
Submitted to:
QPL 2015

c© Costin Bădescu and Prakash Panangaden
This work is licensed under the
Creative Commons Attribution License.

Quantum Alternation: Prospects and Problems

Costin Bădescu
McGill University
Montréal, Canada

cbades@cs.mcgill.ca

Prakash Panangaden
McGill University
Montréal, Canada

prakash@cs.mcgill.ca

We propose a notion of quantum control in a quantum programming language which
permits the superposition of finitely many quantum operations without performing a
measurement. This notion takes the form of a conditional construct similar to the if
statement in classical programming languages. We show that adding such a quantum if
statement to the QPL programming language [11] simplifies the presentation of several
quantum algorithms. This motivates the possibility of extending the denotational
semantics of QPL to include this form of quantum alternation. We give a denotational
semantics for this extension of QPL based on Kraus decompositions rather than on
superoperators. Finally, we clarify the relation between quantum alternation and
recursion, and discuss the possibility of lifting the semantics defined by Kraus operators
to the superoperator semantics defined by Selinger [11].

1 Introduction

The field of quantum programming languages emerged in the early 2000s as a result
of researchers’ interest in understanding quantum algorithms structurally. This interest
is backed by the belief that a structural study of quantum algorithms may have the
same positive effect on our understanding of quantum computing as the introduction
of structured programming had on classical computation. This endeavor has two clear
objectives: understanding how fundamental quantum resources such as quantum parallelism
and entanglement fit into the theory of computation, and exploiting these resources to aid
in designing new quantum algorithms which can outperform the existing classical ones.

Conforming to this structural approach, the present work casts quantum parallelism
as a resource which can be used to determine the control flow of a program. This flow
is usually built up by composing three primitive operations: sequencing, branching, and
recursion. Of these three, branching is the only operation which depends on data supplied
to the program. In quantum computing, this data can be a qubit whose state is unknown.
In this case, a measurement is normally used to extract a Boolean value from the qubit and
the transition to the next state depends on the measurement outcome. This procedure is
similar to sampling a Bernoulli random variable where the distribution is determined by
the state of the qubit. Hence, the form of quantum control implemented by measurements
is of a probabilistic nature. A natural question to ask is whether there is a sensible notion
of branching in a quantum programming language which operates at the quantum level,

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Quantum Alternation

that is, without interference from the environment. This speculative type of branching
is henceforth referred to as quantum alternation or quantum control. Investigating the
viability of this concept is the main theme of this paper.

The idea of quantum control is not new. Indeed, in a quantum Turing machine [4]
– the first formalism of quantum computation – the flow of execution is described by a
constant unitary operator. Thus, both data and control may be “quantum.” Nevertheless,
the passage from the quantum control mechanism present in a quantum Turing machine to
a structural notion of quantum branching in a programming language is not clear. The first
programming language designed to support quantum control was defined by Altenkirch
and Grattage in [1]. The language, called QML, provides a case statement which allows
superposing several quantum operations without performing a measurement. However, the
case statement can only be used in certain situations specified by the introduction rules of
the type system which use an “orthogonality” judgement. A more recent work on quantum
alternation is [13] where the authors propose a language called QGCL (after Dijkstra’s
Guarded Command Language) to support the paradigm of “superposition of programs.”
QGCL bases the definition of quantum control on the analogy with quantum random walks
and introduces an auxiliary system of “quantum coins” which is used to perform branching.
A more detailed discussion of both of these works and their relation to the work presented
in this paper is deferred to the section on related work. For the moment, we note that there
are many similarities and a few differences between our work and the work reported in [13].

We proceed to outline the basic properties that quantum alternation should possess. The
notation used in the sequel follows the usual mathematical framework for open quantum
systems: states are represented by density operators on some Hilbert space, and quantum
operations are given by superoperators, i.e. completely positive (CP) trace-nonincreasing
maps. All Hilbert spaces are assumed to be finite-dimensional, unless otherwise stated. If
H is a Hilbert space, we denote by S(H) the set of states on H. Thus, a superoperator is a
linear map T : S(H)→ S(K). The dynamics defined by a superoperator T : S(H)→ S(H) is
said to be reversible if T can be represented as a pure unitary operation, viz. T (ρ) = UρU †

for some unitary operator U :H→H. qbit is defined to be the 2-dimensional Hilbert space
C2 with the computational basis |0〉 and |1〉. A qubit is a term q of type qbit, denoted
q :qbit. We define the classical states Π0 = |0〉〈0| and Π1 = |1〉〈1| corresponding to the
elements of the computational basis.

