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In this paper we discuss the renormalizability of quantum electrodynamics (QEDj in a general curved spacetime. A
generating functional is introduced and position-space Feynman rules are obtained. Functional techniques are used

to show that a form of Ward's identity can be derived in curved spacetime. A local momentum representation for

the scalar and vector propagators is introduced. The one-loop diagrams for the electron and photon self-energy are

computed and it is shown that there are no divergences that are not present in flat space. It is shown that this latter
result depends crucially on the gauge invariance of the theory and is not merely a trivial consequence of
renormalizability of QED in flat spacetime.

I. INTRODUCTION

In this paper we shall consider the renormal-
ization of one-loop diagrams in quantum electro-
dynamics (QED) in an arbitrary curved back-
ground. This problem has been discussed by
Drummond and Shore' for massless QED in a
spherically symmetric spacetime, They used the
symmetry to write the electron and photon propa-
gators in terms of the spherical harmonics of the
four-sphere and performed their calculations in
the transform space. We shall consider the use of
a momentumlike representation' for the electron
and photon propagators which is valid in a general
spacetime. This representation was used by Bunch
and Parker' to discuss the propagator for a scalar
field in a,rbitrary spacetimes. It turns out that
this momentum-space expansion is only valid lo-
cally but it is sufficient to calculate the divergen-
ces that arise in the theory.

This work extends the study of renormalization
of interacting field theories in curved spacetimes.
The previous situations examined were a massless
self-interacting scalar fieM in de Sitter space-
time, self-interacting scalar fields in arbitrary
spacetimes, " ' and massless QED in de Sitter
spacetime. An important conclusion of this work
is that while the theories considered are indeed
renormalizable in curved spacetime, this does not
follow from the fact that the corresponding theo-
ries in flat spacetime are renormalizabl. e. Thus
we have to examine each theory if we wish to con-
clude that it is either renormalizable or nonre-
normalizable. In addition, there has been much
interest in the effect of interactions and vacuum
polarization on the so-called conformal anoma-
ly. ' ' The main motivation, however, for this
investigation stems from the fact that the examina-
tions of the ultraviolet divergences that arise in
the presence of a classical gravitational field may
shed some light on the ultraviolet problem of quan-

turn gravity itself. " An additional motivation
comes from the recent interest in the role of
grand unified theories" in explaining the observed
baryon-antibaryon asymmetry" in the early uni-
verse. Such models usually involve applying per-
turbative techniques in regimes of high curvature
so it is necessary to be assured that the curvature
does not violate the renormalizability. of the theo-
ry.

We shall begin by defining the generating func-
tional for QED. As has been argued by Hartle and
Hawking" this is the natural way to quantize a
field theory in curved spacetime since it is a man-
ifestly coordinate- independent procedure. We
shall derive the Ward identities for QED by using
functional techniques. ""This is essential in our
case since we do not have a Fourier transform
available in a general curved spacetime so we
must express all the Ward identities in terms of
the position-space s-point functions (see, for ex-
ample, Ref. 20).

We wi&1 then introduce the momentumlike repre-
sentation mentioned earlier. Since this represent-
ation is only locally valid we will only be able to
compute the divergent parts of the relevant Feyn-
man diagrams. Thus the actual amplitudes for
physical processes (which will in general depend
on the entire geometry of the spacetime) cannot be
calculated by our procedure. We will use dimen-
sional regularization to render all divergent inte-
grals finite and the infinities will be displayed as
poles at (n —4), where n is the dimensional param-
eter (see, for example, Ref. 21).

II, THE GENERATING FUNCTIONAL

The generating functional we shall use is very
similar to the generating functional in flat space-
time except for the fact that the derivatives ap-
pearing in the action and in the field equations are
covariant derivatives. We shall use the symbol

1735 1981 The American Physical Society



1736 PRAKASH PAN ANGADEN

&, to denote the covariant derivatives for both
tensors and spinors. In discussing spinors in
curved spacetime" we shall use the symbol r" (x)
to denote the (spacetime dependent) r matrices
which obey

r' (x)r"(x) +r"(x)r' (x) = 2g""(x), (2.1)

where g'"(x) is the spacetime metric. We can
introduce the vierbein field b„(x) defined by

q.,= b:(x}b,"(x)g„„(x}, (2 2)

where q ~ is the flat-spacetime metric. In terms
of the vierbein the r'(x) matrices are related to
the usual y matrices of flat spacetime by

propriate measure on the space of field configura-
tions and d7 (x) is the covariant volume element.
The ~0), and ~0) represent the future and past
vacuum states, respectively. We shall discuss
this point in more detail later in this section; for
the moment we assume that we understand what
we mean by these vacuums.

A generating functional for Green's functions is
obtained by introducing external c-number sources
into the Lagrangian and writing the vacuum-to-
vacuum amplitude as a functional of these sources,
as follows:

r, (x) =b, (x)r (2.3) [DX„L),D,J,

and

[r'(x)v„+m, ]y(x) =0

v"Z„„=v"(v„W„-v„a„)= 0.

