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Abstract

Glynn Winskel has had enormous influence on the study of causal structure
in computer science. In this brief note, I discuss analogous concepts in rel-
ativity where also causality plays a fundamental role. I discuss spacetime
structure in a series of layers and emphasize the role of causal structure. I
close with some comparisons between causality in relativity and in distributed
computing systems.
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1. Introduction

Several years ago, in 1982 to be exact, I decided to abandon a career in rel-
ativity and quantum mechanics and retrain myself as a theoretical computer
scientist. I, like most of my physics colleagues of the time, was completely
ignorant about the field. Indeed many physicists had no idea that there was
such a field. I recall one of them saying to me, “Theoretical computer science!
What is that about? Do you study ideal spherical computers?”

Initially, I was thinking rather unenthusiastically about job security and
visa status rather than being excited about a new intellectual adventure. I
found two documents that changed that dramatically. The first was an ar-
ticle by Lamport [Lam78] called “Time, clocks and the ordering of events in
a distributed system” and the other was Glynn Winskel’s remarkable the-
sis [Win81]. Both made me realize that I could think about my new subject
mathematically and grapple with the foundational questions that I loved in
physics.

Since then Winskel and I become friends and have shared many exciting
scientific discussions and drinks in pubs. I can think of no better way of
celebrating his continued youthful vigour by offering this little note that
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reflects some of the ways in which he influenced (and influences) me the
most. So “Happy birthday Glynn!”

2. The spacetime canvas

This section is necessarily brief; for a detailed treatment of the back-
ground mathematics I recommend the excellent book by Hawking and El-
lis [HE73] and the equally excellent but terse monograph by Penrose [Pen72].

The fundamental unit of physics is the event. This is taken as a primitive
undefined concept but one can think of it as an idealization of a process as
the duration and spatial extent of the process shrinks to zero. It is the spatio-
temporal analogue of an idealized point. The modern presentation of classical
general relativity posits the existence of a smooth 4-manifold of events on
which is defined a local “metric” which specifies infinitesimal distances; this
is called the spacetime metric and the entire structure: manifold together
with this metric, is called spacetime.

The metric alluded to above is not like a metric that one studies in topol-
ogy or analysis: it is rather the analogue of a Riemannian metric in geome-
try. Rather than attributing distances to pairs of points it gives lengths of
infinitesimal curves; one can integrate this metric along a curve to obtain a
length for a curve.

The reason that the word “metric” appears in quotation marks is that
unlike the metrics that mathematicians and computer scientists are used
to, the spacetime metric takes on positive and negative values and is zero
even for many curves connecting pairs of distinct points. The reason for
this is the existence of independent events: events that cannot influence
each other. Such pairs of events are said to be spacelike and the distances
are said to be positive. Other pairs of events are possiby causally related
and the distances between them are negative: such events are said to be
timelike related. In order to give a coherent presentation of the structure of
spacetime it is best to imagine it as a blank canvas on which more and more
sophisticated mathematical structures are defined in successive layers.

As a prelude to painting the spacetime canvas I will quickly review the
pre-Einstein-Minkowski picture of spacetime. Here there is a 4-dimensional
manifold M of events. A manifold is a topological space so one understands
what is meant by open and closed sets. Given two events A and B is it
possible for A to influence B? For a fixed A there is a set of events that
A can potentially influence: call it F (A), the future of A. There is a set of
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events that can influence A: call this P (A) the past of A. These two sets
are open and share a common boundary: call this N(A). The set N(A) is
“now” as far as A is concerned: it is the set of events that are simultaneous
with A. The fact that the past and the future share a common boundary
means that the points that are pairs of points to the future and past of A
that are arbitrarily close to each other and arbitrarily far from A. All this
testifies to the lack of any limit on the speed with which causal influences
can propagate.