We posit the following typing judgement for quantum alternation. Given a qubit q :qbit
and two superoperators T0,T1 : S(H)→ S(K), the alternation of T0 and T1 with respect to
q should be a superoperator Altq(T0,T1) : S(qbit⊗H)→ S(qbit⊗K). Thus,

I. Quantum alternation has the following typing judgement, where Π is a procedure
context and Γ and Γ′ are typing contexts:

Π ` 〈Γ〉P 〈Γ′〉 Π ` 〈Γ〉Q〈Γ′〉
Π ` 〈q :qbit,Γ〉 if q then P elseQ〈q :qbit,Γ′〉

Note that, according to the typing judgement, the branches P and Q cannot access the

Costin Bădescu and Prakash Panangaden 3

qubit q. There are at least two reasons for this particular choice. Firstly, we will require
that the alternation of P and Q with respect to q is a reversible operation if P and Q are
reversible, which is not necessarily the case if P and Q are allowed access to q. Secondly, q
is a resource used to superpose different statements and, as with any type of resource, it
should be in some sense consumed. This situation is not unlike the case of measurement
where the state of the qubit collapses to the classical state observed. The difference here is
that quantum branching does not extract any classical information from q, so the qubit
does not collapse to a classical state.

The second fundamental property required of quantum alternation is that it should
use the information encoded in the classical states of q. That is, the alternation should
depend on a specific choice of basis for q and each branch must correspond to a distinct
basis vector. The state of q should affect the superposition of quantum operations:

II. If the qubit q is in a classical state Πi with i ∈ {0,1}, then Altq(T0,T1) = I⊗Ti, i.e.
the alternation reduces to a local operation Ti on S(H).

The second condition formalizes the intuition of classical alternation in this context. Since
Altq(T0,T1) is a linear map, it follows that if ρ is a state on qbit⊗H then

Altq(T0,T1) :: ρ=
[
A B
C D

]
7→

[
T0A ∗
∗ T1D

]
.

The off-diagonal asterisks represent entries which are not yet determined by anything other
than the blocks on the diagonal and the condition that the result must be a positive operator.
If these entries are null, then Altq(T0,T1) can be implemented by a measurement followed
by merging. Hence, it is necessary to impose additional constraints to obtain a notion of
branching which may be called “quantum.” The final condition we impose, concerning the
reversibility of alternation, addresses this issue:

III. If T0 and T1 are reversible, then Altq(T0,T1) is reversible.

The dynamics of a closed quantum-mechanical system is reversible, so this requirement
is natural, if not compulsory, for any definition of quantum alternation. The reversibil-
ity condition also ensures that the implementation of alternation cannot be based on
measurement.

Following the conditions introduced above, we can suggest a definition of quantum
alternation in a closed quantum system:

Let H be a Hilbert space and let U0,U1 :H→H be unitary operators. Given a qubit
q :qbit, define the alternation Altq(U0,U1) with respect to q by

Altq(U0,U1) = Π0⊗U0 + Π1⊗U1. (1)

This definition of Alt meets all three conditions and generalizes immediately to a definition
of quantum alternation controlled by a system of multiple qubits. Let qbitn be the nfold

4 Quantum Alternation

tensor product of qbit with itself and set `= 2n−1. Let Π0, . . . ,Π` be the classical states of
qbitn. Given q̄ :qbitn, the alternation of unitary operators U0, . . . ,U` :H→H with respect
to q̄ is defined by

Altq̄(U0, . . . ,U`) =
∑̀
k=0

Πk⊗Uk. (2)

This form of alternation corresponds to a quantum case statement. As we will see, the
Deutsch–Jozsa algorithm can be obtained from Deutsch’s algorithm essentially by replacing
an if statement with a case statement.

(2) is a special case of a measuring operator [7]. In the definition of a measuring operator,
the classical states Πk can be replaced by projections onto pairwise orthogonal subspaces.
Thus, it is possible to consider a slightly more general notion of quantum alternation where
the superposition is controlled by a set of pairwise orthogonal projections rather than by a
system of qubits; this idea is also introduced in [13].