(2.4)

(2.5)

ln Fq. (2.4), m, represents the bare mass of the
electron. These field equations can be derived in
the usual way from the Lagrangian Z =8 p+cCg,
where

gn =7{)(r"v, +m, )g (2.6)

We will denote the ordinary y matrices by y~

(without the underlining).
The field equations for the photon field A„(x) and

the electron field g(x) are, in the absence of mu-
tual interaction,

x exp i (g +J"A + i){I)+Pq)dr(x)
0

(2.13)

The source ~~ is an ordinary external c-number
source for the electromagnetic field while the q
and g are external c-number spinor sources that
anticonimute with themselves and with P and g.
The effect of functionally differentiating S" with
respect to these sources is to produce factors of

or t/r in the functional integral. As is well
known, "when the functional integration is per-
formed, one obtains the expectation value of time-
ordered products of the field operator. One thus
has the correspondence

S»=e,j„A', (2.8)

where e, is the bare charge of the electron and j„
is the electron-positron current

(2.S)

'This modifies the field equations to

V~E „=—eoj (2.10)

(r"v +mo)g= —e,r„gA~ . (2.11)

In the functional approach the vacuum-to-vacuum
amplitude is given by

where the factor in square brackets is some ap-

(2.7)

The interaction between electrons and photons is
introduced by adding the interaction term g» to the
Lagrangian

We must now specify more carefully what we mean
when we refer to the "vacuum state" in curved
spacetime. We shall assume that there are asymp-
totic regimes in the past and in the future which
are either Qat or in which there exists some phys-
ically motivated definition of particle states. We
shall denote the vacuum state in the past by

~
in)

and the vacuum state in the future by
~
out). Par-

ticle states built up from these vacuums wiO cor-
respond to the particles actually detected by par-
ticle detectors located in these asymptotic re-
gimes. It is i.nconvenient to define an S matrix
connecting these early-time states with the late-
time states because there will be particles created
by the (time-dependent in general) background
gravitational field and by the interaction. It turns
out to be more convenient to proceed as follows.
We set up a Heisenberg picture representation by
defining particle states that coincide with those
based on the vacuum state

~

in) in the distant past.
The vacuum state in this picture is denoted by

~
JI).

The operators evolve by the full Hamiltonian (ex-
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S/O& = /0&„ (2.16a)['
S=—exp} i

'

id+de). (2.i6b}

The generating functional can now be written as

&0~ em['f(&.&"+n(+Pe}1~~0&

,(OI 8 I 0)

(2.17}

where the factor S in the denominator cancels the
disconnected vacuum diagrams. " The interaction-
picture operators, however, obey the free field
equations so that we can now use the well-known
formalism of free quantum fields in curved space-
time. "" The early-time creation and annihilation
operators are related to the late-time creation and

annihilation operators by a Bogolioubov transform-
ation which contains all the information of particle
creation by the background gravitational field.
Thus to obtain the outcome of physical scattering
experiments we must first use the interaction-pic-
ture perturbation scheme to calculate matrix ele-
ments between late-time and early-time interac-
tion-picture states; we must then perform a Bo-
'golioubov transformation between the interaction-
picture states and the physical late-time particle
states based on ~out).

~en the generating functional (2.15) is actually
calculated o 2 it will involve the Green's function
of the free photon and electron fields. As shown
in Ref. 29 (for the scalar field) the choice of a
Feynman propagator implicitly constitutes a choice
of vacuums both in the past and in the future. Thus
the generating functional reflects the choice of
vacuums through the boundary conditions on the
propagators. Since we are concerned with the
divergences of the theory we shall not worry fur-

eluding the external c-number sources) while the
states are evolved only through the coupling to the
external sources. The generating functional can
now be written as

[}P,d5e[=(H exp i (d„A + de+P }dpeti&.

(2.i5)

An interaction picture can now be set up so that
at early times the interaction-picture vacuum co-
incides with

~

in& and ~&&. The evolution of the
interaction-picture states is governed by the in-
teraction Hamiltonian Hz(= —Sz) with the sources.
We shall call the early-time interaction-picture
vacuum ~0& and its time-evolved image ~0&,. If
we denote the evolution operator of these states by
8 we have

ther about this issue.
A gauge is chosen by adding the following gauge-

breaking terms to the Lagrangian density"' .

g =-—(V d}I~)'1
G 2P

(2.i8)

where P is some number. This has the advantage
that an entire one-parameter family of covariant
gauges can be selected by changing P; selecting
P =1 gives the Feynman gauge while the Landau
gauge can be obtained by formally setting P =0.
The field equations for &, {in the absence of cou-
pling to. the electron field) is now

V„F""+—V~(V„A"}=0.
If we set P = 1 we can simplify this to

V„V"A& V V~A" + V~ V„A = 0

(2.19)

(2.20)

or using the definition of the Riemann tensor, "
V„&"A.~ -R~„A"= 0. (2.21)

III. SCHWINGER EQUATION AND WARD
IDENTITIES

The purpose of this section is to show that the
photon polarization tensor has vanishing diver-
gence. This will turn out to follow from the Ward
identity. We will use Schwinger's functional equa-
tion to obtain an expression for the polarization
tensor in terms of the exact propagators and the
exact vertex function. The statement that the di-
vergence of the polarization tensor vanishes is the
position-space analog of the usual momentum-
space statement that the polarization tensor is
transverse.

