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Summary. The introduction of linear logic and its associated proof theory has
revolutionized many semantical investigations, for example, the search for fully-
abstract models of PCF and the analysis of optimal reduction strategies for lambda
calculi. In the present paper we show how proof nets, a graph-theoretic syntax for
linear logic proofs, can be interpreted as operators in a simple calculus.

This calculus was inspired by Feynman diagrams in quantum field theory and is
accordingly called the φ-calculus. The ingredients are formal integrals, formal power
series, a derivative-like construct and analogues of the Dirac delta function.

Many of the manipulations of proof nets can be understood as manipulations of
formulas reminiscent of a beginning calculus course. In particular, the “box” con-
struct behaves like an exponential and the nesting of boxes phenomenon is the
analogue of an exponentiated derivative formula. We show that the equations for
the multiplicative-exponential fragment of linear logic hold.

1 Introduction

Girard’s geometry of interaction programme [Gir89a, Gir89b, Gir95a] gave
shape to the idea that computation is a branch of dynamical systems. The
point is to give a mathematical theory of the dynamics of computation and
not just a static description of the results as in denotational semantics.

The key intuition is that a proof net, a graphical representation of a proof,
is decorated with operators at the nodes which direct the flow of information
through the net. Now the process of normalization is not just described by a
syntactic rewriting of the net, as is usually done in proof theory, but by the
action of these operators. The operators are interpreted as linear operators
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on a suitable Hilbert space. In this framework normalizability corresponds to
nilpotence of a suitable operator. Given the correspondence between proof
nets and the λ-calculus, a significant shift has occurred. One now has a local,
asynchronous algorithm for β-reduction [DR93, ADLR94]. Abramsky and Ja-
gadeesan [AJ94b] presented geometry of interaction using dataflow nets using
fixed point theory instead of the apparatus of Hilbert spaces and operators.
However, the information flow paradigm is clear in both presentations of the
geometry of interaction.

In the present paper we begin an investigation into the notion of information
flow. Our starting point is the notion of Feynman diagram in Quantum Field
Theory [Fey49b, Fey49a, Fey62, IZ80]. These are graphical structures which
can be seen as visualizations of interactions between elementary particles.
The particles travel along the edges of the graph and interact at the vertices.
Associated with these graphs are integrals whose values are related to the
observable scattering processes. This intuitive picture can be justified from
formal quantum field theory [Dys49]. Mathematically quantum field theory
is about operators acting on Hilbert spaces, which describe the flow of par-
ticles. One can seek a formal analogy then with the framework of quantum
field theory and the normalization process as described by the geometry of
interaction.

We have, however, not yet reached a full understanding of the geometry of
interaction. We have, instead, made a correspondence between proof nets and
terms in a formal calculus, the φ-calculus, which closely mimics some of the
ideas of quantum field theory. In particular we have imitated some of the
techniques, called “functional methods” in the quantum field theory litera-
ture [IZ80], and shown how to represent the exponential types in linear logic
as an exponential power series. The manipulations of boxes in linear logic
amounts to certain simple exponential identities. Thus we have more than
a pictorial correspondence; we have formal integrals whose evaluation corre-
sponds to normalization.

This work was originally presented at the Newton Institute Semantics of Com-
putation Seminar in December 1995. The publication of this edition provided
an excellent opportunity to revive the work. We thank Bob Coecke for giving
us the opportunity to do so.

2 Functional Integrals in Quantum Field Theory

Before we describe the φ-calculus in detail we will sketch the theory of func-
tional integrals as they are used in quantum field theory. This section should
be skipped by physicists. This section is very sketchy, but, it is hoped, it will
provide an overview of the method of functional integrals and, more impor-
tantly, it will give a context for the φ-calculus to be introduced in the next



Proof Nets as Formal Feynman Diagrams 3

section. It has been our experience that computer scientists, categorists and
logicians, who have typically never heard of functional integrals tend to view
the φ-calculus as an ad-hoc formalism “engineered” to capture the combina-
torics of proof nets. In fact, almost everything that we introduce has an echo
in quantum field theory.

There are numerous sources for functional integrals. The idea originated in
Feynman’s doctoral dissertation [Bro05] published in 1942, now available as
a book. The basic idea is simple. Usually in nonrelativistic quantum mechan-
ics one associates a wave function ψ(x, t) which obeys a partial differential
equation govening its time evolution, the Schrödinger equation. The phys-
ical interpretation is that the probability density of finding the particle at
location x at time t is given by |ψ(x, t)|2. The wave function describes how
the particle is “smeared out” over space; it is called a probability amplitude
function.

In the path integral approach, instead of associating a wave function with
a particle one looks at all possible trajectories of the particle – whether dy-
namically possible or not according to classical mechanics – and associates
a probability amplitude with each trajectory. Then one sums over all paths
to obtain the overall probability amplitude function. This requires making
sense of the “sum over all paths.” It is well known that the naive integra-
tion theory cannot be used, since there are no nontrivial translation-invariant
measures on infinite-dimensional spaces, like the space of all paths. However,
Feynman made skillful use of approximation arguments and showed how one
could calculate many quantities of interest in quantum mechanics [FH65].
Furthermore, this way of thinking inspired his later work on quantum electro-
dynamics [Fey49b, Fey49a]. Since then the theory of path integrals has been
placed on a firm mathematical footing [GJ81, Sch81, Sim05]3.

The functional integral is the extension of the path intgeral to infinite-
dimensional systems. Moving to infinite dimensional systems raises the math-
ematical stakes considerably and led to much controversy about whether this
is actually well-defined. In the past two decades a rigourous theory, due to
Cartier and DeWitt-Morette has appeared [CDM95] but not everyone accepts
that this formalises what physicists actually do when they make field-theoretic
calculations.

What physicists do is to use a set of rules that make intuitive sense and which
are guided by analogy with the ordinary calculus. Some of the ingredients of
this formal calculus are entirely rigourous, for example, the variational deriva-
tive [GJ81]; but the existence of the integrals remains troublesome.

3 Actually a completely rigourous theory of path integration, due to Wiener, existed
in the 1920s. It was, however, for statistical mechanics and worked with a gaussian
measure rather than the kind of measure that Feynman needed.
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In classical field theory one has a function, say φ defined on the spacetime
M . This function may be real or complex valued, and in addition, it may be
vector or tensor or spinor valued. Let us consider for simplicity a real-valued
function; this is called a scalar field. Thw field obeys a dynamical equation,
for example the scalar field may obey an equation like 2φ +m2φ = 0 where
2 is the four-dimensional laplacian.

In quantum field theory, the field is replaced by an operator acting on a Hilbert
space of states. The quantum field is required to obey certain algebraic prop-
erties that capture aspects of causality, positivity of energy and relativistic
invariance. The Hilbert space is usually required to have a special structure
to accomodate the possibility of multiple particles. There is a distinguished
state called the vacuum and one can vary the number of particles present by
applying what are called creation and annihilation operators. There is a close
relation between these operators and the field operator: the field operator is
required to be a sum of a creation and an annihilation operator.

The main idea of the functional integral approach is that the fundamental
quantities of interest are transition amplitudes between states. These are usu-
ally states of a quantum field theory and are often given in terms of how many
particles of each type and momentum are present in the field: this description
of the states of a quantum field is called the Fock representation. The most
important quantity is the vacuum-to-vacuum transition amplitude, written
〈0,− | 0,+〉, where 〈0,− | represents the vacuum at early times and | 0,+〉 is
the late vacuum. The idea of the functional approach is this can be obtained
by summing a certain quantity – the action – over all field configurations
interpolating between the initial and the final field.

This can be written as

W =

∫
[dφ] exp [−

∫
d3x(

1

2
φDφ)]

where D is some differential operator coming from the classical free field the-
ory. The [dφ] is supposed to be the measure over all field configurations.
Though we do not define it, we can do formal manipulations of this func-
tional. In order to extract interesting results, we want not just the vacuum-
to-vacuum trnasition probabilities but the expectation values for products of
field operators, e.g. 〈0 | φ(x)φ(y) | 0〉 and other such combinations. In order
to do this we add a “probe” to the field which couples to the field and which
can be varied. This is fictitious, of course, and will be set to zero at the end.
The probe (usually called a current) is typically written as J(x). The form
we now get for W is

W [J ] =

∫
[dφ] exp [−

∫
d3x(

1

2
φDφ) − Jφ].