The problem of defining quantum alternation in QPL amounts to finding an appropriate
extension of the definition given above to open quantum systems which is structural,
compositional, and satisfies the three aforementioned criteria.

2 Examples

Prior to defining a semantics for quantum control in open quantum systems, we present a
few examples of QPL programs which make use of quantum alternation in a closed system.
Thus, all quantum operations considered in this section are pure operations associated with
a specific unitary operator defined within the program.

We briefly review the fragment of QPL which will be used in this paper. The state of a
QPL program is a density matrix and a statement is interpreted as a superoperator. The
primitives we will use are as follows: skip is the identity superoperator; q̄ ∗= U applies the
unitary transformation U to the tuple of qubits q̄; new qbit q allocates a new qubit register
named q initialized to |0〉; measure q then P else Q measures the qubit register q and
evaluates P or Q accordingly; discard q represents the partial trace over the component of
the state space represented by q.

We will make use of two additional constructs to illustrate quantum alternation: an
if q then P else Q statement interpreted as the superoperator defined by (1), and a
case q̄ of Πk→ Pk statement interpreted as the superoperator defined by (2). Note that all
branches of an alternation (e.g. P , Q, etc.) are assumed to be pure unitary operations.

The simplest example using quantum alternation is the construction of controlled unitary
operators. If U is a unitary operator and q0, q1 :qbit are two qubits, then

if q0 then skip else q1 ∗= U

implements a controlled-U operation. Thus, if N is the NOT gate, two nested if statements

Costin Bădescu and Prakash Panangaden 5

can be used to implement the Toffoli gate:

if q0 then skip else if q1 then skip else q2 ∗=N

Implementing a controlled gate using an if statement allows for a more succint presen-
tation of quantum circuits in QPL. For instance, given qubits q1, . . . , qn :qbit, the following
program implements an efficient circuit for the quantum Fourier transform (cf. [9, p. 219]):

for i= 1 to n do
qi ∗=H

for k = 2 to n− i+ 1 do
if qk+i−1 then skip else qi ∗=Rk

Here Rk is the phase shift gate defined by Rk = Π0 +eiθΠ1 with θ = 2π/2k.
A more important example, exhibiting the relation between quantum parallelism and

quantum alternation, is an implementation of Deutsch’s algorithm [4]. The problem is to
determine whether a given Boolean function f : {0,1} → {0,1} is constant.

For each x ∈ {0,1}, let Ux : qbit→ qbit be the permutation operator transposing |0〉
with |f(x)〉 and fixing the rest of the basis. Let x⊕y denote the exclusive or of bits x
and y. Note that 0⊕x= x and 1⊕x= ¬x for all x ∈ {0,1}. Thus, Ux|y〉= |y⊕f(x)〉 for
x,y ∈ {0,1}. Given qubits q0, q1 :qbit, consider the statement:

if q0 then q1 ∗= U0 else q1 ∗= U1

Using definition (1), this statement is interpreted as the pure operation defined by the
unitary:

Uf :: |0〉⊗ψ0 + |1〉⊗ψ1 7→ |0〉⊗U0ψ0 + |1〉⊗U1ψ1.

A simple calculation shows that Uf can also be defined by the map |x,y〉 7→ |x,y⊕f(x)〉.
Therefore, Deutsch’s algorithm can be implemented as follows.

new qbit q0, q1

q0 ∗=H

q1 ∗=H ◦N
if q0 then q1 ∗= U0 else q1 ∗= U1

q0 ∗=H

The algorithm above can be modified to take as input a general Boolean function
f : {0,1}n → {0,1}. A map such as f is said to be balanced if P[f(x) = 1] = 1

2 for a
uniformly random x∈{0,1}n. The Deutsch–Jozsa algorithm [5], a generalization of Deutsch’s
algorithm, determines whether a given Boolean function f : {0,1}n→{0,1} is constant or
not contingent upon the assumption that f either constant or balanced. An implementation