We use the generating functional defined in Sec.
II by Eq. (2.15). The expectation value of a single
field operator is zero, when it is calculated in the
state ~H&, in the limit of the external sources
being set equal to zero. We will denote the exact
electron propagator in the presence of the external

The Feynman rules for the position-space n-
point function% can be obtained from W[Z, q, q] arid

are essentially the same as in flat space (see, for
example, Ref. 20, Chap. 10); the only difference
being that one uses the propagators appropriate to
curved spacetime. We recall these rules briefly:

(i} a factor of S(x, x') for every internal electron
line joining x to x';

(ii) a factor of D,„(x,x') for every internal photon
line joining x to x',

(iii) a factor of ie,y (x) for every vertex at x to-
gether with an integration over x;

(iv) a factor of (- 1}and a trace over spinor in-
dices for every closed electron loop.
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..&0}T&),(x)gg, (x')S}'0&'

.(0}S}0&» (3 1)

where ip stands for interaction picture and 8 is the
evolution operator for the interaction-picture
states. 'The free propagator is

source 8 by S(x,x')» and we will drop the super-
script 4 when the source is set to zero. The free-
electron propagator is denoted by S(x, x'). Thus
we have

. &e}ry( )y(x )}I&'
&a}ff&»

If we functionally differentiate Eq. (3.6) with re-
spect to 4 we obtain

M",D„(x,x )»= g-,.5(x, x)+e, t~„, .~,}S{X,x )'.
(s.8)

This last pair of equations are Schwinger's func-
tional differential equations for the exact propag-
ators.

We will now derive an expression for 5S»/« in
terms of the proper vertex function. First we in-
troduce a (formal) inverse of S(x, x')»,

,)
..&o}Tt~~(x)A. (x') } o&.&0}0)

%e shall write the expectation value of A.„as

(3.2)
~
S(x, x')»S '(x",x-')»dr(x")

4

S (x x") S(x"yx')dT(x") ='5{X/x'). (s.9)

(H}A~(x)}H&» 1 1 5W[Z]
&If }If&» W[&] i «"

where W[J] stands for the generating functional
with the external spinor sources set equal to zero.
The exact photon propagator in the presence of
sources is

, )» 5&A~ (x)&'

«„( )

.&a}rA„{x}A.(x )}a&'
W[Z]

- I&A„(x)&'&A.(x'')&'.

When &=0, (A„& vanishes and we recover the usual
exact photon propagator. Vfe shall denote the
Dirac operator of Eq. (2) by 5) and the Maxwell
operator of Eq. (2) by M"„.

S and &A,&» obey the differential equations"

uS(x, x )' = 5(x,x )

fe,&e}ry„5(x}}}(x)y( )A. (x) }a&'
W[J]

If we functionally differentiate Eq. (3.9) with re
spect to (A & and simplify we obtain

5S(,x )' 5S-'(z, z )'

XS(z x') d7(z)dr(z'). (3.10)

However, the chain rule for functional derivatives
ls

5S(x, x )' "5S(x,x )' 5&A„(y )&

«'(y) 5&A. (y )& «'(y)

D,„(y',y)»d7(y'). (3.11)
"5S(x,x )'-

~ 6A y'

Inserting Eq. (3.10) into Eq. (3.11) we obtain

5S(x,x)' -, S5'( , z)z-
5&"(y) ' 5&A. (y')&

~S("")'D (y y)'d. (y " )

(3.12)

If we denote

and

(s.5) 5S-'(z, z )'
«A, (y')&

M"„(A„(x}&»=-Z, (x)+e, try„(x)S{X,x')». (3;5)

%e will rewrite these as functional differential
equations as follows. HecaQing the correspon-
dences of Eq. (2) we can easily check that the sec-
ond term on the right-hand side of Eq. (3.5) is ob-
tained by functionally differentiating S~ with re-
spect to 4; we will also get a term involving
5W[Z]/«which is just &A„&. Using this and rear-
ranging terms we obtain from Eq. (3.5)

(u+fe,y" ( )— +z.y~( )(A„( ))» ~S(,x )'=5(X, x ).

(3.7}

by I""(z,z';y) then Eq. (3.12) asserts that in the
limit J-O, I'" is the exact three-point function
with the external exact propagator removed which
is precisely the proper vertex function.

We now introduce the quantity v„„(x,x') by

v„„(x,x') = 8,'-tr y, (x)S(x,y)1'„(y,y'; x')

x S(y', x)dr(y)d7 (y') . (3.13)

We can use Eq. (3.12) in Eq. (3.8) and invert the
latter by observing that —D,„(x,x') is the Green's
function for I, the Maxwell operator. Taking the
limit Z- 0 and using the definition of w„„(x,x ) we
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obtain the integral equation for D„„(x,x'),

D„„(x',x'}=D„„(x,x')+e,'tr ~ D„,(», y)v'~(y, y')

5S-'(,x ) =-e, r»(, x', y)5+„(y))dr(y)

=- e, I'"(x,x', y)&„X(y)dr(y)

=+e, ~ [V„r»(x,x', y)]X(y)dr(y),

(3.15)

where we have used the definition of I' in the first
step and integration by parts in the last step.
However, 68 ' can be obtained directly from the
transformation of g and g, thus