Note that W is now a functional of J .
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Before we can do any calculations we need to rewrite the term. Consider, for
the moment ordinary many-variable calculus. Suppose we write (, ) for the
inner product on R

n we can write a form

Q(x) =
1

2
(x,Ax) + (b, x).

Now recall the gaussian integral in many variables is just

∫
dnx exp−

1

2
(x,Ax) = [det(A)−

1

2 ]

where A is an ordinary n × n matrix with positive eigenvalues and we have
ignored factors involving 2π. To deal with Q we complete the square by setting
y = A−1b and get

Q(y) +
1

2
(x− y,A(x− y)) = Q(x).

Using this and changing variables appropriately, we get

∫
dnx exp−Q(x) = [detA]−

1

2 exp−Q(y).

Now in the functional case, the determinant of an operator does not make
sense naively, we will just ignore it here. In actual practice these divergent
determinants are made finite by a process called regularization and dealt with.
It should be noted that there is a fascinating mathematical theory of these
determinants that we will not pursue here.

Returning to our functional expression we get

W [J ] = exp
1

2

∫
d4xdyJ(x)D−1J(y).

How are we to make sense of the inverse of a differential operator? It is well-
known in mathematics and physics as the Green’s function4. It is well-defined
as a distribution. In quantum field theory, the Green’s function with appro-
priately chosen boundary conditions is called the Feynman propagator.

In order to obtain interesting quantities we “differentiate” W [J ] with respect
to the function J(x). This is called the variational derivative and is well de-
fined, see, for example, [GJ81]. Roughly speaking, one should think of this as
a directional derivative in function space. The definition given in [GJ81] (page
202) is

(Dψ(A))(φ) = lim
ǫ→0

[A(φ + ǫψ) −A(φ)]/ǫ.

4 The grammatically correct way to name this is a “Green function”, but it is too
late to change common practice.
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This is the derivative of the functional A of φ in the direction of the function
φ. Now we can consider the special case where ψ is the Dirac delta “function”
δ(x) and write is using the common notation as

δ

δφ(x)
A(φ) ≡ Dδ(x)A(φ).

A very useful formula is

δ

δφ(x)
φ(y) = δ(x, y).

Please note that some of the deltas are part of the variational derivative and
some are Dirac distributions: unfortunate, but this is the common conven-
tion.

How do we use these variational derivatives? If we consider the form of W [J ]
before we rewrote it in terms of propagators we see that a variational derivative
with respect to J brings down a factor of φ and thus, if we do this twice, for
example, gives us 〈0 | φ(x1)φ(x2) | 0〉. If we look at the trnasformed version
of W the same derivatives tell us how to compte this quantity in terms of
propagators. So in the end one gets explicit rules for calculating quantities of
interest.

For a given field theory, the set of rules are called the Feynman rules and give
explicit calculational prescriptions. The functional integral formalism is used
to derive these rules. The rules can also be obtained more rigourously from
the Hamiltonian form of the field theory as was shown by Dyson [Dys49].
All this can be made much more rigourous. The point is to show some of
the calculational devices that physicists use. It is not be expected that after
reading this section one will be able to calculate scattering cross-sections in
quantum electrodynamics. The point is to the see that the φ-calculus is closely
based on the formalisms commonly in use in quantum field theory.

3 Linear Realizability Algebra

This section is a summary of the theory of linear realizability algebras as de-
veloped by Abramsky [Abr91]. The presentation here closely follows that of
Abramsky and Jagadeesan [AJ94a]. The basic idea is to take proofs in linear
logic in sequent form and to interpret them as processes. The first step is to in-
troduce locations; which one can think of as places through which information
flows in or out of a proof. Of course the diagrammatic form of proof nets carry
all this information without, in Girard’s phrase “the bureaucracy of syntax”.
However, to make contact with an algebraic notation we have to reintroduce
the locations to indicate how things are connected. In process terms these will
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correspond to ports or channels or names as in the π-calculus [Mil89]. In our
formal calculus, locations will be introduced with roughly the same status.
The set of locations L is ranged over by x, y, z, . . ..

The next important idea is that of located sequents, of the form

⊢ x1 : A1, . . . , xk : Ak

where the xi are distinct locations, and the Ai are formulas of CLL2. These
sequents are to understood as unordered, i.e. as functions from {x1, . . . , xk}-
the sort of the sequent- to the set of CLL2 formulae.

A syntax of terms (figure 3) is introduced , which will be used as realizers
for sequent proofs in CLL2. The symbols P,Q,R are used to range over these
terms, and write FN(P ) for the set of names occurring freely in P - its sort.
With each term-forming operation one gives a linearity constraint on how it
can be applied, and specifies its sort. In the very last case, the so-called “of
course” modality, we have imposed a restriction that if a location is intro-
duced by an “of course” we will require that all the other variables have been
previously introduced by either derelictions, weakenings or contractions. We
are interested in terms that arise from proof nets so we think of our terms as
being typed; this is a major difference between our LRAs and those introduced
by Abramsky and Jagadeesan [AJ94b].

There is an evident notion of renaming P [x/y] and of α-conversion P ≡α
Q.

Terms are assigned to sequent proofs in CLL2 as in Figure 3.

The rewrite rules for terms, corresponding to cut-elimination of sequent
proofs, can now be given. This is factored into two parts, in the style of [BB90]:
a structural congruence ≡ and a reduction relation →.

The structural congruence is the least congruence≡ on terms such that:

(SC1) P ≡x Q⇒P ≡ Q

(SC2) P ·xQ ≡ Q·xP

(SC3) ω(P1, . . . , Pk) ≡ ω(P1, . . . , Pi·xQ, . . . , Pk), if x ∈ FN(Pi).

The reductions are as follows:

(R1) P ·xIx,y→P [y/x].

(R3) O
x,y
z (P )·z ⊗x,yz (Q,R)→P ·xQ·yR.

(R4) Lxz(P )·z&
x,y
z (Q,R)→P ·xQ.

(R5) Rxz (P )·z&
x,y
z (Q,R)→P ·xR.

(R6) Dx
z (P )·z ! xz (Q)→P ·xQ.
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Proof Rule Operation Constraint Sort

Axiom Ix,y {x, y}
Cut P ·xQ FN(P ) ∩ FN(Q) = {x} FN(P ) ∪ FN(Q) \ {x}
Unit Ux {x}
Perp ⊥x (P ) x 6∈ FN(P ) FN(P ) ∪ {x}

Times ⊗x,y
z (P, Q)

x ∈ FN(P ), y ∈ FN(Q)
FN(P ) ∩ FN(Q) = ∅
z 6∈ FN(P ) ∪ FN(Q)

FN(P ) ∪ FN(Q) \ {x, y} ∪ {z}

Par O
x,y
z (P )

x, y ∈ FN(P )
x 6= y
z 6∈ FN(P )

FN(P ) \ {x, y} ∪ {z}

Plus Left Lx
z (P ) x ∈ FN(P ), z 6∈ FN(P ) FN(P ) \ {x} ∪ {z}

Plus Right Rx
z (P ) x ∈ FN(P ), z 6∈ FN(P ) FN(P ) \ {x} ∪ {z}

With &x,y
z (P )

x ∈ FN(P ), y ∈ FN(Q)
FN(P ) \ {x} = FN(Q) \ {y}

FN(P ) \ {x} ∪ {z}

Dereliction Dx
z (P ) x ∈ FN(P ), z 6∈ FN(P ) FN(P ) \ {x} ∪ {z}

Weakening Wz(P ) z 6∈ FN(P ) FN(P ) ∪ {z}

Contraction Cx,y
z (P )

x, y ∈ FN(P )
x 6= y
z 6∈ FN(P )

FN(P ) \ {x, y} ∪ {z}

Of course ! x
z (P ) x ∈ FN(P ), z 6∈ FN(P ) FN(P ) \ {x} ∪ {z}

∀u ∈ FN(P ) \ {x}.u
is introduced by
dereliction, weakening
or contraction.

