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Abstract. We define an epistemic logic for labelled transition systems
by introducing equivalence relations for the agents on the states of the
labelled transition system. The idea is that agents observe the dynamics
of the system modulo their ability to distinguish states and in the process
learn about the current state and past history of the execution. This is
in the spirit of dynamic epistemic logic but is a direct combination of
Hennessy-Milner logic and epistemic logic. We give an axiomatization
for the logic and prove a completeness theorem with respect to the class
of models obtained by unfolding labelled transition systems.

1 Introduction

Dexter Kozen was one of the pioneers of logic and computation. Among his
numerous and varied contributions to the subject was an early joint paper with
Rohit Parikh [1] where they established an elementary proof of the completeness
of the Segerberg axioms for propositional dynamic logic (PDL) simplifying an
earlier proof of Parikh. One of us, Prakash Panangaden, learned basic modal
logic – and many other things – from Dexter when he arrived at Cornell as a
professor in 1985. The elegance of his presentation and the confident way in
which he blasted through all obstacles on the way to establishing a proof had a
profound influence on Panangaden. Over a quarter of a century later, this paper
on a completeness proof for a logic that combines Hennessy-Milner-van Bentham
logic with epistemic logic, bears the imprint of Dexter’s masterful presentation
of the intricacies of the completeness proof of PDL.

Concurrency theory has been built upon the implicit assumption of omniscience
of all the agents involved, but for many purposes – notably security applications –
it is crucial to incorporate and reason about what agents “know” or do not know.
Tracking the flow of information is the essence of analyses of security protocols.
Equally crucial is the idea that different participants may have different views
of the system and hence know different things. The purpose of this paper is to
meld traditional concurrency concepts with epistemic concepts and define a logic
with both dynamic and epistemic modalities.



Epistemic logic has been a major theme within distributed systems ever since
the groundbreaking paper of Halpern and Moses [2], but has been strangely
slow to influence concurrency theory. A few investigations have appeared but,
as far as we know, there has not been a thorough integration of epistemic con-
cepts with the traditional theory of labelled transition systems. Typically one
sees a multimodal logic closely tied to the syntax of some particular process
calculus with reasoning principles that are not proven complete in any sense [3].
Such logics are interesting and useful but their close tie to a particular process
formalism obscures the general principles. Another closely related strand is, of
course, dynamic epistemic logic [4] which, as the name makes manifest, is all
about how knowledge evolves. However, the bulk of this work is about actions
that communicate information, perhaps through messages or announcements,
rather than about general transitions that could change basic facts about the
state. A few papers indeed deal with so-called fact-changing actions but, as far as
we know, the theory is still geared toward communication actions. Our goals are
to develop the theory for a suitable general class of labelled transition systems
and to formulate axioms that are provably complete with respect to this class
of models. We provide more detailed comparisons with related work in a later
section after the presentation of our framework.

The standard route to modelling epistemic concepts is to use Kripke models:
these are sets of states equipped with indistinguishability (equivalence) rela-
tions [5]. We will equip the states with a labelled transition system structure
as well and impose coherence conditions between the two kinds of relations.
The resulting modal logic is a blend of Hennessy-Milner logic, epistemic logic
and temporal modalities. The essential point is that one can reason about how
knowledge changes as transitions occur. There are many variations that one could
contemplate and the particular formalism that we have developed is geared to-
ward representing the unfolding of a labelled transition system through time
taking into account different agents’ differing views of the labelled transition
system.

The paper is organized as follows. In the next section we review background
material on labelled transition systems and Hennessy-Milner logic. In Section 3
we define the class of transition systems that we work with; they are called history
labelled transition systems and are unfoldings of the usual labelled transition
systems, with the addition of equivalence relations on states. In Section 4 we
define the logic and its semantics. In Section 5 we prove the weak completeness
theorem. There is an easy argument, which we present in Section 5, that shows
that a strong completeness theorem is not possible. The final sections discuss
related work and conclusions.
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2 Background

We assume familiarity with basic concepts like labelled transition systems (LTSs)
and epistemic logic. For the benefit of readers who may not be familiar with these
ideas we give a brief overview in this section. An excellent exposition of general
modal logics is the text book by Blackburn et al. [6] called Modal Logic.

Definition 1 A labelled transition system is a triple (S,A,−→⊆ S × A × S),
where S is a set of states, A is a set of actions and −→ is a labelled transition
relation. We will write s

a−→ s′ when (s, a, s′) ∈−→.

The idea is that S represents the possible states of a dynamical system. The
system can perform certain actions and these cause a change in the state. The
resulting state is not completely determined by the initial state and the action
so that one has a transition relation rather than a function. Some actions may
not be possible in some states, if an action a is possible from state s we say that
a is enabled in s.

There are various senses in which states may be deemed to be equivalent. A
canonical one is called bisimulation. The idea of bisimulation is that if the actions
possible from two states and all of their successors do not distinguish them, they
should be deemed equivalent. Here is a formal definition.

Definition 2 We say that an equivalence relation R on the state space S of an
LTS is a bisimulation relation if whenever sRt and s

a−→ s′ then there exists
some t′ such that t

a−→ t′ with s′Rt′. We say that s and t are bisimilar if there
is some bisimulation relation relating them.

Since R is required to be an equivalence relation it follows that the analogous
condition holds with the roles of s and t exchanged. The properties of bisim-
ulation are discussed at length in the concurrency theory literature, see, for
example [7, 8] or in the modal logic literature, see, for example [9].

There is a remarkable theorem due independently to van Benthem and to Hen-
nessy and Milner that gives a modal characterization of bisimulation. The logic
has come to be called Hennessy-Milner logic. The basic constructs are the boolean
connectives and a modal operator written 〈a〉 or its dual [a], where the a’s ap-
pearing in the formulas are actions associated with the LTS being studied. The
definition of satisfaction for these formulas follows the standard inductive con-
struction due to Tarski with only the modal operator requiring explicit explana-
tion. This is given by s |= 〈a〉φ iff s

a−→ s′ and s′ |= φ. The fundamental theorem
is the following.

Theorem 3 Assume that (S,A,−→) is a labelled transition system with the

property that for a given s and a the set of s′ such that s
a−→ s′ is finite4.

Then two states s and t are bisimilar iff they satisfy all the same formulas of
Hennessy-Milner logic.

4 Such systems are said to be image finite.
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The basic setup for modelling epistemic logic is due to Kripke [10]; see Reasoning
About Knowledge by Fagin et al. [5]. Consider the set S of possible states5 of
some system. We have a finite set of agents, typically written I = {i, j, . . .}. We
define a modal operator – one for each agent – written Ki. The idea is that the
formula Kiφ means that the agent i knows the fact φ. The axioms usually used
are due to Hintikka [11]:

0. All propositional tautologies.
1. Kiφ⇒ φ Only truths can be known.
2. Ki(φ⇒ ψ)⇒ (Kiφ⇒ Kiψ) Deductive closure.
3. Kiφ⇒ KiKiφ Positive introspection.
4. ¬Kiφ⇒ Ki¬Kiφ Negative introspection.

These are used together with the following rules of inference.

φ

Kiφ

φ φ⇒ ψ

ψ

The semantics for this logic is given in terms of indistinguishability relations.
The idea is that a particular agent has only limited awareness of everything that
might be true in a state. In particular, an agent might not be able to distinguish
two states. We associate with each agent an equivalence relation that models its
ability to distinguish two states.

Definition 4 A Kripke structure is a set S of states, a finite set I of agents,
a set P of primitive propositions, for each state s a set π(s) ⊂ P and for each
i ∈ I an equivalence relation ∼i on S.

The meaning of an atomic proposition is built into the definition of the Kripke
structure: s |= p iff p ∈ π(s); the meaning of the boolean connectives is standard.
We define the meaning of the modal formula as follows: s |= Kiφ iff for every
state s′ such that s ∼i s′, s′ |= φ. The fundamental completeness theorem is
that a formula is provable from the Hintikka axioms if and only if it is true in
all Kripke structures.

3 Histories

The main contribution of this paper is to study how an agent’s knowledge
changes as transitions occur in a labelled transition system. The basic picture is
that the agent has a limited view of the states of the labelled transition system
and this is modelled by an equivalence relation on the states of the system just
as in a Kripke structure. The agent does not choose the actions to perform but

5 They are often called possible worlds in the philosophical literature.
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can see which action has happened and tries to deduce from this where it is. Our
temporal-epistemic logic will be designed to handle this type of reasoning.