5S-'(x, x ) = feg~(x) —~(x )]S-'(x,x )

= ie, [5(x,y) —6(x', y}]

(3.18)

Comparing the two expressions which must be
valid for any choice of X we conclude

V„r»(x,x', y) =&[5(x,y) 5(x,y}]S-'(x,x ) (3.1V}

which is a form of Ward's identity.
Now we can compute &„v»"(x,x') as follows:

r
v„v""(»,» ) =e;tr y»(x)S(x, y)v„r"(y, y', x')

4

x S(y~, e}dr(y}dr(y )

=ie,'tr y"S(x,y)[6(y, x') —5(y', »')]

x S '(y, y')S(y', x)d~(y)dT(y')

=0, (3.18)

where we have used (3.13) in the first step and

(3.17) in the second step. This shows that the
gauge transverse character of the polarization

x D„„(y',x')dr(y)dr(y').

(3.14)

This last equation shows that w„„ is the sum of all
proper self-energy insertions in the photon propa-
gator.

We shall now derive a version of Ward's iden-
tity'9 and use it to show that w„„has vanishing di-
vergence. First we note that if we change A by
&„X(x), where A.(x) is some function, then the
change in the generating functional is the same as
if we had changed g(x) to e "0"~'$(x). The change
in S ' due to the first change is easily written in
terms of I' as follows:

tensor is preserved in curved spacetime. The
point of going through the functional derivation of
standard results is to emphasize that they are
valid in curved spacetime despite the nonavailabil-
ity of the standard momentum-sgace results.

IV. MOMENTUM-SPACE REPRESENTATION

and the equation for the photon propagator is

g ~V.V,D"„.(x, x ) R „D"„.(x, x)=-5(x,x }5"„,,

(4.2)

where the derivatives act at x and the Ricci ten-
sor is at the point x as well. We will rewrite this
equation in Riemann normal coordinates" "with
origin at the point x'. For convenience we will
define D" .(x, x') by

D»„.(x, x~) =g-'~4(x)D"„.(x, x~)g '~4(x )

=g '~4(X)D» (x x') (4.3)

where we have used the fact that g(x') =1 since x'
is the origin of the coordinate system. The
Christoeffel symbols in the Riemann normal co-
ordinates are"

r = ——'(R' „+R' „)y", (4 4)

where y represents the coordinates of the point
x and the Riemann tensor is evaluated at x'. The
expansions are carried out up to terms that include
two derivatives of the metric; this is because it
turns out to be sufficient to compute the diver-
gences in the diagrams we shall consider.

We use (4.4) to expand the covariant derivatives
in Eq. (4.2) to give the equation for D» „.(x,x'):

q ~s BID»„,(y)+ ', RD»„.(y)—
4R» D" (y) --',R „y"s.D"».(y)

+ ,'R" „„y s.D "„(y)+.-~ ~ =- &(y)&"„„(4.5)

where S is S/Sy and q ~ is the Minkowski met-

In order to calculate the singular parts of dia-
grams we will use an approximate momentum-
space representation for the photon and electron
propagators. This is an extension of a technique
developed and used by Bunch and Parker' for sca-
lar fields. In Ref. 2 the nature of the approxima-
tion is discussed and its equivalence to the proper-
time representation is shown. The technique cor-
rectly gives the singular parts of products of prop-
agators but in general fails to give the finite re-
mainder one needs to compute the amplitudes for
physical processes.

The photon field in the Feynman gauge satisfies

(4.1)
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ric. The momentum-space approximation is de-
fined by introducing the quantity D „,(k) defined by
the (formal) equation

D2~ (y)= „(2v)ne
1

(4.6)

(4.7)

where D", , is assumed to have a geometrical co-
efficient involving i derivatives of the metric. On
dimensional grounds D,"„,(k) must be of order
k ""'so that Eq. (4.V} is an asymptotic expansion
in large k.

It is easy to see from Eq. (4.5) that

and

Do„,(k) = 6" /k' (4.8)

where ky =g ~k y~. This integral has no clear
meaning since we have not specified what the vari-
able k is nor have we defined the measure d"k.
Nevertheless we shall continue to use it with the
understanding that it is valid for small y (large k)
and hence correctly captures the short-distance
(ultraviolet) divergences in the theory. Intuitively
one can think of k as representing an effective
wave vector (in the spirit of the WEB approxima-
tion) that approaches the "true" wave vector for
larger and larger values of k. D"„,(k) is implicitly
a function of x'. In flat spacetime D~,(k) would be
independent of x and x' separately since transla-
tional invariance would tell us that D', ,(x, x') de-
pends only on (x —x').

The quantity D",.(k) is assumed to have an ex-
pansion of the form

(4.12)

Qo(y) $0 1 y rloxR yvyc +Q(y3) (4.14)

and finally the y matrices appropriate to curved
spacetime are

y. (y) =b:(y)r. =r, n "R„„,.y"y'+o(y') (4.1.5)

The spinor derivative appearing in Dirac's equa-
tion is

V'&, =W" 8„—W'A, =V"8, ++6&' "t3Z y yle

~r"[r., r,]R"„,y'+ ~ ~ .