This structure can be neatly described by a real-valued function t : M
−→ R called time. For all points in N(A) t takes on the same value and for
all points to the past of A, t is strictly less than t(A) while for all points in
F (A), t is strictly greater than t(A). The manifold has been decomposed into
a product of a 3-manifold called S (space) and R (time): thus M = S × R.
The geometry of spacetime can thus be reduced to the geometry of S which
is spatial and one tends to ignore time when talking about geometry. The
metric on space is a positive-definite (i.e. Riemannian) metric.

The Einstein-Minkowski picture of spacetime is very different because of
the experimental fact that the speed of light is constant in all reference frames
and the concomitant belief that this represents an upper bound on the speed
of propagation of signals. I now turn to the task of painting the spacetime
canvas.

At the most primitive level, spacetime is just a set. At the next level
it is a topological space: one has a notion of “nearly” without any metrical
connotations and one understands continuity. It is at this level that one
encodes the 4-dimensionality and the fact that locally every point looks like
R4. Again the 4 is an experimenal fact; perhaps more refined experiments
will reveal in the future that it is really 11 dimensional or not even locally
homeomorphic to any open subset of any Rn.

The next structure that one imposes is differential structure. This allows
one to do differential calculus and define smooth curves and tangent vectors
to curves. Every point (event) p now has attached to it a 4-dimensional real
vector space Tp call the tangent space at p. The whole assembly of all these
vector spaces held together by being attached to the points of the manifold
is called the tangent bundle.

The next structure is the crucial one for causality. First a preliminary
definition.

Definition 2.1. A subset C of a real vector space V is called a cone if
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1. v ∈ C and −v ∈ C implies v = 0,
2. ∀r ∈ R+, v ∈ C; r · v ∈ C,
3. ∀u, v ∈ C;u+ v ∈ C.

A vector u ∈ C that can be written as v + w where both v and w are in
C and v and w are not scalar multiples of each other is said to be in the
interior of the cone. A vector not in the interior of the cone is said to be on
the boundary.

At every point p, there is a pair of subsets C+
p and C−p of the tangent space

called the future and past light cones. Each of these sets are cones as defined
just above. In pictures, one draws the cones as if they were on spacetime
itself but they really live in the tangent spaces. That is why it is necessary
to define the differential structure first. A vector in the interior of the future
(past) light cone at p is said to be a future-pointing (past-pointing) timelike
vector. A vector on the boundary of C+ (C−) is said to be a future-pointing
(past-pointing) null vector.

In order for the subsequent discussion to get off the ground one makes
a basic assumption about the light cone structure. It is assumed that it is
possible to define a notion of future-pointing and past-pointing cones that
vary continuously and are defined globally. Such a spacetime is said to be
time-orientable. One can construct counter-examples to time orientability
by using Möbius-strip like constructions; we will assume time orientability
as a basic axiom of spacetimes henceforth.

A (smooth/continuous) curve is just a (smooth/continuous) map γ from
R to M or [0, 1] to M if one is considering a curve with end points.

Definition 2.2. A curve is said to be timelike if its tangent vector is every-
where timelike. A curve is said to be causal if its tangent vector is everywhere
timelike or null.

The discussion is best couched in terms of piecewise smooth curves.

Definition 2.3. A timelike trip from A to B is a sequence of events e0 =
A, e1, . . . , en = B together with a timelike curve γi from ei−1 to ei for i =
1, . . . , n. A causal trip is defined similarly.

Now we can actually define a causal relation between events.

Definition 2.4. We say y is in the chronological future of x if there is a
future directed timelike trip from x to y. We write x � y. We define
I+(x) = {y | x� y}; similarly for chronological past and I−.
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The physical meaning of x� y is that it is possible for a material particle
to travel from x to y.

Definition 2.5. We say that x is to the causal past of y if there is a future-
directed causal trip from x to y. We write x ≤ y. We define J+(x) =
{y | x ≤ y}. Similarly for causal future and J−.