The semantics of the formulas will be given in terms of histories or runs, as with
the semantics of Halpern and Moses [2, 12], but we view the runs as coming from
the executions of a labelled transition system (LTS). In fact, we will view the set
of runs as forming a labelled transition system in its own right. This will give a
“branching-time” logic rather than a linear-time logic. We will use the box and
diamond modalities of Hennessy-Milner logic [13] rather than the “always” and
“eventually” modalities of temporal logic. In this section, we motivate the need
for this particular combination of modalities.

The basic set up for a purely epistemic (static) logic is a set of states with
equivalence relations, one for each agent. If we wish to incorporate this into a
given labelled transition system the natural step is to define equivalence rela-
tions on the states of the labelled transition system. If one does this näıvely
one gets situations where one cannot say what an agent has learned from its
history.

Example 1. Consider the following simple labelled transition system:

s0 s1

s2 s3,p

a

��

i

i

where the wiggly line refers to the indistinguishability equivalence relation of
agent i and the proposition p holds in the state s3 and in no other state. The
agent i in state s0 cannot tell whether he is in s0 or in s1. Similarly, in s2 he
cannot tell whether he is in s2 or in s3. However, if the agent is in s0 and then
observes an a action then he “knows” he must have been in s0 and further, that
he is in s2 now. No purely state-based semantics can say this. It is only because
the agent “remembers” how he got there that one can say anything. Thus, a
purely state based semantics is not adequate for even the simplest statements
about evolving knowledge for agents with memory and basic reasoning abilities.
♣

The basic paradigm that we have in mind is that the agent is observing a tran-
sition system: the agent can see the actions and can remember the actions but
cannot control the actions nor see which actions are available at a given state.
The extent to which an agent can “see” the state is what the indistinguishability
relation spells out.

In order to give the semantics of the epistemic modalities we need to extend the
equivalence relation from states to histories. We formalize labelled transition
systems, histories and this equivalence relation as follows.
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Definition 5 An epistemic labelled transition system is a set of states, S,
a finite set of actions A, and, for every a ∈ A, a binary relation, written

a−−→,
on the states. We write s

a−−→ s′ instead of (s, s′) ∈ a−−→. In addition, there is a
finite set of agents, denoted by letters like i, j, . . .. For each agent i there is an
equivalence relation, written ∼i defined on S.

The relation
a−−→ can be nondeterministic and does not have to be image-finite

6. From now on we always mean an epistemic labelled transition system when
we use the phrase “labelled transition system.” We also assume that all actions
are visible, that is, there are no hidden actions (commonly denoted by τ).

Definition 6 A history is a finite alternating sequence of states and actions

s0a1s1a2s2 . . . ansn,

where, for each l ∈ {0, . . . , n− 1}, sl
al+1−−−−→ sl+1.

Given a pair of histories, an agent can tell immediately that they are not the
same if they do not have exactly the same action. In order to say this it will be
convenient to define the notation act(h) to mean the action sequence extracted
from the history h; it has an evident inductive definition. Given a history h, we
write h[n] for the nth state in h. Thus if h = s0a1s1a2s2a3s3, act(h) = a1a2a3
and h[0] = s0 while h[2] = s2. We write |h| for the length of the sequence of
states in h.

Definition 7 We say that the histories h1 and h2 are indistinguishable by
agent i, written h1 ∼i h2, if: (i) act(h1) = act(h2) and (ii) for all 0 ≤ n ≤
|h1|(= |h2|), h1[n] ∼i h2[n].

The use of the same notation for indistinguishability of states and histories
should not occasion anxiety for the reader as the context will disambiguate
which we mean; this usage is meant to emphasize the tight connection between
the concepts.

It is useful to have both past and future modalities. We will define the syntax
precisely in the next section, for the moment we note that 〈−〉 means one step
in the past and 〈+〉a means possibly after an a-step into the future (we will
see later why the future operator is concerned with possibility while the past
operator is not). Consider the labelled transition system we have used for our
example above. Suppose we introduce the proposition @s to mean “at the state
s” then we want to be able to say things like s0as2 |= Ki〈−〉@s0. Note that we
cannot say s0 |= Ki@s0, so we need the past operator to express the idea that
agent i learns where he was in the past, or, in general, learns that a fact used
to be true. Note that, for this example, s0as2 |= 〈−〉Ki@s0 does not hold, even
though s0as2 |= Ki〈−〉@s0 does.

6 “Image finite” means that for a given s and a the set {s′|s a−−→ s′} is finite.
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Note that every history has a beginning and every state has a finite number
of predecessors: in short the prefix order on histories is well founded. This will
cause most of the difficulties in the completeness proof.

Example 2. Why do we need the Hennessy-Milner like modalities indexed by
actions? Consider the following simple labelled transition system:

s0 s1

s2,p s3 s4

a

��
b

��

a

��

i

i

which is like the previous example except for the addition of the extra state and
transitions and the fact that p is true in s2 instead of s3. We would like to be
able to say s0 |= 〈+〉aKip. Note that s4 can be distinguished by i from any other
state. Without the ability to label the diamonds with a we would have to write
s0 |= 〈+〉Kip which is simply mot true. The point is that the agents can see the
labels on the transitions and use them to gain knowledge; in order to describe
this the action labels must be on the Hennessy-Milner modalities. ♣

The logic, though its semantics is given in terms of runs, is actually a branching
time logic. It is applied to a very specific type of transition system that arises
as the set of histories of general labelled transition system. The “states” are
histories and the transitions are of the form

s0a1s1 . . . ansn
a−−→ s0a1s1 . . . ansnas

whenever sn
a−−→ s is a transition of the underlying labelled transition system.

The key features of these labelled transition systems of histories are: a well
foundedness property for the backward transitions, determinacy for the back-
ward transitions and a few other properties.7 In the course of the completeness
proof we will spell out these properties and then proceed with the axiomatization
and completeness theorem.

Example 3. Here is an example about why the identity of actions is important.

s0

a,c

��

a,b

��

s2s1 ∼i

7 In fact, such transition systems arise naturally as unfoldings of general labelled
transition systems.
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If this system starts out in s0 and an a action occurs, then agent i will not know
which state he is in, because s1 and s2 are equivalent for the agent. But if the
system does a b action, then the agent knows he is in s1 because he observes the
b action and s1 is the only state that a b action leads to. Similarly, if the system
does a c action, then the agent knows that the system is in s2. ♣

Example 4. This example shows why we want to be able to combine epistemic
modalities and (past or future) temporal modalities. Here p represents some
proposition.

s0
p

a

��

s1
¬p

a

��

∼i

s2
p

s3
¬p

∼i

If the system starts out in s0 or s1, then after an a action, the agent does not
know whether p is true, but he does know that if p is true now, then it must
have been true in the first state, and if p is false now, it must have been false in
the first state. ♣

Example 5.

s0
p

a

��

a

��

s1
¬p

a

��

∼i

s2
p

s3
¬p

∼i

If this system starts out in s0 or s1 and then an a action occurs, then after the
action, the agent does not know whether p is true, but he knows that if p is true
now, then it was true in the start state. But he also knows that if p is not true
now, then p may or may not have been true in the start state. ♣

3.1 History Systems

First we will explain how to translate any LTS with equivalence classes into an
equivalent history LTS: an LTS with designated starting states, where the entire
history of any run starting from a starting state is determined by its current
state.

Definition 8 Given the LTS (S0,A, I,−−→
0
,∼0), where S0 is the set of states, A

is the set of actions, I the set of agents, −−→
0
⊆ S0×A×S0 is the transition relation
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and ∼0⊆ S0 × I × S0 is the indistinguishability relation, inductively construct
the unfolding (S1,A, I,−−→

+
,−−→
−
,
∗−−→
+
,
∗−−→
−
,∼1), where −−→

+
⊆ S1 × A × S1,

−−→
−
⊆ S1 ×A× S1,

∗−−→
+
⊆ S1 × S1 and

∗−−→
−
⊆ S1 × S1, as follows:

1. If s ∈ S0 then s ∈ S1.

2. If s0.a1.s1.a2...sn ∈ S1 and sn
a−−→
0

s then s0.a1...sn.a.s ∈ S1 and s0.a1...sn
a−−→
+

s0.a1...sn.a.s.