(4.16)

The equation for the electron propagator S(x,x')
1s

y(y'&, +m)S(x, x') = 5(x, x')1, (4.1V)

where 1 is the unit matrix in spinor space and p is
a matrix defined by

YY~ Y Y~r ~ (4.18)

For the spinor field we use the result reported
in Ref. 2. To simplify the expressions we need the
following results in Riemann normal coordinates. "
The spinor connection A is given by

i~, =~6[r., r,]R",„y"+ o(y'), (4.13)

the vierbein field is

Dl"„,(k) = 0.

The equation satisfied by D", , is

@~~8 &qD,",(y}+', RD~~, ( y)—

(4.9)
The Pauli adjoint of a spinor field P is given by

(4.19)

The momentum-space expression' "for S (to
order k ') is then

d"k ik y -m —,'R(ikey -m)
2w" k +m (k'+ m')'

—3R~~„„y"9 Do„,(y)+ ~ ~ ~ =0, (4.10)

where by D2~„,(y) we mean

,'Re rk'k'(iyok —. —m )
(k'+ m')'

vfr ro]r k
(k'+ m')'

e iawDv (k) (4.11) (4.20)

The equation for D2„, can be solved by using the k
representation. To simplify the expressions we
note that y can be written as —i&/Sk when we
use (4.6) to replace D",(y) by D",(k) and the re-
sulting expressions can be integrated by parts.
The expression we finally obtain is

V. RENORMALIZATION

In this section we shall calculate the divergences
that arise in one-loop diagrams contributing to
the electron and photon self-energy. We will use
dimensional regularization to render divergent
integrals finite and the divergences will be dis-
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played as poles at n =4, where n is the dimension-
al parameter (see, for example, Ref. 21). It is
for this reason that we have written the momentum
representation of the previous section as n-dimen-
sional integrals.

Anticipating the divergences, we introduce the
following renormalization constants and renormal-
ized quantities:

FIG. 1. One-loop correction to the electron propaga;-
tor.

(5.1a)

(5.11)
renormalized charge e~ and the Z, 's:

ep ZIZ2 Z ez (5 3)

M~—-Z4 Mo,

(5.1c)

(5.1d)
According to the Ward identity Eq. (3.17), which
holds for bare fields and renormalized fields, we
must have

where the subscript R denotes a renormalized
quantity and the Z's denote the (infinite)renormal-
ization constants. The renormalization constants
themselves are regarded as functions of the re-
normalized charge e~. Thus we may write

Z, =1+ QZ,'")e„", (5.2)

where the divergences show up as poles at n=4
appearing in the quantities Z,.'"'.

The renormalized charge is physically given by
the low-energy limit of electron-photon (Compton)
scattering. If we insert the renormalized propa-
gators into the expression for I' we obtain the fol-
lowing relation between the bare charge e, and the

Z, =Z, '

and hence Eq. (5.3) reduces to

e, =Z, e~.-Z /2

(5.4)

(5.5)

Thus we conclude that charge and vertex renor-
malization is entirely fixed by the electron and
photon wave- function renormalization.

A. The electron propagator

The diagram corresponding to the one-loop cor-
rection to the electron propagator is shown in
I"ig. l. The electron propagator including the one-
loop correction is

S(x, x') =S(x,x') —e„' „dv'(u)dr(u')[S(x, u)y, (u)D „(u,u')y" (u')S(u', u)S(u', x')1, (5.6)

where S stands for the corrected electron propa-
gator. To evaluate the divergent part of the inte-
gral in Eq. (5.6) a normal coordinate system is
set up with origin at u and the momentum-space
expansions of the preceding section is used for S
and D"„.

Concentrating on the second term in Eq. (5.6)
we have

l

-e„' d"u dW'g~'(u')S(x, u)y, D"„(u,u')

xg~4(u')y" (u')S(u', u)S(u', x'), (5.7)
where the fact that in normal coordinates about u
the covariant volume element is just d"u and y„(u)
is y„has been used. Using the momentum repre-
sentation Eq. (4.12) for D and (4.20) for S leads to
the following expression for (5.7):

B ' d"ud"d'S(z ~) ((--'d ' ') ""—" " * ' " — '" ' ")4 hay ~ (2&)n k2 k4 3 k6

I' d"q;„((iy"q„d-m) 4R(iy q -m), „
~ (2v)" q'+ m' (q'+ m')'

(5.8)

where y are the normal coordinates of u', the factor of (1 4R~, y~y') rep-re—sents gu4(u') and (y"

+ $R",', y, y'y') is y"(u') in normal coordinates. All the expansions have terms involving more than two
derivatives of the metric truncated. We introduce the new variable p =—k + q and eliminate q in favor of

p in Eq. (5.8). Writing out only the p and k integrals of Eq. (5.8) we have

d k (~" d k ~5+ O(k )
'y (p —k

+ O(k-s)
„(2w)" . (2)))" k' (p-k)2+m' (5.9)
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It is clear from power counting that only the product of the first two terms will give rise to a divergent k
integration. 'Thus the effect of all the curvature corrections to the flat spacetime propagator is to make
only finite correction to the electron self-energy.