6 Quantum Alternation

of this algorithm is obtained essentially by replacing the if statement above with a case
statement. Indeed, for each x ∈ {0,1}n, let Ux be the permutation operator transposing |0〉
with |f(x)〉 and fixing the rest of the basis. Suppose q̄0 :qbitn and q1 :qbit are given. The
statement

case q̄0 of |x〉 → q1 ∗= Ux (3)

implements the unitary Ũf :: |x,y〉 7→ |x,y⊕f(x)〉 with x∈ {0,1}n. Hence, the Deutsch–Jozsa
algorithm can be written as:

new qbitn q̄0

new qbit q1

q̄0 ∗=H⊗n

q1 ∗=H ◦N
case q̄0 of |x〉 → q1 ∗= Ux

q̄0 ∗=H⊗n

The map which assigns the unitary operator Ũf to a Boolean function f appears in
a number of quantum algorithms. For instance, if f(x0) = 1 for some x0 ∈ {0,1}n and
f(x) = 0 otherwise, then Ũf is the “black box oracle” O used to implement Grover’s search
algorithm (see e.g. [9, p. 254]). Similarly, Ũf is used in the period-finding algorithm if f is
a periodic function.

The ability of quantum computation to superpose multiple evaluations of a function f
in a single application of a unitary operator is often referred to as quantum parallelism.
Considering the permutation matrix Ux as an evaluation of f at x, the definition of Ũf as
the case statement in (3) shows that quantum alternation embodies a form of quantum
parallelism. Furthermore, the fact that an application of Ũf is considered a O(1) operation
is reflected in the syntactic representation of alternation as a conditional construct.

Finally, an elementary but important observation is that the conditional statement

if q0 then skip else q1 ∗= eiθ

implements a controlled phase. Since skip and q1 ∗= eiθ are physically indistinguishable
as quantum operations, it follows that quantum alternation is not directly physically
realizable. Rather, it represents a conceptual semantic construct in a quantum programming
language. Furthermore, this example shows that there is no structural semantics for quantum
alternation which is based on superoperators with extensional equality.

3 Semantics

In this section, we give a definition of quantum alternation for open quantum systems and
present a formal semantics for QPL with quantum control. We only define alternation with

Costin Bădescu and Prakash Panangaden 7

respect to a single qubit q :qbit and two branches. A formula for the general case can be
easily obtained using the same techniques.

Let H, K, and L be Hilbert spaces. A finite set S of nonzero bounded operators from
H to K defines a superoperator T : S(H)→ S(K) by

T (ρ) =
∑
E∈S

EρE† if
∑
E∈S

E†E 6 I. (4)

We will refer to S as a decomposition of T or, when the superoperator is implicit, as a Kraus
decomposition. A well-known theorem of Kraus [8] states that every superoperator has a
decomposition, but this decomposition is never unique. Thus, two Kraus decompositions S
and T are said to be extensionally equal, denoted S ' T , if the corresponding superoperators
are equal. The empty set ∅ corresponds to the 0 superoperator.

If S⊆B(K,L) and T ⊆B(H,K) are Kraus decompositions, their composition S ◦T is
defined to be the set obtained from the multiset {E ◦F | E ∈ S,F ∈ T } by replacing `
occurences of a bounded operator K with

√
`K and removing any occurrence of the zero

operator. Each Hilbert space H with identity operator I :H→H determines a unique Kraus
decomposition idH = {I} which acts as the identity for composition. Thus, we can define a
category C with Hilbert spaces H,K as objects and Kraus decompositions S⊆B(H,K) as
morphisms S :H→K. A statement in QPL will be interpreted as a morphism in C.

We define the quantum alternation of two morphisms1 S,T :H→K to be the morphism
S •T : qbit⊗H→ qbit⊗K defined by

S •T =
{

Π0⊗
E√
|T |

+ Π1⊗
F√
|S|
| E ∈ S,F ∈ T

}
.

Here the projections Π0 and Π1 are determined by the qubit q :qbit which is used in the
alternation. It is easy to see that S •T satisfies condition (4). Moreover, if S = {U0} and
T = {U1} where U0 and U1 are unitary operators, then S •T defines the same superoperator
as Altq(U0,U1). Indeed, the elements of S •T are of the form Altq(Ê, F̂) where

Ê = E√
|T |

, F̂ = F√
|S|

, for E ∈ S and F ∈ T .

Thus, S•T can be understood operationally as randomly replacing a state ρ withKρK†/tr(KρK†)
with probability tr(KρK†) where K is the “pure” quantum alternation Altq(Ê, F̂).