3. If s0.a1...sn, s0.a1...sn.a.s ∈ S1 then s0.a1...sn.a.s
a−−→
−

s0.a1...sn.

4. If s0.a1...sn ∈ S1 then s0.a1...sn
∗−−→
+

s0.a1...sn.

5. If s0.a1...sn, s0.a1...sn.an+1...a.s ∈ S0 then s0.a1...sn
∗−−→
+

s0.a1...sn.an+1...a.s.

6. If s0.a1...sn ∈ S1 then s0.a1...sn
∗−−→
−

s0.a1...sn.

7. If s0.a1...sn, s0.a1...sn.an+1...a.s ∈ S0 then s0.a1...sn.an+1...a.s
∗−−→
−

s0.a1...sn.

8. If s, t ∈ S0 and s ∼0
i t then s ∼1

i t.

9. If s, t ∈ S1 and s ∼1
i t and s

a−−→
+

s.a.s′ and t
a−−→
+

t.a.t′ and s′ ∼0
i t
′ then

s.a.s′ ∼1
i t.a.t

′.

Definition 9 An LTS with agent equivalence classes and with transition rela-
tions −−→

+
⊆ S1 ×A× S1, −−→

−
⊆ S1 ×A× S1,

∗−−→
+
⊆ S1 × S1 and

∗−−→
−
⊆ S1 × S1

is called a history-LTS if it satisfies the following properties:

1. Forward and backward transitions are converse: s
a−−→
+

t iff t
a−−→
−

s.

2. There is only one way to reach each state: if s
a−−→
+

t then for all states s′

and all actions b, if s′
b−−→
+

t then s = s′ and a = b.

3. If we let −−→
+

=
⋃
a∈A

a−−→
+

, then
∗−−→
+

is the transitive reflexive closure of
−−→
+

.

4. If we let −−→
−

=
⋃
a∈A

a−−→
−

, then
∗−−→
−

is the transitive reflexive closure of
−−→
−

.

5. There are no infinite backward paths: it is impossible to have an infinite
chain s0 −−→− s1 −−→− ... −−→

−
sn −−→− ....

6. ∼i is transitive, reflexive and symmetric for each agent i.
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7. If s1 ∼i t1 and there exists a state s0 and an action a such that s0
a−−→
+

s1

then there exists a state t0 such that t0
a−−→
+

t1 and s0 ∼i t0.

These properties capture the idea that a history LTS is exactly what we get
when we unfold the paths of an LTS with agent equivalence relations; a formal
proof is straightforward. At each stage there is possible future branching but
the past is determined in a particular history. Thus the past modalities are like
LTL modalities but not the future modalities. The starred modalities give one
the power of “always” and “eventually” operators in temporal logics. A history
is assumed to have a starting point so it must be well founded.

4 The Logic and its Semantics

In this section we present the logic. It allows us to discuss what is true at a
certain state, what was true in the past, what agents know at at the current
state, and what may or must be true in the future.

We assume a finite set of agents I, a finite set of actions A, and a countable set
of propositions Q. In the following definition, a ∈ A, i ∈ I, and q ∈ Q.

Definition 10 (Syntax)

φ := > | q | 〈+〉aφ | 〈−〉aφ | 〈+〉∗φ | 〈−〉∗φ | Kiφ | ¬φ | φ ∧ φ

As usual, we assume the boolean constants ⊥ = p ∧ ¬p and > = ¬⊥ and the
boolean operators ⇒,∨, ⇐⇒ . In addition we define

[−]aφ = ¬〈−〉a¬φ [+]aφ = ¬〈+〉a¬φ,
[−]
∗
φ = ¬〈−〉∗¬φ, [+]

∗
φ = ¬〈+〉∗¬φ,

〈−〉φ =
∨
a∈A
〈−〉aφ, 〈+〉φ =

∨
a∈A
〈+〉aφ,

[−]φ = ¬〈−〉¬φ, [+]φ = ¬〈+〉¬φ.

In order to define the semantics we consider the (oriented) labeled graphs over
A. These capture sets of histories as we defined them in the previous section.
The nodes of the graph are states and the transitions are labelled by actions in
A. A path through the graph is a history.

If G = (S,
a−→)a∈A is a labelled graph, we denote by −→ the relation

⋃
a∈A

a−→ and

by
∗−−→ the reflexive-transitive closures of −→ respectively.

Definition 11 (Labelled forest8) A labelled forest over A is a labelled graph

G = (S,
a−→)a∈A such that

1. for arbitrary s, s′, s′′ ∈ S, s′ −→ s and s′′ −→ s implies s′ = s′′;
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2. there exists no infinite sequence s0, s1, .., sk, .. ∈ S such that si+1 −→ si for
each i ∈ N; i.e. it is well-founded to the past.

The support of a forest F , denoted by supp(F), is the set of its nodes. Give a
labelled forest F , we say that an equivalence relation ≈⊆ supp(F) × supp(F)
reflects the branching structure if whenever s ≈ t, the existence of a transition
s′

a−→ s implies the existence of t′ ∈ supp(F) such that t′
a−→ t and s′ ≈ t′. Notice

that this is a backward bisimulation property; it is a backward preservation
property.

Definition 12 (Epistemic Frame) Given a set I (of agents), an epistemic
frame is a tuple E = (F , (≈i)i∈I), where F is a labelled forest over A and
(≈i)i∈I is an indexed set of equivalence relations on supp(F) such that for each
i ∈ I, ≈i preserves the branching structure.

We call the relation ≈i the indistinguishability relation of agent i ∈ I. Observe
that an epistemic frame defines a unique history-LTS and a history-LTS is sup-
ported by a unique epistemic frame.

In the following definition we write s, t, r with or without subscripts for states,
p and variants for propositions, φ, ψ for formulas and a for actions and i for
agents.

Definition 13 (Semantics) The semantics is defined for an epistemic frame
E = (F , (≈i)i∈I), a state s ∈ supp(F) and an interpretation function Prop :
supp(F) −→ 2P , as follows.

s |= > for all s.
s |= p if p ∈ Prop(s).
s |= 〈+〉aφ if there exists a state t such that s

a−−→ t and t |= φ.

s |= 〈−〉aφ if there exists a state r such that r
a−−→ s and r |= φ.

s |= 〈+〉∗φ if there exist s1, ..., sn ∈ S and a1, ..., an ∈ A such that

s
a1−−→ s1

a2−−→ s2
a3−−→ ...

an−1−−−−→ sn−1
an−−−→ sn and sn |= φ.

s |= 〈−〉∗φ if there exist s0, ..., sn−1 ∈ S and a1, ..., an ∈ A such that

s0
a1−−→ s1

a2−−→ ...
an−1−−−−→ sn−1

an−−−→ s and s0 |= φ.
s |= Kiφ if for all t such that s ∼i t, t |= φ.
s |= ¬φ if it is not the case that s |= φ.
s |= φ1 ∧ φ2 if s |= φ1 and s |= φ2.
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Now we have defined our basic operators. For convenience, we also define other
operators as shorthand for certain combinations of these basic operators:

〈+〉φ :=
∨
a∈A
〈+〉aφ

〈−〉φ :=
∨
a∈A
〈−〉aφ

[+]aφ := ¬〈+〉a¬φ
[−]aφ := ¬〈−〉a¬φ
[+]φ :=

∧
a∈A

[+]aφ

[−]φ :=
∧
a∈A

[−]aφ

[+]∗φ := ¬〈+〉∗¬φ
[−]∗φ := ¬〈−〉∗¬φ
Liφ := ¬Ki¬φ

Note that [+]φ = ¬〈+〉¬φ and [−]φ = ¬〈−〉¬φ. The semantics of these derived
operators are:

s |= ⊥ never.

s |= [+]aφ iff for any t ∈ supp(F) s.t. s
a−→ t, t |= φ,

s |= [−]aφ iff for any t ∈ supp(F) s.t. t
a−→ s, t |= φ,

s |= [+]∗φ iff for any t ∈ supp(F) s.t. s
∗−−→ t, t |= φ,

s |= [−]∗φ iff for any t ∈ supp(F) s.t. t
∗−−→ s, t |= φ.

