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Abstract

Bisimulation is a concept that captures behavioural equivalence of
states in a transition system. In [6], we proposed two equivalent defi-
nitions of bisimulation on continuous-time stochastic processes where
the evolution is a flow through time. In the present paper, we develop
the theory further: we introduce different concepts that correspond to
weaker behavioural equivalences and compare them to bisimulation.
In particular, we study the relation between bisimulation and symme-
try groups of the dynamics. We also provide a game interpretation for
two of the behavioural equivalences. We then compare those notions
to their discrete-time analogues.
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1 Introduction

Bisimulation [16, 18, 20] is a fundamental concept in the theory of transition
systems capturing a strong notion of behavioural equivalence. In particular,
it is a notion stronger than that of trace equivalence. Bisimulation has been
widely studied for discrete time systems where transitions happen as steps,
both on discrete [15] and continuous state spaces [4, 9, 17]. In all these types
of systems a crucial ingredient of the definition of bisimulation is the ability
to talk about the next step. Thus, the general format of the definition of
bisimulation is that one has some property that must hold “now” (in the
states being compared) and then one says that the relation is preserved in
the next step.

Outside of computer science, there is a vast range of systems that involve
continuous-time evolution: deterministic systems governed by differential
equations and stochastic systems governed by “noisy” differential equations
called stochastic differential equations. These have been extensively studied
for over a century since the pioneering work of Einstein [12] on Brownian
motion.

In [6], we introduced a notion of bisimulation for stochastic systems with
true continuous-time evolution. Some attempts had previously been made
to talk about continuous-time [10], but even in what are called continuous-
time Markov chains there is a discrete notion of time step; it is only that
there is a real-valued duration associated with each state that makes such
systems continuous time. They are often called “jump processes” in the
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mathematical literature, see, for example, [19, 21], a phrase that better
captures the true nature of such processes.

We focused on a class of systems called Feller-Dynkin processes for which
a good mathematical theory exists. These systems are Markov processes
defined on continuous state spaces and with continuous time evolution. Such
systems encompass Brownian motion and its many variants.

In this paper, we explore four other notions of behavioural equivalence for
such continuous-time processes. The strongest notion is that of a group of
symmetries. It is stronger than the notion of bisimulation introduced in [6]
and it captures the symmetries of the system.

Temporal equivalence is a notion that is weaker than bisimulation. It looks
closer to the definition of bisimulation in discrete time than the definition
we provided in [6], however it also strongly relies on trajectories. Temporal
equivalence can be summed up as trace equivalence with some additional
step-like constraints. Whether group of symmetries and temporal equiv-
alence are strictly stronger and weaker respectively is still an open ques-
tion.

The third notion is that of trace equivalence. It is the weakest of all those
behavioural equivalences and an example in [6] shows that it is a strictly
weaker notion.

Finally, we give two game interpretations, one for bisimulation and one for
temporal equivalence. They closely mirror that provided in [13, 7]. The
game for bisimulation also emphasizes the importance of trajectories for the
study of behavioural equivalences in continuous time.

The relations between those different behavioural equivalences can be dis-
played as follows.

trace equivalence

discrete time bisimulation oo // temporal equivalence oo //

OO

game interpretation

bisimulation

OO

oo // game interpretation

group of symmetries

OO
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We end this paper by studying discrete-time systems and by revisiting the
examples provided in our previous study. This seems to indicate that the
correct notion that extends bisimulation to continuous-time systems is that
of temporal equivalence and not the initial definition provided in [6].

2 Feller-Dynkin Processes

We assume that basic concepts like topology, measure theory and basic
concepts of probability on continuous spaces are well known; see, for exam-
ple [3, 11, 17].

The basic arena for the action is a probability space.
Definition 2.1. A probability space is a triple (S,F , P ) where S is a space
(usually some kind of topological space), F is a σ-algebra (usually its Borel
algebra) and P is a probability measure on S.

Given a measurable space (X,Σ) a (sub)-Markov kernel is a map τ : X ×Σ
−→ [0, 1] which is measurable in its first argument, i.e. τ(·, A ∈ Σ) : X
−→ R is measurable for any fixed A in Σ and for any fixed x ∈ X, τ(x, ·)
is a (sub)probability measure. These kernels describe transition probability
functions.
Definition 2.2. A filtration on a measurable space (Ω,F) is a nondecreasing
family (Ft)t≥0 of sub-σ-algebras of F , i.e. Fs ⊆ Ft ⊆ F for 0 ≤ s < t <∞.

This concept is used to capture the idea that at time t what is “known” or
“observed” about the process is encoded in the sub-σ-algebra Ft.
Definition 2.3. A stochastic process is a collection of random variables
(Xt)0≤t<∞ on a measurable space (Ω,F) that take values in a second mea-
surable space (S,S) called the state space. We say that a stochastic process is
adapted to a filtration (Ft)t≥0 if for each t ≥ 0 we have Xt is Ft-measurable.

Note that a stochastic process is always adapted to the filtration (Gt)t≥0,
where for each t ≥ 0, Gt is defined as the σ-algebra generated by all the
random variables {Xs|s ≤ t}. The filtration (Gt)t≥0 is also referred to as the
natural filtration associated to (Xt)t≥0.

Before stating the definition of the continuous-time processes we will be
interested in, let us first start by recalling the definition of their discrete-
time counterparts.
Definition 2.4. A labelled Markov process (LMP) is a triple (X,Σ, τ) where
(X,Σ) is a measurable space and τ is a Markov kernel.

4



We will quickly review the theory of continuous-time processes on continu-
ous state space; much of this material is adapted from “Diffusions, Markov
Processes and Martingales, Volume I” by Rogers and Williams [19] and we
use their notations. Another useful source is “Functional analysis for prob-
ability and stochastic processes” by A. Bobrowski [5]. Let E be a locally
compact, Hausdorff space with countable base which is also σ-compact and
Polish and let it be equipped with the Borel σ-algebra E = B(E). E∂ is
the one-point compactification of E: E∂ = E ] {∂}. The physical picture is
that the added state, ∂, represents a point at infinity; we will view it as an
absorbing state. Denoting O the topology on E, the space E∂ is equipped
with the topology O∂ = O ∪ {{∂} ∪Kc | K compact in (E,O)}.