The physical significance of the causal order is that one can propagate
information from x to y if and only if x ≤ y. The mechanisms used to
propagate information involve sending material particles and light signals.

The two relations � and ≤ are order structures: both are transitive.
The relation� is taken to be irreflexive while the causal order ≤ is a partial
order. This last statement is an assumption about possible spacetimes. In
fact, there are spacetimes that occur as solutions to Einstein’s equation that
violate: the most celebrated example is the Gödel universe. If one is to rule
out possible pathologies like being able to revisit one’s past then one can
impose as an additional condition the fact that ≤ is a partial order.

Stronger causality conditions can also be imposed; in this paragraph we
give an informal telegraphic survey of some common causality conditions.
The most basic condition imposed is called causality: there are no closed
causal curves. A spacetime with the property that I+(x) = I+(y) implies
x = y is said to be future distinguishing ; similarly one has past distinguishing.
These properties say that there cannot be two distinct points with the same
timelike futures. It may seem hard to believe that this is possible but there
are examples in citeHawking73. Roughly speaking, it can be thought of as
an analogue of being a sober space in topology.

One of the more interesting conditions is called strong causality. A space-
time is strongly causal if at every point p there is a neighbourhood U in
which a causal curve γ that originates at p must leave U and not reenter.
This means that not only are there no closed causal curves but there cannot
be curves that come “close to violating causality.”

A spacetime is said to be stably causal if it is causal and any “small per-
turbation” of the light cones keeps it causal. Here, by “small” perturbation
we mean that the light cones are opened out slightly. Clearly this makes
more curves causal since there are now more vectors inside the light cones.
In a stably causal space none of these new causal curves can be closed. Of
course, the technical issue is formalizing what is meant by “slightly”; for this
one has to introduce a suitable topology on the space of spacetime metrics.
There is an important consequence: a spacetime is stably causal if and only
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if there is a real-valued function on spacetime whose gradient is everywhere
timelike. One can think of such a function as a global time.

The next condition is called causal simplicity : it means that spacetime
has no points removed. More precisely, a spacetime is said to be causally
simple if it is strongly causal and for any point p, J+(p) and J−(p) are closed
sets in the manifold topology. The strongest condition usually imposed is
global hyperbolicity. A spacetime is said to be globally hyperbolic if for every
pair of points p, q with q ∈ I+(p) the “interval” J+(p) ∩ J−(q) is compact.

There are other mathematical structures that must be defined before one
has the full structure of spacetime. A very readable paper by Ehlers, Pirani
and Schild [EPS72] describes how one can set up these structures and relate
them to the flow of freely falling particles and light rays. A more sophisticated
treatment was subsequently given by Woodhouse [Woo73]. My focus is on
causal structure and its relation to how computer scientists view causality so
I will stop here.

3. Causality and order

The most primitive mathematical structure associated with causality is a
partial order. The notion of cause and effect introduces a direction between
events: the fact that cause precedes effect is the essence of any kind of
temporal structure that claims to capture causality.

Once one has a notion of spacetime one can define causal curves and time-
like curves. These induce two orders: the causal order is typically denoted
≤ while the timelike order is written �.

Definition 3.1. Given a spacetime M and two points (events) x and y, we
say that x causally precedes y, written x ≤ y if there is a piecewise smooth
curve γ from x to y with the tangent to γ being everywhere future-pointing
and timelike or null. If the tangent vector to γ is future-pointing and timelike
we say that x chronologically precedes y and write x� y.

There are some subtleties that we are eliding. The points where the
tangent vector is not defined could form an infinite sequence converging to a
point; Penrose [Pen72] calls these “bad trips.” We will assume that γ is not
a bad trip.

The intuition that we are capturing is that if x ≤ y then a signal can
propagate from x to y and if x� y then a material object can travel from x
to y.
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If one abstracts away from all the various layers of structure one can
define an event set equipped with two order structures. The causal orders
had been studied first by Zeeman in the contextof special relativity but the
first axiomatic description of these orders in general spacetimes was done by
Kronheimer and Penrose [KP67] and led to their well-known axiomatization
of causal spaces. They axiomatize the properties of ≤ and �.