If we have an epistemic frame E , a valuation is a map ρ : supp(F) −→ 2P which
provides an interpretation of the propositions in the states of E . If a formula
φ is true in a given epistemic frame E and state s with a valuation ρ we write
E , s, ρ |= φ and we say that (E , s, ρ) is a model of φ. In this case we say that φ is
satisfiable. Given an arbitrary φ ∈ L, if for any epistemic frame E = (F , (≈i)i∈I),
any state s ∈ supp(F) and any valuation ρ, E , s, ρ |= φ we say that φ is valid and
write |= φ. We also write E , s, ρ |= Φ, where Φ is a set of formulas if it models
every formula in the set Φ. We write Γ |= φ if any model of Γ is a model of
φ.

Example 6. Here is a more complicated example with multiple agents9 which we
describe as an illustration of our logic.

The situation is as follows: There are three agents, one diamond, and a bag. The
diamond can either be held by one of the agents or it can be in the box. Each
agent can perform two actions: reach into the bag and take the diamond if it is

9 This example was developed by Caitlin Phillips.
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there, and drop the diamond into the bag, or pretend to drop it. After dropping
or pretending to drop the diamond, the agent shows the other agents that his
hands are empty, so it is impossible to keep the diamond while pretending to
drop it. On the other hand, if the agent does not have the diamond, he can
still pretend to drop it in the box. If the agent reaches into the box to take the
diamond, he will take it if it is there, and will not take it if it is not there.

Here is the transition system:

I

Di

��

Pi,Pj ,Pl,Dj ,Dl

��

N

Pi

HH

Pj

��
Pl

rr Di,Dj ,Dl

SS

J

Dj

ZZ

Pi,Pj ,Pl,Di,DlssL

Dl

33

Pi,Pj ,Pl,Di,Dj

33

The agents are i, j, and l. In state N , no one has the diamond, and in states I,
J , and L, agents i, j, and l respectively have the diamond. Action Pi represents
agent i picking up or pretending to pick up the diamond and action Di represents
agent i dropping or pretending to drop the diamond.

The equivalence classes are as follows:
N ∼i J ∼i L
N ∼j I ∼j L
N ∼l I ∼l J .

We use as propositions @I, @J , @L and @N ; each proposition is true only in
the corresponding state and in each state only the corresponding proposition is
true. For example, the only proposition true in state I is @I. We write Prop for
this set of 4 propositions. Now we consider the formulas

φ1 =
∧

X∈Prop

X ⇒ KlX

φ2 = 〈−〉Pl
@N

13



φ3 =
∨

X∈Prop

KlX

The first formula says that if any of the propositions are true then l knows it:
in short l knows where the diamond is. Of course this formula is not universally
true, it might or might not be true depending on the situation. The second
formula is true for a history where the immediately preceding action is Pl (l
picks up the diamond) and in the immediately preceding state nobody had the
diamond (i.e. it was in the bag). In other words φ2 describes the situation where
the diamond was in the bag and l has just picked it up. The formula φ3 says
whatever the state happens to be, l knows it. Here are two formulas that are
true in every state of the unfolded labelled transition system (the history LTS):

φ2 ⇒ [+]
∗
φ1 and φ3 ⇒ [+]

∗
φ1.

The first is true because l has picked up the diamond and can now track its
movements precisely for all future moves since all actions are visible to him. The
second statement is slightly more general, it says that once l knows where the
diamond is he can track its future exactly.

Here is another example of reasoning within this system. We define φ4 to be
like φ1 except that we have Ki instead of Kl and φ5 is like φ1 except that Kj

replaces Kl. Now we can conclude that the following formula is true in every
state

〈−〉Di
〈−〉Dj

〈−〉Dl
⇒ [+]

∗
(φ1 ∧ φ2 ∧ φ3).

What we cannot say in this logic is that the location of the diamond is common
knowledge. ♣

5 A Complete Axiomatization

We assume the axioms and rules of classical propositional logic. Because we have
5 independent modalities in our logic (Ki, 〈+〉a, 〈−〉a, 〈+〉∗ and 〈−〉∗) we expect
to have, in addition, five classes of axioms (one for each modality) reflecting the
behaviour of that modality in relation to Booleans. In addition, we will have a
few other classes of axioms describing the relations between various modalities.
For instance, 〈+〉a and 〈−〉a are in a certain duality supported by our intuition
about time, so we expect to have some axioms relating these two. Similarly
between 〈+〉∗ and 〈−〉∗. We also have some clear intuition about the relation
between time transition and knowledge update that will be characterized by
some axioms combining dynamic and epistemic operators.

The axioms of L are presented in Table 1.

Many of the lemmas apply generically to 〈〉 or [] modalities and the proofs are
essentially identical for the different variants. To streamline some proofs, we use
the tuple of symbols (3,2) to represent an arbitrary tuple of type (〈−〉a, [−]a),

14



(A1): ` [+]aφ ∧ [+]a(φ⇒ ψ)⇒ [+]aψ
(A2): If ` φ then ` [+]aφ

(B1): ` [−]aφ ∧ [−]a(φ⇒ ψ)⇒ [−]aψ
(B2): If ` φ then ` [−]aφ
(B3): ` 〈−〉a> ⇒

∧
a6=b[−]b⊥

(B4): ` 〈−〉aφ⇒ [−]φ

(AB1): ` φ⇒ [+]a〈−〉aφ
(AB2): ` φ⇒ [−]a〈+〉aφ

(C1): ` [+]∗φ ∧ [+]∗(φ⇒ ψ)⇒ [+]∗ψ
(C2): If ` φ then ` [+]∗φ
(C3): ` [+]∗φ↔ (φ ∧ [+][+]∗φ)
(C4): ` [+]∗(φ⇒ [+]φ)⇒ (φ⇒ [+]∗φ)
(D1): ` [−]∗φ ∧ [−]∗(φ⇒ ψ)⇒ [−]∗ψ
(D2): If ` φ then ` [−]∗φ
(D3): ` [−]∗φ↔ (φ ∧ [−][−]∗φ)
(D4): ` [−]∗(φ⇒ [−]φ)⇒ (φ⇒ [−]∗φ)

(BD1): ` 〈−〉∗[−]⊥

(E1): ` Kiφ ∧Ki(φ⇒ ψ)⇒ Kiψ
(E2): If ` φ then ` Kiφ
(E3): ` Kiφ⇒ φ
(E4): ` Kiφ⇒ KiKiφ
(E5): ` ¬Kiφ⇒ Ki¬Kiφ

(BE1): ` 〈−〉aKiφ⇒ Ki〈−〉aφ
Table 1. Hilbert-style axiomatization for L

(〈+〉a, [+]a), (〈−〉, [−]), or (〈+〉, [+]). Similarly, (3∗,2∗) represents (〈+〉∗, [+]∗)
or (〈−〉∗, [−]∗). We also use (3x,2x) to represent an arbitrary tuple of type
(〈−〉a, [−]a), (〈+〉a, [+]a), (〈−〉, [−]), (〈+〉, [+]), (〈+〉∗, [+]∗) or (〈−〉∗, [−]∗). With
these notations, the axioms (A1),(A2), (B1), (B2), (C1), (C2) and (D1), (D2)
cn be regarded as instances of (X1), (X2). Similarly, (C3), (C4) and (D3), (D4)
are instances of (X3), (X4).

(X1): ` 2xφ ∧2x(φ⇒ ψ)⇒ 2xψ
(X2): If ` φ then ` 2xφ
(X3): ` 2∗φ↔ (φ ∧22∗φ)
(X4): ` 2∗(φ⇒ 2φ)⇒ (φ⇒ 2∗φ)

From (X1) and (X2) alone we can prove a lemma which can be instantiated to
all the particular instances. This is a standard lemma of modal logic.

Lemma 1. 1. If ` φ⇒ ψ, then ` 2xφ⇒ 2xψ and ` 3xφ⇒ 3xψ.
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2. If ` φ⇒ ψ, then ` Kiφ⇒ Kiψ.

3. ` 〈−〉aφ⇒ [−]aφ and ` 〈−〉φ⇒ [−]φ.