We say that a continuous real-valued function f on E “vanishes at infinity”
if for every ε > 0 there is a compact subset K ⊂ E such that ∀x ∈ E \K
we have |f(x)| ≤ ε. This space is a Banach space with the sup norm.
Definition 2.5. A semigroup of operators on any Banach space is a family
of linear continuous (bounded) operators Tt indexed by t ∈ R≥0 such that

∀s, t ≥ 0, Ts ◦ Tt = Ts+t

and
T0 = I (the identity).

The first equation above is called the semigroup property. The operators in
a semigroup are continuous however there is a useful continuity property of
the semigroup as a whole.
Definition 2.6. For X a Banach space, we say that a semigroup Tt : X
−→ X is strongly continuous if

∀x ∈ X, lim
t↓0

Ttx = x

which is equivalent to saying

∀x ∈ X, lim
t↓0
‖Ttx− x‖ −→ 0.

Definition 2.7. A Feller-Dynkin (FD) semigroup is a strongly continuous
semigroup (P̂t)t≥0 of linear operators on C0(E) (the space of continuous
functions on E which vanish at infinity) satisfying the additional condition:

∀t ≥ 0 ∀f ∈ C0(E), if 0 ≤ f ≤ 1, then 0 ≤ P̂tf ≤ 1
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The following important proposition relates these FD semigroups with Markov
processes which allows one to see the connection with more familiar proba-
bilistic transition systems.
Proposition 2.8. Given such an FD semigroup, it is possible to define a
unique family of sub-Markov kernels (Pt)t≥0 : E × E −→ [0, 1] such that for
all t ≥ 0 and f ∈ C0(E),

P̂tf(x) =

∫
f(y)Pt(x, dy).

A very important ingredient in the theory is the space of trajectories of a FD
process (FD semigroup) as a probability space. This space does not appear
explicitly in the study of labelled Markov processes but one does see it in
the study of continuous-time Markov chains and jump processes.
Definition 2.9. We define a trajectory ω on E∂ to be a cadlag1 function
[0,∞) −→ E∂ such that if either ω(t−) := lims<t,s−→t ω(s) = ∂ or ω(t) = ∂
then ∀u ≥ t, ω(u) = ∂. We can extend ω to a map from [0,∞] to E∂ by
setting ω(∞) = ∂.

It is possible to associate to such an FD semigroup a canonical FD process.
Let Ω be the set of trajectories ω : [0,∞) −→ E∂ .
Definition 2.10. The canonical FD process associated to the FD semigroup
(P̂t) is

(Ω,G, (Gt)t≥0, (Xt)0≤t≤∞, (Px)x∈E∂
)

where

• Xt(ω) = ω(t)

• G = σ(Xs | 0 ≤ s <∞) 2, Gt = σ(Xs | 0 ≤ s ≤ t)

• given any probability measure µ on E∂ , by the Kolmogorov extension
theorem, there exists a unique probability measure Pµ on (Ω,G) such
that for all n ∈ N, 0 ≤ t1 ≤ t2 ≤ ... ≤ tn and x0, x1, ..., xn in E∂ ,

Pµ(X0 ∈ dx0, Xt1 ∈ dx1, ..., Xtn ∈ dxn) = µ(dx0)P
+∂
t1

(x0, dx1)...P
+∂
tn−tn−1

(xn−1, dxn)3

where P+∂
t is the Markov kernel extending the Markov kernel Pt to E∂

by P+∂
t (x, {∂}) = 1−Pt(x,E) and P+∂

t (∂, {∂}) = 1. We set Px = Pδx .

1By cadlag we mean right-continuous with left limits.
2The σ-algebra G is the same as the one induced by the Skorohod metric, see theorem

16.6 of [2]
3The dxi in this equation should be understood as infinitesimal volumes. This notation

is standard in probabilities and should be understood by integrating it over measurable
state sets Ci.
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This is the version of the system that will be most useful for us. In order to
bring it more in line with the kind of transition systems that have hitherto
been studied in the computer science literature we introduce a finite set of
atomic propositions AP and such a FD process is equipped with a function
obs : E −→ 2AP . This function is extended to a function obs : E∂ −→
2AP ] {∂} by setting obs(∂) = ∂.

Instead of following the dynamics of the system step by step as one does
in a discrete system we have to study the behaviour of sets of trajectories.
The crucial ingredient is the distribution Px which gives a measure on the
space of trajectories for a system started at the point x.

2.1 Brownian motion as a FD process

Brownian motion is a stochastic process describing the irregular motion of a
particle being buffeted by invisible molecules. Now its range of applicability
extends far beyond its initial application [14]. The following definition is
from [14].
Definition 2.11. A standard one-dimensional Brownian motion is a Markov
process adapted to the filtration (Ft)t≥0,

B = (Wt,Ft), 0 ≤ t <∞

defined on a probability space (Ω,F , P ) with the properties

1. W0 = 0 almost surely,

2. for 0 ≤ s < t, Wt−Ws is independent of Fs and is normally distributed
with mean 0 and variance t− s.

In this very special process, one can start at any place, there is an overall
translation symmetry which makes calculations more tractable. In order to
do any calculations we use the following fundamental formula: If the process
is at x at time 0 then at time t the probability that it is in the (measurable)
set D is given by

Pt(x,D) =

∫
y∈D

1√
2πt

exp

(
−(x− y)2

2t

)
dy.

The associated FD semigroup is the following: for f ∈ C0(R) and x ∈
R,

P̂t(f)(x) =

∫
y

f(y)√
2πt

exp

(
−(x− y)2

2t

)
dy.
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3 Bisimulation

We introduced a notion of bisimulation in [6] that we will recall in this
section. We will also define two weaker notions: trace equivalence and tem-
poral equivalence. The latter one seems to be a better generalization of
bisimulation in discrete time systems than our original definition of bisimu-
lation.
Definition 3.1. Given an equivalence R on E, a subset C of the state space
E is R-closed if for every states x and y such that x R y, x ∈ C if and only
if y ∈ C.
Definition 3.2. Given an equivalence R on E extended to E∂ by setting
∂ R ∂, a set B of trajectories is time-R-closed if for every trajectories ω and
ω′ such that for every time t ≥ 0, ω(t) R ω′(t) (where R is extended to E∂
by setting ∂ R ∂), ω ∈ B if and only if ω′ ∈ B.