Fig. 1. Syntax: Linear Realizability Algebra

(R7) Wz(P )·z ! xz (Q)→Wx(P ), where FN(Q) \ {x} = x.

(R8) Cz
′,z′′

z (P )·z ! xz (Q)→Cx
′,x′′

x
(P ·z′ ! xz′(Q[x′/x])·z′′ ! xz′′(Q[x′′/x])), where FN(Q)\

{x} = x.

(R9) ! xz (P )·u ! vu(Q)→ ! xz (P ·u ! vu(Q)), if u ∈ FN(P ).

We are using the same numbering as in [AJ94b] and have left out R2, which
talks about units.

These reductions can be applied in any context.

P→Q
C[P ]→C[Q]

and are performed modulo structural congruence.

P ′ ≡ P P→Q Q′ ≡ Q
P→Q

The basic theorem is that this algebra models cut elimination is classical linear
logic. The precise statement is
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Identity Group
Ix,y ⊢ x : A⊥, y : A

P ⊢ Γ ′, x : A Q ⊢ Γ ′′, x : A⊥

P ·xQ ⊢ Γ ′, Γ ′′

Multiplicative

Units
Ux ⊢ x : I

P ⊢ Γ
⊥x⊢ x :⊥, Γ

Multiplicatives
P ⊢ Γ ′, x : A Q ⊢ Γ ′′, y : B
⊗x,y

z (P, Q) ⊢ Γ ′, Γ ′′, z : A ⊗ B
P ⊢ Γ ′, x : A, y : B

O
x,y
z (P ) ⊢ Γ ′, z : AOB

Additives

P ⊢ Γ, x : A
Lx

z (P ) ⊢ Γ, z : A⊕B

P ⊢ Γ, x : B
Rx

z (P ) ⊢ Γ, z : A⊕B

P ⊢ Γ, x : A Q ⊢ Γ, y : B
&(P, Q) ⊢ Γ, z : A&B

Exponentials

P ⊢ Γ, x : A
Dx

z (P ) ⊢ Γ, z : ?A

P ⊢ Γ
Wz(P ) ⊢ Γ, z : ?A

P ⊢ Γ, x : ?A, y : ?A
Cx,y

z (P ) ⊢ Γ, z : ?A

P ⊢ ?Γ, x : A
! x

z (P ) ⊢ ?Γ, z : ! A

Fig. 2. Realizability semantics

Proposition 3.1 (Abramsky) Let Π be a sequent proof of ⊢ Γ in CLL2 with
corresponding realizing term P . If P→Q, with Q cut-free (i.e. no occurrences
of ·α), then Π reduces under cut-elimination to a cut-free sequent proof Π ′

with corresponding realizing term Q.

In order to verify that one correctly models the process of cut-elimination in
linear logic it suffices to verify the LRA equations R1 through R9. In fact we
will also check the following equation:

&x,y
z (P,Q)·uR → &x,y

z (P ·uR,Q·uR) [u ∈ FN(P ) ∩ FN(Q)]

This is the commutative with-reduction and is not satisfied in the extant
examples of LRA.
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4 The φ-calculus

In this section we spell out the rules of our formal calculus. Briefly the ingre-
dients are

Locations: which play the same role as the locations in the located sequents
of LRA.

Basic terms: which, for the multiplicative fragment, play the role of LRA
terms.

Operators: Which act on basic terms and which play the role of terms in the
full LRA.

In order to define the basic terms we need locations, formal distributions,
formal integrals and simple rules obeyed by these. In order to define operators
we need to introduce a formal analogue of the variational derivative. This
variational derivative construct is very closely modelled on the derivation of
Feynman diagrams from a generating functional.

We assume that we are modelling a typed linear realizability algebra with
given propositional atoms. We first formalize locations. We assume further
that axiom links are only introduced for basic propositional atoms. We use the
phrases “basic types” and “basic propositional atoms” interchangeably.

Definition 4.1 We assume that there are countably many distinct symbols,
called locations for each basic type. We assume that there are the following
operations on locations: if x and y are locations of types A and B respectively,
then 〈x, y〉 and [x, y] are locations of type A ⊗ B and AOB respectively. We
use the usual sequent notation x : A, y : B ⊢ 〈x, y〉 : A⊗B and x : A, y : B ⊢
[x, y] : AOB to express this.

Now we define expressions.

Definition 4.2 The collection of expressions is given by the following in-
ductive definition. We also define, at the same time, the notion of the sort of
an expression, which is the set of free locations, and their types, that appear
in the expression.

1. Any real number r is an expression of sort ∅.

2. Given any two distinct locations, x : A and y : A⊥ δ(x, y) is an expression
of sort {x : A, y : A⊥}.

3. Given any two expressions P and Q, PQ and P + Q are expressions of
sort S(P ) ∪ S(Q).

4. Given any expression P and any location x : A in P , the expression
∫
Pdx

is an expression of sort S(P ) \ {x : A}.
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The expressions above look like the familiar expressions that one manipulates
in calculus. The sorts describe the free locations that occur in expressions. The
integral symbol is the only binding operator and is purely formal. Indeed any
suitable notation for a binder will do, a more neutral one might be something
like Tr(e, x), which is more suggestive of a trace operation.

The equations obeyed by these expressions mirror the familiar rules of cal-
culus. The only exotic ingredients are that the δ behaves like a Dirac delta
“function”. We will actually present a rewrite system rather than an equa-
tional system but one can think of these as equations.

We use the familiar notation P (. . . , y/x, . . .) to mean the expression obtained
by replacing all free occurrences of x by y with appropriate renaming of bound
variables as needed to avoid capture; x and y must be of the same type of
course. We now define equations that the terms obey.

Definition 4.3 1. δ(x, y) = δ(y, x)

2.
∫

(
∫
Pdx)dy =

∫
(
∫
Pdy)dx

3. (P +Q) +R = P + (Q+R)

4. (P +Q) = (Q+ P )

5. P · (Q · R) = (P ·Q) ·R

6. P ·Q = Q · P

7. P · (Q1 +Q2) = P ·Q1 + P ·Q2

8. P + 0 = P .

9. P · 1 = P .

10. P · 0 = 0.

11.
∫
P (. . . , x, . . .)δ(x, y)dx = P (. . . , y/x, . . .).

12. δ([x, y], 〈u, v〉) = δ(x, u)δ(y, v).

13. If P = P ′ then PQ = P ′Q.

14. If P = P ′ then P +Q = P ′ +Q.

15. If P = P ′ then
∫
Pdx =

∫
P ′dx.

These equations are very straightforward and can be viewed as basic properties
of functions and integration or about matrices and matrix multiplication.
The only point is that with ordinary functions one cannot obtain anything
with the behaviour of the δ-function; these are, however, easy to model with
distributions or measures.

In order to model the exponentials and additives we need a rather more elabo-
rate calculus. We introduce operators which are inspired by the use of generat-
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ing functionals for Feynman diagrams in quantum field theory [IZ80, Ram81].
The two ingredients are formal power series and variational derivatives. In or-
der to model pure linear logic the formal power series that arise as power-series
expansions of exponentials are the only ones that are needed. We introduce a
formal analogue of the variational derivative operator, commonly used in both
classical and quantum field theories [Ram81]. For us the variational derivative
plays the role of a mechanism that extracts a term from an exponential.

As before we have locations and expressions. We first introduce a new expres-
sion constructor.

Definition 4.4 If x is a location of type A then αA(x) is an expression of
sort {x : A}.

The point of α is to provide a “probe”, which can be detected as needed. For
each type and location there is a different α. We will usually not indicate the
type subscript on the αs unless they are necessary. The last ingredient that
we need in the world of expressions is an expression that plays the role of a
“discarder”, used, of course, for weakening.