Proof. 1. From (X2), ` φ ⇒ ψ implies ` 2x(φ ⇒ ψ). If we use this with
` 2x(φ⇒ ψ)⇒ (2xφ⇒ 2xψ), which is equivalent to (X1), we obtain ` 2xφ⇒
2xψ.

To prove the second implication, we start from ` ¬ψ ⇒ ¬φ and apply the first
result which gives us ` 2x¬φ ⇒ 2x¬ψ. Using De Morgan we derive ` 3xφ ⇒
3xψ.

2. It is proved in the same way as 1; in fact K is a box-like modality.

3. From (B4) we have ` 〈−〉aφ⇒
∧
a

[−]aφ which implies ` 〈−〉aφ⇒ [−]aφ. The

same axiom implies `
∧
a

(〈−〉aφ ⇒ [−]φ) which is equivalent to `
∨
a

〈−〉aφ ⇒

[−]φ which implies ` 〈−〉φ⇒ [−]φ.

As usual, we say that a formula φ ∈ L is provable, denoted by ` φ, if it can be
proved from the axioms in Table1 and boolean rules. We say that φ is consistent,
if ¬φ is not provable from the axioms.

Given Φ, Ψ ⊆ L, Φ proves Ψ if from the formulas of Φ and the axioms we can
prove each ψ ∈ Ψ ; we write Φ ` Ψ . Let [Φ] = {ψ ∈ L | Φ ` ψ}; this is the
deductive closure of Φ. Φ is consistent if it is not the case that Φ ` ⊥.

For a sublanguage L ⊆ L, we call Φ L-maximally consistent if Φ is consistent and
no formula of L can be added to it without making it inconsistent. The following
lemma follows directly from the definition of maximal consistency.

Lemma 2. If Γ is a consistent set of formulas then the following assertions are
true.

1. if 3x> ∈ [Γ ] and 3xφ 6∈ [Γ ], then {ψ ∈ L | 2xψ ∈ [Γ ]}∪{¬φ} is consistent.

2. if 2xφ 6∈ [Γ ], then {ψ ∈ L | 2xψ ∈ [Γ ]} ∪ {¬φ} is consistent.

Proof. Let Λ = {ψ ∈ L | 2xψ ∈ [Γ ]}. Suppose that Λ ∪ {¬φ} is inconsistent.
Then there is a finite set {f1, .., fn} ⊆ Λ s.t. ` f1 ∧ .. ∧ fn ⇒ φ. Hence, `
2x(f1 ∧ .. ∧ fn) ⇒ 2xφ implying further ` (2xf1 ∧ .. ∧ 2xfn) ⇒ 2xφ. Hence,
2xφ ∈ [Γ ].

1. If 3x> ∈ [Γ ], from 2xφ ∈ [Γ ] we obtain 3xφ ∈ [Γ ] - contradiction.

2. 2xφ 6∈ [Γ ] is again contradictory.

A basic theorem that holds for the axiom system is the soundness property.
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Theorem 1 (Soundness). The axiomatic system of L is sound, i.e., for any
φ ∈ L,

` φ implies |= φ.

The proof is a routine structural induction. It is sufficient to prove that each
axiom is sound and that each rule preserves the soundness.

The more interesting result is the completeness of the axiom system. More-
over, we will show that for each consistent formula a finite model can be con-
structed.

Recall that there are two notions of completeness: strong completeness and weak
completeness. Strong completeness says that

Γ |= φ ⇐⇒ Γ ` φ.

An important easy consequence of strong completeness is the so-called compact-
ness property. A logic is said to be compact if every inconsistent set of formulas
has a finite inconsistent subset. Our logic is not compact. For example, the set
of formulas

{p, [+]p, [+][+]p, [+]
3
p, . . . ,¬[+]

∗
p}

is not consistent but any finite subset is consistent. Therefore we cannot hope
to prove strong completeness. Instead we prove weak completeness

|= φ ⇐⇒ ` φ.

Many of the basic completeness proofs in the literature are strong complete-
ness proofs and are much easier than weak completeness proofs. The proof
that we present shares many of the features of the weak completeness proof
for PDL.

Before proceeding with these proofs we establish some notation that will be
useful for future constructions.

We extend, canonically, all the logical operators from formulas to sets of formulas.
Thus for arbitrary Φ, Ψ ⊆ L, Φ ∧ Ψ = {φ ∧ ψ | φ ∈ Φ,ψ ∈ Ψ}, 〈+〉aΦ = {〈+〉aφ |
φ ∈ Φ}, and so on for all the modal operators.

If Φ ⊆ L is finite, we use Φ to also denote
∧
φ∈Φ φ; it should be clear from the

context when Φ denotes a set of formulas and when it denotes the conjunction
of its elements.

A key step in the proof is the construction of models by using maximally consis-
tent sets as states. However, because we are trying to prove a weak completeness
theorem we have to ensure that we are constructing finite sets of formulas. The
liberal notion of maximal consistency used in strong completeness proofs is not
available to us. If we wish to construct a model of a formula φ, we need to de-
fine a special family of formulas associated with φ from which we will construct
maximal consistent subsets. Furthermore we need to ensure that the collection
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of formulas we construct is finite. We adapt a construction due to Fischer and
Ladner [14] developed in the context of PDL.

For an arbitrary φ ∈ L, let ∼ φ = ψ whenever φ = ¬ψ and ∼ φ = ¬φ otherwise.
For an arbitrary φ ∈ L, let kiφ = φ whenever φ = Kiψ or φ = ¬Kiψ and
kiφ = Kiφ otherwise.

Definition 14 The (Fischer-Ladner) closure of φ, written FL(φ), is defined as
a set of formulas such that:

– φ, 〈−〉ap, 〈−〉a> ∈ FL(φ),

– if ψ ∈ FL(φ), then ∼ ψ ∈ FL(φ), kiψ and any subformula of ψ is in FL(φ),

– if 〈−〉aψ ∈ FL(φ) or 〈+〉aψ ∈ FL(φ), then 〈−〉ψ, 〈+〉ψ ∈ FL(φ),

– if 3∗ψ ∈ FL(φ), then 33∗ψ ∈ FL(φ).

The following lemma is immediate but important to state because we have to
ensure that we always have finite sets of formulas when we construct models out
of sets of formulas.

Lemma 3. For any φ ∈ L, FL(φ) is finite.

In what follows we fix a consistent formula θ ∈ L and we construct a finite model
for θ. This means that we construct an epistemic frame Eθ = (Fθ, (≈i)i∈I), a
valuation ρ : supp(Fθ)⇒ 2P and we will identify a state s ∈ supp(Fθ) such that
s |= θ.

Let Ωθ be the set of FL(θ)-maximally consistent sets. Because FL(θ) is finite,
Ωθ and any Γ ∈ Ωθ are finite sets. In the construction of the model we will use
Ωθ as the support set for Fθ. The transitions on Ωθ are defined as follows. For
each a ∈ A, let

a−→⊆ Ωθ ×Ωθ be defined by

Γ
a−→ Γ ′ iff for any ψ ∈ L, [+]aψ ∈ [Γ ] implies ψ ∈ [Γ ′].

Now we prove a few properties of these transitions that will be important for
the rest of the proof.

Lemma 4. For arbitrary Γ, Γ ′ ∈ Ωθ the following are equivalent

1. for any φ ∈ L, [+]aφ ∈ [Γ ] implies φ ∈ [Γ ′],

2. for any φ ∈ L, [−]aφ ∈ [Γ ′] implies φ ∈ [Γ ].

Proof. (1) implies (2): Suppose that [−]aφ ∈ [Γ ′]. Then, ` Γ ′ ⇒ [−]aφ and using
axiom (AB1), ` 〈+〉aΓ ′ ⇒ φ. If we prove that 〈+〉aΓ ′ ∈ [Γ ], then φ ∈ [Γ ] and
the proof is done. Observe that 〈+〉a> ∈ [Γ ] because otherwise ¬〈+〉a> ∈ [Γ ]
implying [+]a⊥ ∈ [Γ ] and from the hypothesis we obtain ⊥ ∈ [Γ ′] - impossi-
ble. Hence, 〈+〉a> ∈ [Γ ] and if 〈+〉aΓ ′ 6∈ [Γ ], from Lemma 2 instantiated to
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2x = [+]a, we obtain that {ψ | [+]aψ ∈ [Γ ]} ∪ {¬Γ ′} is consistent. But this is
impossible because, from the hypothesis, {ψ | [+]aψ ∈ [Γ ]} ⊆ [Γ ′].