A set B is called time-obs-closed if it is time-R-closed where R is the equiv-
alence defined by x R y if and only if obs(x) = obs(y).

This is the definition of bisimulation introduced in [6]. In discrete time,
bisimulation was only about the next step. Here, we take the full trajectories
into consideration.
Definition 3.3. A bisimulation is an equivalence relation R on E such that
for all x, y ∈ E, if x R y, then

(initiation) obs(x) = obs(y), and

(induction) for all measurable time-R-closed sets B, Px(B) = Py(B).

Another well-known concept is that of trace equivalence.
Definition 3.4. Two states are trace equivalent if and only if for all mea-
surable time-obs-closed sets B, Px(B) = Py(B).

Temporal equivalence can be viewed as trace equivalence which additionally
accounts for step-like branching. As such, it is weaker than bisimulation but
stronger than trace equivalence. As shown in section 6.1, it seems to be the
notion that best generalizes discrete-time bisimulation since the induction
requirement of bisimulation is actually very strong.
Definition 3.5. A temporal equivalence is an equivalence relation R on E
such that for all x, y ∈ E, if x R y, then

(initiation) for all measurable time-obs-closed sets B, Px(B) = Py(B),
and
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(induction) for all measurable R-closed sets C, for all times t, Pt(x,C) =
Pt(y, C).

Lemma 3.6. There is a greatest temporal equivalence.

Proof. Define M the set of temporal equivalences and R the transitive
closure of

⋃
R′∈RR

′.

First note that the relation R is an equivalence. The equivalence {(x, x) | x ∈
E} is a bisimulation and hence x R x. Furthermore, if x R y, it means there
exists (xi)i=0,...,n in E and (Rj)j=0,...,n−1 in R such that x0 = x, xn = y and
for every i ∈ {0, ..., n−1}, xi Ri xi+1. Since Ri is an equivalence, xi+1 Ri xi,
and hence y R x. Finally, by definition the relation R is transitive.

Now, we can prove that R is a temporal equivalence. Consider x R y, i.e.
there exists (xi)i=0,...,n in E and (Rj)j=0,...,n−1 inR such that x0 = x, xn = y
and for every i ∈ {0, ..., n− 1}, xi Ri xi+1.

For the initiation condition, consider a measurable time-obs-closed set B.
For every i ∈ {0, ..., n − 1}, Pxi(B) = Pxi+1(B), since Ri is a temporal
equivalence. This proves that

Px(B) = Px0(B) = ... = Pxn(B) = Py(B)

For the induction condition, consider t ≥ 0 and a measurable R-closed set
C. Then the set C is Ri-closed for every i ∈ {0, ..., n− 1}: consider z Ri z

′

and z ∈ C, then by definition of R, z R z′ and since C is R-closed, z′ ∈ C.
Since Ri is a temporal equivalence, Pt(xi, C) = Pt(xi+1, C) and hence

Pt(x,C) = Pt(x0, C) = ... = Pt(xn, C) = Pt(y, C)

which concludes the proof.

Remark 3.7. Two states that are related by a bisimulation are called bisim-
ilar. There is a greatest bisimulation that corresponds to this equivalence.

Similarly, two states that are related by a temporal equivalence are called
temporally equivalent. This equivalence is the greatest temporal equivalence.
Lemma 3.8. A bisimulation is also a temporal equivalence. If two states
are temporally equivalent, then they are trace equivalent.

Proof. Let R′ be a bisimulation and consider two states x and y such that
x R′ y.

Consider a time-obs-closed set B. Then it is also time-R′-closed: consider
two trajectories ω and ω′ such that ω ∈ B and for every time t, ω(t) R′ ω′(t).
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Then for every time t, obs(ω(t)) = obs(ω′(t)) (By the initiation condition of
bisimulation). Since B is time-obs-closed and ω ∈ B, ω′ is also in B. Using
the induction condition of bisimulation, we get that Px(B) = Py(B).

Consider a measurable R-closed set C and a time t. Define the set B =
{ω | ω(t) ∈ C} = X−1t (C). It is measurable and time-R-closed. We can
then apply the induction condition and we get

Pt(x,C) = Px(B) = Py(B) = Pt(y, C)

This concludes the proof that R′ is a temporal equivalence.

The second part of the lemma follows directly from the initiation condition
of a temporal equivalence: this is precisely trace equivalence.

In [6], we also introduced the notion of FD-homomorphism that extends
the discrete-time notion of zigzags [8]. We showed that cospans of FD-
homomorphisms and bisimulations correspond to one another. In particular,
if R is a bisimulation, the quotient by R yields a homomorphism.

4 Symmetry groups of the process

4.1 Definition

Given a function f : E∂ −→ E∂ , we define h∗ : Ω −→ Ω by h∗(ω) = h◦ω.
Definition 4.1. A group of symmetries is a group (closed under inverse
and composition) H of homeomorphisms on the state space E extended to
E∂ by setting h(∂) = ∂ for every h ∈ H such that

• for all h ∈ H, obs ◦ h = obs, and

• for all measurable sets B such that for all h ∈ H, h∗(B) = B, for all
x ∈ E∂ and for all f ∈ H, Px(B) = Pf(x)(B).

Consider a (non-empty) group of homeomorphisms H on E. Then it is
possible to define a relation R on E as follows: x R y, if and only if there
exists h ∈ H such that h(x) = y.
Lemma 4.2. The relation R is an equivalence.

Proof. First note that since the group H is non-empty, it contains at least
the identity. This means in particular that for any x ∈ E∂ , x R x.
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For symmetry, consider x R y, i.e. there exists h ∈ H such that h(x) = y.
Since H is closed under inverses, h−1 ∈ H and h−1(y) = x and hence y R x.