If only the divergent terms are retained in (5.8) we get

S(x,x')=S(x,x'}—e„' d"u d"u'S(x, u)y„' — „e'~
2 „I~2I, , y"S(u', x') (5.10)

The k integral of E(I. (5.10) is precisely the integra'1 that one calculates for the one-loop electron self-en-
ergy in flat spacetime 2' According to the standard result in flat spacetime the k integral [denoted Z(p, n)]
can be written in the form3'

Z(p, n)=A(n}+ (iy p +m)B(n)+Zq(p},

where A and B are constants that diverge at n=4 and Zz is the finite part of Z(p, n). Using the form
(5.11}in (5.10) leads to

d"p
S(x,x')=S(x,x') —e„' dxdm'S(x, x) . i „[dem'S((S+X +m)II.

(5.11)

(5.12)

The ZI has been dropped since we are only interested in the divergences. We can rewrite Eg. (5.12) in
the form

'dp
S(x,x')=S(x,x')-e„' ideedxe'S(x, x) (d+S(x e +m)l 'I „e'"IS(x',x')

=S(x x'}-e„' " dade'S(x, u}[A+B(y™&+ m)]&(y) S(u', x')- (5.13)

We have used the covariant derivative because it
coincides with the partial derivative at the origin
of the normal coordinates. We can now integrate
by parts to make p V act on S and use the fact
that S satisfies the Dirac equation with a 6-func-
tion source. 'The 6 functions can be used to undo
the u, u' integI'rations giving

S(x,x') =S(x,x') —es2 Jt du s(x,u)(A+ 2Bm) S(u, x')

+ e„mBS(x,x') . (5.14}

The first term is just the usual electron mass re-
normalization and is canceled by adding a term of
the form es2SS(2) m)t))I) to the Lagrangian while the
second term corresponds to rescaling the fields
g and )I) so that the free propagator is also scaled.
Thus the second term is removed by the familiar
electron wave-function renormalization.

The momentum-space expansion we have used
shows that the electron mass and wave-function
renormalizations are unaffected by spacetime
curvature. This is to be contrasted with the cal-
culation of Drummond and Shore' whose method
applies to conformally invariant QED (massless
electrons} in a conformally flat spacetime. In
their method it is necessary to perform all the
integrations and compute the renormalization con-
stants before it becomes clear that the curvature
does not affect the renormalization. The method
used in the preceding calculation adheres fairly
closely to the flat-spacetime formalism so that the

I

similarities and differences between the two pro-
cedures are manifest. Thus a simple power-
counting argument suffices to establish the result
that the renormalization is unaffected by space-
time curvature. 'The procedure used by Drummond
and Shore, ' however, allows them to calculate the
finite renormalized propagator, which cannot be
obtained in the present framework.

B. The photon propagator

'The diagram corresponding to the one-loop cor-
rection to the photon propagator is shown in Fig.
2. The discussion is conveniently carried out in
terms of the polarization tensor m introduced in
Sec. IG. The one-loop contribution to w is

v ~(x,x')=ea'try (x}S(x,x')y~(x'}S(x',x).
(5.15}

Divergences arise when x is in the vicinity of x'
so we introduce a normal coordinate system with
origin at x and use the momentum-space repre-
sentation for S(x,x'). The expression for w ~ is

FIG. 2. One-loop correction to the photon propaga-
tor.
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" d"k d"q ' (ir,k'-m) 4R(ip, k'-m) 2R«k'k'(iy, k'-m)
(2p)n (2p)n k2+ m2 (k2+ m2)2 (k2+ m2)2

~ 8~ g ply/ y ygg k 2yyg P2 ] (y
(k2+ m2)2 I q2+ m2 (5.16)

as before the y are the normal coordinates of x'.
placed with ordinary y matrices because all spinor
dependent of the representation of the y matrices.
fine p =q„+k and rewrite Eq. (5.16) as

dnp
~~

dnk iy,k' —m
71~2(x ~x') = tr8s /~

( )„8 — )„——
2 2 +

By power counting, it is easy to see that in the k
integration of Eq. (5.17) those terms that arise
from the products of the first terms in each of the
square brackets diverges. Similarly, products of
terms that contain the curvature linearly and one
of the first terms in either of the square brackets
diverge whereas those terms that arise as pro.-
ducts of two terms, each of which is linear in the
curvature, produce a finite (at n= 4) contribution
to the k integration.

The various integrals in Eq. (5.17) will be evalu-
ated separately The f.irst (and most divergent)
integral contributing to Eq. (5.17) is

iy. (p -k)'-m
i

2| (p —k)'+m'

I
for Riemann normal coordinates:

e 926(y)= V V25(y) -2R 26(y),
2t'"s, s„5 5(y) = ( -2R)5& 5(y) .

