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Abstract

Normally, one thinks of probabilistic transition systems as taking
an initial probability distribution over the state space into a new prob-
ability distribution representing the system after a transition. We,
however, take a dual view of Markov processes as transformers of
bounded measurable functions. This is very much in the same spirit as
a “predicate-transformer” view, which is dual to the state-transformer
view of transition systems.

We redevelop the theory of labelled Markov processes from this
view point, in particular we explore approximation theory. We obtain
three main results:
(i) It is possible to define bisimulation on general measure spaces and
show that it is an equivalence relation. The logical characterization
of bisimulation can be done straightforwardly and generally. (ii) A
new and flexible approach to approximation based on averaging can
be given. This vastly generalizes and streamlines the idea of using
conditional expectations to compute approximations. (iii) We show
that there is a minimal process bisimulation-equivalent to a given pro-
cess, and this minimal process is obtained as the limit of the finite
approximants.
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1 Introduction

Markov processes with continuous state spaces or continuous time evolution
or both, arise naturally in many areas of computer science: robotics, per-
formance evaluation, modelling and simulation, for example. For discrete
systems there was a pioneering treatment of probabilistic bisimulation and
logical characterization by Larsen and Skou [LS91]. The continuous case,
however, was neglected for a time. For a little over a decade there has been
significant activity among computer scientists [DEP02, dVR99, DGJP00]
[MOPW04, vBW01a, DDP03] [FPP05, BCFPP05, CSKN05] [DDLP06, GL07a,
Dob03] as it came to be realized that ideas from process algebra – like bisim-
ulation and the existence of a modal characterization – would be useful for
the study of such systems. In [BDEP97] continuous-state Markov processes
with labels to capture interactions were christened labelled Markov processes
(LMPs). Some of this material has appeared in book form [Pan09, Dob10].
There is a vast literature on timed systems, hybrid systems, robotics and
control theory that also refer to systems with continuous state spaces.

A labelled Markov process is a discrete time dynamical system combining
nondeterministic and probabilistic behavior. The intuitive picture is the
following. The system evolves within a state space X. A user can control
this system via a set of actions A, assumed to be finite. To each action is
associated a probabilistic transition within the system. The system under-
goes these transitions when the user chooses the corresponding action. For
each action, the transitions are Markov and time homogeneous, and thus
only depend on the current state of the system. The user has full control
over which action to choose; the nondeterminism of the system stems from
the user interaction.

However, there is a crucial difference in the way such systems are inter-
preted in comparison to usual stochastic processes or dynamical systems.
Typically, the current position in the state space is what one keeps track of;
in our case, we are concerned with the interaction between the user and the
actions. Indeed, at each point in the state space, the actions may have a
nonzero probability of being disabled, and the user knows when the action
he chose was disabled. Furthermore, this information about actions is the
only information the user can obtain from the system, as the system’s state
is internal and not visible to the user.

In [DGJP00] and [DGJP03] a theory of approximation for LMPs was initi-
ated and was refined and extended in [DD03] and [DDP03]. Finding finite

2



approximations is vital to give a computational handle on such systems.
These techniques were adapted to Markov decision processes (MDPs) and
applied to find good estimates of value functions [FPP05]. The previous
work was characterized by rather intricate proofs that did not seem to fol-
low from basic ideas in any straightforward way. For example, the logical
characterization of (probabilistic) bisimulation proved first in [DEP98] re-
quires subtle properties of analytic spaces and rather awkward and ad-hoc
seeming constructions [Eda99]1. Proofs of basic results in approximation
theory also seemed to be more difficult than they should be.

In the present paper we take an entirely new approach: we consider Markov
processes as transformers of measurable functions on the state space rather
than as transformers of probability distributions on the state space. This
is in some ways “dual” to the normal view of probabilistic transition sys-
tems. It is akin to the relationship between predicate-transformer semantics
and state-transformer semantics. However, both styles of semantics can be
accommodated in our viewpoint; it is purely because the theory is slightly
smoother in the predicate-transformer view that we develop that viewpoint
in the paper. Instead of working directly with a Markov kernel τ(s,A)
that takes a state s to a probability distribution over the state space, we
think of a Markov process as transforming a function f into a new function∫
f(s′)τ(s, ds′) over the state space. This is the probabilistic analogue of

working with predicate transformers, a point of view advocated by [Koz85]
in a path-breaking early paper on probabilistic systems and logic.

This new way of looking at things leads to three new results:

1. It is possible to define bisimulation on general spaces – not just on
analytic spaces – and show that it is an equivalence relation with easy
categorical constructions. The logical characterization of bisimulation
can also be done generally, and with no complicated measure theoretic
arguments.

2. A new and flexible approach to approximation based on averaging can
be given. This vastly generalizes and streamlines the idea of using
conditional expectations to compute approximation [DDP03].

3. It is possible to show that there is a bisimulation-minimal realization
equivalent to a process obtained as the limit of finite approximants.

1Later these results were put together in a much more systematic way by [Dob10] using
the machinery of descriptive set theory.
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There is a key mathematical fact that allows these results to be established
and it hinges on duality. In the usual theory of Lp spaces in functional
analysis one defines the space Lp(X,µ) as the space of functions2 whose
absolute values raised to the pth power are integrable with respect to µ.
Now if 1 < p, q < ∞ the space of continuous linear functionals on Lp is
isomorphic to Lq if 1

p + 1
q = 1; the spaces Lp and Lq are duals; for example

L2 is self-dual. However, for L1 and L∞ one does not have a duality. In the
present paper we consider cones rather than vector spaces. One can think
of cones as subsets of vector spaces consisting of the “positive” vectors; of
course, this needs to be axiomatized properly. When one has such a cone,
say C, the vector space V can be viewed as having a partial order defined
on it by the simple device of saying u ≤ v if v − u ∈ C. One can now use
order-theoretic continuity to strengthen the requirements on the spaces and
obtain a perfect duality between the L1 and the L∞ spaces. In fact, we will
axiomatize cones ab initio rather than viewing them as subsets of vector
spaces; this will allow us to work with the space of all positive measures
as a cone rather than artificially embedding it into some vector space. The
ability to switch between these dual views is very useful and allows easy
proofs of many facts.

A second main innovation in the present paper is a functorial view of the
conditional expectation. Some of the key properties of conditional expecta-
tion turn out to be nothing more than functoriality. This facilitates the view
of conditional expectation as a coarsening of the description of the system
and hence makes it a key step in the approximation process. It also provides
a unified view of bisimulation and approximation.

The rest of the paper is organized as follows. In Section 2 we review some
of the background needed to read the paper. In Section 3 we describe cate-
gories of cones and develop duality theory for these categories. In Section 4
we define conditional expectation functorially. In Section 5 we define la-
belelled abstract Markov processes (LAMPs) and we define the notion of
approximation of LAMPs in Section 6. In Section 7 we define bisimulation
and we show that it is an equivalence relation in Section 8. In Section 9 we
obtain the minimal realization of a LAMP from which the logical character-
ization follows. In Section 11 we develop the theory of approximation and
show that the limit of the finite approximants gives the minimal realization
of a process. In Section 12 we review the history of LMPs and review other

2We are only considering real-valued functions, in functional analysis one usually con-
siders complex-valued functions.
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related work.

2 Background

In this section we review some of the mathematical background needed
for this paper. We need some basic measure theory and functional anal-
ysis.

2.1 Measure theory

We assume that the reader is familiar with the definitions of σ-algebras, mea-
surable spaces (set equipped with a σ-algebra), measures, measurable func-
tions, integration and basic concepts from topology [Bil95, Dud89, KT66,
Rud66, Wil91]. By a finite measure we mean a measure that assigns a finite
value as the measure of the whole space on which it is defined. We recall
the definition of measurable function to avoid a common confusion.

Definition 2.1 A function f from a measurable space (X,Σ) to a measur-
able space (Y,Λ) is said to be measurable if f−1(B) ∈ Σ whenever B ∈ Λ.

Note this is not the definition in [Hal74], but is the one used by most modern
authors. Halmos’s definition has the annoying property that the composite
of two measurable functions need not be measurable; a price he is willing to
pay in order to integrate a few more functions.

We define the category Mes where the objects are measurable spaces and the
morphisms are measurable functions. There is an obvious forgetful functor
into Set which preserves limits.

Definition 2.2 A probability triple (X,Σ, p) is a measurable space with
a measure p with p(X) = 1; such a measure is called a probability measure.

We also use the term subprobability measure on (X,Σ) to mean a finite mea-
sure q with q(X) ≤ 1. Given a measurable space (X,Σ) we writeM(X) for
the space of finite measures on X. We will always work with finite measures,
usually – but not always – probability or subprobability measures.

We say a real-valued measurable function f on a space (X,Σ) equipped
with a measure µ is integrable if the integral

∫
fdµ is finite. Since we are

working with finite measures, positive bounded measurable functions are
always integrable.
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Given (X,Σ, p) and (Y,Λ) and a measurable function f : X −→ Y we obtain
a measure q on Y by q(B) = p(f−1(B)). This is written Mf (p) and is called
the image measure of p under f . We say that a map f : (X,Σ, p) −→ (Y,Λ, q)
is measure preserving if Mf (p) = q.

In measure theory it is more convenient to work with equivalence classes of
functions that are equal “almost everywhere.” Given a measurable space
(X,Σ) with a measure µ we say two measurable functions are µ-equivalent
if they differ on a set of µ-measure zero. L1(X,µ) stands for the space
of equivalence classes of integrable functions. Similarly we write L+

1 (X,µ)
for equivalence classes of integrable functions that are positive µ-almost
everywhere. We will often write just L1(X) if the µ is clear from context
and similarly for the variations that crop up. The space L1 is a real vector
space but the space L+

1 (X) is not; it is a cone, a concept to be defined
below.

We need a bit more standard measure theory for the approximation results.
A π-system is a family of sets closed under finite intersection. The following
proposition appears as Theorem 10.3 in [Bil95].

Proposition 2.3 If two measures agree on a π-system they agree on the
σ-algebra generated by the π-system.

2.2 The Radon-Nikodym theorem

Given a measurable function α : (X,Σ, p) −→ (Y,Λ, q) recall that we denote
by Mα(p) the image measure of p by α onto Y .

The Radon-Nikodym theorem [Rud66] is a central result in measure theory
allowing one to define a “derivative” of a measure with respect to another
measure.

Definition 2.4 We say that a measure ν is absolutely continuous with
respect to another measure µ if for any measurable set A, µ(A) = 0 implies
that ν(A) = 0. We write ν � µ.

Theorem 2.5 If ν � µ, where ν, µ are finite measures on a measurable
space (X,Σ) there is a positive measurable function h on X such that for
every measurable set B

ν(B) =

∫
B
hdµ.
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The function h is defined uniquely up to a set of µ-measure 0. The function
h is called the Radon-Nikodym derivative of ν with respect to µ; we denote
it by dν

dµ . Since ν is finite, dν
dµ ∈ L

+
1 (X,µ).

The Radon-Nikodym theorem applies to a more general class of measures
called σ-finite measures: these are measures where the total space can be
written as the countable union of sets of finite measure. In this more general
case it will not be true in general that the Radon-Nikodym derivative is in
L+

1 .

Given an (almost-everywhere) positive function3 f ∈ L1(X, p), we let f · p
be the measure which has density f with respect to p. Two identities that
we get from the Radon-Nikodym theorem are:

• given q � p, we have dq
dp · p = q.

• given f ∈ L+
1 (X, p), df ·p

dp = f

These two identities just say that the operations (−) ·p and d(−)
dp are inverses

of each other as maps between L+
1 (X, p) and M�p(X) the space of finite

measures on X that are absolutely continuous with respect to p.

2.3 Conditional expectation

A random variable on a measurable space is just a measurable function.
We will use the language of measurable functions rather than random vari-
ables, because our emphasis is more measure theoretic than probabilistic.
In the probability literature everything is usually stated in terms of random
variables.

The expectation Ep(f) of a measurable function f is the average computed
by
∫
fdp and therefore it is just a number. The conditional expectation

is not a mere number but a random variable. It is meant to measure the
expected value in the presence of additional information.

The additional information takes the form of a sub-σ algebra, say Λ, of Σ.
In what way does this represent “additional information”? The idea is that
an experimenter is trying to compute probabilities of various outcomes of a
random process. The process is described by (X,Σ, p). However she may

3Of course, one should really say “equivalence class of functions” but it is common to
abuse the terminology in this fashion.
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only have partial information in advance, by knowing that the outcome is in
a measurable set Q. Now she may try to recompute her expectation values
based on this information. To know that the outcome is in Q also means
that it is not in Qc. Note that {∅, Q,Qc, X} is in fact a (tiny) sub-σ-algebra
of Σ. Thus one can generalize this idea and say that for some given sub-σ-
algebra Λ of Σ she knows for every Q ∈ Λ whether the outcome is in Q or
not. Now she can recompute the expectation values given this information.
The point of requiring Λ-measurability is that it “smooths out” variations
that are too rapid to show up in Λ.

It is an immediate consequence of the Radon-Nikodym theorem that such
conditional expectations exist.

Theorem 2.6 (Kolmogorov) Let (X,Σ, p) be a measure space with p a
finite measure, f be in L1(X,Σ, p) and Λ be a sub-σ-algebra of Σ, then there
exists a g ∈ L1(X,Λ, p) such that for all B ∈ Λ∫

B
fdp =

∫
B
gdp.

This function g is usually denoted by E(f |Λ).

We clearly have f · p � p so the required g is simply df ·p
dp|Λ , where p |Λ is

the restriction of p to the sub-σ-algebra Λ. The conditional expectation is
linear, increasing with respect to the point wise order and possesses other
pleasing properties to be described below. It is defined uniquely p-almost
everywhere.

2.4 Markov kernels

We begin with some preliminary definitions. Let (X,Σ) and (Y,Λ) be mea-
surable spaces. We define a stochastic transition from X to Y :

Definition 2.7 A Markov kernel from X to Y is a map

τ : X × Λ −→ [0, 1]

such that:

• for all x ∈ X, τ(x, ·) is a subprobability measure on Y

• for all B ∈ Λ, τ(·, B) is a measurable function
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The interpretation of such functions is that τ(x,B) is the probability of
jumping from the point x to the set B. Thus, if (X,Σ) = (Y,Λ), the
Markov kernel may be iterated to determine the evolution of a discrete-
time and time-homogeneous Markov process where the state is a point in
X; we will call such a Markov kernel a Markov kernel on X. Note that
this definition is slightly different from the usual definition of a Markov
process on a measurable space, as we allow our transition probabilities to be
subprobabilities. One may interpret this difference as follows: given a point
x with τ(x, Y ) = k ≤ 1, the process τ has a probability 1− k to be disabled
at the point x.

We now give the definition of a labelled Markov process, first given in this
form in [BDEP97].

Definition 2.8 A labelled Markov process (LMP) on a measurable space
(X,Σ) is a collection of Markov kernels τa on X, indexed by a finite or
countable set A, called the set of actions.

Note that the set of labels A will be fixed once and for all.