For transitivity, consider x R y and y R z, i.e. there exists h1, h2 ∈ H such
that h1(x) = y and h2(y) = z. Then (h2 ◦ h1)(x) = z and since H is closed
under composition, we have that h2 ◦ h1 ∈ H and hence x R z.

Definition 4.3. Given a group of symmetries H, we will denote RH its
corresponding equivalence on the state space:

x RH y if and only if ∃h ∈ H h(x) = y.

Remark 4.4. One of the requirements for being a group of symmetries is to
be closed under inverse and composition. This condition is useful for getting
an equivalence on the state space, however, it is usually easier (if possible)
to view a group of symmetries H as generated by a set Hgen of homeomor-
phisms: the set H is then the closure under inverse and composition of the
set Hgen. If the set Hgen satisfies the following conditions, then the set H is
a group of symmetries:

• for all f ∈ Hgen, obs ◦ f = obs, and

• for all measurable sets B such that for all f ∈ Hgen, f∗(B) = B, for
all x ∈ E∂ and for all g ∈ Hgen, Px(B) = Pg(x)(B).

Indeed, in that case, consider h = f1 ◦ ... ◦ fn such that fi or f−1i is in Hgen
for every i. First note that since for every f ∈ Hgen, obs ◦ f = obs implies
that obs = obs ◦ f−1 and hence for every i ∈ J1, nK, obs ◦ fi = obs. Finally,
we get that

obs ◦ f1 ◦ ... ◦ fn = obs ◦ f2 ◦ ... ◦ fn = ... = obs.

Now, consider a set B such that for all h′ ∈ H, h′∗(B) = B. In particular,
for every f ∈ Hgen, f∗(B) = B. This implies that for every y in E∂ and for
every fi, Py(B) = Pfi(y)(B), which means that for every x ∈ E∂ ,

Px(B) = Pfn(x)(B) = Pfn−1◦fn(x)(B) = ... = Pf1◦...◦fn(x)(B) = Ph(x)(B).

Remark 4.5. If we have two groups of symmetries H1 and H2, it may be
that H1 ∪ H2 is not a group of symmetries, but it generates a group of
symmetries by closing it under composition.
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4.2 Relation to bisimulation

Lemma 4.6. Consider a time-RH-closed set B. Then for every f ∈ H,
f∗(B) ⊂ B.

Proof. Consider ω ∈ B and any time t ≥ 0. Then f−1(f∗(ω)(t)) = f−1 ◦f ◦
ω(t) = ω(t). Since f−1 is in H, we know that f(ω(t)) RH ω(t). This is true
for any time t and since B is time-RH-closed, we have that f∗(ω) ∈ B.

Lemma 4.7. Given a group of symmetries H, if a set B is time-RH-closed,
then for every h ∈ H, h∗(B) = B.

Proof. First, using lemma 4.6, h∗(B) ⊂ B.

To prove the converse implication, consider ω ∈ B. We define ω′ as ω′ =
(h−1)∗(ω). Note that for all times t, h(ω′(t)) = ω(t), i.e. ω(t) RH ω′(t).

Since B is time-RH-closed, ω′ ∈ B. We have defined ω′ = (h−1)∗(ω) =
h−1 ◦ ω. A direct consequence is that ω = h ◦ ω′ = h∗(ω

′), and therefore
ω ∈ h∗(B).

Theorem 4.8. Given a group of symmetries H, the equivalence RH is a
bisimulation.

Proof. Consider two equivalent states x RH y, i.e. there exists h ∈ H such
that h(x) = y.

First, obs(x) = obs ◦ h(x) = obs(y).

Second, let us consider a measurable, time-RH-closed B. Using lemma 4.7,
we know that for every f ∈ H, f∗(B) = B, and hence Px(B) = Ph(x)(B) =
Py(B), which concludes the proof.

There are a few additional remarks to be made here.
Remark 4.9. It may be tempting to view functions in a group of symmetries
as FD-homomorphisms. However, this is not necessarily the case. Indeed,
a FD-homomorphism f : E1 −→ E2 satisfies that for every B2 ∈ G2, x ∈ E1,
Px(B1) = Pf(x)(B2) whereB1 = {ω | f∗(ω) ∈ B2}, but a group of symmetries
H has a different condition: for h ∈ H, x ∈ E and B ∈ G such that for every
g ∈ H, g∗(B) = B, Px(B) = Ph(x)(B). To illustrate the difference, consider
Brownian motion with an atomic proposition on 0. The set {id, s} where
s(x) = −x is a group of symmetries. Now look at the set {ω | ω(3) ∈ [1, 2]}.
This set is accounted for in the definition of FD-homomorphism, but not
in the definition of group of symmetries which, in our case, only allows to
consider {ω | ω(3) ∈ [−2,−1] ∪ [1, 2]}.
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A reverse implication holds though: the set of FD-homomorphisms that are
homeomorphisms form a group of symmetries.
Remark 4.10. Given a group of symmetries H, a set C of states if RH-
closed if and only if for every h ∈ H, h(C) = C. It is tempting to find
a nice characterization of time-RH-closed sets too, however in the case of
trajectories, this is much more complicated. It is true that if a set B is
time-RH-closed, then for every h ∈ H, h∗(B) = B but this is no longer an
equivalence.

To illustrate this, consider Brownian motion with an atomic proposition on
0 and the group of symmetries {s, id} like in previous remark. Define the
following trajectories:

ω1(t) =

{
1− t for t < 2

t− 1 for t ≥ 2
ω1(t) =

{
1− t for t < 1

t− 1 for t ≥ 1
ω3(t) = t−1

For every time t, |ω1(t)| = |ω2(t)| = |ω3(t)|, which means that any time-RH-
closed set that contains one of these trajectories should contain all of them.
Define Bi = {ωi,−ωi} for i = 1, 2 or 3. It is clear that s∗(Bi) = Bi but
ωj /∈ Bi for i 6= j.