(2) implies (1) Suppose that [+]aφ ∈ [Γ ]. Then, ` Γ ⇒ [+]aφ implying `
〈−〉aΓ ⇒ 〈−〉a[+]aφ. Now (AB2) guarantees that ` 〈−〉aΓ ⇒ φ. In any normal
modal logic we have that ` (2ψ ∧ 3>) ⇒ 3ψ. We use this with the previous
formula and we obtain ` ([−]aΓ ∧ 〈−〉a>)⇒ φ.

Note that 〈−〉a> ∈ Γ ′ because otherwise [−]a⊥ ∈ Γ ′ and, from the hypothesis
we obtain that ⊥ ∈ [Γ ] - impossible. Now, if we prove that [−]aΓ ∈ [Γ ′], then
φ ∈ [Γ ′] and the proof is done. Now note that [−]aΓ 6∈ [Γ ′] implies, using Lemma
2 instantiated with 2x = [−]a, that {ψ | [−]aψ ∈ [Γ ′]}∪{¬Γ} is consistent. But
this is impossible because, from the hypothesis, {ψ | [−]aψ ∈ [Γ ′]} ⊆ [Γ ].

This lemma tells us that we can define the transitions either using [+] or [−].

Lemma 5. For arbitrary Γ ∈ Ωθ and [+]aφ ∈ FL(θ),

1. [+]aφ ∈ Γ iff for any Γ ′ ∈ Ωθ, Γ
a−→ Γ ′ ⇒ φ ∈ Γ ′;

2. 〈+〉aφ ∈ Γ iff there exists Γ ′ ∈ Ωθ such that Γ
a−→ Γ ′, φ ∈ Γ ′;

3. [−]aφ ∈ Γ iff for any Γ ′ ∈ Ωθ such that Γ ′
a−→ Γ, φ ∈ Γ ′;

4. 〈−〉aφ ∈ Γ iff there exists Γ ′ ∈ Ωθ such that Γ ′
a−→ Γ, φ ∈ Γ ′.

Proof. 1. (⇒:) From the definition of
a−→.

(⇐:) Let φ be such that φ ∈ [Γ ′] for each Γ ′ ∈ Ωθ with Γ
a−→ Γ ′. We need to

prove that [+]aφ ∈ [Γ ]. Note that a formula that is in [Γ ] and also in FL(θ) is
automatically in Γ .

Let ∆ = {Γ ′ ∈ Ωθ | Γ
a−→ Γ ′} and let δ =

∨
Γ ′∈∆

Γ ′. Obviously, ` δ ⇒ φ implying

` [+]aδ ⇒ [+]aφ. Now, if we prove that [+]aδ ∈ [Γ ], the proof is done.

Suppose that [+]aδ 6∈ [Γ ]. Lemma 2 implies that Λ ∪ {¬δ} is consistent, where
Λ = {ψ | [+]aψ ∈ [Γ ]}. But [+]aψ ∈ [Γ ] implies ψ ∈ Γ ′ for each Γ ′ ∈ ∆ and this
proves that Λ ∪ {¬δ} cannot be consistent.

(2) is the De Morgan dual of (1).

(3) and (4) are proved in the same way as (1) and (2).

We draw the reader’s attention to a minor subtlety in the proof because it
recurs in several later proofs. We showed that a formula in FL(θ), say φ, is in
the deductive closure of a maximally consistent subset, say Γ , of FL(θ), in other
words we showed that φ ∈ [Γ ]. From the fact that φ is itself in FL(θ) we were
able to deduce that φ is in Γ itself precisely because Γ is maximal consistent as
a subset of FL(θ).
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We now need to establish the analogous results for the starred modalities. In

what follows, let −→=
⋃
a∈A

a−→ and −→∗ be its reflexive-transitive closure. This

means that Γ −→∗ Γ ′ if there exists a sequence Γ1, . . . , Γk ∈ Ωθ such that

Γ = Γ1 −→ Γ2 −→ . . . −→ Γk−1 −→ Γk = Γ ′;

Because −→∗ is reflexive, k can be 1.

Lemma 6. For arbitrary Γ, Γ ′ ∈ Ωθ the following are equivalent

1. for any φ ∈ L, [+]∗φ ∈ [Γ ] implies φ ∈ [Γ ′],

2. for any φ ∈ L, [−]∗φ ∈ [Γ ′] implies φ ∈ [Γ ],

3. Γ −→∗ Γ ′.

Proof. (1) =⇒ (3): Let ∆ = {Λ ∈ Ωθ | Γ −→∗ Λ} and δ =
∨
Λ∈∆

Λ.

By construction, if [+]φ ∈ [Λ] for some Λ ∈ ∆, there exists Λ′ ∈ ∆ such that
φ ∈ [Λ′]. This entails ` δ ⇒ [+]δ which guarantees that ` [+]∗(δ ⇒ [+]δ).
Using axiom (C4), we obtain ` δ ⇒ [+]∗δ. But Γ ∈ δ (because −→∗ is reflexive),
consequently ` Γ ⇒ δ. From here and the previous we derive ` Γ ⇒ [+]∗δ
implying [+]∗δ ∈ [Γ ]. Now using 1., δ ∈ [Γ ′] implying Γ ′ ∈ ∆.

(3) ⇒ (1): Suppose that Γ = Γ1 −→ . . . −→ Γk = Γ ′ and [+]∗φ ∈ [Γ ]. Axiom
(C3) guarantees that φ ∈ [Γ1] and [+][+]∗φ ∈ [Γ1]. Hence [+]∗φ ∈ [Γ2] from the
definition of −→. The same argument can be repeated for the k cases eventually
giving [+]∗φ ∈ [Γk] = [Γ ′] which implies, using axiom (C3), φ ∈ [Γ ′].

(2) ⇔ (3): It is proved in the same way using the axioms (D1) and (D2) in
instances of Lemma 1 and (D3), (D4) respectively.

Lemma 7. For arbitrary Γ ∈ Ωθ and [+]∗φ ∈ FL(θ),

1. [+]∗φ ∈ Γ iff for any Γ ′ ∈ Ωθ such that Γ −→∗ Γ ′, φ ∈ Γ ′;

2. 〈+〉∗φ ∈ Γ iff there exists Γ ′ ∈ Ωθ such that Γ −→∗ Γ ′, φ ∈ Γ ′;

3. [−]∗φ ∈ Γ iff for any Γ ′ ∈ Ωθ such that Γ ′ −→∗ Γ, φ ∈ Γ ′;

4. 〈−〉∗φ ∈ Γ iff there exists Γ ′ ∈ Ωθ such that Γ ′ −→∗ Γ, φ ∈ Γ ′.

Proof. (1) ⇒: From Lemma 6.

(⇐:) Let φ be such that φ ∈ [Γ ′] for each Γ ′ ∈ Ωθ with Γ −→∗ Γ ′. We need to
prove that [+]∗φ ∈ [Γ ].

Let ∆ = {Γ ′ ∈ Ωθ | Γ −→∗ Γ ′} and let δ =
∨
Γ ′∈∆

Γ ′. Obviously, ` δ ⇒ φ implying

` [+]∗δ ⇒ [+]∗φ. Now, if we prove that [+]∗δ ∈ [Γ ], the proof is done.
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Suppose that [+]∗δ 6∈ [Γ ]. Lemma 2 implies that Λ ∪ {¬δ} is consistent, where
Λ = {ψ | [+]∗ψ ∈ [Γ ]}. But [+]∗ψ ∈ [Γ ] implies ψ ∈ Γ ′ for each Γ ′ ∈ ∆ and this
proves that Λ ∪ {¬δ} cannot be consistent.

(2) is equivalent to (1).

(3) and (4) are proved in the same way.

Now we can proceed with our construction of the model for θ. We start by
showing that (Ωθ,

a−→)a∈A is a forest. For this we need to verify that the past is
unique and that the graphs have no loops. The precise statement is given in the
following theorem.