2.5 Cones

Cones are a way of combining order structure with linear structure. The idea
is that a subset of a vector space is designated as the set of “positive” vectors.
A cone, viewed as a subset of a vector space, will need to satisfy some natural
closure properties. Then we can define u ≤ v for two vectors u and v by
saying that v − u is positive. We can, however, define cones intrinsically
without reference to an ambient vector space. This is sometimes important
particularly in speaking of probability distributions where subtraction is not
always defined. Cones are well known in the functional analysis literature;
however, we base the definition and discussion of cones below, on a paper
by [Sel04] which we found particularly apt for our purposes, partly because
it introduces cones abstractly rather than as subsets of vector spaces. We
discuss related concepts of cones in the related work section.

Definition 2.9 A cone is a set V on which a commutative and associative
binary operation, written +, is defined and on which multiplication by posi-
tive real numbers is defined. There is a distinguished element 0 ∈ V , which
is an identity for the + operation; in short, (V,+, 0) forms a commutative
monoid. Multiplication by reals distributes over addition and the following
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cancellation law holds:

∀u, v, w ∈ V, v + u = w + u⇒ v = w.

The following strictness property also holds:

v + w = 0⇒ v = w = 0.

Cones come equipped with a natural partial order. If u, v ∈ V , a cone, one
says u ≤ v if and only if there is an element w ∈ V such that u + w = v.
One can also put a norm on a cone, with the additional requirement that
the norm be monotone with respect to the partial order.

Definition 2.10 A normed cone C is a cone with a function
|| · || : C −→ R+ satisfying the usual conditions:

1. ||v|| = 0 if and only if v = 0

2. ∀r ∈ R+, v ∈ C, ||r · v|| = r||v||

3. ||u+ v|| ≤ ||u||+ ||v||

4. u ≤ v ⇒ ||u|| ≤ ||v||.

The only slight difference from the usual definition of norm is the require-
ment that r be positive. Owing to the lack of a subtraction operation, it is
not possible to speak of a sequence being Cauchy in the usual sense; however,
order-theoretic concepts can be used instead.

Definition 2.11 An ω-complete normed cone is a normed cone such
that

1. if {ai | i ∈ I} is an increasing sequence with {||ai||} bounded then the
lub

∨
i∈I ai exists and

2.
∨
i∈I ||ai|| = ||

∨
i∈I ai||.

The norm gives a notion of convergence as does the notion of lub of a chain.
The following lemma from [Sel04] relates the two.

Lemma 2.12 Suppose that ui is a countable chain with a least upper bound
in an ω-complete normed cone and u is an upper bound of the ui. Suppose
furthermore that limi−→∞ ‖u− ui‖ = 0. Then u =

∨
i ui.

A linear map of cones is precisely what one would expect: i.e. a map that
preserves the linear operations. Note than any such map is monotone.
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Definition 2.13 An ω-continuous linear map between two cones is one
that preserves least upper bounds of countable chains. More precisely if C
and D are cones and f : C −→ D is linear we say that it is ω-continuous
if for every countable chain {ai} in C such that

∨
i ai exists then so does∨

i f(ai) and f(
∨
i ai) =

∨
i f(ai).

We will also want to restrict our attention to bounded linear maps of normed
cones. A bounded linear map of normed cones f : C −→ D is one such that
for all u in C, ||f(u)|| ≤ K||u|| for some real number K. A lemma in [Sel04]
shows that any linear map of ω-complete normed cones is bounded; it is thus
superfluous to mention boundedness when discussing a map of ω-complete
normed cones. The norm of a bounded linear map f : C −→ D is defined
as ||f || = sup{||f(u)|| : u ∈ C, ||u|| ≤ 1}; this is analogous to the operator
norm for bounded linear maps between vector spaces.

We need the concept of dual cone; indeed it is one of the central concepts of
the present work. Given an ω-complete normed cone C, its dual C∗ is the set
of all ω-continuous linear maps from C to R+. We define the norm on C∗ to
be the operator norm. It is not hard to show that this cone is a ω-complete
normed cone as well, and that the cone order corresponds to the point wise
order. For the latter one needs to show that if g is less than f point wise
then f − g is also an ω-continuous map. If {xi} is an increasing sequence in
C with sup x we need to show that sup {(f − g)(xi)} = (f − g)(sup {xi}).
This follows from the fact that sup {(f − g)(xi)} = sup {f(xi)− g(xi)} =
sup {f(xi)}− sup {g(xi)} = f(sup {xi})− g(sup {xi}), where the last equal-
ity follows from the continuity of f and g and the one before that is an
elementary “ε argument.”

The ω-complete normed cones, along with ω-continuous linear maps, form
a category which we shall denote ωCC. If we define the subcategory ωCC1

of ωCC as the one where the norms of the maps are all bounded by 1
then isomorphisms in this category are always isometries. It is easy to see
that given any linear map F between normed spaces, if F−1 exists and has
bounded norm then ||F | · ||F−1|| ≥ 1. Thus if we are working in ωCC1 this
condition implies that both F and F−1 have norm 1. Many of the cones of
interest and the maps between them live in ωCC1.

In ωCC, the dual operation becomes a contravariant functor; if f : C −→ D
is a map of cones, we define f∗ : D∗ −→ C∗ as follows. Given a map L in
D∗, we define a map f∗L in C∗ as f∗L(u) = L(f(u)). Now ||L(f(u))|| ≤
||L|| · ||f || · ||u|| and thus ||f∗|| ≤ ||f ||.
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Note that this dual is stronger than the dual in usual Banach spaces, where
we only require the maps to be bounded. This has nice consequences with
respect to the cones we are considering. For instance, we shall see that
the dual to L+

∞(X,Σ, µ) (to be defined below) is isomorphic to L+
1 (X,Σ, µ),

which is not the case with the Banach space L∞(X,Σ, p).

Next, we introduce the cones that we use in the present work. They are all
ω-complete normed cones.

3 Cones of measures and of measurable functions

Let (X,Σ) be a measure space. We write L+(X,Σ) for the cone of bounded
measurable maps from X to R+. This is an ω-complete normed cone as the
supremum of countably many measurable functions is measurable. Closely
related to this is the cone M(X,Σ) of finite measures on (X,Σ). The or-
dering on this cone is the cone order as defined in the previous section.
Explicitly, µ ≤ ν if there is a finite measure λ such that ν = µ+λ; note this
is not the same as the pointwise order. The cone order implies the pointwise
order but the reverse may not be the case. The norm of a measure µ is just
µ(X).

Proposition 3.1 M(X,Σ) is an ω-complete normed cone.

Proof . Checking the norm axioms is routine. Suppose that µi+1 = µi + θi

for all i. We can define θ(k) :=
∞∑

i=k+1

θi. It is straightforward to verify that

all the θ(k) are finite measures and that for all k, µ = µK + θ(k) so µ is an
upper bound in the cone order and since the cone order implies the pointwise
order, it is the least upper bound in the cone order.

We will usually just write L(X) and M(X). The real action occurs in
subcones of these cones.

If µ is a measure on X, then one has the well-known Banach spaces L1

and L∞ mentioned above. These can be restricted to cones by considering
the µ-almost everywhere positive functions. We will denote these cones by
L+

1 (X,Σ, µ) and L+
∞(X,Σ); if the context is clear we will drop the Σ and

often the measure as well. These also are complete normed cones.

We also work with cones of measures on a space. Let (X,Σ, p) be a mea-
sure space with finite measure p. We denote by M�p(X), the cone of all
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measures on (X,Σ, p) that are absolutely continuous with respect to p4. If
q is such a measure, we define its norm to be q(X). It is easy to see that
this norm coincides precisely with the norm on L+

1 (X,Σ, p) if q is viewed as
a density function through the Radon-Nikodym theorem. Hence M�p(X)
is also an ω-complete normed cone. In fact, one can say more; it is easy to
show that the maps d(−)

dp :M�p(X) −→ L+
1 (X,Σ, p) and (−) ·p : L+

1 (X,Σ, p)

−→ M�p(X) are both ω-continuous maps of cones which are furthermore
norm-preserving. Thus the cones M�p(X) and L+

1 (X,Σ, p) are isometri-
cally isomorphic in ωCC.

Similarly, one can consider Mp
UB(X), the cone of all measures on (X,Σ)

that are uniformly less than a multiple of the measure p; in other words,
q ∈ Mp

UB means that for some real constant K > 0 we have q ≤ Kp. For
such a measure q, we can define the norm of q to be the infimum of all con-
stants K such that q ≤ Kp, which coincides with the norm on L+

∞(X,Σ, p)
when q is considered as a density function; thus Mp

UB(X) is an ω-complete
normed cone. As with M�p(X), the cones Mp

UB(X) and L+
∞(X,Σ, p) are

isomorphic. The two maps d(−)
dp and (−) · p also are norm-preserving.

Proposition 3.2 The dual of the cone L+
∞(X,Σ, p) is isometrically isomor-

phic to M�p(X).

Proof . Let L be an element of L+,∗
∞ (X). We define a measure q on X as

follows:
q(B) = L (1B)

The countable additivity of q is a direct consequence of the ω-continuity of
L: given a countable collection of disjoint measurable sets Bi, we have that

1∪ni=1Bi
=

n∑
i=1

1Bi

Clearly the functions 1∪ni=1Bi
form an increasing sequence, and are bounded

by 1X because theBis are disjoint. We can write q (
⋃∞
i=1Bi) as L (supn

∑n
i=1 1Bi).

Since 1X has finite norm in L+
∞(X), we have

L

(
sup
n

n∑
i=1

1Bi

)
= sup

n
L

(
n∑
i=1

1Bi

)
= sup

n

n∑
i=1

L (1Bi) =

∞∑
i=1

L (1Bi) .

4Since a cone has to be closed under multiplication by positive reals this cone cannot
consist of just probability measures; we have to consider general finite measures
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This shows countable additivity of q. Furthermore, q(∅) = L(0) = 0, and
thus q is a measure.

We want to show that the operator norm of L is q(X). We have that

‖L‖ = sup
‖f‖∞≤1

L(f) = L (1X) = q(X)

since L is monotone and 1X is the least upper bound of the unit ball of
L+
∞(X).

Finally, if p(B) = 0, we have that 1B = 0 in L+
∞(X), and thus q is absolutely

continuous with respect to p.

Thus, each element of L+,∗
∞ (X) can be associated with a measure inM�p(X)

via a map, which we call φ, such that, in the above discussion, we have
φ(L) = q.

It is easy to check that φ is linear and ω-continuous. Furthermore, we just
showed that it was norm-preserving. On the other hand, it is clear that every
element q of M�p(X) corresponds to an unique element of L+,∗

∞ (X). If u
is the Radon-Nikodym derivative of q, we have the functional f 7→

∫
X fudp

on L+
∞(X) which is bounded by Hölder’s inequality. Thus φ is an isometric

isomorphism.

Since M�p(X) is isometrically isomorphic to L+
1 (X), an immediate corol-

lary is that L+,∗
∞ (X) is isometrically isomorphic to L+

1 (X), which is of course
false in general in the context of Banach spaces.

The following proposition is proved analogously:

Proposition 3.3 The dual of the cone L+
1 (X,Σ, p) is isometrically isomor-

phic to Mp
UB(X).

We will not give the proof but we will note a minor lemma that is used in
the proof.

Lemma 3.4 If α : (X, p) −→ (Y, q) satisfies Mα(p) ≤ Kq for some real

positive constant K (i.e. Mα(p) ∈Mq
UB) then dMα(p)

dq is in L+
∞(Y, q).

Proof . We write h for dMα(p)
dq . The Radon-Nikodym theorem tells us that

h is in L1(Y, q). For any g in L+
1 (Y, q) we have

∫
gdMα(p) ≤ K

∫
gdq. Fix

a positive real η and define Zη = {y|h(y) > η}, then

ηq(Zη) ≤
∫
Zη

hdq = Mα(p)(Zη) ≤ Kq(Zη).
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So if q(Zη) 6= 0 we have η ≤ K; thus, except for a set of q-measure 0, h is
bounded by K; i.e. h in L+

∞(Y, q).

As above, asMp
UB(X) is isometrically isomorphic to L+

∞(X), an immediate

corollary is that L+,∗
1 (X) is isometrically isomorphic to L+

∞(X).

Definition 3.5 There is a map from the product of the cones L+
∞(X, p) and

L+
1 (X, p) to R+ defined as follows:

∀f ∈ L+
∞(X, p), g ∈ L+

1 (X, p) 〈f, g〉 =

∫
fgdp.

This map is bilinear and is continuous and ω-continuous in both arguments;
we refer to it as the pairing.

This pairing allows one to express the dualities in a very convenient way.
For example, the isomorphism between L+

∞(X, p) and L+,∗
1 (X, p) sends f ∈

L+
∞(X, p) to λg.〈f, g〉 = λg.

∫
fgdp. A trivial but useful lemma about the

pairing function is that it is multiplicative.

Lemma 3.6 For all g, h ∈ L+
∞ and f ∈ L+

1 , 〈g, hf〉 = 〈gh, f〉.

The proof is immediate from the definition; the only point to note is that
the product of a function in L+

1 and a function in L+
∞ is again in L+

1 .

Using the pairing the following is a consequence of the duality of L+
1 (X)

and L+
∞(X) in ωCC.

Proposition 3.7 Given A : L+
1 (X, p) −→ L+

1 (Y, q) in ωCC, there is a
unique adjoint arrow L+

∞(X, p)← L+
∞(Y, q) : A† in ωCC, such that:

〈g, Af〉Y = 〈A†g, f〉X
for all f ∈ L+

1 (X, p), g ∈ L+
∞(Y, q). Similarly, given L+

∞(X, p)← L+
∞(Y, q) :

A† in ωCC, there is a unique adjoint A : L+
1 (X, p) −→ L+

1 (Y, q) such that
the above holds.

Proof . Suppose A is given, we define:

g ∈ L+
∞(Y, q) 7→ λf ∈ L+

1 (X, p).〈g, Af〉Y .

The right hand side is linear, continuous and ω-continuous in f so is in
L+,∗

1 (X, p) ∼ L+
∞(X, p). This defines A†g in dual form; this definition is

unique because it is forced by the adjointness relation. This map is clearly
linear and continuous as:∥∥∥Ã†g∥∥∥ =

∥∥λf ∈ L+
1 (X, p).〈g, Af〉Y

∥∥
15



where the tilde indicates that it is defined in the dual space. Now the right
hand side of the above is equal to

sup
f∈L+

1 (X,p)

〈g, Af〉Y / ‖f‖1 ≤ ‖g‖∞ ‖A‖ .

which tells us in passing that
∥∥A†∥∥ ≤ ‖A‖, and is ω-continuous as for all

f ∈ L+
1 (X, p) and for all sequences gn converging from below to g in L+

∞(Y, q)

〈gn, Af〉Y −→ 〈g, Af〉Y

by the monotone convergence theorem.

The dual version is essentially the same.

We define two categories Rad∞ and Rad1 that will be needed for the func-
torial definition of conditional expectation.

Definition 3.8 The category Rad∞ has as objects probability spaces, and
as arrows α : (X, p) −→ (Y, q), measurable maps such that Mα(p) ≤ Kq for
some real number K. The category Rad1 has as objects probability spaces
and as arrows α : (X, p) −→ (Y, q), measurable maps such that Mα(p)� q.