To account for this, we can make the condition more complex by allowing
to “use” different functions from H as time goes by. More formally, define
the set Htraj as the set of functions F obtained in the following way.
Given a set I such that I = N or J0,mK (for m ∈ N), an I-indexed family
of times ti such that t0 = 0 < t1 < t2 < ... such that

⋃
i∈I [ti, ti+1) = R≥0

(where tm+1 is understood as ∞) and an I-indexed family of homeomor-
phisms fi ∈ H, we can define F : Ω −→ Ω such that for ω ∈ Ω,

F (ω) : R≥0 −→ E∂

t 7→ fn(ω(t)) where n is such that tn ≤ t < tn+1

If a set B is time-RH-closed, then for all F ∈ Htraj , F (B) = B.

However, this is still not an equivalence: consider Brownian motion as pre-
viously and the trajectories ω(t) = t×sin(1/t) (ω(0) = 0) and ω′(t) = |ω(t)|.
These two functions are RH-related at all times but the last condition stated
still does not account for this.
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5 Game Interpretation

The following games are adaptations from [13, 7] to our setting of continuous-
time processes. It is especially interesting to note that the game interpre-
tation of bisimulation emphasizes once again the role of trajectories in that
concept whereas the game interpretation of temporal equivalence resembles
that in discrete time very closely.

5.1 Game interpretation of bisimulation

Definition 5.1. Two trajectories ω and ω′ are time-bisimilar if for all times
t ≥ 0, ω(t) and ω′(t) are bisimilar.
Lemma 5.2. Two states x and y are bisimilar if and only if the trajectories
ωx and ωy are time-bisimilar where ωz is the trajectory defined by ωz(t) = z
for all times t ≥ 0 for a given state z.

We define the following game. Duplicator’s plays are pairs of trajectories
that he claims are time-bisimilar. Spoiler is trying to prove him wrong.

• Given two trajectories ω and ω′, Spoiler chooses t ≥ 0 and B 6= ∅ ∈ G
such that Pω(t)(B) 6= Pω′(t)(B)

• Duplicator answers by choosing ω0 ∈ B and ω1 /∈ B such that obs◦ω0 =
obs ◦ ω1 and the game continues from (ω0, ω1)

A player who cannot make a move at any point loses. Duplicator wins if
the game goes on forever. The only way for Spoiler to win is to choose a
time-obs-closed set.
Theorem 5.3. Two trajectories ω and ω′ are time-bisimilar if and only if
Duplicator has a winning strategy from (ω, ω′).

Proof. Denote R the greatest bisimulation.

For the first implication, if two trajectories ω and ω′ are time-bisimilar, we
know that for all t ≥ 0, for all time-R-closed sets B′, Pω(t)(B′) = Pω′(t)(B′).
Spoiler chooses a time t ≥ 0 and a measurable set B such that Pω(t)(B) 6=
Pω′(t)(B). This means that the set B that Spoiler chose cannot be time-R-
closed. That is why Duplicator can find two trajectories ω0 ∈ B and ω1 /∈ B
that are time-bisimilar. This strategy is winning for Duplicator, since it is
allowing him to respond to every move from Spoiler and Duplicator wins all
infinite plays.
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For the reverse implication, define the following relation R′ on trajectories:
ω R′ ω′ if and only if duplicator has a winning strategy from (ω, ω′).

Note that R′ is an equivalence:

• reflexivity: Spoiler has no valid move from (ω, ω), hence duplicator
wins.

• symmetry: Assume ω R′ ω′. Whatever move (B, t) Spoiler does when
Duplicator says (ω′, ω) is also a valid move from (ω, ω′). Duplicator
can then play as he would have from (ω, ω′) and if he had a winning
strategy then, it is also a winning strategy now. This means that
ω′ R′ ω.

• transitivity: Assume ω R′ ω′ and ω′ R′ ω′′. Now consider the game
when duplicator starts by saying (ω, ω′′). Spoiler then says (B, t) such
that Pω(t)(B) 6= Pω′′(t)(B). In this case, note that we have Pω(t)(B) 6=
Pω′(t)(B) or Pω′(t)(B) 6= Pω′′(t)(B) (or both). Duplicator then picks
one of those situation (or if only one of them is true, he picks this
one) and replies what he would have replied in the game starting with
the corresponding start: (ω, ω′) or (ω′, ω′′). Since Duplicator had a
winning strategy in both game, he has one here. Hence ω R′ ω′′.

Define the following relation R1 on states: z R1 z
′ if and only if ωz R

′ ωz′ .
This relation is an equivalence (this is a direct consequence of the fact that
R′ is itself an equivalence). Furthermore, this relation is a bisimulation. To
prove this, assume it is not a bisimulation. I.e. there exists x R1 y such that
either obs(x) 6= obs(y) or there exists a measurable time-R1-closed set B of
trajectories such that Px(B) 6= Py(B).
We can start by excluding the first case. Indeed we know that ωx R

′ ωy,
which means that obs ◦ ωx = obs ◦ ωy, i.e. obs(x) = obs(y).
We can now show that there is a contradiction. Consider the game starting
from (ωx, ωy). Spoiler says (B, 0). Now, whatever move (ω, ω′) (ω ∈ B and
ω′ /∈ B) duplicator picks, there exists t ≥ 0 such that ω(t) and ω′(t) are
not R1-related (since B is time-R1-closed). This means that Spoiler has a
winning strategy from (ωω(t), ωω′(t)) that he can play. This contradicts the
fact that duplicator has a winning strategy from (ωx, ωy). Which proves
that R1 is a bisimulation.

Corollary 5.4. Two states x and y are bisimilar if and only if Duplicator
has a winning strategy from (ωx, ωy).
Remark 5.5. We can also define the relation R2 on states: x R2 y if and
only if there exists ω, ω′, t such that ω R′ ω′, ω(t) = x and ω′(t) = y.
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Trivially, if x R1 y, then x R2 y.

Now assume that x R2 y, and consider ω, ω′, t according to the definition of
R2. Duplicator has a winning strategy from ωx, ωy. Indeed, either Spoiler
is stuck from the start, in which case duplicator wins, or spoiler says (B, t).
This means that Px(B) 6= Py(B). Duplicator then replies what he would
have said in the game starting from (ω, ω′) if Spoiler had said (B, t). This
proves that R1 = R2.

5.2 Game interpretation of temporal equivalence

We define the following game. Duplicator’s plays are pairs of states that he
claims are bisimilar. Spoiler is trying to prove him wrong.