(5.17)

(5.22a)

(5.22b)

Using these identities in the expression Eq. (5.21)
me have

2

6„,( 4)( &2 —V V2)5(x,x')

+, )(R —2
—- R52) 5(x, x') . (5.23)

We have omitted the other terms for brevity and
have used the covariant 6 function denoted 6(x,x'):

The spacetime-dependent y matrices have been re-
indices are being traced over and the results are in-
As in the discussion of the electron propagator we de-

(ix.k'-mh 8|ix'(p-k), -m1.' (»)" (k'+ m')[(p —k)'+ m'] 5(x,x') ==g u25(y)= 5(y) . (5.24)

(5.18)

This integral is identical to the photon self-energy
integraI. in flat spacetime" and the result is well
known. Using the calculation of Ref. 21 we have

l.(2 -u/2) u 5 -p'

We now consider the effect of these contributions
to ~ z on the photon self-energy. We recall that
the wave equation satisfied by the free photon
propagator is

(C352+ V V2-V8V")D2 (x,x')= —5(x,x')5„.
(5.25)

2I"' (div) = — —(p'5"- p"p )6~2(& -4) (5.20)

where the I' function and the hypergeometric func-
tion were expanded ani~ only those terms that di-
verged at n=4 were retained. WhenI"' ~ is in-
serted into Eq. (5.17) we have the term

8g dp

)(q'"s,a„6 -s e,)6(y)

+ other terms . (5.21)

This can be remritten in terms of covariant de-
rivatives by using the following identities valid

(5.19)

The divergence manifests itself through the pole
at n= 4 in the l" function. The divergent part ofI"'

~ can thus be written as

We are using the Feynman gauge and have re-
placed the Riemann tensor by a pair of skewed co-
variant derivatives. If the first terms of Eq.
(5.23) are inserted for v in Eq. (3.14) we get

D„„(x,x') =D,„(x,x') +
6n'jn -4j

D„,(x,u)( 5; —V'V, ) 5(u, u') (5.26)

xD „(u', x')d7(u)dv'(u') .
We nom integrate by parts twice so that the deriv-
atives act on the u' argument of D'„(u', x') and use
the wave equation to simplify. The final result,
after using the 6 functions to remove as many of
the integrations as possible, is

ezD„„(x,x') =D„„(x,x') —,, , 4)D,„(x,x')
67t'2(n —4

2

,
( ) J D„,(x,u)V'V„D'„(u, )dx&(u) .

(5.27')
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'The last term in this expression corresponds to an
(infinite) change in the gauge-fixing term of Eq.
(2.18) thus this divergence is removed by merely
changing the P of Eq. (2.18}so that the renormal-
ized propagator is also in the Feynman gauge.
'The second term on the right-hand side of Eq.
(5.27) is the photon wave-function renormaDzation.
If we write Eq. (5.27) in terms of the renormalized
fields we have &» =Z, 'A.„and D»„=Z, 'D».
'Thus if we define

1
Sg 2( )

and Zg 0 (5.28)

we will remove the divergence produced by the
second term. Both these renormalizations, of the
gauge-fixing parameter and of the photon field,
are the same as in flat spacetime and in de Sitter
spacetime. '

We are now left with the remaining terms arising
from Eq. (5.17), all of which contain the curvature,
and the remaining term of Eq. (5.23) which also
contains the curvature. 'The survival of any such
term would force us to introduce new couplings
between the photon field and the curvature into the
Lagrangian. One could then renormalize the as-

(,& d. es'8 " d"k y,k'y()y(&k~

(2&(}"(k'+ m')'[(p —k)'+ m'] '

(5.30)

We combine the denominators using the formula"

abc
dx dy [ax+ by+ c(1 -x -y)] ' (5.31)

40

and we perform the traces using'"

tr&a'4'4'4= 4(gung()(& gn(&gg(&+gang(&g) ~ '(5 32)

We obtain in place of Eq. (5.30) the equation

sociated coupling constants to eliminate the diver-
gences which depend on the curvature.

The next term in Eq. (5.17) that can be divergent
is

, a .td"k ((r.k' m-)y, [iy, (p -k)'-m]" 4 (2v)' (k'+ m')'[(p —k}2+m']

(5.29)

By power counting we see that there is a diver-
gence at m= 4 only if there are two powers of k in
the numerator. Thus the divergent part of I"' is

(2) 2
"' ""," d"k (2k~k)& -k'gu()}

(2x)" [k'+ m'+p'(1-x -y)(x+y)1' ' (5.33)

where we have made the change of variables

k k-(1-x-y)p.
'The k integration can now be done using"

t d"k k„k„gg„„i"(2 n/2) -. .
(5 34)

(2v)" (k'+ H)' (4v)'I'(3)

e obtain finally

eB ga()
8 '( 4)' (5.35)

As was shown the calculations are straightfor-
ward extensions of the usual calculations for
@ED in flat spacetime. The calculations are
somewhat tedious as they involve taking traces of
up to six y matrices and combining four denomi-
nators using the formula" v "v„„(x,x~) = 0. (5.39)

e 'RI" ( )id)v= ——
8m'(n -4) '

Each of these terms is multiplied by the integral
over p which yields a 5 function. If we combine
all the curvature-dependent divergent terms in m,

i.e., Eqs. (5.38), (5.37), (5.35) and the second
term in (5.23), they cancel completely. Thus in a
general curved spacetime the photon self-energy
does not generate any new divergences that are
not present in flat spacetime.