The reason for choosing the names Rad1 and Rad∞ is that α ∈ Radx
maps to d/dqMα(p) ∈ L+

x (Y, q) (here x is 1 or ∞). For x = 1 this is true by
the Radon-Nikodym theorem while for x = ∞ it follows from Lemma 3.4.
The fact that the category Rad∞ embeds in Rad1 reflects the fact that L+

∞
embeds in L+

1 .

When we define bisimulation we will need the subcategory of Rad∞ con-
sisting of measure-preserving maps. We call this category Rad=.

3.1 Summary of spaces and their relationships

We summarize the various categories that we have defined and the rela-
tionships between them which we have proved in this previous section. All
the spaces are ω-complete normed cones, thus, isomorphism always means
isomorphism in the category of ω-complete normed cones.

We fix a probability triple (X,Σ, p) and focus on six spaces of cones that
are based on them. They break into two natural groups of three isomorphic
spaces. The first three spaces are:
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A1 M�p(X) - the cone of all measures on (X,Σ, p) that are absolutely
continuous with respect to p,

A2 L+
1 (X, p) - the cone of integrable almost-everywhere positive functions,

A3 L+,∗
∞ (X, p) - the dual cone of the the cone of almost-everywhere positive

bounded measurable functions.

The first space above, M�p(X) is clearly a subspace of M(X), the space
of all finite measures on X.

The next group of three isomorphic spaces are:

B1 Mp
UB(X) - the cone of all measures that are uniformly less than a

multiple of the measure p,

B2 L+
∞(X, p) - the cone of almost-everywhere positive functions in the

normed vector space L∞(X, p),

B3 L+,∗
1 (X, p) - the dual of the cone of almost-everywhere positive func-

tions in the normed vector space L1(X, p).

The functions that arise in the equivalence classes of functions constituting
L+
∞(X, p) and L+

1 (X, p) are contained in L+(X) the space of non-negative
real-valued functions on X.

The spaces defined in A1, A2 and A3 are dual to the spaces defined in B1,
B2 and B3 respectively. The situation may be depicted in the diagram

M�p(X)

��

∼ // L+
1 (X, p)oo

��

∼ // L+,∗
∞ (X, p)oo

��
Mp

UB

OO

∼ // L+
∞(X, p)oo ∼ //

OO

L+,∗
1 (X, p)

OO

oo

(1)

where the vertical arrows represent dualities and the horizontal arrows rep-
resent isomorphisms. The proofs of the isomorphism go through the first
column, but once they are established, we can mainly work with the second
column.

The traditional theory of labelled Markov processes (LMP) was formulated
in terms of the spaces M(X) and L+(X). The Markov kernels used in
the definition of an LMP are of the form τ(x,A): they are subprobability
measures for each x and positive bounded measurable functions for each A.
The essential shift of viewpoint that we propose in this paper is to work
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with the spaces in A2 and B2 instead: this will be the key definition in the
next section.

4 Conditional expectation functorially

There is a very pleasant view of conditional expectation as a functor; this
view sets the stage for the approximation theory. The key ingredient is
the duality between the cones L+

1 and L+
∞ as captured by the pairing map

〈·, ·〉 : L+
∞ × L+

1 −→ R+.

First, recall the categories Rad1 and Rad∞ defined in Def. 3.8 and the
pairing function defined in Def. 3.5. We have the isomorphism between
L+
∞(X, p) and L+,∗

1 (X, p) mediated by the pairing function:

f ∈ L+
∞(X, p) 7→ λg : L+

1 (X, p).〈f, g〉 =

∫
fgdp.

Now, precomposition with α in Rad∞ gives a map P1(α) from L+
1 (Y, q) to

L+
1 (X, p). To see this consider α ∈ Rad∞ and g ∈ L+

1 (Y, q). Now∫
P1(α)(g) dp = 〈 d

dq ·Mα(p), g〉
Y

which shows that P1(α)(g) is in L+
1 (X, p). Dually, given α ∈ Rad1 : (X, p)

−→ (Y, q) and g ∈ L+
∞(Y, q) we have∫

P∞(α)(g) dp = 〈g, d
dq ·Mα(p)〉

Y

which implies that P∞(α)(g) ∈ L+
∞(X, p). Thus the subscripts on the two

precomposition functors describe the target categories. Using the ∗-functor
we get a map (P1(α))∗ from L+,∗

1 (X, p) to L+,∗
1 (Y, q) in the first case and

dually we get (P∞(α))∗ from L+,∗
∞ (X, p) to L+,∗

∞ (Y, q).

We are now ready to define the expectation value map.

Definition 4.1 The functor E∞(·) is a functor from Rad∞ to ωCC which,
on objects, maps (X, p) to L+

∞(X, p) and on maps is given as follows. Given
α : (X, p) −→ (Y, q) in Rad∞ the action of the functor is to produce the
map E∞(α) : L+

∞(X, p) −→ L+
∞(Y, q) obtained by composing (P1(α))∗ with
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the isomorphisms between L+,∗
1 and L+

∞ as shown in the diagram below

L+,∗
1 (X, p)

(P1(α))∗

��

L+
∞(X, p)oo

E∞(α)

��
L+,∗

1 (Y, q) // L+
∞(Y, q)

(2)

It is an immediate consequence of the definitions that

Proposition 4.2 for any f ∈ L+
∞(X, p) and g ∈ L+

1 (Y, q)

〈E∞(α)(f), g〉Y = 〈f, P1(α)(g)〉X .

One can informally view this functor as a “left adjoint” in view of this propo-
sition. Note that since we started with α in Rad∞ we get the expectation
value as a map between the L+

∞ cones.

We calculate E∞(α)(1X) to illustrate the definition. We start with 1X ∈
L+
∞(X, p). Under the ∗ isomorphism it maps to λg : L+

1 (X, p).
∫
gdp, which

is an element of L+,∗
1 (X, p). Then under the action of P1(α)∗it maps to

λh : L+
1 (Y, q).

∫
(h ◦ α) dp which is in L+,∗

1 (Y, q). Note that because α
satisfies Mα(p) ≤ Kq for some K, it follows that h ◦ α is in L+

1 (X, p).

Finally taking the iso back we get dMα(p)
dq as the value of E∞(α)(1X), which

is in L+
∞(Y, q).

It is a well-known elementary fact that
∫
X g ◦ α dp =

∫
Y g dq if and only if

α is measure preserving. It follows then that E∞(α)(1X) = 1Y if and only
if α is measure preserving. The general statement is

∀f ∈ L+
∞(X, p).E∞(α)(f) =

d

dq
·Mα(f · p).

In exactly the same way we can define a functor from Rad1 to ωCC.

Definition 4.3 The functor E1(·) is a functor from Rad1 to ωCC which
maps the object (X, p) to L+

1 (X, p) and on maps is given as follows: Given
α : (X, p) −→ (Y, q) in Rad1 the action of the functor is to produce the
map E1(α) : L+

1 (X, p) −→ L+
1 (Y, q) obtained by composing (P∞(α))∗ with
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the isomorphisms between L+,∗
∞ and L+

1 as shown in the diagram below

L+,∗
∞ (X, p)

(P∞(α))∗

��

L+
1 (X, p)oo

E1(α)
��

L+,∗
∞ (Y, q) // L+

1 (Y, q)

(3)

Once again we have an “adjointness” statement; this time it is a right ad-
joint.

Proposition 4.4 Given f ∈ L+
∞(Y, q) and g ∈ L+

1 (X, p) we have

〈f,E1(α)(g)〉Y = 〈P∞(α)(f), g〉X .

The relationship between these two expectation value functors and the
corresponding precomposition functors is given by the following proposi-
tion.

Proposition 4.5 Given α ∈ Rad∞[(X, p), (Y, q)] we have

(a) E1(α)(f ◦ α) = E∞(α)(1X)f, for f ∈ L+
1 (Y, q) and

(b) E∞(α)(f ◦ α) = E1(α)(1X)f, for f ∈ L+
∞(Y, q).

Proof . We prove the first, the second is virtually identical, one just has to
dualize every step; in fact they are the same up to adjunction.

In view of the duality, it suffices to show that for any g ∈ L+
∞(Y, q) we have

〈g,E1(α)(f ◦ α)〉 = 〈g,E∞(α)(1X)f〉.

We calculate as follows:

〈g,E1(α)(f ◦ α)〉 = 〈g ◦ α, f ◦ α〉 right-adjointness of E1()
= 〈1X(g ◦ α), f ◦ α〉 obvious
= 〈1X , (g ◦ α)(f ◦ α)〉 Lemma 3.6
= 〈1X , (gf) ◦ α〉 pointwise multiplication
= 〈E∞(α)(1X), gf〉 left-adjointness of E∞()
= 〈g,E∞(α)(1X)f〉 Lemma 3.6 twice.
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One last detail that needs to be tied up is the calculation of the norm of
some operators. We start with an almost immediate observation; we write
‖·‖ for the operator norm.

Lemma 4.6 Given any linear F : L+
∞(X) −→ L+

∞(Y ), ‖F‖ = ‖F (1X)‖∞.

Proof . If f ∈ L+
∞(X) we have f ≤ ‖f‖∞ 1X , where ≤ is the cone order. In

particular, if ‖f‖∞ = 1 we have f ≤ 1X . For such an f and for monotone F ,
we have F (f) ≤ F (1X), so by monotonicity of the norm we have ‖F (f)‖∞ ≤
‖F (1X)‖∞. Hence by definition of the operator norm ‖F‖ = ‖F (1X)‖∞.

We have two immediate consequences.

Lemma 4.7 Suppose we have a map α : (X, p) −→ (Y, q) in Rad∞. Then:

1. E∞(α) : L+
∞(X) −→ L+

∞(Y ) has norm ‖E∞(α)(1X)‖∞.

2. The map P∞(α) : L+
∞(Y, q) −→ L+

∞(X, p) has norm 1.

We have already seen that there is a dagger functor introduced in Propo-
sition 3.7. This adjoint is a contravariant functor which is defined on the
subcategories that arise as L+

1 and L+
∞.

5 Labelled abstract Markov processes

5.1 Markov processes as function transformers

It is a pleasing fact that Markov kernels can be viewed as linear maps on
function spaces. This idea was first elaborated by [YK41] and underlies
much of the present work.

Given τ a Markov kernel from (X,Σ) to (Y,Λ), we define Tτ : L+(Y ) −→
L+(X), for f ∈ L+(Y ), x ∈ X, as Tτ (f)(x) =

∫
Y f(z)τ(x, dz). This map

is well-defined, linear and ω-continuous. If we write 1B for the indicator
function of the measurable set B we have that Tτ (1B)(x) = τ(x,B) and
hence is measurable for every B ∈ Λ. Thus Tτ (f) is measurable for any
measurable f by the usual argument starting from simple functions and
using first linearity and then the monotone convergence theorem.

Conversely, any ω-continuous morphism L with L(1Y ) ≤ 1X can be cast as a
Markov kernel by reversing the process above. The interpretation of L is that
L(1B) is a measurable function on X such that L(1B)(x) is the probability
of jumping from x to B. Thus L does encode a transition probability.
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We can also define an operator on M(X) by using τ the other way. We
define T̄τ : M(X) −→ M(Y ), for µ ∈ M(X) and B ∈ Λ, as T̄τ (µ)(B) =∫
X τ(x,B) dµ(x). It is easy to show that this map is linear and ω-continuous.

The two operators Tτ and T̄τ have interesting interpretations. The operator
T̄τ transforms measures “forwards in time”; if µ is a measure on X repre-
senting the current state of the system, T̄τ (µ) is the resulting measure on Y
after a transition through τ .

On the other hand, the operator Tτ may be interpreted as a transformer
of random variables that propagates information “backwards”, just as we
expect from predicate transformers. This inversion can be seen from the
reversal of X and Y in the definition of the operator. Note that Tτ (f)(x) is
just the expected value of f after one τ -step given that one is at x. Thus,
we have an expectation-value transformer.

5.2 Abstract Markov processes

If our measurable spaces X and Y are endowed with measures p and q,
respectively, which we shall assume finite, it is tempting to consider pos-
itive operators on L+

1 and L+
∞ instead of on L+: we call these abstract

Markov processes because they operate on equivalence classes of functions
rather than on the concrete functions, but, in view of the isomorphisms
discussed in Section 2, they can also be regarded as operating on spaces of
measures.

This view was first explored by [Hop54]. We will slightly modify the classical
definitions in order to work with cones; the interested reader may consult
standard sources [Sch74, AGG+86, Haw06] for the usual framework in Ba-
nach spaces or Banach lattices.

Definition 5.1 A Markov operator from a state space (X,Σ, µ) to a state
space (Y,Λ, ν) is a linear map T : L+

1 (X) −→ L+
1 (Y ) such that ‖T‖ ≤ 1.

Note that the operator norms of both Tτ and T̄τ are less than one. Here
T̄τ :M(X) −→M(Y ) and Tτ : L+(Y ) −→ L+(X) and the operator norms are
computed using the norms on the conesM(X),M(Y ),L+(X) and L+(Y ).

This is the analog of the measure transforming operator T̄τ above, as the
elements of L+

1 (X) correspond to measures which are absolutely continuous
with respect to our given measure µ (and similarly for L+

1 (Y )). In this case
the map is automatically order-continuous.
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Proposition 5.2 If F : L+
1 (X,µ) −→ L+

1 (Y, ν) is linear and has finite op-
erator norm, i.e. it is a continuous linear map, then F is ω-continuous.

Proof . Suppose that we have an increasing sequence {fi} with a pointwise
lub f , then by the monotone convergence theorem we have that

∫
fi dµ con-

verges to
∫
f dµ. Since F is monotone, F (fi) is increasing and is bounded

by F (f). Since F has finite operator norm we have ‖F (f)− F (fi)‖1 ≤
‖F‖ ‖f − fi‖1 and by the monotone convergence theorem we have limi−→∞ ‖f − fi‖1 =
0. Now note that F (fi) ≤ F (f) since F is linear, hence monotone. Also,
from the definition of ‖F‖, we have ‖F (fi)‖1 ≤ ‖F‖ · ‖fi‖1 so the sequence
‖F (fi)‖1 is bounded and, since the cone is complete, has a least uper bound.
Thus from Lemma 2.12 we have F (f) =

∨
i F (fi).

From the “backwards transformation” point of view the operator we work
with is the equivalent of Tτ . We have the following definition:

Definition 5.3 An abstract Markov kernel from (X,Σ, p) to (Y,Λ, q) is
an ω-continuous linear map τ : L+

∞(Y ) −→ L+
∞(X) with ‖τ‖ ≤ 1.

Definition 5.4 A labelled abstract Markov process on a probability
space (X,Σ, p) with a set of labels (or actions) A is a family of abstract
Markov kernels τa : L+

∞(X, p) −→ L+
∞(X, p) indexed by elements a of A.

Requiring that ‖τ‖ be less than 1 is equivalent to requiring that τ1X ≤ 1X .
Hence, an abstract Markov kernel is an arrow in the category ωCC. Note
the inversion of Y and X in the definition.