• Given two states x and y, Spoiler chooses t ≥ 0 and C 6= ∅ ∈ E such
that Pt(x,C) 6= Pt(y, C).

• Duplicator answers by choosing x1 ∈ C and y1 /∈ C that are trace-
equivalent and the game continues from (x1, y1)

A player who cannot make a move at any point loses. Duplicator wins if
the game goes on forever. The only way for Spoiler to win is to choose a
set that is closed under trace equivalence. Duplicator’s only valid moves are
pairs of trace equivalent states.
Theorem 5.6. Two states x and y are temporally equivalent if and only if
Duplicator has a winning strategy from (x, y).

Proof. Denote R the greatest temporal equivalence.

For the first implication, if two states x and y are temporally equivalent, we
know that for all t ≥ 0, for all R-closed sets C ′, Pt(x,C

′) = Pt(y, C
′). Spoiler

chooses a time t ≥ 0 and a measurable set C such that Pt(x,C) 6= Pt(y, C).
This means that the set C that Spoiler chose cannot be R-closed. That is
why Duplicator can find two states x1 ∈ C and y1 /∈ C that are temporally
equivalent. This strategy is winning for Duplicator, since it is allowing him
to respond to every move from Spoiler and Duplicator wins all infinite plays.

For the reverse implication, define the following relation R′ on the state
space: x R′ y if and only if Duplicator has a winning strategy from (x, y).

Note that R′ is an equivalence:
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• reflexivity: Spoiler has no valid move from (x, x), hence duplicator
wins.

• symmetry: Assume x R′ y. Whatever move (C, t) Spoiler does when
Duplicator says (x, y) is also a valid move from (y, x). Duplicator can
then play as he would have from (x, y) and if he had a winning strategy
then, it is also a winning strategy now. This means that y R′ x.

• transitivity: Assume x R′ y and y R′ z. Now consider the game when
duplicator starts by saying (x, z). Spoiler then says (C, t) such that
Pt(x,C) 6= Pt(z, C). In this case, Pt(x,C) 6= Pt(y, C) or Pt(y, C) 6=
Pt(z, C) (or both). Duplicator then picks one of those situation (or if
only one of them is true, he picks this one) and replies what he would
have replied in the game starting with the corresponding start: (x, y)
or (y, z). Since Duplicator had a winning strategy in both game, he
has one here. Hence x R′ z.

Furthermore, this relation is a temporal equivalence. To prove this, assume
it is not a temporal equivalence, i.e. there exists x R′ y such that either x
and y are not trace equivalent, or there exists a measurable R′-closed set C
and a time t such that Pt(x,C) 6= Pt(y, C).
Duplicator’s only valid moves are pairs of trace equivalent states, so only
the second case is possible. Now consider (C, t) to be Spoiler’s move from
(x, y). Whatever move (x1, y1) Duplicator chooses, it is not possible to have
x1 R

′ y1 since C is R′-closed. Since the game is determined, Spoiler has
a winning strategy from (x′, y′) which contradicts the fact that Duplicator
has a winning strategy from (x, y). Which proves that R′ is a temporal
equivalence.

6 Justification for these behavioural equivalences

The goal of this work is to extend the notion of bisimulation that exists in
discrete time to a continuous-time setting. Therefore two important ques-
tions are the following: do we get back the definition of bisimulation that
existed in discrete time when we restrict Feller-Dynkin processes to (some
kind of) discrete-time processes? How well do these notions behave on ex-
amples?
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6.1 Discrete-time Case

It is common in discrete time to consider several actions. Everything that
was exposed in this paper can easily be adapted to accommodate several
actions. However, we will not mention actions in this section either for the
sake of readability.

Given an LMP (X,Σ, τ, (χA)A∈AP ) where Σ = σ(T ) where T is a topology
on X, we can always view it as a FD process where transitions happen at
every time unit. Since the process has to remain memoryless, a state of the
FD process is a pair of a state in X and a time explaining how long it has
been since the last transition. For trajectories to be cadlag, that time is in
[0, 1).

We will write obs(x) = (χA(x))A∈AP to mimick what we have in continuous
time.

Formally, the state space of the FD process is (E, E) where the space is
defined as E = X× [0, 1) and is equipped with a topology O = T ×O([0, 1))
(where O([0, 1)) denotes the usual topology on the interval [0, 1)) and the
following σ-algebra E = Σ ⊗ B([0, 1)) is generated by this topology. The
corresponding kernel is defined for all x ∈ X and C ∈ E , t ≥ 0 and s ∈ [0, 1)
as Pt((x, s), C) = τbt+sc(x,C

′) where C ′ = {z | (z, t+ s− bt+ sc) ∈ C} and
for k ≥ 1,

τ0(x,C
′) = 1C′(x), τ1(x,C

′) = τ(x,C ′) and τk+1(x,C
′) =

∫
y∈X

τ(x, dy)τk(y, C
′)

We also define obs(x, s) = obs(x) (i.e. (obs(x, s))i = χAi(x) where AP =
{A1, A2, ...}).

Recall the definition of bisimulation in discrete time.
Definition 6.1. Given an LMP (X,Σ, τ, (χA)A∈AP ), a DT-bisimulation R
is an equivalence relation on X such that if xRy, then

• obs(x) = obs(y) (i.e. for all A ∈ AP , χA(x) = χA(y))

• for all R-closed sets C ∈ Σ (i.e. if z ∈ C and yRz, then y ∈ C),
τ(x,C) = τ(y, C).

The following lemma is in [6]
Lemma 6.2. Consider a DT-bisimulation R. If xRy, then for all n ≥ 1, for
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all R-closed set A1, ..., An,∫
x1∈A1

...

∫
xn∈An

τ(x, dx1)τ(x1, dx2)...τ(xn−1, dxn) =∫
x1∈A1

...

∫
xn∈An

τ(y, dx1)τ(x1, dx2)...τ(xn−1, dxn)

It is possible to define the notion of trajectories in the LMP and that of
trace equivalence just as we did in the case of FD-processes. A trajectory is
a function ω : N −→ X ] {∂} such that if ω(n) = ∂, then for every k ≥ n,
ω(k) = ∂. Two states x and y are trace equivalent if for every set B of
trajectories that is measurable and time-obs-closed, Px(B) = Py(B) (where
Px and Py are obtained using the Daniell-Kolmogorov theorem as in section
2).