Theorem 2. If f ∈ L is consistent, then Fθ = (Ωθ,
a−→)a∈A is a forest over A.

The proof of this theorem is broken down into two lemmas.

Lemma 8. For arbitrary Γ, Γ1, Γ2 ∈ Ωθ, if Γ1
a−→ Γ and Γ2

b−→ Γ , then a = b
and Γ1 = Γ2.

Proof. To prove that a = b it is sufficient to observe that 〈−〉a> ∧ 〈−〉b> is
inconsistent, result that is a direct consequence of axiom (B3).

Now, from Γ1
a−→ Γ and Γ2

a−→ Γ we prove that Γ1 = Γ2. Suppose that there
exists φ ∈ FL(θ) s.t. φ ∈ Γ1 and ¬φ ∈ Γ2. Then, from axiom (AB1) we obtain

that [+]a〈−〉aφ ∈ [Γ1] and [+]a〈−〉a¬φ ∈ [Γ2]. Now Γ1
a−→ Γ guarantees that

〈−〉aφ ∈ [Γ ] while Γ2
a−→ Γ guarantees that 〈−〉a¬φ ∈ [Γ ]. Further, using axiom

(B4) we obtain that [−]φ, [−]¬φ ∈ [Γ ] implying [−]⊥ ∈ [Γ ]. On the other hand,
〈−〉aφ ∈ [Γ ] implies 〈−〉a> ∈ [Γ ] which is equivalent to ¬[−]⊥ ∈ [Γ ] - contradicts
the consistency of [Γ ].

Now we prove that in the graph (Ωθ,
a−→)a∈A there are no backwards infinite

sequences; this will conclude the proof that (Ωθ,
a−→)a∈A is a forest over A.

Lemma 9. There exists no infinite sequence Γ1, . . . , Γk, .. ∈ Ωθ such that

..Γk −→ Γk−1 −→ .. −→ Γ1 = Γ.

Proof. Suppose that there exists such a sequence. Axiom (BD1) guarantees that
〈−〉∗[−]⊥ ∈ [Γ ] and using Lemma 7 we obtain that there exists Γ ′ ∈ Ωθ such that
Γ ′ −→∗ Γ and [−]⊥ ∈ Γ ′. Lemma 8 guarantees that Γ ′ is one of the elements of
our sequence, hence ¬〈−〉> ∈ Γ ′. But this implies that there exists no Γ ′′ ∈ Ωθ
such that Γ ′′ −→∗ Γ ′, this contradiction establishes the result.
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To complete the construction of the model for θ we need to define the indis-
tinguishability relations on Ωθ that will eventually organize our forest as an
epistemic frame.

For each i ∈ I, let ≈i⊆ Ωθ ×Ωθ be defined as follows:

Γ ≈i Γ ′ iff for any φ ∈ L,Kiφ ∈ [Γ ] iff Kiφ ∈ [Γ ′].

By construction, ≈i is an equivalence relation. Now, to finalize our construction,
we must prove that for each i ∈ I, ≈i preserves the branching structure of Fθ
and finally that we have an epistemic frame.

Theorem 3. Eθ = (Fθ, (≈i)i∈I), where Fθ = (Ωθ,
a−→)a∈A and ≈i are defined

as before, is an epistemic frame.

The proof is broken into a number of lemmas. The first lemma that we need is
the following.

Lemma 10. For arbitrary Γ, Γ ′ ∈ Ωθ, if for any φ, Kiφ ∈ [Γ ] implies φ ∈ [Γ ′],
then for any φ, Kiφ ∈ [Γ ] implies Kiφ ∈ [Γ ′].

Proof. Suppose that for any φ, Kiφ ∈ [Γ ] implies φ ∈ [Γ ′] and let Kiψ ∈ [Γ ].
From our hypothesis we obtain that if Kiψ 6∈ [Γ ′], then KiKiψ 6∈ [Γ ]. From the
axioms (E3) and (E4), ` Kiψ ↔ KiKiψ. Hence, Kiψ 6∈ [Γ ], this contradiction
completes the proof.

Now we can prove that for each i ∈ I, ≈i preserves the backwards branching
structure of Fθ.

Theorem 4. For arbitrary Γ, Γ ′ ∈ Ωθ, if Γ ≈i Γ ′ and there exists Γ0 ∈ Ωθ
such that Γ0

a−→ Γ , then there exists Γ ′0 ∈ Ωθ such that Γ ′0
a−→ Γ ′ and Γ ′0 ≈i Γ0.

Proof. Because ` >, using (E2) we obtain ` Ki>. Because Ki> ∈ [Γ0], we
obtain that 〈−〉aKi> ∈ [Γ ] and axiom (BE1) implies Ki〈−〉a> ∈ [Γ ]. Now, from
Γ ≈i Γ ′, 〈−〉a> ∈ [Γ ′]. From Lemma 5 we obtain that there exists Γ ′0 ∈ Ωθ such
that Γ ′0 −→ Γ ′.

We prove now that Γ ′0 ≈ Γ0. Suppose that Kiφ ∈ [Γ0]. Then, 〈−〉aKiφ ∈ [Γ ]
and axiom (BE1) implies Ki〈−〉aφ ∈ [Γ ]. Now from Γ ≈i Γ ′, 〈−〉aφ ∈ [Γ ′]. Now
axiom (B4) implies [−]φ ∈ [Γ ′] and because Γ ′0 −→ Γ ′, Lemma 5 implies φ ∈ [Γ ′0].

Hence, Kiφ ∈ [Γ0] implies φ ∈ [Γ ′0] and Lemma 10 concludes that Kiφ ∈ [Γ0]
implies Kiφ ∈ [Γ ′0]. Similarly can be proved that Kiφ ∈ [Γ ′0] implies Kiφ ∈ [Γ0].

Lemma 10 also establishes the next result that is needed for the proof of the
theorem.
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Lemma 11. For arbitrary Γ ∈ Ωθ and Kiφ ∈ FL(θ),

Kiφ ∈ Γ iff for any Γ ′ ∈ Ωθ such that Γ ≈i Γ ′, φ ∈ Γ ′

Proof. (⇒) This follows directly from Lemma 10.

(⇐) Let φ be such that Kiφ ∈ FL(θ) and φ ∈ Γ ′ for each Γ ′ ∈ Ωθ with Γ ≈i Γ ′.
We need to prove that Kiφ ∈ Γ .

Let ∆ = {Γ ′ ∈ Ωθ | Γ ≈i Γ ′}, let Λ = {f1, . . . , fn} =
⋂
Γ ′∈∆

Γ ′ and let F =

f1 ∧ . . . ∧ fn. Then ` F ⇒ φ implying ` KiF ⇒ Kiφ. Consequently, if we prove
that KiF ∈ [Γ ], the proof is done.

Suppose that KiF 6∈ [Γ ]. Then, there exists ft ∈ Λ such that Kift 6∈ Γ . Then,
¬Kift ∈ Γ and axiom (E5) implies Ki¬Kift ∈ [Γ ]. The definition of ≈i guar-
antees that for any Γ ′ ∈ ∆, Ki¬Kift ∈ [Γ ′] and axiom (E3) entails that for any
Γ ′ ∈ ∆, ¬Kift ∈ Γ ′. Hence, ` F ⇒ ¬Kift which is equivalent to ` Kift ⇒ ¬F .
But ` F ⇒ ft implying ` KiF ⇒ Kift. Consequently, ` KiF ⇒ ¬F . But from
axiom (E3), ` KiF ⇒ F , implying ` ¬KiF . But Λ is consistent and KiF 6∈ [Λ],
then a similar argument with the one used in Lemma 2 (notice that Ki is a
normal modal operator of type 2) shows that Λ ∪ {¬F} is consistent, which is
impossible.

This completes the proof of the theorem.

We are now ready to complete the construction of the model of θ. Eθ is the
epistemic frame of the model and the we define a valuation ρθ : Ωθ −→ 2P by
ρθ(Γ ) = {p ∈ P | p ∈ Γ}. With this definition we prove the Truth Lemma.

Lemma 12 (Truth Lemma). If θ ∈ L is consistent, Eθ and ρθ are defined as
before, then for any φ ∈ FL(θ) and Γ ∈ Ωθ,

φ ∈ Γ iff Γ |= φ.

