which returns true iff all the points sampled 2., = Monte Carlo approximation of”
from the canonical measuredo not belong taV. This clearly
decides with high probability whethéy hasp-measure zero
or not. We shall call this algorithm is-null. where ‘=" stands here for equality of the probability transition

We now show thatinf’s and is§’s can be replaced by matrices.
essinf’s and is-null’s in the rational approximation algorithm The next step is to show tha¥ and 2 are bisimilar, or
presented in section Il, and that without altering the importagtjuivalently, that for eachh € % ands € SN Z¢, s = ¢
properties possessed by the resulting approximations (thép-ts copy in 2 also satisfiesp (in 2). The proof is by
rems 3 and 4). induction on the structure of formulas. The cages T and

_ — L ¢ =11 Nas, 1,19 € L are trivial, SO suppose = <a>q1/),
;hioggm_}&[oﬁife A(}?’ Zj;aT()S});jau)L'\S:’; ﬁrobggllility with ¢ > 0 andy € %. If s € Sm_ZC satisfies(,zs in 2, then
measure from which we can sample points and such t the fact the state space &f is m_cluded in the state space
T < . Assume also that the start state.gf is u-randomly or.7, we _have that the copy of in the stat.e space o
selected (A property that is modeled in the following wa _Iso satisfies). Conversely, suppose € S sat|sf|e§¢ in ..
we add a states) to S, which will be the starting state. The et _[[w]}y denotes the set of states i tha.t satisfyy. In
transition fromsg to S isy for all a € A, and the transitions particular,7a(s, [[¢/]].») > q. We thence have:
from s’ € S to s, are all set to 0). (s, [W]]2) = Ta(s, W] N Z°)

Then for alle € Q,e > 0, n € N, the Monte Carlo rational 7o, [0]]) = Tals, []] O 2)
approximationZ, ,, (i.e., the approximation corresponding to oA am
definition 4 withinf's replaced by esisf’s and is9 replaced =1a(s, [[Y]]#) > ¢,
by is-null) is computable and has the following properties:

= (non Monte Carlo) approximation o,

using the fact that < u.



Now that all the edges of the diagram are established, theeded, for in this case the set over which Monte Carlo inte-
theorem follows directly from theorems 1, 2, 3, 4, and 5. Fayration or esf is carried out can very be small (in measure)
instance, to establish 1, note that € A: compared to the whole space. This slows down convergence

of the Monte Carlo methods because large numbers of points
(X,10) ':onf,n ¢=(sF2¢ VscX) must be sampled before getting an “interesting” point, that is,
= (s ¢ VseX), one that belongs to the given set. However, once more through

where the first implication is backed by theorem 3, and tﬁge inclusion of the successive partitions, it is possible to use

second, by theorem 1. Since this is true for alle A, a new measurd in the M(_)nte Carlo algor|thmsy_<< A, that .
. is more dense around points that are sampled in the enclosing
1 follows using theorem 2. o
partition.
IV. EXPERIMENTS We note that for many applications, not all of the in-

The aproximation scheme described in the previous sectifgfmation in the tree is required. Therefore, another crucial
was implemented in the Java™ programming language. TR&tMization consists of computing certain properties of the
structure of our object-oriented library mimics the measur@PProximation dynamically, that is, as they are requested by
theoretic formulation of the theory. The most important typég'e user of the approximation. For instance, the transitions in

are the interfacéd_MP, MeasurableFunctionMeasurableSet e tree approximation do not need to be known to compute
Measure State and TransitionKerneland they compose in the state space of the tree. They can be computed on demand.

the standard way (e.g., given MeasurableSeta Measure Example 3. We come back to example 1 to illustrate how
can associate it with a positive real number, namely ithe Monte Carlo approximation algorithm behaves in practice.
measure). The most useful implementations of these interfaggs the very simple form that the kernels have (continuous
are included in the packag®énsityKernel DiscreteKernel except for a finite set of points), it is easy, for this special
BorelMeasure etc, which behave as their names suggest). case, to work out by hand the = 3,¢ = 1/2 rational tree