We have the following result that will be later useful to us.
Lemma 6.3. In an LMP with finitely many atomic propositions, any two
states x and y that are DT-bisimilar are trace equivalent.

Proof. Consider a non-empty, measurable set B that is time-obs-closed.

Define the following sets for k ∈ N:

Dk = {γ : J0, kK −→ 2AP+1 | ∃ω ∈ B ∀i ∈ J0, kK obs ◦ ω(i) = γ(i)}
Bk = {ω : N −→ X ] {∂} | ∃γ ∈ Dk ∀i ∈ J0, kK obs ◦ ω(i) = γ(i)}

= {ω : N −→ X ] {∂} | ∃ω′ ∈ B ∀i ∈ J0, kK obs ◦ ω(i) = obs ◦ ω′(i)}
Bk(γ) = {ω : N −→ X ] {∂} | ∀i ∈ J0, kK obs ◦ ω(i) = γ(i)}

with γ ∈ Dk. Since AP is finite, Dk is also finite for every k ∈ N.

First, note that B =
⋂
k∈NBk. Indeed, by definition B ⊂ Bk for every k ∈ N

which proves the direct inclusion. For the reverse inclusion, note that since
B is time-R-closed,

B =
⋃
ω′∈B

⋂
i∈N
{ω | obs(ω(i)) = obs(ω′(i))}

We also have that

Bk =
⋃
ω′∈B

k⋂
i=0

{ω | obs(ω(i)) = obs(ω′(i))}

Using these expressions and infinite distributivity of set union and intersec-
tions, the equality B =

⋂
k∈NBk follows.
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Second, for γ ∈ Dk,

Bk(γ) =

k⋂
i=0

{ω | ω(i) ∈ obs−1(γ(i))}

This proves that Bk(γ) is measurable. Furthermore, Px(Bk(γ)) = Py(Bk(γ))
using lemma 6.2.

Now, Bk =
⋃
γ∈Dk

Bk(γ) is measurable since Dk is finite. Since for γ 6= γ′,
Bk(γ) ∩ Bk(γ′) = ∅, we also have that Px(Bk) =

∑
γ∈Dk

Px(Bk(γ)) and
similarly for Py(Bk), which shows that for every k ∈ N, Px(Bk) = Py(Bk).

Finally, B0 ⊃ B1 ⊃ ... ⊃ Bn ⊃ Bn+1 ⊃ ... ⊃
⋂
k∈NBk = B and therefore

Px(B) = Py(B) by down-continuity of measures Px and Py.

This result can also be extended to countably many atomic propositions in
the following way:
Lemma 6.4. In an LMP with countably many atomic propositions, any
two states x and y that are DT-bisimilar are trace equivalent.

Proof. Consider a non-empty, measurable set B that is time-obs-closed. We
will denote A0 the atomic proposition corresponding to ∂.

Define the following sets for k ∈ N:

Dk,l = {γ : J0, kK× J0, lK −→ {0, 1} | ∃ω ∈ B ∀i ∈ J0, kK ∀j ∈ J0, lK χAj (ω(i)) = γ(i, j)}
Bk,l = {ω : N −→ X ] {∂} | ∃γ ∈ Dk,l ∀i ∈ J0, kK ∀j ∈ J0, lK χAj (ω(i)) = γ(i, j)}

= {ω : N −→ X ] {∂} | ∃ω′ ∈ B ∀i ∈ J0, kK ∀j ∈ J0, lK χAj (ω(i)) = χAj (ω
′(i))

Bk,l(γ) = {ω : N −→ X ] {∂} | ∀i ∈ J0, kK ∀j ∈ J0, lK χAj (ω(i)) = γ(i, j)}

with γ ∈ Dk,l. The set Dk is finite for every k, l ∈ N.

First, note that B =
⋂
k,l∈NBk. Indeed, by definition B ⊂ Bk,l for every

k, l ∈ N which proves the direct inclusion. For the reverse inclusion, note
that since B is time-R-closed,

B =
⋃
ω′∈B

⋂
i∈N

⋂
j∈N
{ω | χAj (ω(i)) = χAj (ω

′(i))}

We also have that

Bk,l =
⋃
ω′∈B

k⋂
i=0

l⋂
j=0

{ω | χAj (ω(i)) = χAj (ω
′(i))}
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Using these expressions and infinite distributivity of set union and intersec-
tions, the equality B =

⋂
k,l∈NBk,l follows.

Second, for γ ∈ Dk,l,

Bk,l(γ) =
k⋂
i=0

{ω | ω(i) ∈
l⋂

j=0

(χAj )
−1(γ(i, j))}

This proves thatBk,l(γ) is measurable. Furthermore, Px(Bk,l(γ)) = Py(Bk,l(γ))
using lemma 6.2.

Now, Bk,l =
⋃
γ∈Dk,l

Bk,l(γ) is measurable since Dk,l is finite. Since for γ 6=
γ′, Bk,l(γ) ∩Bk,l(γ′) = ∅, we also have that Px(Bk,l) =

∑
γ∈Dk,l

Px(Bk,l(γ))

and similarly for Py(Bk,l), which shows that for every k, l ∈ N, Px(Bk,l) =
Py(Bk,l).

Define Bk =
⋂
l′,k′≤k Bk′,l′ . If l ≤ l′, Bk,l′ ⊂ Bk,l and similarly if k ≤ k′,

Bk′,l ⊂ Bk,l. This means that Bk = Bk,k and B =
⋂
k∈NBk.

Finally, B0 ⊃ B1 ⊃ ... ⊃ Bn ⊃ Bn+1 ⊃ ... ⊃
⋂
k∈NBk = B and therefore

Px(B) = Py(B) by down-continuity of measures Px and Py.
Proposition 6.5. If the equivalence R is a DT-bisimulation, then the rela-
tion R′ defined as

R′ = {((x, s), (y, s)) | s ∈ [0, 1), x R y}

is a temporal equivalence.