That this cancellation occurs is not fortuitous
but results from gauge invariance. As has been
in Sec. III the Ward identity leads to the following
condition on x,„(x,x'):

(abed) '= 6 dx
4 0

dy JI de[ax+ by+ cz
0 0

+ d(1-x -y -e)] '.
The divergent part of w„„(x,x') must itself satisfy
(5.39). The divergences in (( „can consist of the
following pieces:

We shall not go through the rest of the calculation
but merely quote the results:

&„„(x,x')(div) =K"'g„„b(x,x')+ K"'g 5(x x')

+ Z'(2&v„v„h(x, x )+S.„(x)5(x,x ),
(5.40)
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V„[ 'S"5( ,xx)]=0. (5.42)

If we regard this expression to be a distribution
acting on smooth test functions of compact support
f(x) and g„(x') we obtain using Eq. (5.42)

dr(x)d7 (x') fV „(S""(x)5(x,x'))f(x)g„(x'))

dr(x)dr(x')[S""(x)5(x, x')(&„f(x))g„(x')]

dr(x)[S""(x)(V„f(x))g„(x)]

dr x V„S"" g„+ d7'x S"" V g„; 5 43

the first equality is merely Eq. (5.42), the second
follows from integration by parts, in the third the
5 function has been used to do the x' integration,

where the appearance of 6 functions and their de-
rivatives express the fact that the divergences are
ultraviolet, i.e., they arise only in the coincidence
limit x =x' so that they are associated with the
short-distance behavior of the propagators. The
quantities K"', K"', and K"' are (infinite at n= 4)
constants while S ~(x) is a tensor containing cur-
vature terms that also is infinite at n=4. The K"'
term expresses the possibility of there being a
quadratically divergent momentum integral while
the other three terms correspond to the possibility
of there being logarithmically divergent momen-
tum integrations. Intuitively „ taking two deriva-
tives of the 5 function (as in the K"' and K"'
terms) or two derivatives of the metric (as in the
S ~ terms) adds two powers of the momentum to
the denominator of the momentum integrals. There
are no preferred vector fieMs one can use to con-
struct linearly divergent terms with the correct
index structure. Since ~ ~ is quadratically diver-
gent in flat spacetime and spacetime curvature
can only add terms which are less divergent than
the highest-order divergence in flat spacetimes it
follows that the expression Eq. (5.40) exhausts all
the possible divergences in „x„( ,xx) in a general
curved spacetime.

As has been shown by explicit calculation of the
one-loop diagram the terms involving E"' and
S ~ in Eq. (5.40) are not present, while those in-
volving E " and E' ' are present. In view of Eq.
(5.39) we have

V„[ K"' g""5( xx')]= K"' g""V„5(x, x) = 0 (5.41)

which implies that K' ' itself must vanish. This is
the position-space analog of the statement that
gauge invariance eliminates the necessity of pho-
ton mass renormalization. For the term involving
S~" we have

a.nd the fourth equality follows by integration by
parts. Since Eq. (5.43) is true for any choice of f
and g we can specify them arbitrarily. Suppose
S~" does not vanish at some point then we can
choose g„so that it is zero at that point and V„g„
is not zero at that point. Now f can be chosen so
that it is sharply peaked around the point in ques-
tion so that on the right-hand side of Eq. (5.43) the
first integral drops out while the second is nonzero
which contradicts Eq. (5.42). Hence the only way
one can satisfy Eq. (5.42) is to have S"~=0. Thus
we conclude that there are no divergent quantities
in which the curvature tensor appears.

VI. CONCLUSION

In the preceding pages it was shown that quan-
tum electrodynamics at the one-loop level is re-
normalizable in a general curved spacetime. It is
important to note that the fact that the theory is
renormalizable is not a simple consequence of the
fact that the corresponding theory is renormali-
zable in flat spacetime. One cannot a priori as-
sert that new couplings between the fields and
curvature tensor will not appear in the process of
renormalization4" and indeed in the present case
it is the gauge invariance of the theory that pre-
vents such couplings from appearing.

The general lesson to be learned is that one
must examine a given theory in curved spacetime
before it is used to compute physically interesting
quantities. While the results of this paper only
apply to the one-loop case the arguments presen-
ted at the end of Sec. V are nonperturbative and
strongly suggest that the theory is renormalizable
to all orders of perturbation. Recent results by
Bunch"*" show how one can generalize the mo-
mentum-space representation for the scalar field
and prove renormalizability of &Q' theory to all
orders in the coupling constant.

In the course of the discussion and calculations
no mention has been made of the topology of the
spacetime. Clearly the key requirement for the
implementation of the above scheme is the exis-
tence of a geodesically convex neighborhood around
every point in spacetime. This is a local require-
ment and is clearly satisfied in any "reasonable, "
singularity-free spacetime whatever the global
topology might be. 'This fits in with the notion that
the ultraviolet infinities reflect short distance or
local problems with field theory. The infrared di-
vergences of QED on the other hand do depend on
the global structure of spacetime. For example in
a compact universe one would not have photons
with arbitrarily long wavelengths and there would
be no infrared divergence. If the spacetime topol-
ogy is nontrivial on very small scales, ' for exam-
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pie, if the spatial slices were cylinders whose ra-
dius was of the order of a Compton wavelength of
an electron, then one can expect that the renor-
malizability will be destroyed and recent results
of Ford' indicate that this is indeed the case.
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