Definition 4.5 If x is a location of type {x : A}, where A is a multiplicative
type, then WA(x) is an expression of sort {x : A}. This satisfies the equations

1. WA⊗B(〈x, y〉) = WA(x)WB(y),

2. WAOB([x, y]) = WA(x)WB(y).

We can think of W (x) intuitively as “grounding” in the sense of electrical
circuits. In effect it provides a socket into which x is plugged but which is
in turn connected to nothing else. So it is as if x were “grounded”. If such
a W (x) is connected to a wire,

∫
W (x)δ(x, y)dx the result will be the same

as grounding y. The other two equations express the fact that a complex W
can be decomposed into simpler ones. We will introduce another decompo-
sition rule for W after we have described the variational derivatives and a
corresponding operator for weakening.

We introduce syntax for operators; these will be defined as maps from expres-
sions to expressions.

Definition 4.6 Operators are given by the following inductive definition.

1. If M is any expression M̂ is an operator of the same sort as M .

2. If x : A is a location then ([.]|α(x)=0) is an operator of sort x : A.

3. If x : A is a location then δ
δα(x) is an operator of sort x : A.

4. If P and Q are operators then so are P + Q and P ◦ Q their sort is the
union of the individual sorts.

5. If P is an operator then so is
∫
Pdx; its sort is S(P ) \ {x}.



Proof Nets as Formal Feynman Diagrams 13

An operator of sort S acts on an expression of sort S′ if S ∩ S′ is not empty.

Operators map expressions to expressions. An important difference between
the algebra of expressions and that of operators is that the (commutative)
multiplication of expressions has been replaced by the (non-commutative)
composition of operators.

The meaning of the operators above is given as follows. We use the meta-
variables M,N for expressions and P,Q for operators. We begin with the
definition of M̂ .

Definition 4.7 M̂(N) = M ·N .

The notion of composition of operators is the standard one

Definition 4.8 [P ◦Q](M) = P (Q(M)).

Clearly we have M̂ ◦ N̂ = M̂N ; thus we have an extension of the algebra of
expressions. We will write 1 and 0 rather than, for example, 1̂ to denote the
operators. The resulting ambiguity will rarely cause serious confusion.

The next set of rules define the operator ([.]|α(x)=0). Intuitively this is the
operation of “setting α(x) to 0” in an algebraic expression.

Definition 4.9 If M is an expression then the operator ([.]|α(x)=0) acts as
follows:

1. If α(x) does not appear in M then ([M ]|α(x)=0) = M .

2. ([MN ]|α(x)=0) = (([M ]|α(x)=0))(([N ]|α(x)=0)).

3. ([M +N ]|α(x)=0) = (([M ]|α(x)=0)) + (([N ]|α(x)=0)).

4. ([Mα(x)]|α(x)=0) = 0.

The rules for the variational derivative formalize what one would expect from
a derivative, most notably the Leibniz rule, rule 5 below.

Definition 4.10 If M is an expression and x is a location we have the fol-
lowing equations:

1. If x and y are distinct locations then δ
δα(x)α(y) = 0.

2. If α(x) does not occur in the expression M then δ
δα(x)M = 0.

3. δ
δα(x)α(x) = 1.

4. δ
δα(x) (M +N) = ( δ

δα(x)M) + ( δ
δα(x)N).

5. δ
δα(x) (MN) = (M δ

δα(x)N) + (( δ
δα(x)M)N).

Clause 1 is, of course, a special case of clause 2 but is added for emphasis.
Intuitively the variational derivative should be viewed as “probing for the
presence of α”. The reason that we use these variational derivatives rather
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than ordinary derivatives is that the dependence on the location is crucial for
our purposes. Typically we use the combination of ([.]|α(x)=0) and δ

δα(x) so

that we are “inserting probes”, “testing for their presence” and then “remov-
ing them”. The power of the formalism comes from the interaction between
variational derivatives and exponentials.

The remaining rules defining the algebra of operators are given in the next
definition.

Definition 4.11 Operators obey the following equations:

1. 0̂(M) = 0.

2. 1̂(M) = M .

3. (P +Q)(M) = P (M) +Q(M).

4. [
∫
Pdx](M) =

∫
P (M)dx, where x is not free in M .

One can prove the following easy lemma by structural induction on expres-
sions.

Lemma 4.12 If x and y are distinct locations δ
δα(x) ◦ δ

δα(y) (M) = δ
δα(y) ◦

δ
δα(x) (M).

This if of course the familiar notion of commuting.

Definition 4.13 Two operators P and Q which satisfy P ◦ Q = Q ◦ P are
said to commute.

It will turn out that commuting operators satisfy some nice properties that
will be important in what follows.

The main mathematical gadget that we need is the notion of formal power
series. For our purposes we will only need exponential power series but we
give fairly general definitions.

Definition 4.14 If (Mi|i ∈ I) is an indexed family of expressions then ΣIMi

is an expression. If (Pi|i ∈ I) is an indexed family of operators then ΣIPi is
an operator. If I is a finite set, the result is the same as the ordinary sum; if
I is infinite, the result is called a formal power series.

One may question the use of the word “power” in “power series” since there
is nothing in the definition that says that we are working with powers of a
single entity. Nevertheless we use this suggestive term since the series we are
interested really are formal power series.

The meaning of a power series of operators is given in the evident way.

Definition 4.15 If Σi∈IPi is a formal power series of operators and M is
an expression then (Σi∈IPi)(M) = Σi∈I(Pi(M)).
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The key power series that we use is the exponential. We first give a preliminary
account and then a more refined account.

Definition 4.16 If M is an expression then the exponential series is
Σk≥0M

k/k! and is written exp(M); here Mk means the k-fold product of
M with itself.

What we are not making precise at the moment is the meaning of Mn.

A number of properties follow immediately from the preceding definition.

Lemma 4.17 If the expression M contains no occurrence of α(x) then:

1. δ
δα(x) (MN) = M δ

δα(x) (N);

2. (([.]|α(x)=0) ◦
δ

δα(x) ) exp(Mα(x)) = M ;

3. (([.]|α(x)=0) ◦
δ

δα(x) ◦ . . . n . . . ◦
δ

δα(x)) exp(Mα(x)) = Mn.

The combination δ
δα(x) ◦ . . . n . . . ◦

δ
δα(x) is often written δn

δα(x)n .

The following facts about exponentials recall the usual elementary ideas about
the exponential function from an introductory calculus course.

Lemma 4.18 Suppose that M is an expression, the following equations hold.

1. δ
δα(x) exp(Mα(x)) = M · exp(Mα(x)).

2. ([exp(M)]|α(x)=0) = exp(([M ]|α(x)=0)).

3. exp(0) = 1.

In fact the above definition of exponentials overlooks a subtlety which makes
a difference as soon as we exponentiate operators. The factors of the form
1/(n!) are not just numerical factors, they indicate symmetrization. This is
the key ingredient needed to model contraction in linear logic. We introduce
a new syntactic primitive for symmetrization and give its rules.

Definition 4.19 If k is a positive integer and x1, . . . , xk and x are distinct
locations then ∆k(x1, . . . , xk;x) is an expression, x is called the principal

location. It has the following behaviour; all differently-named locations are
assumed distinct.

1.
∫
∆(k)(x1, . . . , xk;x)M(x, y1, . . . , yl) dx =∫ ∏k

i=1M [xi/x, y
i
1/y1, . . . , y

i
l/yl]

∏l

j=1∆
(k)(y1

j , . . . , y
k
j ; yj) dy

1
1 . . . dy

k
l .

2.
∫
∆(k)(x1, . . . , xk;x)∆

(m+1)(x, xk+1, . . . , xk+m; y) dx
= ∆(k+m)(x1, . . . , xk, xk+1, . . . , xk+m; y).

3.
∫
∆(k)(u1, . . . , uk;x)∆

(k)(u1, . . . , uk; y) du1 . . . duk = δ(x, y).

4.
∫
∆(k)(x1, . . . , xk;x)∆

(m)(y1, . . . , ym;x)dx =
Σι∈inj({1,...,k},{1,...,m})δ(x1, yι(1)) . . . δ(xk, yι(k)),
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where k ≤ m and if S and T are sets, inj(S, T ) means injections from S
to T .