Definition 3.2. A causal space is a set X equipped with two binary rela-
tions ≤ and � satisfying the following axioms:

1. ≤ is a partial order;

2. � is not reflexive;

3. � is contained in ≤, i.e. if x� y then x ≤ y;

4. if x ≤ y and y � z then x� z;

5. if x� y and y ≤ z then x� z.

Kronheimer and Penrose actually define a causal space in terms of three
binary relations: the causality ≤ and chronology� and the third is a relation
derived from these two: x −→ y if x ≤ y but not x � y. This relation is
called a horismos. Physically x −→ y means that a light signal but not a
material object can travel from x to y. Thinking in terms of light cones, it
means that y is on the light cone emenating from x.

We discuss some aspects of the horismos precisely because it is markedly
different from anything in computer science. First we define its striking
characteristic property.

Definition 3.3. A reflexive binary relationR on a setX is called horismotic
if whenever (xi)1≤i≤n is a finite sequence with xiRxi+1 for 1 ≤ i < n then
for any 1 ≤ j ≤ k ≤ n, (i) x1Rxn implies that xjRxk and (ii) xnRx1 implies
xj = xk.

Proposition 3.4. The −→ relation of a causal space is horismotic.

Proof . The second property of a horismotic relation follows immediately
from the fact that ≤ is antisymmetric. From x1Rx2Rx3 . . . Rxn we have that
(xi) forms a chain in the causal order; hence if xn ≤ x1 we have x1 = x2 =
. . . = xn.

Suppose that x1Rx2Rx3 . . . Rxn and x1Rxn. Now consider xj and xk:
we know that xj ≤ xk we would like to show that xj � xk does not hold.
Suppose that it does, then we have x1 ≤ xj � xk ≤ xn. From properties 4
and 5 of Def. 3.2 we have x1 � xn which contrdicts x1Rxn.
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Figure 1: The horismos in action

We also have the following fact [KP67] which has a trivial.

Proposition 3.5. Let x ≤ y ≤ z in a causal space. If x −→ z then x −→ y
−→ z.

The fact that these are trivial propositions does not make them less inter-
esting. The horismos relation tells us that certain events can only be linked
by a light signal. The picture in Fig. 1 illustrates these facts. We have x1
−→ x2, x2 −→ x3, x1 −→ x3 but note that it is not necessarily transitive since
we also have x2 −→ x′3 but we do not have x1 −→ x′3.

In Fig. 1 one can imagine a partially silvered mirror at x2 that bounces
some of the incident light to x′3 and transmits some to x3. The point of
points 4 and 5 of Def. 3.2 is that whenever light is bounced off a mirror
we can smooth the corner and construct a timelike curve. The assertion in
Prop. 3.5 is that if there is a lightlike curve then anything along the way
must have been lightlike as well. Without talking about maximum speeds
these properties of the horismos relation show that light limits the region of
causal influence.

Kronheimer and Penrose [KP67] show that from any one of the relations
the other two can be defined.

4. Causal Structure in Computer Science

Causality in computer science acquires its most mature mathematical
form in the study of distributed and concurrent systems. In computation one
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can also take events or actions as fundamental entities. In sequential systems
there is a single locus of activity and a single locus of control. The sequence
of actions defines an absolute time and by the very nature of a sequence all
the events are related to each other. In distributed systems actions can occur
concurrently and hence independently. Thus causal independence appears as
a new basic concept. Three landmark investigations appeared in computer
science: Petri nets in the 1960s [Pet62, Pet63], Lamport’s treatment of clocks
in 1978 [Lam78] and Glynn Winskel’s theory of event structures [Win81].
Excellent reviews of all these exist so I will not attempt yet another review
of these ideas. Rather, I will briefly discuss the impact of these works on the
notion of event and causality.