In this definition, we require that τ be ω-continuous in addition to being
linear. Unlike the L+

1 case, linearity does not guarantee ω-continuity; [Sel04]
gives a counter example. It is worth understanding the counter-example
because it sheds light on why we have a perfect duality in our setting. We
work with the space L+

∞(N,#), where N is the natural numbers and #
represents the counting measure. We write l+∞ for this space: it consists of
bounded sequences of real numbers. We write s for such a sequence and s[i]
for the ith element of the sequence. Let U be a non-principal ultrafilter on
N. We define a function limU : l+∞ −→ R+ as follows:

lim
U

(s) = sup {x | {i | s[i] ≥ x} ∈ U}.

It is not obvious but one can show that limU is linear. Consider the increas-
ing chain of sequences sn = [1, 1, . . . , 1, 0, 0, . . .] where the first n entries of
sn are 1s. Since U is a non-principal ultrafiler we have limU sn = 0 for all
n. However, the limit is the constant sequence of 1s and the limU of this
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is 1. Thus this functional is not continuous. It was important to have a
non-principal ultrafilter for this example to work. Note that this example
shows that just taking bounded linear maps to construct dual spaces will not
give us the perfect duality that we have. The ω-continuity controls the dual
more stringently than the usual norm continuity and gives us duality.

The following corollary, though not needed for any of the results, gives the
relation between Markov operators and abstract Markov kernels.

Corollary 5.5 Given finite measure spaces (X,Σ, µ) and (X,Λ, ν), there
is a bijection between Markov operators from X to Y and abstract Markov
kernels from X to Y . The bijection is given by the adjoint operation.

Remark 5.6 One can find a similar bilinear form which demonstrates that
the operators T̄τ and Tτ are adjoints.

We can relate Markov operators to a special type of Markov kernel. If X
and Y are endowed with measures µ and ν, respectively, a Markov kernel
from X to Y is nonsingular if, for all measurable sets B ⊆ Y such that
ν(B) = 0, we have τ(x,B) = 0, µ-almost everywhere. The following result
is essentially due to [Hop54], one has to make very minor modifications to
adapt it to the cone situation:

Proposition 5.7 Every Markov operator from (X,Σ, µ) to (Y,Λ, ν) corre-
sponds uniquely to a nonsingular Markov kernel from X to Y .

As an immediate corollary, one obtains a one-to-one correspondence be-
tween nonsingular Markov kernels and abstract Markov kernels from X to
Y . Informally, one obtains a Markov kernel τ̂ from an abstract Markov
kernel τ from X to Y as follows: given a measurable set B in Λ, we let
τ (1B) (x) = τ̂(x,B); this is precisely the interpretation we had for the op-
erator Tτ .

The above proposition is not completely trivial because the functions τ (1B) (x)
are only defined µ-almost everywhere. The proof of this proposition will be
omitted; however, we give an intuitive justification of why it holds. If τ̂ is
a nonsingular Markov kernel from X to Y , we require that ν(B) = 0 ⇒
τ̂(x,B) =µ 0. Interpreting τ̂ as an abstract Markov kernel, we thus require
that τ (1B) =µ 0 if ν(B) = 0, or if 1B =ν 0. This is a necessary condition
for τ to be linear; the proposition above shows that it is sufficient.
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6 The approximation map on LAMPs

The expectation value functors essentially project a probability space onto
another one with a possibly coarser σ-algebra. This is what we use to define
the notion of approximation. Given an AMP on (X, p) and a map α : (X, p)
−→ (Y, q) in Rad∞, we have the following approximation scheme:

L+
∞(X, p)

τa // L+
∞(X, p)

E∞(α)
��

L+
∞(Y, q)

α(τa) //

P∞(α)

OO

L+
∞(Y, q)

(4)

Here we write τa for all the Markov kernels associated with the AMP. Thus
any a that appears is intended to be universally quantified. It follows from
Prop. 4.5 that if α is measure preserving then α(Id) = Id where Id is the
identity on L+

∞. There is no reason why α should be a functor though. Note
that ‖α(τa)‖ ≤ ‖P∞(α)‖ · ‖τa‖ · ‖Eα‖ = ‖τa‖ · ‖E∞(α)(1X)‖∞. Thus, if α is
measure preserving we get ‖α(τa)‖ ≤ ‖τa‖.

A special case of this is when we have (X,Σ) and (X,Λ), i.e. the two
spaces have the same underlying point set but are equipped with differ-
ent σ-algebras and Λ ⊂ Σ, now the identity function id from (X,Σ) to
(X,Λ) is measurable and we can define an approximation by moving to a
coarser σ-algebra. In our set up we are approximating along any measurable
function rather than just identity maps between the same spaces but with
different σ-algebras.

In the same situation as in the previous paragraph, the map E1(id) : L+
1 (X,Σ, p)

−→ L+
1 (X,Λ, p) is the exactly function that is traditionally written E(·|Λ) [Bil95].

The functoriality of the expectation value is what is called the “tower law
of conditional expectation” in probability theory [Wil91].

The notion of approximation immediately applies to LAMPs. Given proba-
bility spaces (X, p) and (Y, q) and a Rad∞ map α from (X, p) to (Y, q) we
can project each τa of a LAMP on (X, p) to one on (Y, q) as described just
above. Since an AMP has a norm less than 1, we can only be sure that α
yields an approximation for every AMP on X if ‖E∞(α)(1X)‖∞ ≤ 1. We
call the AMP α(τa) the projection of τa on Y .
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7 Bisimulation

The notion of probabilistic bisimulation was introduced by [LS91] for dis-
crete spaces and by [BDEP97] (see also [DEP02]) for continuous spaces.
Subsequently a dual notion called event bisimulation or probabilistic co-
congruence was defined independently by [DDLP06] and by [BSdV04]. For
a more detailed discussion of the history see Section 12. The idea of event
bisimulation was that one should focus on the measurable sets rather than
on the points. This meshes exactly with the view here.

7.1 The category AMP

We have developed the functorial theory of conditional expectation in a
fairly general setting with mild conditions on the maps: for example, in
Rad∞, the image measure is bounded by a multiple of the measure in the
target space. From now on, we consider a category where the objects are
LAMPs that will be relevant to the approximation theory. We will work with
probability spaces equippaed with abstract Markov processes. The maps will
be measure-preserving maps. These maps are essentially surjective but there
is no real reason not to restrict to maps that are not surjective in the usual
sense.

Definition 7.1 We define the category AMP as follows. The objects con-
sist of probability spaces (X,Σ, p), along with an abstract Markov process τa
on X. The arrows α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) are surjective measurable
measure-preserving maps from X to Y such that α(τa) = ρa.

In words, this means that the Markov processes defined on the codomain are
precisely the projection of the Markov processes τa on the domain through
α. When working in this category, we will often denote objects by the state
space, when the context is clear.

7.2 Event bisimulation and Zigzags

We begin with the definition of event bisimulation which comes from [DDLP06]
where it was developed for LMPs.

Definition 7.2 Given a LMP (X,Σ, τa), an event-bisimulation is a sub-σ-
algebra Λ of Σ such that (X,Λ, τa) is still an LMP [DDLP06].
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More explicitly, the condition that needs to hold for Λ to be an event bisim-
ulation is that τ(x,A) is Λ-measurable for a fixed A ∈ Λ. This is the case if
and only if τa : L+

∞(X,Σ, p) −→ L+
∞(X,Σ, p) sends the subspace L+

∞(X,Λ, p)
to itself, where we are now viewing τa as a map on the function space. In
other words, the following diagram commutes:

L+
∞(X,Σ, p)

τa // L+
∞(X,Σ, p)

L+
∞(X,Λ, p)
?�

OO

τa // L+
∞(X,Λ, p)
?�

OO
(5)

This is the notion we need for LAMPS.

We can generalize the notion of event bisimulation by using maps other
than the identity map on the underlying sets. This would be a map α from
(X,Σ, p) to (Y,Λ, q), equipped with LMPs τa and ρa respectively, such that
the following commutes:

L+
∞(X,Σ, p)

τa // L+
∞(X,Σ, p)

L+
∞(Y,Λ, q)

P∞(α)

OO

ρa // L+
∞(Y,Λ, q)

P∞(α)

OO
(6)

This corresponds to a morphism of coalgebras in the concrete case. Note
that if, in Diagram 6, we consider the special case where α is the identity
map (X,Σ) −→ (X,Λ), we get Diagram 5.

We will refrain from calling these maps bisimulation maps yet; we will call
such maps zigzags; they are essentially the same as zigzags for labelled
Markov processes [DEP02].

Definition 7.3 A zigzag from an abstract Markov process (X,Σ, p, τa) to
another abstract Markov process (Y,Λ, q, ρa) is a measurable, measure-preserving
surjective function from X to Y such that Diagram 6 commutes.

Note that if there is a zigzag α from X to Y , then the LAMP on Y is
very closely related to the projection of τa onto Y via α, i.e. to α(τa) =
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E∞(α) ◦ τa ◦ P∞(α). We have the following commuting diagram:

L+
∞(Y )

ρa //

P∞(α)

%%

L+
∞(Y )

E1(α)(1X)·(−)

��

P∞(α)

yy
L+
∞(X)

τa // L+
∞(X)

E∞(α) %%
L+
∞(Y )

α(τa) //
P∞(α)

99

L+
∞(Y )

(7)

We have that E∞(α)(f ◦ α) = E1(α)(1X)f from the second equation of
Prop. 4.5. This implies that α(τa) = ρa · E1(α)(1X). In particular, if
E1(α)(1X) = 1Y – which happens if and only if Mα(p) = q – then ρa is equal
to α(τa), the projection of τ onto Y . Note that the condition Mα(p) = q
means by definition that the image measure is precisely the measure in the
codomain of α. In short if we “approximate” along a measure-preserving
zigzag then the approximation is the same as the exact result. This means
that approximations and bisimulations live in the same universe and bisim-
ulations appear as special approximations, or, put another way, the ap-
proximations are really approximate bisimulations. This explains why we
restricted to the measure-preserving case in this section.

We record the fact that zigzags are arrows in AMP as a Lemma.

Lemma 7.4 If α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) is a zig-zag then α(τa) = ρa,
which is to say that α is a morphism of AMP.

Proof . From the Diagram 7 we have that

α(τa) = ρa · E∞(α)(1X).

Since α is measure preserving we have E∞(α)(1X) = 1Y so we get α(τa) =
ρa.

7.3 Bisimulation Defined on AMP

It should be noticed that surjective measure-preserving maps between prob-
ability spaces typically involve information loss. This information loss is
encoded in the requirement that the maps be measurable: one only asks
for the preimages of the measurable sets to be measurable. To recall the
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situation that we discussed earlier; consider the identity map on a set X
equipped with two σ-algebras Λ ⊂ Σ. This map id induces the conditional
expectation operator E(·|Λ) : L+

1 (X,Σ, p) −→ L+
1 (X,Λ, p) or E1(id) which

effectively “pixelizes” the functions in the sense that Σ-measurable functions
become only Λ-measurable.

The existence of a zigzag is a very strong condition, too strong for a reason-
able theory; bisimulation as originally defined is a relation. The relational
aspect is captured by using cospans5.

Definition 7.5 We say that two objects of AMP, (X,Σ, p, τ) and (Y,Λ, q, ρ),
are bisimilar if there is a third object (Z,Γ, r, π) with a pair of zigzags

α : (X,Σ, p, τ) −→ (Z,Γ, r, π)
β : (Y,Λ, q, ρ) −→ (Z,Γ, r, π)

giving a cospan diagram

(X,Σ, p, τ)

α

''

(Y,Λ, q, ρ)

βww
(Z,Γ, r, π)

(8)

Note that the identity function on an AMP is a zigzag, and thus that any
zigzag between two AMPs X and Y implies that they are bisimilar.

8 Bisimulation is an equivalence

This section is devoted to establishing that bisimulation is an equivalence
relation. The crucial step is Theorem 8.1 which shows that one can paste
together cospans of zigzags in order to show transitivity.

Theorem 8.1 The category AMP has pushouts. Furthermore, if the mor-
phisms in the span are zigzags then the morphisms in the pushout diagram
are also zigzags. More explicitly, let α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) and
β : (X,Σ, p, τa) −→ (Z,Γ, r, κa) be a span in AMP. Then there is an object

5When bisimulation was developed for LMPs [DEP02], the authors used spans rather
than co-spans. Later [DDLP06] it was realized that the theory is smoother with co-spans.
The two notions turn out to be equivalent on analytic spaces but are not the same if the
underlying σ-algebra does not arise as the Borel algebra of an analytic space. See the
historical review for more discussion of this.
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(W,Ω, µ, πa) of AMP and AMP maps δ : Y −→ W and γ : Z −→ W such
that the diagram

(X,Σ, p, τa)

α
ww β ''

(Y,Λ, q, ρa)

δ ''

(Z,Γ, r, κa)

γ
ww

(W,Ω, µ, πa)

(9)

commutes. If (U,Ξ, ν, λa) is another AMP object and φ : Y −→ U and ψ : Z
−→ U are AMP maps such that α, β, φ and ψ form a commuting square,
then there is a unique AMP map θ : W −→ U such that the diagram

(X,Σ, p, τa)

α
ww β ''

(Y,Λ, q, ρa)

δ ''

φ

  

(Z,Γ, r, κa)

γ
ww

ψ

~~

(W,Ω, µ, πa)

θ
��

(U,Ξ, ν, λa)

(10)

commutes. Furthermore, if α and β are zigzags, then so are γ and δ.

We will present the proof in stages. First we observe that pushouts can be
constructed in the category Set. This can then be lifted to the category
Mes, then we show that this construction can be lifted to Rad= and finally
to AMP. In fact, the pushout object in each case will be built on the pre-
vious one and the maps will be the same. Thus the couniversality property
that we need for AMP follows from that of Set, once we show that the
mediating morphism constructed in Set has the right properties to qualify
as an AMP morphism.

Proof . It is straightforward to show [DEP02, DDLP06, Pan09] that pushouts
exist in the category of measurable spaces: it is the usual pushout in Set,
equipped with the largest σ-algebra making the pushout maps measurable.
We thus have the following pushout diagram in Mes, the category of mea-
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surable spaces:
(X,Σ)

α

zz
η

��

β

$$
(Y,Λ)

δ $$

(Z,Γ)

γ
zz

(W,Ω)

(11)

Note here that, of course, η = δ ◦ α = γ ◦ β. Couniversality is captured by
the following diagram:

(X,Σ)

α

zz

β

$$
(Y,Λ)

δ

$$

φ

  

(Z,Γ)
γ

zz

ψ

~~

(W,Ω)

θ
��

(U,Ξ)

(12)

where θ, the mediating morphism, is unique. It is also constructed exactly
as in Set; it can be readily verified that when the other maps in the diagram
are measurable it is also measurable.