The idea is that the ∆ operators cause several previously distinct locations
to be identified. The ordinary δ allows renaming of one location of another
but the ∆ allows, in effect, several locations to be renamed to the same one.
The first rule says that when a location in an expression is connected to a
symmetrizer we can multiply the expression k-fold using fresh locations. These
locations are then symmetrized on the output. In other words this tells you
how to push expressions through symmetrizers. We often write just ∆ for ∆2

and of course we never use ∆1 since it is the ordinary δ. The important idea
is the the ∆s cause symmetrization of the locations being identified. The last
rule in the definition of ∆ is what makes it a symmetrizer. To see this more
clearly, note the following special case which arises when k = m.

∫
∆(k)(x1, . . . , xk;x)∆

(k)(y1, . . . , yk;x)dx

= Σσ∈perm{1,...,k}δ(x1, yσ(1)) . . . δ(xk, yσ(end)).

Before we continue we emphasize that the rule for the δ expression applies to
operators as well. We formalize this as the following lemma.

Lemma 4.20 If P (x′,y) is an operator then
∫
δ(x, x′)Pdx′ = P [x/x′] in the

sense that for any expression M , with x not free in M , [
∫
δ(x, x′)Pdx′](M) =

P [x/x′](M [x/x′]).

Proof. We give a brief sketch. First note that we can prove, by structural
induction on M , for any expression M , that

∫
δ(x, x′) δ

δα(x′) (M)dx′ = δ
δα(x) (M [x/x′])

which justifies the operator equation
∫
δ(x, x′) δ

δα(x′)dx
′ = δ

δα(x) . Similarly one

can show that
∫
δ(x, x′)([M ]|α(x′)=0) = ([M [x/x′]]|α(x)=0). Now structural

induction on P establishes the result.

We record a useful but obvious fact about derivatives of operators.

Lemma 4.21 If α(x) does not occur in P then δ
δα(x)(PQ) = P δ

δα(x) (Q).

We are now ready to define the exponential of an operator.

Definition 4.22 Let Q(x1, . . . , xm) be an operator with its sort included in
{x1, . . . , xm}. The exponential of Q is the following power series, where we
have used juxtaposition to indicate composition of the Qs:
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exp(Q) = 1 +Q(x1, . . . , xm)+

(1/2)

∫
Q(x′1, . . . , x

′
m)Q(x′′1 , . . . , x

′′
m)∆(x′1, x

′′
1 ;x1) . . .∆(x′m, x

′′
m;xm)

dx′1 . . . dx
′
mdx

′′
1 . . . dx

′′
m

+ . . .

+ (1/(k!))

∫
Q(x

(1)
1 , . . . , x(k)

m ) . . . Q(x
(k)
1 , . . . , x(k)

m )

∆k(x
(1)
1 , . . . , x

(k)
1 ;x1) . . . ∆

k(x(1)
m , . . . , x(k)

m ;xm)

dx
(1)
1 . . . dx(1)

m . . . dx
(k)
1 . . . dx(k)

m + . . .

The above series is just the usual one for the exponential. What we have
done is introduce the ∆ operators rather than just writing Qk for the k-fold
composition of Q with itself. This makes precise the intuitive notation Qk and
interprets it as k-fold symmetrization of k distinct copies of Q. However, if
we wish to speak informally, we can just forget about the ∆ operators and
pretend that we are working with the familiar notion of exponential power
series of a single variable.

We have an important lemma describing how the ∆s interacts with differen-
tiating and evaluating at 0.

Lemma 4.23 If M is an expression then

[

∫
∆k(x1, . . . , xk;x)(([.]|α(x1)=0) ◦

δ
δα(x1) ) ◦ . . .

◦ (([.]|α(xk)=0) ◦
δ

δα(xk) )dx1 . . . dxk](M)

= (1/(k!))(

∫
∆k(x1, . . . , xk;x)([.]|α(x)=0)(

δ
δα(x1)◦. . .◦

δ
δα(xk) )dx1 . . . dxk)(M).

Thus, we can remove the M and assert the evident operator equation.

Proof. Note that the only terms that can survive the effect of the operator
on the LHS are those of the form M ′α(x1) . . . α(xk). If any α(xj) occurred to
a higher power it would be killed by the operator ([.]|α(xj)=0) that acts after
the variational derivative. If any of the αs do not occur the term would be
killed by the variational derivative. Now note that the ([.]|α(xi)=0) and the

δ
δα(xj)

commute if xi and xj are distinct. Thus we can move the ([.]|α(xj)=0)

operators to the left. Now if we look at the kinds of terms that survive and
compute the derivatives we get the result desired.

Intuitively we can think of the symmetrizers as “multiplexers”. This is of
course part of the definition of symmetrizer for expressions. The following
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lemma makes this precise. The proof is notationally tedious but is a routine
structural induction, which we omit. We use the phrase exponential-free to
mean an operator constructed out of ordinary expressions, and variational
derivatives and setting α to 0, no exponentials (or other power-series) oc-
cur.

Lemma 4.24 If P (x, y1, . . . , ym)) is an exponential-free operator then∫
∆(k)(x1, . . . , xk;x)P dx =∫

[
∏m

j=1∆
(k)(y1

j , . . . , y
k
j ; yj)]

∏k

i=1[P (xi/x, y
i
1, . . . , y

i
m)]

dx1 . . . dxk dy
1
1 . . . dy

k
m.

What the lemma says is that when we have a k-fold symmetrized location
in an operator with m other locations we can make k copies of the operator
with fresh copies of all the locations. In the ylj , the subscript (running from
1 to m) says which location was copied and the superscript (running from 1
to k) which of the k copies it is. The k fresh copies of the locations are each
symmetrized to give the original locations; this explains the product of all the
∆(k) terms.

We close this section by completing the definition of the weakening construct
W by giving the decomposition rules for W .

Definition 4.25 (Decomposition Rules for W ) 1. Wφ(u)([.]|α(x)=0)◦
δ

δα(x) =

W ? φ(x)

2.
∫
∆(k)(x1, . . . , xk;x)Wφ(x1) . . .Wφ(xk) dx1 . . . dxk = Wφ(x)

Term Sort

r, a rational number ∅

δ(x, y) {x : A, y : A⊥}

∆(k)(x1, . . . , xk; x) {x : A⊥, x1, . . . , xk : A}
αA(x) {x : A}
WA(x) {x : A}
P + Q, PQ S(P ) ∪ S(P )
R

Pdx S(P ) \ {x}
P

i∈I Pi ∪i∈IS(Pi)

Fig. 3. Syntax of Expressions in the φ-calculus

5 Exponential Identities for Operators

Much of the combinatorial complexity of proof nets can be concealed within
the formulas for derivatives of exponentials. In this section we collect these
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Operator Sort

M , an expression S(M)

([.]|α(x)=0) {x : A}
δ

δα(x)
{x : A}

P + Q, P ◦ Q S(P ) ∪ S(P )
R

Pdx S(P ) \ {x}
P

i∈I Pi ∪i∈IS(Pi)

Fig. 4. Syntax of Operators in the φ-calculus

formulas in one place for easy of reference. There are, of course, infinitely
many identities that one could write down, we will write only the ones that
arise in the interpretation of linear logic.

We typically have to assume that various operators commute. If the oper-
ators do not commute one gets very complicated expressions, such as the
Campbell-Baker formula, occurring in the study of Lie algebras and in quan-
tum mechanics, for products of exponentials of operators. In the case of linear
logic the linearity conditions will lead to operators that commute.

Proposition 5.1 If the operator P contains no occurrence of α(x) then:

1. (([.]|α(x)=0) ◦
δ

δα(x) ) exp(Pα(x)) = P ;

2.

∫
(([.]|α(x)=0) ◦

δ
δα(x) . . . n . . . ◦

δ
δα(x) ) exp(Pα(x))dx

=

∫
∆n(x1, . . . , xn;x)

m∏
k=1

[∆n(y1
k, . . . , y

n
k ; yk)]

n∏
j=i

[P (yj1/y1, . . . , y
j
k/yk, . . . , y

j
m/ym)]

dy1
1 . . . dy

n
1 . . . dy

1
2 . . . dy

n
2 . . . . . . dy

1
m . . . dy

n
m,

where the RHS is essentially Pn.