We briefly recall the definition of the category Q associated to the superoperator
semantics of QPL. A signature σ is defined to be a tuple of positive integers σ = (n1, . . . ,ns).
If σ and τ are signatures, then their concatenation σ⊕ τ and tensor product σ⊗τ are also
signatures. To each such σ, we associate a complex vector space

Vσ =M(C,n1)× . . .×M(C,ns),
1This equation also appears in [13].

8 Quantum Alternation

where M(C,k) denotes the vector space of k×k complex matrices. Clearly, M(C,k) =B(Ck),
so the elements of Vσ are tuples of bounded operators. We define the trace of an element in
Vσ to be the sum of the traces of its components and say that an element of Vσ is positive
if all of its components are positive operators. Thus, a density operator in Vσ is a positive
element with trace at most 1. The semantics of QPL, as defined in [11], is given by the
category Q whose objects are signatures σ,τ and whose morphisms are superoperators
T : Vσ→ Vτ .

A semantics for QPL with quantum control is obtained by replacing the morphisms
of Q with Kraus decompositions. The resulting category is the category C defined above.
We assign to each QPL primitive a Kraus decomposition and define the semantics of an
arbitrary program by structural induction. Although the choice of Kraus decomposition
for a primitive may be arbitrary, we will rely on the fact that the computational basis
for qbit is the “preferred” basis and give Kraus decompositions which are particularly
simple to express using |0〉 and |1〉. For instance, let in0, in1 : σ→ σ⊕σ be the injections
in0(ρ) = (ρ,0) and in1(ρ) = (0,ρ). We can then define the semantics as follows.

JP ;QK : σ→ τ = JQK◦ JP K
JskipK : σ→ σ = {id}
Jnew bit b :=0K : σ→ σ⊕σ = {in0}
Jnew qbit q :=0K : σ→ qbit⊗σ = {|0〉⊗−}
Jdiscard qK : qbit⊗σ→ σ = {〈0|⊗ id, 〈1|⊗ id}

JmergeK : σ⊕σ→ σ = {in†0, in
†
1}

Jmeasure qK : σ→ σ⊕σ = {in0 ◦Π0, in1 ◦Π1}
Jq ∗= UK : σ→ σ = {U}
Jif q then P elseQK : qbit⊗σ→ qbit⊗τ = JP K• JQK

The semantics defined above cannot be lifted to a semantics of superoperators, because
quantum alternation does not preserve extensional equality. Indeed, the Kraus decomposi-
tions {U0}•{V0} and {U1}•{V1} are extensionally equal if and only if there exists a phase
θ such that U0 = eiθU1 and V0 = eiθV1, so {U0}•{V0} ' {U1}•{V1} may not hold even if
{U0} ' {U1} and {V0} ' {V1}. The failure of quantum alternation to preserve extensional
equality shows that there is no compositional superoperator semantics which satisfies the
definition of alternation given in the introduction. However, as the examples above and
previous work [1] [13] show, that particular definition of quantum alternation for closed
quantum systems is the most intuitive and practical.

An important part of the superoperator semantics for QPL is the ability to define
recursion. The category Q is CPO-enriched [11], a fact which together with the ⊕ operation
makes Q a traced monoidal category. Since each Kraus decomposition determines a unique
superoperator, we can define an order on the Hom-sets of C using the order on the Hom-sets

Costin Bădescu and Prakash Panangaden 9

of Q, viz. S v T if the relation holds for the corresponding superoperators. We can then
try to adapt the situation to quantum alternation. But we have the following proposition.
Proposition. Quantum alternation is not monotone with respect to the v order.

Proof. Let H be the Hilbert space associated to a signature σ. Let U and V be two unitary
operators on H defining Kraus decompositions S = {U} and T = {V }. Let ρ be a state on
qbit⊗H defined by

ρ=
[
A B
C D

]
where B 6= 0. Then S v S and ∅v T , but

(S •T −S •∅)(ρ) =
[

0 UBV †

V CU † V DV †

]
.