We have to construct a measure on W such that the maps δ and γ are
measure preserving, we already know that they are surjective by the con-
struction of the pushout in Set. Let us define on (W,Ω) the measure µ in
the obvious way: for B ∈ Ω, µ(B) = p(η−1(B)). Note that by the definition
of η and the fact that α and β are measure-preserving, we have6 µ(B) =
p(η−1(B)) = p(α−1(δ−1(B))) = q(δ−1(B)) = p(β−1(γ−1(B)) = r(γ−1(B))
and so we automatically have that γ and δ are measure-preserving. In short
we have shown that we have a commuting square in the category Rad=. To

6We have used the explicit definition of the image measure here, i.e. we write, for
example, p(η−1(B) instead of Mη(p)(B) in order to make the calculations clearer.
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show the couniversality property we consider the diagram

(X,Σ, p)

α

xx

β

&&
(Y,Λ, q)

δ

&&

φ

""

(Z,Γ, r)
γ

xx

ψ

||

(W,Ω, µ)

θ
��

(U,Ξ, ν)

(13)

where now all the maps, except θ, are assumed to be measure preserving. We
need to show that θ is also measure preserving. Let A ∈ Ξ be a measurable
subset of U , we need to show ν(A) = µ(θ−1(A)). We calculate as follows

ν(A) = q(φ−1(A)) = q(δ−1(θ−1(A))) = µ(θ−1(A))

where the first equality holds because φ is measure preserving, the second
from φ = θ ◦ δ and the last because δ is measure preserving.

Finally, we have to construct kernels πa on (W,Ω, µ) in such a way that δ
and γ are AMP morphisms. We take πa = η(τa). Thus, for all f in L+

∞(W ),
we have πa(f) = E∞(η)(τa(f ◦ η)). Note that as E∞(−) is a functor and
α is an arrow in AMP, we have πa(f) = E∞(δ)(E∞(α)(τa((f ◦ δ) ◦ α))) =
E∞(δ)(ρa(f ◦ δ)) = δ(ρa)(f), and thus δ is an arrow in AMP as well. The
same argument works for γ. Thus we have a commuting square in AMP.

To show that θ is an AMP morphism we calculate similarly. Let h ∈
L+
∞(U,Ω, ν), then

λa(h) = φ(ρa)(h)
= E∞(φ)(ρa(h ◦ φ))
= E∞(θ)(E∞(δ)(ρa((h ◦ θ) ◦ δ)))
= E∞(θ)(πa(h ◦ θ)) = θ(πa)(h).

This completes the proof that we have pushouts in AMP.

We now need to show that if the morphisms α and β are zigzags then so are
δ and γ. This requires some preliminary lemmas.

32



Lemma 8.2 Let X be a set and (Y,Λ) be a measurable space. let α : X
−→ Y be a surjective function and let Λ′ = α−1(Λ) be the induced σ-algebra
on X. Then for all h : X −→ R, h is Λ′-measurable if and only if h factors
as h′ ◦ α for some measurable h′ : Y −→ R.

Proof . The right to left direction is immediate since the definition of Λ′

clearly makes α measurable and h′ is assumed measurable. For the reverse
direction we start with the claim that if α(x) = α(x′) for any x and x′ in X
then h(x) = h(x′). Consider the set B = {h(x)}, which is Borel-measurable.
Since h is assumed measurable we have that A = h−1(B) is Λ′-measurable.
By the definition of Λ′, there is some C in Λ with A = α−1(C). Now x ∈ A
so α(x) ∈ C, but since α(x) = α(x′) we have that x′ ∈ A so h(x′) ∈ B, i.e.
h(x) = h(x′). This means that h is constant on subsets of X of the form
α−1({y}). Thus we can define h′ : Y −→ R by h′(y) = h(x) for any x in
α−1(y). This map clearly satisfies h = h′ ◦ α. We need to show that h′ is
measurable. Let B be some Borel subset of R and let A = h′−1(B). Then
α−1(A) = h−1(B) is in Λ′ since h is Λ′-measurable, so α−1(A) = α−1(C) for
some C ∈ Λ, but since α is surjective we have that A = C so h′−1(B) = C
is in Λ, hence h′ is measurable.

Note that h and h′ have the same image, and α is measure-preserving so if
h ∈ L+

∞(X) then h′ ∈ L+
∞(Y ), in fact the essential sups coincide so we even

have ‖h‖∞ = ‖h′‖∞.

Lemma 8.3 Let α : (X,Σ, p) −→ (Y,Λ, q) be a measure-preserving map of
probability spaces. Then for all h ∈ L+

∞(X), E∞(α)(h) ◦ α = h ⇔ h is
α−1(Λ)-measurable.

Proof . We know that precomposition and conditional expectation functors
compose to the identity if we have a measure preserving map, i.e. E∞(α) ◦
P∞(α) = id if α is measure preserving. This follows from the remark just
after Diagram 7 which in turn follows from Proposition 4.5. So the statement
of the lemma is equivalent to saying that h is in the image of P∞(α) iff it is
α−1(Λ) measurable, but this is just what Lemma 8.2 says.

Lemma 8.4 Let α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) be an arrow in AMP.
Then α is a zigzag if and only if P∞(α) ◦E∞(α) = id, i.e. if and only if for
all f ∈ L+

∞(Y ), Eα(τa(f ◦ α)) ◦ α = τa(f ◦ α).

33



Proof . If α is a zigzag, the following diagram commutes:

L+
∞(X)

τa // L+
∞(X)

E∞(α)
��

L+
∞(Y )

ρa //

P∞(α)

OO

P∞(α)
��

L+
∞(Y )

P∞(α)
��

L+
∞(X)

τa // L+
∞(X)

(14)

and the diagram shows the “only if part”. The reverse direction is trivial,
as E∞(α)(τa(f ◦α)) = ρa(f) since α is an arrow in AMP. Thus ρa(f)◦α =
τa(f ◦ α) and α is a zigzag.

Corollary 8.5 α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) in AMP is a zigzag if and
only if for all f ∈ L+

∞(Y ), τ(f ◦ α) is α−1(Λ)-measurable.

Lemma 8.6 If α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) in AMP is a zigzag, β :
(Y,Λ, q, ρa) −→ (Z,Γ, r, κa) is a map in AMP, and γ = β ◦ α is a zigzag,
then β is a zigzag.

Proof .
κa(f) ◦ β ◦ α = κa(f) ◦ γ

= τa(f ◦ γ) γ is a zigzag
= τa(f ◦ β ◦ α)
= ρa(f ◦ β) ◦ α α is a zigzag

Now α is surjective, hence epi, which means right-cancellable, and thus
κa(f) ◦ β = ρa(f ◦ β) and β is a zigzag.

We are now ready to complete the proof of Theorem 8.1 by showing that δ
and γ are zigzags. Let f be in L+

∞(W ), then we have

τa(f ◦ η) = τa(f ◦ δ ◦ α) = ρa(f ◦ δ) ◦ α as α is a zigzag
= τa(f ◦ γ ◦ β) = κa(f ◦ γ) ◦ β as β is a zigzag.
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Let ρa(f ◦ δ) = g and κa(f ◦γ) = h. We have the following diagram in Mes:

(X,Σ)

α

zz
η

��

β

$$
(Y,Λ)

δ

$$
g

��

(Z,Γ)
γ

zz

h

��

(W,Ω)

j
��
R

(15)

As this is a pushout diagram, there is a unique measurable map j : W −→ R
such that g = j ◦ δ and h = j ◦ γ. Thus τa(f ◦ η) = g ◦ α = j ◦ δ ◦ α = j ◦ η.
Thus τa(f ◦ η) is η−1(Ω) measurable and, from Corollary 8.5 we have that
η is a zigzag. Now from Lemma 8.6 we conclude that δ and γ are zigzags.

The main point of Theorem 8.1 is to show the following corollary.

Corollary 8.7 Bisimulation is an equivalence relation on the objects of
AMP.

Proof . Clearly bisimulation is reflexive and symmetric, so we only need to
check transitivity. We will label objects in AMP by just their state spaces
to avoid cluttering up the diagram. Suppose X and Y are bisimilar, and
that Y and Z are bisimilar. Then we have two cospans of zigzags, as in the
following diagram:

X

α   

Y

β~~ δ   

Z

γ��
W

ζ   

U

η~~
V

(16)

The pushouts of the zigzags β and δ yield two more zigzags ζ and η (and
the pushout object V ). As the composition of two zigzags is a zigzag, X
and Z are bisimilar. Thus bisimulation is transitive.

It is worth noting that this proof did not require any assumptions about the
nature of the measure spaces. In [DEP02], the proof of transitivity requires
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the σ-algebras of the measure spaces to be the Borel algebra of an analytic
space. There are counter-examples showing that transitivity fails for the
span definition of bisimulation on non-analytic spaces. We discuss this in
the related work section.

Another point worth noting is that these pushouts exist in the category
AMP, thus we can compose not just bisimulations, which are cospans of
zigzags, but any cospans. In particular, this means that one can compose
approximate bisimulations.

9 Minimal Realization

There is a very pleasing bisimulation-minimal realization theory for AMPs.
Of course the notion of “minimal” cannot be based on counting the number
of states, instead it is based on a suitable universal property. Given an AMP
(X,Σ, p, τa), one may ask whether there is a “smallest” object in AMP up
to bisimulation.

The precise definition is as follows.

Definition 9.1 Given an AMP (X,Σ, p, τa), a bisimulation-minimal re-
alization of this abstract Markov process is an AMP (X̃,Γ, r, πa) and a
zigzag in AMP η : X −→ X̃ such that for every zigzag β from X to another
AMP (Y,Λ, q, ρa), there is a unique zigzag γ from (Y,Λ, q, ρa) to (X̃,Γ, r, πa)
with η = γ ◦ β.

If we think of a zigzag as defining a quotient of the original space then X̃ is
the “most collapsed” version of X.

We now proceed to the proof that such an object exists for every AMP
(X,Σ, p, τa).

Theorem 9.2 Given any AMP (X,Σ, p, τa) there exists another AMP (X̃,Γ, r, πa)
and a zigzag η in AMP, η : X −→ X̃ such that (X̃,Γ, r, πa) and η define a
bisimulation-minimal realization of (X,Σ, p, τa).

Proof . We first note that the intersection of event bisimulations on (X,Σ, p, τa)
(or any AMP) is again an event bisimulation so there is a well-defined least
event bisimulation Ω. We define an equivalence relation R on X by xRx′ if
for every A ∈ Ω, x ∈ A ⇐⇒ x′ ∈ A. We define the set X̃ as the quotient
X/R. Let Q be the canonical surjection Q : X −→ X̃. We equip X̃ with
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a σ-algebra Γ, defined to be the finest (largest) σ-algebra making Q mea-
surable; i.e. a subset C of X̃ is in Γ if and only if Q−1(C) ∈ Ω. We define
the measure r by ∀B ∈ Γ, r(B) = p(Q−1(B)); this makes Q a surjective,
measurable, measure-preserving map.

We need to define πa in such a way as to make Q a zigzag. This requires
that ∀h ∈ L+

∞(X̃), τa(h ◦ Q) = πa(h) ◦ Q. Now h ◦ Q is constant on R-
equivalence classes, by definition ofQ; we claim that τa(h◦Q) is also constant
on R-equivalence classes. Since Ω is an event-bisimulation we know that
τa(h ◦Q) is Ω-measurable. Let x ∈ X and let τa(h ◦Q)(x) = u ∈ R. Then
(τa(h ◦Q))−1(u) is in Ω, call this set A; clearly x ∈ A. Suppose that xRx′,
then by the definition of R, x′ ∈ A so (τa(h ◦ Q))(x′) = u; i.e. the claim
is true. We can define ∀w ∈ X̃, πa(h)(w) = τa(h ◦ Q)(x) where x is such
that Q(x) = w, this is well defined since Q is surjective and by virtue of
the claim just proved. By construction, this establishes Q as a zigzag. The
identity map of the underlying sets id : (X,Σ, p, τa) −→ (X,Ω, p |Ω, τa) is a
zigzag because Ω is an event bisimulation.

Now we claim that η
def
= Q ◦ id and (X̃,Γ, r, πa) is a minimal realization of

(X,Σ, p, τa). Let β : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) be a zigzag. We claim that
if β(x1) = β(x2) then Q(x1) = Q(x2) for any x1, x2 in X. Since β is a zigzag,
we have that β−1(Λ) is an event bisimulation and hence that Ω ⊆ β−1(Λ).
Now suppose that β(x1) = β(x2), then there cannot be a set in β−1(Λ) that
separates x1 and x2. Since Ω ⊆ β−1(Λ) there cannot be a set in Ω that
separates them either, hence x1Rx2 or Q(x1) = Q(x2). Now we can define
γ(y) to be Q(x), where x is an member of β−1({y}), this is well defined and
surjective. Let A be a measurable set in Γ, γ−1(A) = β(Q−1(A)). Since Q
is measurable, Q−1(A) ∈ Ω, hence Q−1(A) ∈ β−1(Λ) from which it follows
that β(Q−1(A)) is in Λ, thus γ is measurable. Also for A ∈ Γ we have

q(γ−1(A)) = q(β(Q−1(A))) = p(Q−1(A)) = r(A)

hence γ is measure preserving. The first equality is by definition of γ, the
second because β is a zigzag and the third because Q is a zigzag. Now from
Lemma 8.6 it follows that γ is a zigzag. Clearly it is the only map that one
could have defined to make the equation γ ◦ β = η hold.

The minimal realization is unique up to isomorphism; this is an immediate
consequence of the universal property.

Corollary 9.3 Up to isomorphism, (X̃,Γ, r, π) and η is the unique minimal
realization of (X,Σ, p, τa).
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Another immediate corollary is that the minimal realization is terminal in
an appropriate category.

Corollary 9.4 The map η is the terminal object in the category where the
objects are zigzags β : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) from (X,Σ, p, τa) and
a morphism from β to β′ : (X,Σ, p, τa) −→ (Y ′,Λ′, q′, ρ′a) is a zigzag γ :
(Y,Λ, q, ρa) −→ (Y ′,Λ′, q′, ρ′a) such that β′ = γ ◦ β.

A slight restatement of these is the following corollary.

Corollary 9.5 If ζ : (X̃,Γ, r, πa) −→ (W,Ξ, r, λa) is a zigzag then it is an
isomorphism in AMP.

Proof . The composed map ζ ◦ η is a zigzag from X to W . Hence by the
universal property of (X̃, η) there is a unique map γ : W −→ X̃ such that
γ ◦ (ζ ◦ η) = η, hence, since η is an epi, γ ◦ ζ = idX̃ . Now we also have
ζ ◦ (γ ◦ ζ) = (ζ ◦ γ) ◦ ζ) = ζ and since ζ is an epi, we have ζ ◦ γ = idW . Thus
ζ is an isomorphism in AMP.

The most important consequence of the minimal realization theory is the
following proposition that will be crucial in the approximation theory of
Section 11.

Proposition 9.6 Two AMPs (X,Σ, p, τa) and (Y,Λ, q, ρa) are bisimilar if
and only if their minimal realizations (X̃,Γ, r, πa) and (Ỹ ,∆, s, θa) respec-
tively are isomorphic.