In this formula the locations in P are {x, y1, . . . , ym} and there are n copies of
P with fresh copies of each of these locations and there arem+1 symmetrizers,
one to identify each of the n copies of the m + 1 locations in P . Subscripts
range (from 1 to m) over the locations in P and superscripts range (from 1
to n) over the different copies of the locations.

Proof. The first part is just a special case of the second. One can just expand
the power series and carry out the indicated composition term by term on
a given expression using lemma 4.23. There are three types of terms in the
power-series expansion of the exponential: (1) terms of power less than n, (2)
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the term of power n and (3) terms of power greater than n. Terms of type (1)
vanish when the variational derivative is carried out, terms of type (3) will
have α(x) still present after the differentiation is done and will vanish when
we carry out ([.]|α(x)=0). The entire contribution comes from terms of type
(2). From the definition of the exponential we get that the order n term is

(1/(n!))·

∫
P (x1/x, y1

1/y
1, . . . , ym1 /y

m) . . . P (xn, yn1 , . . . , x
n
m)α(x1) . . . α(xn)

∆n(x1, . . . , xn;x)∆n(y1
1 , . . . , y

n
1 ;x1) . . . ∆

n(y1
m, . . . , y

n
m; ym)

dy1
1 . . . dy

1
m . . . dy

n
1 . . . dy

n
m

where the free locations in P are {x, y1, . . . , ym}. The variational derivatives
are all of the form δ

δα(x) and there are n of them. They can be written as

∫
∆n(u1, . . . , un;x)

n∏
j=1

δ
δα(uj)

du1 . . . dun.

Now when we do the x integral the only terms involving x are ∆s. Thus
using the definition of symmetrization 4.19 part (3) we get the sum over
n! combinations of the form

∏n

i=1 δ(ui, x
σ(i)) where σ is a permutation of

{1, . . . , n}; the sum is over all the permutations. Note however that the rest
of the expression is completely symmetric with respect to any permutation
of {x1, . . . , xn}; thus we can replace this sum over all permutations with n!
times any one term, say

∏n
i=1 δ(ui, x

i). Now doing the ui integral with these
δs replaces the δ

δα(ui)
with δ

δα(xi) . The variational derivatives are now exactly

matched with the αs so we can carry out the indicated differentiations by just
deleting ([x]|α(.)=0), and all the δ

δα(.) and all the αs. The n! from the sum over

permutations cancels the 1/(n!) in the expansion of the exponential giving
the required result.

This proof is necessary to do once, to show that the symmetrizers interact
in the right way to make sense of the n! factors as permutations. Henceforth
we will not give the same level of detail, instead we will use the abbreviation
δ

δα(x)

n
and revert to the formal notation only after the intermediate steps are

completed.

The following easy, but important, proposition can now be established. It is
essentially the “nesting of boxes” formula.

Proposition 5.2 Suppose that P and Q are operators not containing α(x)
and suppose that they commute, then exp(P ◦ δ

δα(x) ) ◦ exp(Qα(x)) is the same

as exp(P ◦ δ
δα(x) ◦ exp(Qα(x))).

Proof. We will outline the basic calculation which basically just uses lemma 4.17
and proposition 5.1. We will suppress the ∆s in the following in order to keep
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the notation more readable. We expand the LHS in a formal power series to
get

Σ∞
k=0(1/k!)P

k δk

δα(x)k ◦ exp(Qα(x)).

Because P,Q, δ
δα(x) all commute we can 5.1 for the variational derivatives of

exponentials and rearrange the order of terms to get

Σ∞
k=0(1/k!)P

k ◦Qk ◦ exp(Qα(x)).

Using the exponential formula to sum this series we get

exp(P ◦Q) ◦ exp(Qα(x)).

But this is exactly what the RHS expands to if we use the exponential formula.

The last proposition is a general version of promotion, we do not really need
it but it shows the effect of multiply stacked exponentials.

Lemma 5.3 If the operators P and Q have no locations in common then

∫
∆(x′, x′′;x)P (x′, . . .) δ

δα(x′′) exp(α(x)Q(x,u)dxdx′dx′′

=

∫
Q(x′′/x,u′′/u)∆(u,u′; u′′)P (x′, . . .) exp(α(x′)Q(x′/x,u′/u)dx′dx′′.

The proof is omitted, it is a routine calculation done by expanding each side
and comparing terms. It allows us to finesse calculating the effect of multiply
stacked exponentials of operators.

Finally we need the following lemma when proving that contraction works
properly in conjunction with exponentiation. We suppress the renaming and
symmetrizations to make the formula more readable, note that it is just a
special case of a multiplexing formula of the kind defined in lemma 4.24, with
an exponentiated operator and k = 2.

Lemma 5.4

∫
∆(y, z;u) exp(Q(u, x1, . . . , xk)) du =

∫
exp(Q(y/u, x′1, . . . , x

′
k)) exp(Q(z/u, x′′1 , . . . , x

′′
k)) [

k∏
j=1

∆(x′j , x
′′
j ;xj)]

dx′1 . . . dx
′
k dx

′′
1 . . . dx

′′
k .

Proof. We proceed by induction on the exponential nesting depth. The base
case is just the multiplexing formula proved in lemma 4.24. In this proof we
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start from the right-hand side. Now we note that if we have two operators, A
and B, which commute with each other then we have

eA+B = eAeB.

This can easily be verified by the usual calculation which, of course, uses com-
mutativity crucially. Now on the rhs of the equation we have the exponentials
of two operators which commute because they have no variables in common.
Using the formula then we get

∫
exp(Q(y/u, x′1, . . . , x

′
k) +Q(z/u, x′′1 , . . . , x

′′
k))

[

k∏
j=1

∆(x′j , x
′′
j ;xj)] dx

′
1 . . . dx

′
k dx

′′
1 . . . dx

′′
k .

The ∆s symmetrize all the locations, it makes no difference if the power series
is first expanded and then symmetrized or vice-verse thus all the ∆s can be
promoted to the exponential. Now using the inductive hypothesis we get the
result.

Before we close this section we remark that if A and B do not commute
we get a more complicated formula called the Campbell-Baker-Hausdorff for-
mula. This formula does not arise in linear logic because of all the linearity
constraints which ensure that operators do commute.

6 Interpreting Proof Nets

We now interpret terms in the linear realizability algebra as terms of the
φ-calculus and show that the equations of the algebra are valid.

Proof Rule LRA Term Φ-Calculus

Axiom [[Ixy]] = δ(x, y)

Cut [[P ·x Q]] =
R

[[P ]][[Q]]dx

Tensor [[⊗x,y
z (P, Q)]] =

R

[[P ]][[Q]]δ(z, 〈x, y〉)dxdy

Par [[Ox,y
z (P )]] =

R

[[P ]]δ(z, [x, y])dxdy

Dereliction [[Dx
z (P )]] = [[P [z/x]]]([.]|α(z)=0) ◦

δ
δα(z)

Weakening [[Wz(P )]] = [[P ]] ◦ W (z)([.]|α(z)=0)
δ

δα(z)

Contraction [[Cx,y
z ]] =

R

[[P ]]∆(x, y; z)dxdy

Exponentiation [[ ! x
y(P )]] = exp([[P [y/x]]]αA(y))

In the last line A is the type of the location x.

Fig. 5. Translation of LRA terms to the Φ-Calculus
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The translation is shown in figure 6. In the next section we show some example
calculations. In this section we prove that this interpretation is sound.

The intuition behind the translation is as follows. The axiom link is just the
identity which is modelled by the Dirac delta; in short we use a trivial prop-
agator. The cut is modelled as an interaction, which means that we identify
the common point (the interaction is local) and we integrate over the possi-
ble interactions. The par and tensor links are constructing composite objects.
They are modelled by using pairing of locations. The promotion corresponds
to an exponentiation and dereliction is a variational derivative which probes
for the presence of the α in an exponential. Weakening is like a dereliction,
except that there is a W to perform discarding. Finally contraction is effected
by a symmetrizer; we think of it like multiplexing.