Recall that if a diagonal entry of a positive matrix is zero, then the corresponding row and
column must be all zero. Since UBV † 6= 0, it follows that (S •T −S •∅)(ρ) is not positive.
Therefore, S •∅ 6v S •T , but S v S and ∅v T . �

This counter-example shows that quantum alternation is not compatible with the
semantics for recursion defined in [11]. Since a CP map T is a pure operation ρ 7→ EρE† if
and only if all operations completely dominated by it are its nonnegative multiples [10],
it appears that the reversibility condition (III) makes quantum alternation fundamentally
incompatible with the standard order on CP maps.

Quantum operations admit several equivalent representations based on the structure
theory of CP maps [10]. Each representation illustrates a different aspect of the quantum
operation. The rest of this section defines quantum alternation in terms of Stinespring
representations. This alternative perspective will clarify the relation between our definition
of alternation and that of [1].

Let T : S(H)→ S(K) be a superoperator. By Stinespring’s theorem, T can be written as
T (ρ) = V †(ρ⊗IA)V , where A is a Hilbert space called the ancilla and V :K→H⊗A is a
bounded operator. The ancilla models the environment of the operation T . The pair (A,V)
is called a Stinespring representation of T . Stinespring’s theorem can be interpreted as
saying that any quantum operation T can be implemented as a pure operation on a larger
Hilbert space. Given a Kraus decomposition S defining a superoperator T : S(H)→ S(K),
a Stinespring representation of T can be obtained from S as follows. Let A be a Hilbert
space with basis {|E〉}E∈S and define V :K→H⊗A by

V ψ =
∑
E∈S

E†ψ⊗|E〉.

Then (A,V) is a Stinespring representation of T . Conversely, a representation (A,V) of T
with a fixed basis for A determines a Kraus decomposition of T .

10 Quantum Alternation

If S and T are Kraus decompositions, then there is a natural Stinespring representation
for the superoperator determined by S •T , viz. the pair (E ,W) defined by E =A′⊗A and

Wψ =
∑

E∈S,F∈T
Altq(Ê, F̂)†ψ⊗|F 〉⊗|E〉,

where A and A′ are the ancillas of the Stinespring representations determined by S and T ,
respectively. Thus, the environment of the quantum alternation is the tensor product of
the environments of the quantum operations involved.

4 Related Work

Altenkirch and Grattage [1] defined QML, a quantum programming language with quantum
control based on a new type of judgement called “orthogonality.” The denotational semantics
for QML is based on expressing superoperators T : S(A)→ S(B) in the form T (ρ) =
TrGU(ρ⊗|ξ〉〈ξ|)U †, where H and G are Hilbert spaces, ξ ∈ H is a fixed unit vector, and
U : A⊗H → B⊗G is an isometry. Defining the bounded operator V : B → A⊗G by
V ψ = U(ψ⊗ξ), we obtain an equivalent Stinespring representation (G,V) of T . In QML, a
strict morphism corresponds to a superoperator with dimG = 1. Thus, strict morphisms
correspond to singleton Kraus decompositions in our semantics, i.e. pure operations
ρ 7→EρE† with E†E 6 I. Only strict morphisms may be alternated in QML. The alternation
is further restricted by the orthogonality judgement, which is implemented by an incomplete
set of introduction rules.

The work of Mingsheng Ying et al. [13] is very recent and closely related to ours, though
their attitude is quite different. They also note that the superoperator semantics is not
compositional, but they are content with this. They do not define a Kraus semantics as
we do. However, our construction is essentially embedded inside their definition of their
superoperator semantics. Perhaps, the right way to look at it is that we have both defined
a Kraus semantics but they have gone on to give a superoperator semantics as an abstract
interpretation of the Kraus semantics. In such a case it often happens that the resulting
semantics is not compositional. The fact that quantum alternation is not monotone using
the Löwer order is not noted by them. Ying has a different approach to recursion based
on second quantization [12] which seems to avoid the difficulties noted here but we do not
understand it well enough to comment on it here. Certainly, combining recursion with
quantum alternation will require some radically new idea.

5 Conclusion

Superficially this may strike the reader as a very negative, or perhaps schizophrenic, paper.
Certainly, we feel that quantum alternation as often casually discussed, is quite problematic

Costin Bădescu and Prakash Panangaden 11

and some fix based on type theory or syntactic control will not serve to make it meaningful.
On the other hand we see this as the start of some new directions.