Proof . If (X̃,Γ, r, πa) and (Ỹ ,∆, s, θa) are isomorphic we immediately have
the cospan

X

η ��

Y

β��
X̃

(17)

showing that X and Y are bisimilar. If X and Y are bisimilar we have the
following diagram

X

α
  

Y

β��
Z

(18)

where all the arrows are zigzags in AMP. Now consider the minimal real-
izations of X and Y , namely η : X −→ (X̃,Γ, r, πa) and ξ : Y −→ (Ỹ ,∆, s, θa)
respectively. By the universality property for each one, we get zigzags γ : Z
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−→ X̃ and δ : Z −→ Ỹ such that γ ◦ α = η and δ ◦ β = ξ as shown in the
diagram below.

X

α
  

η

��

Y

β~~
ξ

��

Z

γ~~

δ

  
X̃

  

Ỹ

~~
W

(19)

The span formed by Z, X̃ and Ỹ has a pushout with, say W , at the vertex.
By Corollary 9.5 the maps from X̃ and Ỹ to W (to which we have not given
explicit names) are both isos and hence X̃ and Ỹ are isomorphic.

Here are two lemmas that are useful for the approximation theory of Sec-
tion 11. The relation between event bisimulations and zigzags can be made
precise now using a lemma proved in Section 8.

Lemma 9.7 Suppose α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) is a map in AMP
such that α−1(Λ) = Σ. Then α is a zigzag.

Proof . This is a direct consequence of corollary 8.5. Given f in L+
∞(Y ),

τ(f◦α) is in L+
∞(X) and thus is Σ-measurable. Hence it is α−1(Λ)-measurable,

and so α is a zizag.

Lemma 9.8 Let α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) be a zigzag. Then α factors
into two maps as follows: iα : (X,Σ, p, τa) −→ (X,α−1(Λ), p, τa), which is
the identity on X, reducing the σ-algebra; and α̂ : (X,α−1(Λ), p, τa) −→
(Y,Λ, q, ρa) which is the same as α above on the sets, but in which the σ-
algebras are isomorphic.

Proof . α̂ is a zigzag by virtue of the previous lemma; iα is a zigzag by
corollary 8.5.
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10 Logical characterization of bisimulation

One important consequence of the minimal realization theory is that one
gets a logical characterization theorem for bisimulation. [DDLP06] showed
that a simple modal logic gives a characterization of event bisimulation.
This result can be presented in the framework of the present paper. We
omit the proofs as they are all in [DDLP06]. As always we have some fixed
set of actions A.

Definition 10.1 We define a logic L as follows, with a ∈ A:

L ::= T|φ ∧ ψ| 〈a〉q ψ

Given a labelled AMP (X,Σ, p, τa), we associate to each formula φ a mea-
surable set JφK, defined recursively as follows:

JTK = X
Jφ ∧ ψK = JφK ∩ JψKr
〈a〉q ψ

z
=
{
s : τa(1JψK)(s) > q

}
We let JLK denotes the measurable sets obtained by all formulas of L.

Theorem 10.2 (From [DDLP06]) Given a labelled AMP (X,Σ, p, τa), the
σ-field σ(JLK) generated by the logic L is the smallest event-bisimulation
on X. That is, the map i : (X,Σ, p, τa) −→ (X,σ(JLK), p, τa) is a zigzag;
furthermore, given any zigzag α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa), we have that
σ(JLK) ⊆ α−1(Λ).

Hence, the σ-field obtained on X by the smallest event bisimulation is pre-
cisely the σ-field we obtain from the logic.

11 Approximations of AMPs

In this section we develop a theory of approximating AMPs using “finite”
systems. In previous work [DGJP00, DGJP03] the idea was to collapse
the state space to a finite set of equivalence classes. One could view the
approximation construction as using an approximate version of bisimulation.
Here we think of finite approximations in terms of finite σ-algebras. We have
defined a category, AMP in which the maps defining bisimulation and the
maps defining approximations are on the same footing: the viewpoint of the
earlier papers pushed to its logical conclusion.
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11.1 Preliminary lemmas

Before we begin, we need some elementary preliminary lemmas. The first
one is a simple observation.

Lemma 11.1 Suppose α : (X,Σ) −→ (Y,Λ) is a surjective measurable map
such that α−1(Λ) = Σ. Then the forward image of every measurable set is
measurable; that is, if A ∈ Σ, α(A) := B is measurable, and α−1(B) = A.

Thus a surjective map which preserves the σ-algebras is an isomorphism of
σ-algebras.

The next lemma gives a pushout diagram which we will need later in relating
approximations and minimal realizations.

Lemma 11.2 Suppose α : (X,Σ) −→ (Y,Λ) is surjective and α−1(Λ) = Σ.
Suppose that Ω ⊆ Σ is a sub-σ-algebra of Σ. Then the following is a pushout
square in the category Mes:

(X,Σ)

α

yy

iΩ

%%
(Y,Λ)

jα(Λ) %%

(X,Ω)

α̂yy
(Y, α(Ω))

(20)

where α(Ω) = {B ⊆ Y | α−1(B) ∈ Ω} is a σ-algebra, iΩ is the identity on
X, jα(Λ) is the identity on Y , and α̂ is the same as α on X.

Proof . For any α, α−1(Bc) = (α−1(B))c, so α(Ω) is closed under comple-
ments since Ω is. It is also easy to see that α(Ω) is closed under countable
intersections so α(Ω) is a σ-algebra.

We know pushouts exist in Mes, so we need to show that this object sat-
isfies the pushout conditions. Clearly, Y is the pushout in Set, with the
maps described. In Mes, a pushout has the same underlying set as the
corresponding pushout in Set equipped with the largest σ-algebra making
the maps measurable. By the definition of α(Ω) and the fact that α is mea-
surable it follows that α(Ω) ⊆ Λ hence the map jα(Λ) is measurable and
also that α̂ is measurable. Clearly if we added any measurable sets to the σ-
algebra α(Ω) the map α̂ would cease to be measurable since we have already
included every set whose inverse image is in Ω.

41



To show the (co)universality property of pushouts in Mes we consider the
following diagram

(X,Σ)

α

yy

iΩ

%%
(Y,Λ)

jα(Λ) %%

f

!!

(X,Ω)

α̂yy

g

}}

(Y, α(Ω))

h
��

(W,Γ)

(21)

where the outer square commutes and the maps are all measurable. Clearly
the only choice for h that can make the diagram commute is for h = f as a set
theoretic map. Now let C ∈ Γ, we need to show that h−1(C) ∈ α(Ω) in order
to show that h is measurable. This follows from α̂−1(h−1(C)) = g−1(C) ∈ Ω.
Thus in Mes there is a unique measurable mediating morphism h.

11.2 Finite approximations

In this section we construct finite approximations of a LAMP by constructing
first finite σ-algebras and then finite spaces from them.

Let (X,Σ, p, τa) be a LAMP. Let P = 0 < q1 < q2 < . . . < qk < 1 be a finite
partition of the unit interval with each qi a rational number. We call these
rational partitions. We define a family of finite π-systems, subsets of Σ, as
follows:

ΦP,0 = {X, ∅}
ΦP,n = π

({
τa(1A)−1(qi, 1] : qi ∈ P, A ∈ ΦP,n−1, a ∈ A

}
∪ ΦP,n−1

)
= π

({r
〈a〉qi 1A

z
: qi ∈ P, A ∈ ΦP,n−1, a ∈ A

}
∪ ΦP,n−1

)
where π(Ω) means the π-system generated by the family of sets Ω.

For each pair (P,M) consisting of a rational partition and a natural number,
we define a σ-algebra ΛP,M on X as ΛP,M = σ (ΦP,M ), the σ-algebra gen-
erated by ΦP,M . We call each pair (P,M) consisting of a rational partition
and a natural number an approximation pair.
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The following result links the finite approximation with the formulas of the
logic used in the characterization of bisimulation.

Proposition 11.3 Given any labelled AMP (X,Σ, p, τa), the σ-algebra σ (
⋃

ΦP,M ),
where the union is taken over all approximation pairs, is precisely the σ-
algebra σ JLK obtained from the logic.

Proof . ΦP,M contains precisely the measurable sets associated with for-
mulas of length at most M , using rational numbers contained in P, and so⋃

ΦP,M = JLK. The conclusion is then clear.

In order to describe the maps that arise it will be convenient to use the
following notation. When Λ ⊆ Σ are σ-algebras on a space X we have the
measurable identity map i : (X,Σ) −→ (X,Λ). If we have a LAMP τa on the
space (X,Σ, p) we can define a LAMP on the space (X,Λ, p) as described in
Diagram 4. We will write Λ(τa) rather than i(τa) since there will be many
identity maps inducing LAMPs and it will not be helpful to label all the
induced LAMPs with an i.

Consider the σ-algebra ΛP,M . We have the map

iΛP,M : (X,Σ, p, τa) −→ (X,ΛP,M , p,ΛP,M (τa))

which is obtained from Diagram 4. Now since ΛP,M is finite, it is atomic, and
so it partitions the state space X, yielding an equivalence relation. Quotient-
ing by this equivalence relation gives a map πP,M : (X,ΛP,M , p,ΛP,M (τa))

−→ (X̂P,M ,Ω, q, ρa), where X̂P,M is the (finite!) set of atoms of ΛP,M and

Ω is just the powerset of X̂P,M . The measure q and AMPs ρa are defined
in the obvious way, that is, q is the image measure through πP,M and ρa =

πP,M (ΛP,M (τa)). Note that πP,M is a zigzag as π −1
P,M (Ω) = ΛP,M .

We thus have an approximation map φP,M = πP,M ◦ iΛP,M from our original
state space to a finite state space; furthermore it is clear that this map is
an arrow in AMP. When we collapse the space X to one of the quotient
spaces, say X̂P,M the map φP,M induces a projected version of the LAMP
τa which we denote as usual as φP,M (τa).

11.3 A Projective System of Finite Approximations

We define an ordering on the approximation pairs by (P,M) ≤ (Q, N) if Q
refines P and M ≤ N . This order is natural as (P,M) ≤ (Q, N) implies
ΛP,M ⊆ ΛQ,N , which is clear from the definition. This poset is a directed set:
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given (P,M) and (Q, N) two approximation pairs, then the approximation
pair (P ∪Q, L) is an upper bound, where L is max(M,N).

Given two approximation pairs such that (P,M) ≤ (Q, N), we have a
map

i(Q,N),(P,M) : (X,ΛQ,N ,ΛQ,N (τa)) −→ (X,ΛP,M ,ΛP,M (τa))

which is well defined by the inclusion ΛP,M ⊆ ΛQ,N ⊆ Σ. The fact that
it is an arrow in the category is clear from the functoriality of conditional
expectation. Furthermore if (P,M) ≤ (Q, N) ≤ (R,K) the maps compose
to give

i(R,K),(P,M) = i(R,K),(Q,N) ◦ i(Q,N),(P,M).

This also follows from funcotiality. In short we have a projective system of
such maps indexed by our poset of approximation pairs.

We can induce maps between the approximation spaces as follows. Recall
that an element of X̂P,M is an equivalence class of X where two points are
equivalent if no sets in the σ-algebra separate them. If (P,M) is refined by
(Q, N) then the σ-algebra ΛP,M is refined by the σ-algebra ΛQ,N hence an

equivalence class represented by an element of X̂Q,N is contained in a unique

equivalence class represented by an element of X̂P,M ; this correspondence de-

fines a map j(Q,N),(P,M) : (X̂Q,N , p, φQ,N (τa)) −→ (X̂P,M , p, φP,M (τa)) such
that the following commutes:

(X,ΛQ,N ,ΛQ,N (τa))
i(Q,N),(P,M) //

πQ,N
��

(X,ΛP,M ,ΛP,M (τa))

πP,M
��

(X̂Q,N , φQ,N (τa)) j(Q,N),(P,M)

// (X̂P,M , φP,M (τa))

(22)

Hence, the maps j(Q,N),(P,M) along with the approximants X̂(P,M) also form
a projective system with respect to our poset of approximation pairs. In
addition, the approximation map φ(P,M) factors through the approximation
map φ(Q,N) as φ(P,M) = j(Q,N),(P,M) ◦φ(Q,N) so that maps φP,M form a cone
above the projective system.

One can understand this functorially as follows. Given a measurable space
(X,Σ) one can define an induced equivalence relation R by xRx′ if for every
measurable set B x ∈ B ⇐⇒ x′ ∈ B; this is the same equivalence relation
that was introduced in the proof of the minimal realization theorem. It
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might be the case that R is the identity relation, for example this happens
with the Borel algebra on the real line. In this case one says that Σ separates
points. In any case, the quotient X −→ X/R is actually an endofunctor on
Mes. To see this consider a measurable function f : (X,Σ) −→ (Y,Λ) and
let the equivalence relations induced by Σ and Λ be R and T respectively.
Then we can define the map f̂ : X/R −→ Y/T by f̂([x]R) = [f(x)]T ; this is
easily seen to be well-defined and measurable using arguments similar to the
ones in the proof of Theorem 9.2. The preservation of composition is clear
so we are entitled to call this functor F : Mes −→Mes. The statements in
the paragraph above assert that F preserves projective diagrams. Later we
will show that F preserves projective limits.

11.4 Existence of the Projective Limit

The existence of projective limits of our family of approximants rests on a
result of Choksi [Cho58]; we need to be careful about exactly which category
we are talking about however. The following proposition is from his paper.
In stating his result we skip any mention of the LAMPs for the moment.
A topological measure space is a topological space where the σ-algebra is
induced by the open sets of the topology. A compact Hausdorff topological
measure space is simply one where the topology is compact Hausdorff.

Proposition 11.4 Suppose that we have a projective system of compact
Hausdorff topological measure spaces (Xi,Λi, pi) with measurable measure
preserving maps φji : Xj −→ Xi. There is a topological measure space
(X∞,Γ, γ) also compact Hausdorff, and maps ψi : X∞ −→ Xi that are also
measurable and measure preserving such that the entire diagram formed by
the φs and ψs commutes.

In his work, as was typical for analysis at the time, there is no proof that this
“limit” object satisfies any kind of universal property. The finite approxi-
mants to the measure space underlying a LAMP have a projective limit in
the category Rad=; recall this is the category where the objects are measure
spaces and the morphisms are measurable and measure preserving maps. We
will consider the LAMPs later.

Theorem 11.5 The probability spaces of finite approximants X̂P,M of a
measure space (X,Σ, p, τa) each equipped with the discrete σ-algebra (i.e.
the σ-algebra of all subsets) indexed by the approximation pairs, form a
projective system in the category Rad=. This system of finite approximants
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to the LAMP (X,Σ, p, τa) has a projective limit in the category Rad=.

Proof . The situation is shown in the diagram below:

(Y,Ξ, r)

fP,M

}}

fQ,N

!!

λ
��

(proj lim X̂,Γ, γ)
ψP,M

uu

ψQ,N

))
X̂P,M X̂Q,Nj(Q,N),(P,M)

oo

(X,ΛP,M , p,ΛP,M (τa))

πP,M

OO

(X,ΛQ,N , p,ΛQ,N (τa))i(Q,N),(P,M)

oo

πQ,M

OO

(23)

In order to make the diagram fit on the page we have written X̂P,M
instead of (X̂P,M ,ΩP,M , p̂P,M , πP,M (ΛP,M (τa))) and X̂Q,N instead of

(X̂Q,N ,ΩQ,N , p̂Q,N , πQ,N (ΛQ,N (τa))).