4.1. Petri nets

I assume familiarity with the vocabulary of net theory: events, places,
markings. Petri nets introduce events as a basic entity. There are many vari-
ations of the definition but the basic version (condition-event nets) illustrates
the main ideas. There is a set of events E and a set of conditions C and
there is a binary relation F ⊂ (C ×E ∪E ×C): a CE net can be visualized
as a bipartite graph. The most striking new idea here, relative to automata
theory, is locality. An event is a local action and, unlike in automata theory,
one has a clear notion of independent events.

A lot of the work in the field has been about exploring the structure of
nets. In a paper from the 1990s Petri [Pet96] studies continuous versions of
net theory and even explored the connections with Lorentz transformations.
However, the connection with causal structure via light cones in spacetime
is not explored.

4.2. Time and clocks in asynchronous systems

In 1978 Lamport wrote a remarkable paper called “Time, clocks and the
ordering of events in a distributed system.” In this he envisages a system
of computing agents each executing a sequential process, and hence viewed
as a linearly ordered sequence of events. The agents communicate with each
other: message passing is a convenient idiom for this kind of communication.
Each agent has some receive events and some send events. A message will
be associated with one send event and one receive event. The basic causality
axiom is that a send event precedes the corresponding receive event. Thus we
now have two order structures. The events located at each agent are linearly
ordered and send and receive events are ordered. The causal order is the
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reflexive, transitive closure of the union and it is an axiom of this class of
systems that the result is indeed a partial order.

Lamport goes on to define a “cut” as the downward closure of an antichain
in this order and a consistent cut as one in which for every receive event the
corresponding send event is also included. Thus a consistent cut is a possible
global state of the system: it is perfect analogue of the notion of spacelike
slice.

In my opinion, this paper comes closest to the spirit of relativistic causal-
ity. The fact that causality is captured by a causal order is explicit and the
antichains are the possible global states. The fact that time is coventional
and that different logical clocks can be defined is also explicit.

In a later paper the present author and Kim Taylor [PT92] looked at the
whole collection of possible executions of a Lamport-style system and formu-
lated an epistemic logic based on it. This brings in a new, from the point
of view of the present paper, ingredient: the different possible executions of
a system all living in the same mathematical structure. Of course, this is
not due to [PT92], it is clearly visible in Glynn Winskel’s notion of event
structure [Win81] which is about 10 years older.

4.3. Event structures and domains

Winskel’s thesis [Win81, Win86] was another landmark contribution to
the subject of causality in computer science. Of course, the subject has
evolved tremendously since then in large part due to Winskel himself and
there are modern sheaf-theoretic incarnations of his original ideas [Win99]
but now in a much more sophisticated form and also extensions of event
structures to probabilistic [VVW06, VW06] and even quantum situations.
I will, however, stick to a discussion of his early work on event structures
because some of the most striking ideas are already there. Winskel himself
has written a wonderful reminiscence [Win08] of the evolution and scope of
these ideas. What I find most exciting in his contributions are: (a) a clear
notion of morphism of Petri nets which made the subsequent explosion of
work on monoidal categories of Petri nets (and connections to linear logic) (b)
a rich theory of event domains which makes it possible to treat concurrency
at higher type and (c) the notion of conflict which has been widely used in
the computer science community but which needs to be looked at again from
the physics point of view.

Definition 4.1. An event structure comprises a set E of events, a partial
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order ≤ on E of causality and a family Con of finite subsets of E. These are
required to satisfy the following conditions:

1. {e} ∈ Con,

2. Y ⊆ X ∈ Con implies that Y ∈ Con and

3. X ∈ Con and e′ ≤ e ∈ Con implies that X ∪ {e′} ∈ Con.

Events are again the basic entities and causality the most important re-
lation. However, not all events can occur together, there is a new notion:
conflict which captures inherent indeterminacy. Conflict can be axiomatized
by introducing a class of consistent sets which are meant to be the conflict-
free sets: they are required to satisfy some natural axioms. A special case of
conflict can be axiomatized as an irreflexive, symmetric binary relation and
the consistent sets can be derived from the conflict relation. The domains
obtained in this case are prime event structures.