Proof. Induction on φ.

[The case φ = p ∈ P:] from definition of Propθ.

[The case φ = ¬ψ:] (=⇒) Suppose that Γ 6|= ¬ψ. Then Γ |= ψ and from the
inductive hypothesis, ψ ∈ Γ , hence φ 6∈ Γ .
(⇐=) Suppose that Γ |= ¬ψ and ¬ψ 6∈ Γ . Then, ψ ∈ Γ and the inductive
hypothesis guarantees that Γ |= ψ - contradiction.

[The case φ = φ1 ∧ φ2:] φ1 ∧ φ2 ∈ Γ iff φ1, φ2 ∈ Γ which is equivalent, using
the inductive hypothesis, to [Γ |= φ1 and Γ |= φ2], equivalent to Γ |= φ1 ∧ φ2.

[The case φ = 〈+〉aψ:] (=⇒) If 〈+〉aψ ∈ Γ , Lemma 5 implies that there exists

Γ ′ ∈ Ωθ such that Γ
a−→ Γ ′ and ψ ∈ Γ ′. From the inductive hypothesis, Γ ′ |= ψ,
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implying Γ |= φ.

(⇐=) Γ |= 〈+〉aψ implies that there exists Γ ′ ∈ Ωθ such that Γ
a−→ Γ ′ and

Γ ′ |= ψ. From the inductive hypothesis, ψ ∈ Γ ′ and Lemma 5 implies 〈+〉aψ ∈ Γ .

[The case φ = 〈−〉aψ:] (=⇒) If 〈−〉aψ ∈ Γ , Lemma 5 implies that there exists

Γ ′ ∈ Ωθ such that Γ ′
a−→ Γ and ψ ∈ Γ ′. From the inductive hypothesis, Γ ′ |= ψ,

implying Γ |= φ.

(⇐=) Γ |= 〈−〉aψ implies that there exists Γ ′ ∈ Ωθ such that Γ ′
a−→ Γ and

Γ ′ |= ψ. From the inductive hypothesis, ψ ∈ Γ ′ and Lemma 5 implies 〈−〉aψ ∈ Γ .

[The case φ = 〈+〉∗ψ:] (=⇒) If 〈+〉∗ψ ∈ Γ , Lemma 7 implies that there exists
Γ ′ ∈ Ωθ such that Γ −→∗ Γ ′ and ψ ∈ Γ ′. From the inductive hypothesis, Γ ′ |= ψ,
implying Γ |= φ.
(⇐=) Γ |= 〈+〉∗ψ implies that there exists Γ ′ ∈ Ωθ such that Γ −→∗ Γ ′ and
Γ ′ |= ψ. From the inductive hypothesis, ψ ∈ Γ ′ and Lemma 7 implies 〈+〉∗ψ ∈ Γ .

[The case φ = 〈−〉∗ψ:] (=⇒) If 〈−〉∗ψ ∈ Γ , Lemma 7 implies that there exists
Γ ′ ∈ Ωθ such that Γ ′ −→∗ Γ and ψ ∈ Γ ′. From the inductive hypothesis, Γ ′ |= ψ,
implying Γ |= φ.
(⇐=) Γ |= 〈−〉∗ψ implies that there exists Γ ′ ∈ Ωθ such that Γ ′ −→∗ Γ and
Γ ′ |= ψ. From the inductive hypothesis, ψ ∈ Γ ′ and Lemma 7 implies 〈−〉∗ψ ∈ Γ .

[The case φ = Kiψ:] (=⇒) If Kiψ ∈ Γ , Lemma 11 implies that for any Γ ′ ∈ Ωθ
such that Γ ≈i Γ ′, ψ ∈ Γ ′. From the inductive hypothesis, Γ ′ |= ψ, implying
Γ |= φ.
(⇐=) Γ |= Kiψ implies that for any Γ ′ ∈ Ωθ such that Γ ≈i Γ ′, Γ ′ |= ψ. From
the inductive hypothesis, ψ ∈ Γ ′ and Lemma 11 implies Kiψ ∈ Γ .

A direct consequence of Truth Lemma is the finite model property.

Theorem 5 (Finite model property). For any consistent formula φ ∈ L
there exists a finite model. Moreover, the size of the model is bound by the struc-
ture of φ.

The finite model property in this context has two important consequences: the
weak completeness of the axiomatic system and the decidability of the satisfia-
bility problem.

Theorem 6 (Weak completeness). The axiomatic system of L is complete,
i.e., for any φ ∈ L,

|= φ implies ` φ.

Proof. The proof is based on the fact that any consistent formula has a model.
We wish to show that |= φ implies ` φ. Now we have shown that if φ is consistent
it has a model. Clearly then, if ¬φ is consistent there is a model of ¬φ. The last
statement is equivalent to saying that if 6` φ then ¬φ is satisfiable. If ¬φ is
satisfiable it follows that not every model models φ, i.e. 6|= φ. Thus we have 6` φ
implies 6|= φ, or taking the contrapositive, |= φ implies ` φ.
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Observe that in the previous construction, the size of Ωθ depends on the number
and type of operators that θ contains. In what follows we refer to the cardinality
|Ωθ| of Ωθ as the size of θ.

The satisfiability problem is the problem of deciding, given an arbitrary formula
φ ∈ L, if φ has at least one model. The finite model property entails that the
satisfiability problem for our logic is decidable.

Theorem 7 (Decidability). The satisfiability problem for L is decidable.

Proof. We have proved that θ has at least one model iff it is consistent. And if θ
is consistent we have proved that it has a model of size |Ωθ| ∈ N. But the class
of models of size k ∈ N is finite. Consequently, we can decide in a finite number
of steps if θ does or does not have a model by checking all the models of the
appropriate sizes.

6 Conclusions and Related Work

There seems to be a mysterious divide between concurrency theory, which is
primarily a European enterprise, and distributed systems theory which is in-
tensively explored in the United States, Israel and a few other places. This is
unfortunate because the two have much to learn from each other. Concurrency
theorists can learn sophisticated new tools like algebraic topology and deeper
problems whereas the distributed systems community could learn about, for ex-
ample, compositional reasoning. Epistemic logic is one of the areas where the
distributed systems community got an early start [5] in the mid 1980s whereas
the concurrency theory community is only just starting to use these ideas. This
schizophrenia is manifested even in the work of individuals! For example, the
third author of the present paper worked on common knowledge in asynchronous
distributed systems in the late 1980s [15, 16] and later on concurrency theory [17]
without making the connection. The present work is intended to make epistemic
logic more readily accessible to the concurrency theory community by provid-
ing a combination of epistemic logic with the Hennessy-Milner logic that the
concurrency community is accustomed to using.

The ground breaking paper of Halpern and Moses [2, 12] showed the importance
of common knowledge as a way of formalizing agreement protocols in distributed
systems. Very quickly variants of common knowledge were developed [18, 15] and
many new applications were explored [19]. Extensions to probability [20] and
zero-knowledge protocols [21] quickly followed. The textbook of Fagin et al. [5]
made these ideas widely accessible and stimulated even more interest and activ-
ity. There are numerous recent papers by Halpern and his collaborators, Parikh
and his collaborators and students, van Benthem and the Amsterdam school and
by several other authors as well. Applications of epistemic concepts range across
game theory, economics, spatial reasoning and even social systems.
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In the concurrency theory community there is very little work on this topic.
Two striking examples are a recent paper by Chadha, Delaune and Kremer [3]
and one by Dechesne, Mousavi and Orzan [22]. The former paper defines an
epistemic logic for a particular process calculus, a variant of the π-calculus and
uses it to reason about epistemic situations. The latter paper explores the con-
nection between operational semantics and epistemic logic and is closer in spirit
to our work which is couched in terms of labelled transition systems. Neither of
these paper really integrate Hennessy-Milner logic and epistemic logic. In [23, 24],
Mardare proposes a complete logic for CCS which combines Hennessy-Milner,
epistemic and spatial operators. A recent paper by Knight et al. [25] uses a rudi-
mentary epistemic logic to capture epistemic strategies for games on concurrent
processes. A recent paper by Pacuit and Simon [26] develops a PDL-style logic
for reasoning about protocols. They also prove a completeness theorem for their
logic; it is perhaps the closest in spirit to our work.
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