The spaces (X,ΛP,M , p, iΛP,M (τa)) are only shown to remind the reader
where the finite approximants come from; they are not part of the projec-
tive diagram whose limit we are taking. The measure space (Y,Ξ, r) is any7

measure space and the family of maps fP,M are assumed to be measurable
and measure preserving. Note that we are not claiming the existence of a
projective limit in AMP. For this reason we consider only a measure space
and show that we have a unique mediating morphism λ which is measurable
and measure preserving.

The projective limit in Mes is constructed from the projective limit in Set in
much the same way as pushouts in Set can be made into pushouts in Mes.
Concretely, proj lim X̂ is the projective limit in Set – that is, the subset
of the product

∏
X̂P,M which is compatible with the maps j(Q,N),(P,M) of

the projective system. We have the usual projection maps in Set ψP,M :

proj lim X̂ −→ X̂P,M for every approximation pair. The spaces X̂P,M are
finite sets equipped with the discrete σ-algebra. They can be viewed as
topological measure spaces with the discrete topology, which, of course,
generates the discrete σ-algebra. Viewed as such these finite approximants
are compact Hausdorff spaces and Choksi’s Theorem 11.4 applies, so we get
a σ-algebra Γ and measure γ which makes the ψs Rad= morphisms.

7Recall that all the measures are finite in this paper.
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The σ-algebra Γ is the smallest σ-algebra that makes the ψ’s measurable. If
(Y,Ξ) is a measurable space and fP,M is a family of measurable maps from Y

to (X̂P,M ,ΩP,M ) there is a measurable function λ : Y −→ proj lim X̂ making
the diagram commute. To see this we use the same λ that one obtains in
Set from the universality of the projective limit in Set. Γ is generated by
sets of the form ψ−1

P,M ({x}) where x is an element of X̂P,M . In order to
check that a map is measurable it suffices to check that the inverse image of
a set in the generating family of the σ-algebra is measurable. Thus we need
to check that λ−1(A) is in Ξ for any set of the form A = ψ−1

P,M ({x}). Now

we can write λ−1(A) as

λ−1(ψ−1
P,M ({x})) = f−1

P,M ({x})

which is in Ξ because the fs are measurable.

Now we know that λ is measurable, we need to show that it is measure
preserving. The collection of sets of the form ψ−1

P,M (AP,M ), where each

AP,M is a measurable subset of X̂P,M
8 generates the σ-algebra Γ; we use ∆

to refer to this collection of subsets of proj lim X̂. We claim that ∆ forms
a π-system of sets. Accordingly we only need to check that λ preserves
the measures of these sets to conclude that it is measure preserving. To
establish the claim it suffices to show that the intersection of two sets of the
form ψ−1

P,M (x) is in ∆. Consider ψ−1
P,M (x) and ψ−1

Q,N (y). Because we have a
projective system we have some (K,K) such that (Q, N), (P,M) ≤ (K,K);
of course (K,K) could be one of (P,M)) or (Q, N) but that is a special case.
For brevity we temporarily write m,n, k for the subscripts (P,M), (Q, N)
and (K,K) respectively. Now the maps jkm and jkn are surjective. Define
B = j−1

km({x}) ∩ j−1
kn ({y}). Now since the entire diagram commutes we have

ψ−1
k (B) = ψ−1

k (j−1
km({x}) ∩ j−1

kn ({y})
= (ψ−1

k ((j−1
km({x})) ∩ ψ−1

k (j−1
kn ({y}))

= ψ−1
m ({x}) ∩ ψ−1

n ({y}).

We have shown that ∆ a π-system.

Now a set in ∆ looks like ψ−1
P,M (AP,M ). Let the elements of AP,M be

{x1, . . . , xk}. The sets ψ−1
P,M ({xi}) for i = 1, . . . , k are all disjoint. Con-

sider any one of these, say xi. We have

r(λ−1(ψ−1
P,M ({xi}))) = r(f−1

P,M ({xi})) = p̂ΛP,M ({xi}) = γ(ψ−1
P,M ({xi}))

8Of course this just means any subset.
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where the second equality holds because the fs are assumed to be measure
preserving and the last because the ψs are measure preserving. Thus λ is
measure preserving on sets of this form. But a generic set in ∆ is the disjoint
union of sets like this so we have

γ(ψ−1
P,M (AP,M )) =

k∑
i=1

γ(ψ−1
P,M ({xi})

=
∑

r(λ−1(ψ−1
P,M ({xi})))

= r(λ−1(ψ−1
P,M (AP,M ))).

Thus the measures r ◦ λ−1 and γ agree on the sets of ∆. Since ∆ is a π-
system generating Γ, the two measures agree on all of Γ by Prop. 2.3. We
have completed the proof of the universal property in Rad=.

We can now consider the LAMP structure. We do not get a universal prop-
erty in the category AMP, however, the universality of the construction
in Rad= almost forces the structure of a LAMP on the projective limit
constructed in Rad=.

Proposition 11.6 A LAMP can be defined on the projective limit con-
structed in Rad= so that the cone formed by this limit object and the maps to
the finite approximants yields a commuting diagram in the category AMP.

Proof . We can define the LAMP ζa on proj lim X̂ as follows. We recall
that we get a cone over the projective system of finite approximants from
the LAMP (X,Σ, p, τa) with which we started as shown in the diagram
below:

(X,Σ, p, τa)

φP,M

||

φQ,N

!!

κ
��

(proj lim X̂,Γ, γ, ζa)
ψP,M

tt

ψQ,N

**
X̂P,M X̂Q,Nj(Q,N),(P,M)

oo

(X,ΛP,M , p, iΛP,M (τa))

πP,M

OO

(X,ΛQ,N , p, iΛQ,N (τa))

πQ,N

OO

oo

(24)
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From universality in Rad= we have a unique map κ : X −→ proj lim X̂ such
that ψP,M ◦ κ = φP,M , i.e., the approximation maps from X factor through
κ. This κ is measurable and measure preserving being a Rad= morphism.

We define the AMP ζa on proj lim X̂ in the obvious way; that is, as the
projection of τa through κ. Then the projection of ζa onto the finite approx-
imants through ψP,M is equal to πP,M (iΛP,M (τa)) since ψP,M ◦ κ = φP,M .
This shows that the diagram formed by the projective limit, the finite ap-
proximants and the maps ψP,M and the j(Q,N),(P,M) form a commuting
diagram in AMP.

Note that the finite approximants coming from the logic do not play a special
role here. If we had used any other family of finite approximants we would
still construct some kind of limit which would itself be an approximant. The
special properties of the approximants that we are using comes across in the
next subsection.

11.5 Minimal realization and Finite Approximation

The main result in this section is that the LAMP obtained by forming the
projective limit in the category Rad= and then defining a LAMP on it is
isomorphic to the minimal realization of the original LAMP. This gives a very
pleasing connection between the approximation process and the minimal
realization.

Theorem 11.7 Given an AMP (X,Σ, p, τa), the projective limit of its finite
approximants (proj lim X̂,Γ, γ, ζa) is isomorphic to its minimal realization
(X̃,Ξ, r, ξa).

In order to prove this we need some preliminary results. It already follows
from universality that κ is measurable, but we can show something slightly
stronger.

Proposition 11.8 The σ-algebra κ−1(Γ) is precisely equal to σ JLK; in par-
ticular κ is measurable.

Proof . The σ-algebra Γ is the generated by the inverse images of ψP,M ;

letting ΩP,M be the σ-algebra on X̂P,M , we have Γ = σ(
⋃
ψ −1
P,M (ΩP,M )),

where the union is over all approximation pairs. Now we know that

ψP,M ◦ κ = φP,M = πP,M ◦ iΛP,M .
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Since preimages preserve intersection, union and complement we have,

κ−1(Γ) = κ−1
(
σ
(⋃

ψ −1
P,M (ΩP,M )

))
= σ

(⋃(
κ−1

(
ψ −1
P,M (ΩP,M )

)))
= σ

(⋃(
i −1
ΛP,M

(
π −1
P,M (ΩP,M )

)))
= σ

(⋃(
i −1
ΛP,M

(ΛP,M )
))

= σ (
⋃

ΛP,M )
= σ (JLK)

where the last step is justified by Proposition 11.3. Note that σ(JLK) is
indeed a sub-σ-algebra of Σ as can easily be shown by induction on the
structure of formulas.

Proposition 11.9 The map κ : (X,Σ, p, τa) −→ (proj lim X̂.Γ, γ, ζa) ob-
tained from the projective limit diagram is a zigzag in AMP.

Proof . As κ−1(Γ) = σ (JLK), we can factor κ as κ̂ ◦ iκ, where

iκ : (X,Σ, p, τa) −→ (X,σ (JLK) , p, τa)
κ̂ : (X,σ (JLK) , p, τa) −→ (proj lim X̂,Γ, γ, ζa)

iκ is a zigzag as σ (JLK) is an event bisimulation; κ̂ is a zigzag by Lemma 9.7.
Thus κ is a zigzag.

If we let (X̃,Ξ, r, ξa) be the minimal realization obtained as in proposition
9.2, we have a zigzag ω : (proj lim X̂,Γ, γ, ζa) −→ (X̃,Ξ, r, ξa) from Corol-
lary 9.4. The proof of Theorem 11.7 will establish that there is a zigzag in
the other direction.

Proof (of Theorem 11.7). As X and X̃ are bisimilar, they have the same ap-
proximants, and thus the projective limits of these approximants (proj lim X̂,Γ, γ, ζa)
is the same. Therefore, by Proposition 11.9 there is a zigzag ε : (X̃,Ξ, r, ξa)
−→ (proj lim X̂,Γ, γ, ζa). Hence, by Corollary 9.3, ε is an isomorphism of
AMPs.

There are a number of other facts that show that the approximations capture
something that is intrinsic to bisimulation equivalent LAMPS.

Theorem 11.10 Let α : (X,Σ, p, τa) −→ (Y,Θ, q, ρa) be a zigzag. Then
these two LAMPs have the same finite approximants.

Corollary 11.11 Two bisimilar AMPs have the same finite approximants.
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In order to prove Theorem 11.10 we need some preliminary lemmas.

Lemma 11.12 Let α : (X,Σ, p, τa) −→ (Y,Θ, q, ρa) be a zigzag. Let A ∈ Θ
and q be a rational number. Then

α−1 ({y : ρa (1A) (y) > q}) =
{
x : τa

(
1α−1(A)

)
> q
}

Proof .

α−1 ({y : ρa (1A) (y) > q}) = α−1
(
ρa (1A)−1 (q, 1]

)
= (ρa (1A) ◦ α)−1 (q, 1]

= (τa (1A ◦ α))−1 (q, 1]

=
(
τa
(
1α−1(A)

))−1
(q, 1]

=
{
x : τa

(
1α−1(A)

)
> q
}

Lemma 11.13 Let (X,Σ, p, τa) be a labelled AMP and Ω ⊆ Σ be an event-
bisimulation. Then (X,Ω, p, τa) and (X,Σ, p, τa) have the same finite ap-
proximants.

Proof . The finite σ-algebras ΛP,M yielding the approximants are sub-σ-
algebras of σ (JLK). As σ (JLK) is the smallest event-bisimulation, we have
the inclusion

ΛP,M ⊆ σ (JLK) ⊆ Ω ⊆ Σ

and so the approximation maps from (X,Σ, p, τa) factor through the ap-
proximation maps from (X,Ω, p, τa)

Proof of proposition 11.10. Consider the following diagram of LAMPs:

(X,Σ, p, τa)
α //

iΛP,M
��

(Y,Θ, q, ρa)

jα(Λ)

��
(X,ΛP,M )

α̂ //

πXP,M
��

(Y, α(ΛP,M ))

πYP,Mww
X̂P,M

(25)

The measures and LAMPS on the approximants are defined in the man-
ner described in the approximation construction described above. We sup-
press explicit mention of them to make the diagram less cluttered. By
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Lemma 11.13 and the factoring property of zigzags (by Lemma 9.8), we
need only verify our claim on a zigzag α : (X,Σ, p, τa) −→ (Y,Θ, q, ρa) such
that α−1(Θ) = Σ. By Lemma 11.1, α is an isomorphism of σ-algebras. Let
ΛP,M ⊆ Σ be an approximating σ-algebra on X.

By Lemma 11.2, the upper square in Diagram 25 commutes and is a pushout.

Note that α (ΛP,M ) is precisely the approximating σ-algebra obtained on
Y by the approximation pair (P,M). This follows from Lemma 11.12 as
expressions of the form ({y : ρa (1A) (y) > q}) generate the approximating
σ-algebras. This shows that the right hand side of the diagram in indeed
part of the approximation of (Y,Θ, q, ρa).

Finally, the quotienting map πXP,M reducing the measure space (X,ΛP,M )

to a finite state space factors through the similar map from Y , πYP,M , as α is
surjective. This factorization extends to LAMPs, and so the bottom triangle
of the above diagram commutes; thus the two original LAMPs (X,Σ, p, τa)
and (Y,Θ, q, ρa) have the same finite approximations.

12 Related Work

12.1 History of labelled Markov processes

We review the history of the theory of labelled Markov processes as described
in the recent expository book [Pan09]. It is not necessary to read this section
to follow the technical development of the present paper. Some of the points
made here are repeated in the main text in order that a reader can read the
rest of the paper without having to read this section.

The earliest work on incorporating probability in the theory of verification
of transition systems is Vardi’s work on concurrent Markov chains [Var85].
This is aimed at adapting techniques like model checking developed for finite
transition systems to the probabilistic situation. The theory of bisimulation
for probabilistic systems was initiated by [LS91] who described a modal
logic for characterizing probabilistic bisimulation and explored the relation
with testing. This prescient paper began the modern era of exploration
of the field. There is a significant literature exploring variants like weak
bisimulation and real-time systems: all this was done for discrete transi-
tion systems. A good review of model checking for discrete probabilistic
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systems appears in Chapter 12 of the recent text book Principles of Model
Checking [BK08].

The theory was extended to continuous state spaces by [BDEP97] and by
[dVR97]. The latter worked on ultrametric spaces and used the machinery
of ultrametric spaces to show that bisimulation – defined in terms of spans
– is transitive. In our opinion, ultrametric spaces are not at all like the con-
tinuous spaces that arise in physical systems: they are totally disconnected,
for example. However, that work did emphasize the coalgebraic nature of
the theory and that was a very important step.

The work begun in [BDEP97] was elaborated in [DEP02] and later pa-
pers [DGJP03, DD03, DDP03, DGJP04] where theories of approximation
and of metrics were developed. Much of the work of [DEP02] was reworked
by Doberkat in a series of papers that use powerful tools from descriptive
set theory to put the theory in a more elegant, general and pleasing form.
This work appeared in several papers and are summarized in two recent
books [Dob07, Dob10].

12.1.1 Labelled Markov processes and bisimulation

There are two main approaches to bisimulation, and they are closely linked.
The first is to equate states, that is, to determine which states behave the
same with respect to the user. Loosely speaking, two states are bisimilar
if they indistinguishable from the user’s perspective. The other approach
is to equate LMPs among themselves. In this higher level point of view,
two LMPs are bisimilar if each state in one is bisimilar to a state in the
other; or, in other words, if the two LMPs contain states which have the
same behaviour. Note that we shall always assume that when speaking of
bisimulation between different LMPs, the action set A will be fixed.