From an event structure one can construct a domain as follows. What
are the possible configurations of an event structure. These have to be col-
lections of events without conflict so every finite subset has to be in Con and
every event must have its necessary predecessors so a configuration has to
be downward closed in the causal order. It is easy to show that one gets an
algebraic domain in this way.

The domain contains the possible executions of a system. The later
presheaf models make this much clearer: essentially they describe possible
dynamical trajectories of a concurrent system featuring independence and
conflict.

5. Back to physics: causal sets

The search for a quantum theory of gravity has excited and vexed physi-
cists for over 50 years. The standard prescriptions of quantum field theory
simply did not work for gravity. Radical new ideas were sought and some of
these were based on the idea that the causal order should be the fundamental
structure of the theory rather than the manifold structure. The idea that
the causal order should be fundamental was mainly articulated by Rafael
Sorkin [BLMS87, Sor91] and several of his collaborators.

Sorkin’s work awakened interest in the mathematics of partial orders.
The most active line of research has been viewing spacetime as a discrete
structure obtained by randomly sprinking points in spacetime. It is usually
said that a discrete analogue of spacetime would ruin Lorentz invariance but

11



if one imagines generating a discrete set by sprinkling points in Minkowski
spacetime according to a suitably defined stochastic process [RS00] one can
recover Lorentz invariance “on the average.”

One of the interesting questions raised by Sorkin was whether one could
recover the topology from the causal order alone. In the 1970s Malament [Mal77]
had shown that the class of continuous timelike curves determines the topol-
ogy of spacetime. Indeed this paper was part of the inspiriation for the causal
set program. In Sorkin’s version of the question one only has the causal order
≤ and not the chronological order�. This was shown to be possible by Keye
Martin and the author [MP06] using ideas from domain theory. Strikingly,
the � relation turned out to be exactly the “way below” relation associated
with the causal order: a remarkable notational coincidence!

6. Conclusions: comparing the concepts

The similarities between causality in physics and computer science are
clear: both are based on events as the fundamental ingredient, both are
partial order structures and both describe limitations on the propagation of
information. There are a number of important differences however.

Spacetime in relativistic physics is the arena in which dynamics plays
out. The events that make up spacetime are not “actual” occurrences as in
event structures or Lamport’s model, but are loci of possible actions. The
trajectories of physical systems, say particles, are curves through spacetime.
Thus one can think of spacetime as the collection of all possible trajectories.
In this sense it is somewhat like an event domain. However, unlike in Petri
nets or event structures conflict or choice is not very explicit in the description
of dynamics.

The work of Martin and the author showed some interesting connections
between the topology of domains and the topology of spacetime. It seems to
me that this merits further investigation. For example, it would be fascinat-
ing to understand the proper treatment of differential structure in domain
theory. The presheaf models being investigated by Winskel and others have
a rich enough structure to support such a study.

To my mind, the most striking difference between the causal order in
spacetime physics and in computer science is the complete absence of any-
thing like the horismos [KP67, Woo73] in the latter. The horismos is crucial
in the study of relativity as it gives the trajectory of light rays that play such
a major role in relativity.
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In a more speculative vein, I would suggest that the way conflict is mod-
elled in Petri nets and in event structures would be very interesting for
the treatment of quantum mechanics. Sorkin has proposed a new formal-
ism which he called anhomomorphic logic [Sor07, Gud10] which is based on
preclusion between quantum events. This is certainly a more subtle con-
cept that mere conflict but it is closely related and an investigation of the
connections is likely to be fruitful.
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