We proceed to the formal soundness argument.

Theorem 6.1 The interpretation of linear realizability algebra terms in the
φ-calculus obeys the equations R1,R3,R6,R7,R8,R9.

Proof. The proof of R1 is immediate from the definition of the Dirac delta
function. For R3 we calculate as follows.

[[⊗x,yz (P,Q)·zOu,v
z (M)]]

=

∫
δ(z, 〈x, y〉)δ(z, [u, v]) PQM dz dxyuv by definition

=

∫
δ(〈x, y〉, [u, v]) PQM dxyuv using δ to do the z integral

=

∫
δ(x, u)δ(y, v) PQM duvxy decomposition of δ

=

∫
P [u/x]MQ[v/y]dudv doing the x, y integrals

=[[P [u/x]·uM ·vQ[v/y]]] by definition.

For equation R6 we calculate as follows.
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[[Dx
z (P )·z ! yz(Q)]]

=

∫
P (x, . . .)δ(x, z)([.]|α(z)=0) ◦

δ
δα(z) δ(y, z) exp(α(z)Q) dzdxdy

by definition

=

∫
P (x, . . .)δ(x, z)([.]|α(z)=0) ◦

δ
δα(z) exp(α(z)Q[z/y]) dxdz

using δ(y, z) to do the z integral

=

∫
P (x, . . .)([.]|α(x)=0) ◦

δ
δα(x) exp(α(x)Q[x/y]) dx

using lemma 4.20 and δ(x, z)

=

∫
PQ[x/y] dx

using lemma 5.1

=[[P ·xQ[x/y]]]

by definition.

For R7 we have to show

[[Wz(P )·z ! yz(Q)]] = [[Wu(P )]]

where u = {u1, . . . , uk} is the set of free locations in Q other than y and Wu is
shorthand for Wu1

. . .Wuk
. The linearity constraints ensure that u∩S(P ) = ∅.

If we use the translation and use the simple exponential identity 5.1, part 1,
we get the formula below, which does not mention P ,

∫
W (z)([.]|α(z)=0) ◦

δ
δα(z) exp(α(z)Q[z/y]) dz =

∫
W (z)Q[z/y] dz.

In fact P has nothing to do with this rule so we will ignore it in the rest of
the discussion of this case. Now in order to complete the argument we must
prove the following lemma:

Lemma 6.2∫
Wφ(z)Q(z,u) dz =

∏
i

W (ui)([.]|α(ui)=0) ◦
δ

δα(ui)
.

We have explicitly shown the formula φ that is being weakened on the left-
hand side but not the subformulas of φ which are associated with the W s on
the right-hand side. We have implicitly used the decomposition formula for
W that says

WB(z)([.]|α(z)=0) ◦
δ

δα(z) = W ? B(z).
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Proof. We begin with an induction on the complexity of the weakened formula
φ. In the base case we assume that φ is atomic, say A. Now we do an induc-
tion on the structure of Q, which means that we look at the last rule used
in the construction of the proof Q. Since we have an atomic formula being
cut the last rule used in the construction of Q can only be a dereliction, or a
weakening or a contraction. The dereliction case corresponds to Q being of the
form Q′([.]|α(u)=0) ◦

δ
δα(u) , where u is one of the locations in u. Thus we have∫

WA(z)Q′(z, u, . . .)([.]|α(u)=0) ◦
δ

δα(u) dz. Now since Q′ is a smaller proof by

structural induction we have the result for all the locations other than u and
we explicitly have the operator for u. The weakening case is exactly the same.
For contraction we have the term

∫
WA(z)∆(z1, z2; z)Q

′(z1, z2, . . .) dzdz1dz2.
Using the second decomposition rule for weakening in definition 4.25 we get∫
WA(z1)WA(z2)Q

′(z1, z2, . . .)dz1dz2 and now by the structural induction hy-
pothesis we get the result. This completes the base case in the outer structural
induction. The rest of the proof is essentially a use of the decomposition rules
for W . We give one case. Suppose that φ is of the form ?ψ. Then we have on
the lhs

∫
Wψ(z)([◦]|α(z)=0)

δ
δα(z)Q(z,u) dz, where we have used the decompo-

sition formula 4.25, part 1. But by the typing of proof nets Q itself must be
exp(αψQ

′). Now using the usual calculation, from formula 5.1, part 1, gives
the result.

The proofs of R8 and R9 follow from the exponential identities. For R8 we
can use lemma 5.4 directly. While for R9 we can directly use the lemma 5.2.

In this proof the most work went into analyzing weakening, the other rules
really follow very easily from the basic framework. The reason for this is that
weakening destroys a complex formula but the rest of the framework is local.
Thus we have to decompose a W into its elementary pieces in order to get the
components annihilated in atomic pieces.

7 Example Calculations

In this section we carry out some basic calculations that illustrate how the
manipulations of proof nets are mimicked by the algebra of our operators.
In the first two examples we will just use the formal terms needed for the
multiplicatives and thereafter we use operators and illustrate them on exam-
ples using exponentials. It should be clear, after reading these examples, that
carrying out the calculation with half a dozen contractions (the largest that
we have tried by hand) is no more difficult than the examples below, even the
bookkeeping with the locations is not very tedious. We do not explicitly give
an example involving nested boxes because this would be very close to what
is already shown in the proof of the last section.
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A Basic Example with Cut

We reproduce the example from the section on multiplicatives. The simplest
possible example involves an axiom link cut with another axiom link shown
in figure 6.

ux v y

CUT

Fig. 6. Two axiom links CUT together.

The LRA term is Ix,u·u,vIv,y . The expression in the φ-calculus is

∫
δ(x, u)δ(u, v)δ(v, y)dudv.

Carrying out the v integration and getting rid of the δ we get
∫
δ(x, u)δ(u, y)du.

Using the convolution property of δ we get δ(x, y) which corresponds to the
axiom link Ix,y.

Tensor and Par

Consider the proof net constructed as follows. We start with two axiom links,
one for A and one for B. We form a single net by tensoring together the A⊥

and the B⊥. Now consider a second proof net constructed in the same way.
With the second such net we introduce a par link connecting the A and the
B. Now we cut the first net with the second net in the evident way, shown in
figure 7.

The φ-calculus term, with locations introduced as appropriate is∫
[
∫
δA(x, y)δB(u, v)δ(z, 〈y, v〉)dvdy]

[
∫
δA(p, q)δB(r, s)δ(t, 〈q, s〉)δ(w, [p, r])dpdqdrds]

δ(w, z)dwdz.

We first do the w integral and eliminate the term δ(w, z). This will cause z to
replace w. Now we do the z integral and eliminate the term δ(z, 〈y, v〉). This
will yield the term δ(〈y, v〉, [p, r]), which can be decomposed into δ(y, p)δ(v, r).
The full term is now

∫
δA(x, y)δB(u, v)δA(p, q)δB(r, s)δ(y, p)δ(v, r)δ(t, 〈q, s〉)dydvdpdrdsdq.
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CUT

T
TT

�
��

��
��T
TT

�
��

��
��T
TT

�
��

x : A⊥ u : B⊥ v : B y : A p : A⊥ r : B⊥ s : B q : A

z : A ⊗ B w : A⊥OB⊥

t : A ⊗ B

��
��

Fig. 7. Cutting a
N

link with a O link.

This is the φ-calculus term that arises by translating the result of the first
step of the cut-elimination process. Note that it has two cuts on the simpler
formulas A and B. Now, as in the previous example we can perform the inte-
grations over y and v using the formula for the δ and then we can perform the
integrations over p and r using the convolution formula. The result is

∫
δA(x, q)δB(u, s)δ(t, 〈q, s〉)dqds,

which is indeed the form of the φ-calculus term that results from the cut-free
proof.

A Basic Exponential Example

We consider the simplest possible cut involving exponential types. Consider
the an axiom link for A,A⊥. We can perform dereliction on the A⊥. Now take
another copy of this net and exponentiate on A. Finally cut the ?A⊥ with
the !A. The proof net is shown in figure 8.