For each of these points of view, different definitions of bisimulation have
been postulated. We review these briefly, following [DDLP06].

LMPs are the coalgebras of a monad, essentially discovered by Lawvere
and discussed in detail by [Gir81]. The notion of zigzag that we have used
comes from there, it is exactly the homomorphism notion for the coalgebras
of Giry’s monad [RdV97, dVR99, DEP02].

Generally speaking, a morphism f from a LMP (X,Σ, τa) to another (Y,Λ, ρa)
is a measurable map of the underlying measurable spaces, which is assumed
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to respect some compatibility condition relative to the Markov kernels. The
idea of a zigzag morphism is that we should be able to specify a condition
on f which would imply that the two LMPs are bisimilar. Specifically, we
have the following definition:

Definition 12.1 A zigzag morphism from a LMP (X,Σ, τa) to another
(Y,Λ, ρa) is a surjective measurable map f : (X,Σ) −→ (Y,Λ) such that, for
all a ∈ A, x ∈ X, B ∈ Λ,

τa
(
x, f−1(B)

)
= ρa (f(x), B)

Hence, the transition probabilities are essentially the same in both systems.
However, information is still lost across a zigzag morphism. This loss is
twofold; first, as the map is surjective (but not necessarily injective), differ-
ent points in the domain space are sent to the same point in the target space
and thus equated. Secondly, as f is measurable, we have that f−1(Λ) ⊆ Σ,
and thus the complexity of the σ-algebra may decrease. Nevertheless, note
that since ρa(y,B) must be a Λ-measurable function for a fixed set B, Λ can-
not be trivial. Following the notion of bisimulation via open maps [JNW93],
[DEP02] defined two LMPs to be bisimilar if there exists a span of zigzags
between them.

Definition 12.2 Two LMPs (X,Σ, τa) and (Y,Λ, ρa) are bisimilar if there
exists a LMP (U,Ω, σa) such that there is a zigzag morphism f from U to
X and another zigzag morphism g from U to Y .

As the identity map from a LMP to itself is trivially a zigzag, any two
LMPs with a zigzag between them are bisimilar. The reasoning behind the
use of spans stems from the idea that bisimulation is often interpreted as an
equivalence relation between states. Given two sets X and Y , any relation
R ⊆ X × Y can be viewed as a span of functions from a set R to X and
Y .

Example 12.3 Let (X,Σ) be any measurable space. Define on X a Markov
kernel τ such that τ(x,X) = 1 for all x ∈ X. We thus have a labelled
Markov process with a single action. Our condition on τ means that the
single action of this process is never disabled. Let ({?} ,Ω) be a one point
space with the obvious σ-algebra, and define a Markov kernel on π on {?} as
π ({?} , {?}) = 1. Then the obvious map f : (X,Σ) −→ ({?} ,Ω) is a zigzag;
indeed, we need only check the zigzag condition on the set {?}. Thus, the
two LMPs (X,Σ, τ) and ({?} ,Ω, π) are bisimilar.
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The main difficulty with the above definition of bisimulation is proving that
it is a transitive relation among LMPs; it is clearly reflexive and symmetric.
Transitivity could only be shown when the measurable spaces were analytic
spaces with their Borel algebra.

In [DGJP03], bisimulation was defined as a relation on states of an LMP, in
the spirit of [LS91]. One has to tie in measurability with the relation, but
showing transitivity of the bisimulation is quite straightforward. In the pa-
per of [DDLP06], a new definition of bisimulation, called event bisimulation,
appeared. Its intent also is to relate similar states, but instead of thinking
in terms of points one works with measurable sets.

Definition 12.4 Given an LMP (X,Σ, τa), an event bisimulation is a
sub-σ-algebra Λ ⊆ Σ such that (X,Λ, τa) is still a LMP.

In order to be an event bisimulation, the only condition that Λ needs to
respect is that, for fixed action a and measurable set B ∈ Λ, τa(x,B) is a
Λ-measurable function.

Event bisimulation and zigzag morphisms are closely related, as the following
propositions show ([DDLP06]).

Proposition 12.5 Given an LMP (X,Σ, τa), the σ-algebra Λ is an event
bisimulation if and only if the map iΛ : (X,Σ) −→ (X,Λ), which is the
identity as a set function, is a zigzag.

The proof is straightforward. The above proposition can be generalized:

Proposition 12.6 Given a zigzag morphism f : (X,Σ, τa) −→ (Y,Λ, ρa),
the σ-algebra f−1(Λ) ⊆ Σ is an event-bisimulation.

Thus, every event bisimulation comes from a zigzag morphism, and every
zigzag morphism yields an event bisimulation; thus one can view an event-
bisimulation as the “signature” of a zigzag morphism. If the idea of a zigzag
morphism is to be central to the theory of LMPs, then event-bisimulation
truly is the notion of state equivalence that we want to use, and is, in this
context, the right notion of “measurable relation”. It appears näıve to us to
generalize the usual concept of an equivalence relation on a finite state space
to a continuous state space; indeed, on a finite state space, every topology
and every σ-algebra can be construed as an equivalence relation, and thus
it is not clear how a concept of equivalence relation should generalize to a
larger space while respecting the relevant structure. More details about the
relationship between event bisimulation and state simulation (as a relation)
are available in [DDLP06].
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12.2 Logical characterization of bisimulation

The results of [vB76] and [HM85] established a characterization of ordinary
(non-probabilistic) bisimulation in terms of a modal logic. Later [LS91]
established such a characterization for probabilistic bisimulation using a
probabilistic modal logic; of course, this was only for the case of discrete
transition systems.

It turns out that a modal logic L characterizes bisimulation for labelled
Markov processes as well [DEP98]. The logic has the following grammar,
with a ∈ A and q ∈ Q:

L ::= T|φ ∧ ψ| 〈a〉q ψ

The logic is interpreted on states as follows. Every state satisfies T. Con-
junction is clear, so the last construct is the only one requiring explanation.
A state s in a particular labelled Markov process (X,Σ, τa) is said to satisfy
〈a〉q ψ if, following an a transition from s, the probability of being in a state
satisfying ψ is strictly larger than q, a rational number. More precisely,
one can associate to each formula ψ ∈ L a measurable set JψK consisting
of all points satisfying this formula. These sets are defined recursively as
follows:

JTK = X

Jφ ∧ ψK = JφK ∩ JψK
r
〈a〉q ψ

z
= {s : τa (s, JψK) > q}

and thus a state s satisfies ψ if and only if s ∈ JψK.

As an example, consider the formula ψ = 〈a〉 1
2
〈b〉 3

4
T. A state satisfies ψ if

it has a probability higher than 1
2 to accept an a action and, by doing so,

to transition to a state which has a probability higher than 3
4 to accept a b

action and to transition to another state where T is trivially satisfied.

The logic L characterizes bisimulation in the following sense. Given the re-
strictions on the underlying state spaces (specifically, the space must be an
analytic space), two LMPs X and Y are bisimilar in the sense of definition
12.2 if and only if for each state in one LMP, there is a state in the other
satisfying precisely the same formulas [DGJP03]. Keeping the same restric-
tion on the state space, the logic also characterizes the relational definition
of [DGJP03]: two states are bisimilar if and only if they satisfy the same
formulas of L.
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If the underlying state space is not analytic it is possible to construct a
variety of counter-examples. One can show that the basic constructions that
allow one to prove that the traditional notion of bisimulation is transitive
fail. One can show that the state and event bisimulation notions do not
coincide. One can show that the modal logic does not in fact characterize
bisimulation. These counterexamples are not very difficult to describe and
should be appearing in print soon.

However the most interesting property of the logic L is that it uncondition-
ally characterizes event-bisimulation. We let JLK denote the measurable sets
obtained by all formulas of L. We state the results of [DDLP06].

Theorem 12.7 Given any LMP (X,Σ, τa), the σ-algebra σ(JLK) generated
by the logic L is the smallest event-bisimulation on X. That is, the map
i : (X,Σ, τa) −→ (X,σ(JLK), τa) is a zigzag; furthermore, given any zigzag
α : (X,Σ, τa) −→ (Y,Λ, ρa), we have that σ(JLK) ⊆ α−1(Λ).

This generality survives in the present paper. In fact the earlier paper was
a strong hint to work with a dualized point of view; a hint that we have
finally taken in the present paper.

12.3 Approximation of labelled Markov processes

Approximation is a key aspect of the theory of Markov processes, especially
if one is interested in applying all the tools developed for discrete systems
to systems with continuous state spaces.

The first such theory was developed by [DGJP03]. The main idea was that
one can focus on the behaviour of the LMP until a fixed upper bound of
transitions; that is, we only care about the behaviour for the first N action
choices. One can then discretize the space with respect to the Markov kernels
and obtain an approximation of the starting LMP as a finite directed tree.
Given an action depth N , this directed tree is split into N + 1 levels, from 0
to N , in such a way that a transition in this tree must increase the current
level by one; hence, level N consists of a single point where no further
transition is possible. The idea is that one typically chooses an initial state
at level 0; thus, if the original LMP allows it, one can perform at most N
transitions until being forced into a state where all actions are disabled.
The transition probabilities are chosen to be an underestimate of the actual
transition probabilities in the full system, which allows the approximants to
be placed in a poset of LMPs.
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The main drawback of this technique is that every level of the tree consists
of a finite partition of the original state space; we are thus stuck with N + 1
“finite copies” of X. This is particularly problematic for simple systems.
Consider the LMP consisting of one point and one action; if the transition
probability is nonzero, any finite approximation using the above scheme will
consist of a chain of length N + 1, which is counterintuitive.

Thus, it appeared that the best strategy to approximate LMPs would be to
aggregate the states into a finite number of chunks; thus, a one-point space
would remain a one-point space under any approximation. The problem with
such a scheme is twofold; first of all, one needs an appropriate notion of state
aggregation, and, ideally, a scheme to create this partition. Secondly, given
a method to aggregate states, one needs to define transition probabilities on
these aggregates.

One approximation scheme [DD03] is to define an equivalence relation on
X which respects some compatibility property with respect to the σ-algebra
of the LMP; the space of the approximate LMP is obviously the quotient
space. Once this partition is defined, the transition probabilities are given
by an infimum construction, again so that the approximate probabilities
are an underestimate of the actual probabilities. However, one quickly runs
into problems, as this technique does not yield probability measures on the
approximate spaces, but what the authors call a pre-probability, yielding a
new class of processes called pre-LMPs.

Another paper [DDP03] described a third method of approximation, which
contains some of the ideas of the present paper in a primitive form. Given
a way to aggregate the states, we would like to compute an “average” tran-
sition probability in between the lumped states and of course, this means
that one needs to use conditional expectations.

Given an LMP (X,Σ, τa), suppose that we have a probability distribution p
on the underlying measurable space. As argued in the discussion of event-
bisimulation, the appropriate notion of an equivalence relation that we want
to use is a σ-algebra. Thus, in order to reduce the state space X, one
needs only consider a sub-σ-algebra Λ ⊆ Σ. Then, in order to approxi-
mate our given LMP, one needs only project the Σ-measurable functions
τa(x,B), for each a ∈ A and B ∈ Λ, to a Λ-measurable function, by con-
ditioning on Λ through the measure p. Of course, some difficulties arise; in
particular, conditional expectation only yields a function which is defined
p-almost-everywhere. To circumvent this difficulty, one can impose on the
sub-σ-algebra that every set in Λ have nonzero measure, thereby forcing the
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conditional expectation operation to yield a unique function. In order to
generate a sub-σ-algebra for the given LMP, the authors use the measurable
sets given by a fragment of the logic L.

12.4 Other related work

In the area of continuous state spaces there has been some substantial con-
tributions from other authors as well. [vBW01b] developed the coalgebraic
theory of transition systems using metric spaces (not ultrametric spaces). In
later work [vBMOW03] they gave an intrinsic characterization of approxi-
mate bisimilarity. [DPW06] studied testing equivalences and made the con-
nection with process logics. [MOPW04] developed a beautiful theory of du-
ality for labelled Markov processes which relates LMPs to C∗-algebras.

A monumental program to combine probability and nondeterminism has
been undertaken by Jean Goubault-Larrecq. He has written several pa-
pers [GL07a, GL07c, GL07b, GL08b, GL08a] which represent a small part
of a massive unpublished book available (in French) on his web page.

There is an extensive literature on probabilistic model checking, on weak
bisimulation on discrete spaces, on applications to machine learning all of
which are part of the general area but it would take us too far afield to
review them all here.

In the stochastic process literature entities like LAMPs have been studied
under the name of Markov operators [Fog80] and approximation techniques
for them have been studied by [Kim72]. The approximations introduced
by Kim are of a different kind – they are not finite in any sense – and are
aimed at finding a dense subset, in the weak∗ topology of the space of Markov
operators. He also explores uniform approximation and convergence in the
strong operator topology for related operators. There is no connection to
logic or bisimulation.

13 Conclusions

The main contribution of the present work is to show how one can obtain
a powerful and general notion of approximation of Markov processes using
the dualized view of Markov processes as transformers of random variables
(measurable functions). Following [Koz85], one has the following analogy
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between ordinary logic and probability theory: truth values correspond to
[0, 1], states correspond to distributions, predicates correspond to measur-
able functions and satisfaction corresponds to integration. Carrying the
analogy further, we have that Markov processes viewed as function trans-
formers as we have done, is the “predicate transformer” view of probabilistic
processes. Our main result is to show that this way of working with Markov
processes greatly simplifies the theory: bisimulation, logical characterization
and approximation. The key point is that working with the functions (prop-
erties) one is less troubled by having to deal with things that are defined
only “almost everywhere” as happens when one works with states.

A very nice feature of the theory is the ability to show that a minimal
realization exists. Furthermore, this minimal object can be constructed as
the projective limit of finite approximants.

In our development the duality between L+
∞ and L+

1 plays a key role and
allows one to move back and forth. The theory could have been developed
with an L+

1 version of “predicate transformers” and worked out in a strik-
ingly analogous fashion. We have, in fact sketched this out to the extent
that it is clear that one could have gone either way. It may be that the other
approach gives a better handle on constructing limits in AMP but in either
case that seems to require substantially deeper results in measure theory to
settle one way or another. It is possible that a forward version of the theory
could have been developed as well; we have not investigated this thoroughly
as yet.

One of the problems with any of the approximation schemes is that they are
hard to implement. In a paper [BCFPP05] a few years ago, an approach
based on Monte Carlo approximation was used to “approximate the approx-
imation.” The point is that it hard to compute the approximations based
on applying τ−1 in practice. What happens is that there are lots of sets of
very small measure. A sampling based technique will not see these sets and
the method becomes more practical.

One line of future work is to explore the possibility of implementing the
approximation scheme and, perhaps using some technique like Monte Carlo,
to compute the approximations concretely. It is curious that the abstract
version of Markov processes makes it more likely that one can compute
approximations in practice and is another argument in favour of a “pointless”
view of processes.
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