We summarize the structure of the claddPApproximator approximation. We compare it with the result of our algorithm:
the core of our implementation of the Monte Carlo rational
tree approximation. As mentioned earlier, it does not explicitly {0}
compute the inverse images of the forg(-, C;)~*(B;). In-
stead, it uses an auxiliary clageyerseSetwhich implements

MeasurableSetThe only method specified hyleasurableSet [0,1] 2[[%]: (0, i) e=—oe
is contains(State s)which returns yes or no depending on

whether or not a given measurable set contains statie

this way InverseSetan be computed by simply maintaining ] N1

T.(s,C;) € B;. Note that the assumptions dteasurableSet
can be kept so simple (only one method is required) because
we use Monte Carlo techniques rather than standard numerical g (3,1
methods (which often require creating a partition using more /
it A

. . : ! (3] g1
C; and B; in memory, and given a statg testing whether / s[1] s[l]j YL}

stringent assumptions on the geometry of the sets in consid-
eration). Pseudocode for computing the approximant is shown
in figure 1.

Note that generatePartitiofA,, Az, ..., A,) can be im-
plemented by computing, for each subgét, is, ..., i} of
{1,2,...,n}, is-null(4;, N A;, Nn---N A;,), and creating a (1,2] : o
block for each nons-null set. Observe, however, that this way '
of generating a partition is very inefficient. Fortunately, this
can be easily optimized by using the inclusion properties of the
sets in the approximation; indeed, at each successive level, the {1}
new partition forms a refinement of the previous one, so that
many of the intersections igeneratePartitiorcan be declared
p-null without actually computing is-null. The fact that for (1,2] °
each action, the generators already form a partition can also i
be used to speed-up considerably the asymptotic running tim&€ 1eft hand side represents the result of the manual compu-

Similarly, additional important optimizations of the othefation, the right hand side, the one generated by the package.
Monte Carlo computations can be performed. This is partiWe see that their structure is the same, except for some sets

ularly important when deep approximations @nor €) are of measure zero (which do not allow non-zero transitions).
Moreover, a modest 200 iterations on the Monte Carlo oper-

3We adopt the Java object-oriented terminology ations yields a precision df.2 on the transition probabilities.

3}



APPROXIMATE(Imp, €, n)

1 approxzStateSpace —

2 previousLevel «— ()

3 approzimationKernels «—newDiscreteKernel[lmp . labels . size]
4 startState <—newApprozimationState(Ilmp . stateSpace,0)
5 previousLevel . add(startState)
6 approzStateSpace . add(startState)
7 for je{l,...,n}

8 do generators « ()

9 m «— previousLevel . size

10 intervalPartition — {{0}, (0,e/m],(e/m,2¢€¢/m],..., (1 —€/m, 1]}

11 for (C,1—1) € previousLevel and currentInterval € intervalPartition anda € Imp . labels
12 do for currentInterval € intervalPartition and a € Imp . labels

13 do generators . add(

14 new InverseSet(Imp . transitionKernel(a). transitionFunction(C),
15 currentInterval))

16 currentLevel «— generatePartition(generators)

17 for (X,1) € currentLevel and (B, —1) € previousLevel anda € Imp . labels

18 do approzimation K ernellal.transition((X, 1), (B, 1 —1)) <

19 essnf y Imp . transitionKernel(a). transitionFunction(B)

20 approrimationStateSpace «— approximationStateSpace U currentLevel

21 previousLevel «— currentLevel

22 return (approzimationStateSpace, approzimationKernels, startState)

Fig. 1. Pseudocode for the algorithm.

Preliminary tests with a version of the package equipped withaximized. In this case, fixed-resolution discretizations are
some of the optimizations described in the previous paragrapéry poor, since the long-term return may be very flat in part
indicate that this precision can be greatly improved withoudf the state space and very variable in others.

too much difficulties.