The result of translating this into the φ-calculus is (after some obvious sim-
plifications)

∫
δ(x, y)([.]|α(y)=0)

δ
δα(y) exp[α(u)δ(u, v)([.]|α(v)=0)

δ
δα(v) ]δ(y, u)dydu.

We can perform the u integration and eliminate the term δ(y, u). Then we can
take the variational derivative of the exponential term which will yield
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CUT

x : A y : A⊥ u : A v : A⊥

y : ? A⊥ u : !A v : ? A⊥

Fig. 8. The Simplest Possible Example with Exponentials

∫
δ(x, y)δ(y, v)([.]|α(v)=0)

δ
δα(v)dy.

Now the last integral can be done with the property of δ and we get

δ(x, v)([.]|α(v)=0)
δ

δα(v)

which is what we expect from the cut-free proof.

An Example With Contraction

We take a pair of axiom links for A,A⊥ and derelict each one on the A⊥

formula. We then combine them into a single net by tensoring the two A
formulas. The two derelicted formulas are combined by contraction. Finally
we take the basic exponentiated net, as in the last example and cut it with
the proof net just constructed in the evident way. The resulting φ-calculus
term is:∫

δ(x1, y1)δ(x2, y2)δ(x, 〈x1, x2〉)
δ

δα(y1)
δ

δα(y2)
∆(y; y1, y2)δ(y, u)

exp(α(u)δ(u, v) δ
δα(v) )dx1dx2dy1dy2dydu.

where we have written δ
δα(v) rather than ([ δ

δα(v) (·)]|α(v)=0) to avoid cluttering
up the notation. We first get rid of the integration created by the cut so that u
is replaced by y in the exponential. Next we extract the quadratic term from
the power-series expansion of the exponential. All the other terms will vanish
after taking derivatives. The relevant part of the exponential series is the term

(1/2)∆(y; y′, y′′)α(y′)α(y′′)δ(y′, v′)δ(y′′, v′′)∆(v; v′, v′′) δ
δα(v′)

δ
δα(v′′) .
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u:!A

S
S

.........................................

x1 : A y1 : A⊥ u : A v : A

y1 :?A v : ? A

CUT

y2 : A

y2 :?A

x2 : A

x : A ⊗ A

CONTRACT

y : ? A

l

Fig. 9. An Example with Contraction

Now when we carry out the y integral the term ∆(y; y1, y2)∆(y; y′, y′′) be-
comes
2[δ(y1, y

′)δ(y2, y
′′)]. The factor of 2 from the symmetrization cancels the fac-

tor of 1/2 from the power-series expansion. Now we can carry out the y1 and
y2 integrations to get∫
δ(x1, y

′)δ(x2, y
′′)δ(x, 〈x1, x2〉)

δ
δα(y′)

δ
δα(y′′)α(y′)α(y′′)δ(y′, v′)δ(y′′, v′′)∆(v; v′, v′′) δ

δα(v′)
δ

δα(v′′)

dv′dv′′dy′dy′′dx1dx2.

Now we can do the derivatives and the y′, y′′ integrals to get∫
δ(x1, v

′)δ(x2, v
′′)δ(x, 〈x1, x2〉)∆(v; v′, v′′) δ

δα(v′)
δ

δα(v′′)dv
′dv′′dx1dx2.

this is what we expect after cut elimination. Notice how the argument to the
exponentiation has become duplicated and has picked up a contraction on its
other variables.

An Example With Contraction and Weakening

We consider a minor variation of the last example. Instead of using the tensor
to obtain a pair of derelictions that need to be contracted we could have
obtained a ? (A)⊥ by weakening. The φ-calculus term would then be∫
δ(x, y1)W (y2)

δ
δα(y1)

δ
δα(y2)

∆(y; y1, y2)

δ(y, u) exp(α(u)δ(u, v) δ
δα(v) )dy1dy2dydu.
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We can reproduce the calculations as before to get∫
δ(x, y′)W (y′′)δ(y′, v′)δ(y′′, v′′)

∆(v; v′, v′′) δ
δα(v′)

δ
δα(v′′)dv

′dv′′dy′dy′′.

Carrying out the, by now routine, simplifications, we get∫
δ(x, v′)W (v′′)∆(v; v′, v′′) δ

δα(v′)
δ

δα(v′′)dv
′dv′′.

In this example note how the original weakening at the location y′′ has turned
into a weakening at the location v′′.

8 Conclusions

We feel that the most interesting feature of this work is that the subtle com-
binatorics of proof nets is captured by the elementary rules of the φ-calculus.
More specifically, the formal devices of a variational derivative, formal power
series, symmetrizers and integrals. The fact that the equations of a linear
realizability algebra are obeyed for our fragment shows that the basic normal-
ization behaviour of proof nets is captured.

But the main caveats are as follows. We have to posit quite a lot of rules to
make weakening behave correctly. This reflects the idea that we are using up
resources piece by piece, whereas weakening causes a “large” type to appear all
at once. Thus, in the reductions, we have to decompose this before throwing
it away. We have not addressed additives in the present paper. It turns out
that the same kind of variational derivative formalism works. There are some
interesting features, we model additives with superposition rather than choice
and as a result one can push a cut inside a “with box.”

Originally, we had sought to model the exponential type using the so called
Fock space construction of quantum field theory [Blu93]; this led to our present
investigations. Fock space – also known as the symmetric tensor algebra – can
be viewed as the space of analytic functions on a Banach space and, in a formal
sense can be viewed as an exponential. Our original work [RBS93] fell short
of modelling linear logic. Girard [Gir95b] later succeeded in modelling linear
logic using analytic functions on what he called coherent Banach spaces. A
key idea in that work is that the exponentials correspond to the Fock-space
construction.

The connection with quantum field theory may be mere analogy but the use
of formal power series and variational derivatives is more than that. The tech-
nical result of this paper is that the combinatorics of proof nets (at least for
multiplicative-exponential linear logic) have been captured by the mathemati-
cal structures that we have introduced. Furthermore, these structures have an
independent mathematical existence that has nothing to do with proof nets
or linear logic or quantum field theory. They form the basis therefore of a
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research program to investigate several topics that have recently been based
on linear logic. Foremost among these are the spectacular results of Abram-
sky, Jagadeesan and Malacaria [AJM00], and Hyland and Ong [HO00] and
Nickau [Nic94] which have led to semantically-presented fully-abstract mod-
els of PCF [Mil77, Plo77]. These models are based on the intuitions of games
and the flow of information between the players of the games. The variational
derivative, as we have used it, seems to embody the same ideas. It is used to
query a term for the presence of an exponential.

Since this work was first presented in 1995, there have been some interest-
ing developments. A categorical view of quantum computation[AC04], and
indeed of quantum mechanics, has taken hold and been vigourously pur-
sued [Sel07].

Important work, in terms of the relevance to the present work, is found in the
investigations of Marcelo Fiore et al. where similar formal differential structure
is discussed in the context of bicategories, see, for example, recent papers
and slides available on Fiore’s web page [Fio06, FGHW07, Fio07]. There are
close connections between the structure that he finds and the creation and
annihilation operators of quantum field theory which act on Fock space. There
has also been independent work by Jamie Vickary, so far unpublished, which
develops a theory of creation and annihilation operators on Fock space in the
context of categorical quantum mechanics [AC04].

Also clearly relevant is the work of Ehrhard and Regnier [ER03, ER06] in
the notion of differential λ-calculus and differential linear logic. These papers
provide an extension of the usual notions of λ-calculus and linear logic to
include a differential combinator, and explore the syntactic consequences. The
possible relationships to the present work are striking. Ehrhard and Regnier’s
work was subsequently categorified in [BCS06].

Finally it is possible to construct a mathematical model for the φ-calculus.
The manipulations that we have done with variational derivatives and expo-
nentials are very close to the calculations that one does to derive Feynman
diagrams from the generating functional of a quantum field theory [Ram81].
A precise calculus for these functional derivatives viewed as operators and for
propagators appears in the treatment of functional integration in “Quantum
Physics” by Glimm and Jaffe [GJ81].
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