Quantum alternation is not really physically meaningful. Even if it is, it seems incom-
patible with recursion. Is there some crisp no-go theorem here? If so, what is meaningful?
Ideally one should start from physical systems and develop a structural understanding from
which linguistic entities should emerge. It seems to us that quantum alternation is a fantasy
arising from programming language semantics rather than from physics. What we propose
is that one should look closely at, say, quantum optics where devices like Mach-Zehnder
interferometers [6] provide physical situations that are reasonably viewed as alternation.
Note that in MZ interferometers the system being split is the system on which the two
alternate operations are applied; there is not a distinct control qubit.

On a more mathematical note one can question the arbitrariness of the Kraus semantics;
different Kraus semantics correspond to the same operator so doesn’t that mean that the
semantics is making unobservable distinctions? However, this is not the case. Different
Kraus decompostions correspond to different choices of measurement that an experimenter
may choose to make. In the standard paradigm, with classical control, the contexts provided
by the language do not make these differences visible but in the enriched language they do.

One can still ask whether there is a canonical decomposition one can associate to a
superoperator which can be used to define alternation. Indeed there is and it involves more
sophisticated mathematics; we choose not to include it in this note. There is an operator-
algebra analogue of the Radon-Nikodym theorem due to Belavkin [3] and, independently,
Arverson [2]. Given two CP maps S and T with S v T , it gives a representation of S in
terms of a chosen minimal Stinespring representation of T and a positive operator DT (S),
the Radon-Nykodim derivative of S with respect to T . Now there is a map, the tracial map,
which can be proven to dominate any CP map from B(H) to B(K). This gives a canonical
decomposition of an arbitrary CP map; we have worked out a denotational semantics of the
language with quantum alternation based on this approach. The trouble, and the reason we
have not included it here, is that the physical significance of this semantics is unclear to us.

Acknowledgements

Panangaden would like to thank Mingsheng Ying for discussions allowing us to understand
the relationship between our semantics for quantum alternation. He would also like to
thank Vincent Danos who was present at the discussion and made several insightful remarks
sprinkled with some interesting non sequiturs. We have both been supported by NSERC.
Bădescu has also been supported by a scholarship by FQRNT. Panangaden acknowledges
the generous support of the Chinese Academy of Sciences, Institute of Mathematics, during
his stay in Beijing.

12 Quantum Alternation

References
[1] Thorsten Altenkirch & Jonathan Grattage (2005): A functional quantum programming language.

In: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science, 2005.,
IEEE, pp. 249–258.

[2] W. Arveson (1969): Subalgebras of c∗-algebras. Acta Math 123, pp. 141–224.
[3] V. P. Belavkin & P. Staszewski (1986): Radon-Nikodym theorem for completely positive maps.

Reports on Mathematical Physics 24(1), pp. 49–55.
[4] D. Deutsch (1985): Quantum theory, the Church-Turing Principle and the universal quantum

computer. Proc. Roy. Soc. Lond. A 400, p. 97.
[5] D. Deutsch & R. Jozsa (1992): Rapid solution of problems by quantum computation. Proc. Roy.

Soc. Lond. A 439, p. 553.
[6] J. C. Garrison & R. Y. Chiao (2008): Quantum Optics. Oxford University Press.
[7] A. Yu. Kitaev, A. H. Shen & M. N. Vyalyi. (2002): Classical and quantum computation.

Graduate Studies in Mathematics, American Mathematical Society, Providence, RI.
[8] K. Kraus (1983): States, Effects and Operations. Lecture Notes in Physics 190, Springer-Verlag.
[9] M. Nielsen & I. Chuang (2000): Quantum Computation and Quantum Information. Cambridge

University Press.
[10] Maxim Raginsky (2003): Radon-Nikodym derivatives of quantum operations. Journal of

Mathematical Physics 44(11), pp. 5003–5020.
[11] Peter Selinger (2004): Towards a Quantum Programming Language. Mathematical Structures

in Computer Science 14(4), pp. 527–586.
[12] Mingsheng Ying (2014): Quantum Recursion and Second Quantisation. Available on the arXiv

1405.4443.
[13] Mingsheng Ying, Nengkun Yu & Yuan Feng (2014): Alternation on quantum programming:

from superposition of data to superposition of programs. Available in arXiv as 1402.5172.

	Introduction
	Examples
	Semantics
	Related Work
	Conclusion