) , A variable-resolution heuristic discretization method has

E_xam_ple 4. How can this scheme be useful in _concretSeen proposed by [16]. They rely on a kd-tree data structure to
situations? Let us go back to example 2 now. An importapl iniain the approximate return values, and to compute new
quantity to assess in this case is the expected numbervgrues quickly. They propose several discretization criteria and

actugtegchons required to ComP"?te the task. Bepau;e of tE@aluate them empirically. The solution they obtain converges
continuity of the state space, finite-state approximations afg e rye value function as the size of the discretization
needed in order to carry out the integral. This illustrates thEt

d for fini o th q . _tells approaches 0. In practice, they can handle continuous-
need for finite state approximation with good properties Withaie Mpps with states described by up to 10 dimensions.

respept fo the metric introduced pre.vllously. i , _This result is considered state-of-the-art in the MDP literature.
Using our package and the densities described in the firgt giscretization method based on a tree representation was
part of this example, an approximation of small depth Wagq, presented in [17]. They construct a tree that provides a

easily and automatically constructed (in a matter of minuteS)isqretization of the state space from trajectories of the system,
We are confident that simple optimizations will enable Ltfenerated using Monte Carlo sampling.

to produce approximations that are deep enough to perform

nontrivial validations and performance evaluations. The similarity with our approach is that they also use Monte
Carlo techniques to sample. In our case we use the sampling
to estimate the inverse of the transition probability function

The problem of approximating a continuous system witlvhile they are estimating the trajectories. In both cases we
a discrete one is of great interest in the control communitye looking at dynamical aspects of the systems rather than
as well, especially for people working on Markov Decisiofust the geometry of the state space as is sometimes done in
Processes (MDPs) and similar models. MDPs are very similabotics applications. However, we are trying to construct an
to LMPs, but they also allow a notion of reward for eaclpproximate model whereas Munos and Moore are trying to
label. The goal is usually to find an assignment of labebstimate value functions and optimal policies. The goals and
to states such that the total (discounted) reward obtainedc@nstructions are thus quite different.

V. RELATED WORK
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VI. CONCLUSIONS AND FUTURE WORK
This paper describes a concrete realization of the approkt] J. Desharnais, A. Edalat, and P. Panangaden, “Bisimulation for labeled
imation scheme of Desharnais et. al. [6]. We emphasize that g"ea?f'_‘i‘ésprgce?;g%g“o"“a“O” and Computatiqrvol. 179, no. 2, pp.
there were theoretical prOblemS that needed to be solved; tf[ﬁ J. Desha’rnais, V. Gu.pta, R. Jagadeesan, and P. Panangaden, “Metrics for
paper does not merely describe a “program” to implement the labeled Markov systems,” iRroceedings of CONCUR98er. Lecture
algorithm of Desharnais et. al. The main problems were gg, Notes, 1 b e o v processedTheoretioal Compuer
follows. Sciencevol. 318, no. 3, pp. 323354, June 2004, P
« Stochastic kernels had to be inverted to compute the panﬁal] F. van _Brt_augel and J Worrell,_ “Towards quantita;ive verificatic_)n of
tions of the state space. This was solved by not computing pcg?ozbd'i'jac (Sft:msmg;ocf;%ﬂ%sgg;tgﬁg“ﬁgg;’gmﬂgﬁmgg?”a'
the inverse but rather implementing procedures for testing verlag, July 2001.
whether an element belonged to a particular block of thé] ——. "An algorithm for quantitative verification of probabilistic sys-
partiion. This was done using sampling. [Smer n Proceedns of the Tueltr temational Conference on
« To compute the inf of a transition probability function Science, K. G. Larsen and M. Nielsen, Eds., no. 2154. Springer-Verlag,
by sampling one has the danger that the inf is realized 2001, pp. 336-350. ) _
on a very improbable set and hence not seen in thel  Destanals, \, Gupta, R Jagadeesar, and P Panangaden, oprox:
sampling process. This was solved by using the essential
inf and by the results that we proved showing that thél
approximations obtained this way also converge to the
right result. [8]
The problem of deciding whether a given set is empty was
solved similarly (using sampling, and testingnullity
instead).
The implementation was done in Java and preliminar)[9]
experiments were carried out using this implementation. How-
ever, this implementation is a proof of concept and is néto]
claimed to be ready for general use. We are very op 5’1
misitic that number of simple improvements will greatlyz)
improve the performance and is the subject of study in the
coming weeks. We are also planning a large scale expéﬁg’
mental investigation—involving a robotics motion planning
application—with this improved version of the system. These
results will be reported in a paper in preparation.
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