Proof. Consider (x, s) R′ (y, s), t ≥ 0 and a measurable and R′-closed set C.
By definition of Pt, Pt((x, s), C) = τbt+sc(x,C

′) where C ′ = {z | (z, s′) ∈ C}
with s′ = t+ s− bt+ sc (and similarly for y).

The set C ′ is R-closed. Indeed, consider two states z ∈ C ′ and z′ ∈ X such
that z R z′. These conditions imply that (z, s′) ∈ C and (z, s′) R′ (z′, s′).
Since the set C is R′-closed, (z′, s′) ∈ C and hence by definition of the set
C ′, z′ ∈ C ′.

Since (x, s) R′ (y, s), we also have that x R y. By lemma 6.2, we have that
τbt+sc(x,C

′) = τbt+sc(y, C
′). This allows us to conclude that Pt((x, s), C) =

Pt(y, s), C).

The initiation condition (trace equivalence) is a direct consequence of lemma
6.3.
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Remark 6.6. In [6], we compared bisimulation and DT-bisimulation. How-
ever some further studies led us to realize that understanding time-R-closed
sets is harder than expected when R is an equivalence, even in the seem-
ingly simple context of discrete-time systems. In particular, we have never
managed to prove that the σ-algebra of measurable time-R-closed sets is
generated by the X−1t (A) where t ∈ R and A is a measurable and R-closed
subset of the state space.

The result presented in this paper seems to indicate that temporal equiv-
alence is actually the notion that extends DT-bisimulation to continuous
time and that the definition of bisimulation in [6] may be too strong in some
contexts. There remains to understand which contexts.
Proposition 6.7. If the equivalence R is a temporal equivalence, then the
relation R′ defined as the transitive closure of the relation

{(x, y) | ∃t, t′ ∈ [0, 1) such that (x, t) R (y, t′)}

is a DT-bisimulation.

Proof. First note that R′ is indeed an equivalence.

Let us consider xR′y, i.e. there exists (xi)i=1,...,n, (ti)i=1,...,n−1 and (t′i)i=1,...,n−1
such that x = x1, y = xn and for every 1 ≤ i ≤ n− 1, (xi, ti) R (xi+1, t

′i).

Let us prove that obs(x) = obs(y). Define B = {ω | obs(ω(0)) = obs(x)}.
This set is indeed measurable and time-obs-closed, which means that for ev-
ery i, P(xi,ti)(B) = P(xi+1,t

′i)(B). In particular, this means that P(x,t1)(B) =
P(y,t′n−1)(B). Furthermore, P(x,t1)(B) = 1 which means that P(y,t′n−1)(B) = 1
and hence obs(y) = obs(y, t′n−1) = obs(x).

Now, consider a Σ-measurable and R′-closed set C ′. Define the set C =
{(z, s) | z ∈ C ′, s ∈ [0, 1)}. It is E-measurable and R-closed. Indeed, consider
(z, s) ∈ C and (z, s) R (z′, s′). These conditions imply that z ∈ C ′ and
z R′ z′. Since C ′ is R-closed, z′ ∈ C ′ and therefore (z′, s′) ∈ C.

SinceR is a temporal equivalence, for every i, P1((xi, ti), C) = P1((xi+1, t
′
i), C)

for every i ≤ n. Additionally, note that for every z ∈ E and every s ∈ [0, 1),
P1((z, s), C) = τ(z, C ′). This proves that τ(x,C ′) = τ(y, C ′).

Remark 6.8. This result is stronger than the one in [6] since we only ask for
R to be a temporal equivalence instead of a bisimulation and additionally,
we do not impose further restrictions on the equivalence R such as time-
coherence in [6].
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These results can be summed up in the following theorem relating temporal
equivalence and DT-bisimulation.
Theorem 6.9. Two states x and y (in the LMP) are DT-bisimilar if and
only if for all t ∈ [0, 1), the states (x, t) and (y, t) (in the Feller-Dynkin
process) are temporally equivalent.
Remark 6.10. This result seems to indicate that temporal equivalence is
the notion of behavioural equivalence that best extends bisimulation from
discrete time to continuous time and not the notion of bisimulation intro-
duced in [6] that is much stronger than temporal equivalence.

6.2 Basic examples

We now revisit some examples from [6] and clarify them in our new frame-
work.

6.2.1 Deterministic Drift

Consider a deterministic drift on the real line R with constant speed a ∈ R>0

and a single atomic proposition. We consider two cases: with 0 as the only
distinguished point and with all the integers distinguished from the other
points.

With zero distinguished: Let us consider the case when there is a single
atomic proposition, and obs(x) = 1 if and only if x = 0.

We have proven in [6] that two states x and y are bisimilar if and only if
either x > 0 and y > 0 or x = y, i.e. the equivalence

R = (R>0 × R>0) ∪ {(x, x) | x ∈ R≤0}

is the greatest bisimulation.

It is a temporal equivalence and furthermore, to prove that it is the greatest
bisimulation we have only used the initiation condition of temporal equiv-
alence. This proves that R is also the greatest temporal equivalence. The
equivalence R is also trace equivalence.
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Let us now study group of symmetries. Given x, y ∈ R>0, we define the
function fx,y : R −→ R by

fx,y(z) =


z if z ≤ 0
y
xz if 0 ≤ z ≤ x
z − x+ y if z > x

Note that fx,y ◦ fy,x = id and fx,x = id. However, the set of all those
functions is not closed under composition so we consider H the closure under
composition of F := {fx,y | x, y > 0}.
Lemma 6.11. The set H is a group of symmetries and the equivalence
generated is R.

Proof. There really is only one condition to check: consider a measurable
set B such that for all f ∈ F , f∗(B) = B and consider z ∈ R and fx,y for
x, y > 0. We want to show that Pz(B) = Pfx,y(z)(B).

There are two cases to consider. First z ≤ 0, in which case fx,y(z) = z
and the desired result holds. Second z > 0, in which case let us denote
z′ = fx,y(z). Note that Pz(B) = χB(ωz) (the indicator function where ωz is
the trajectory defined by ωz(t) = z + at) and Pfx,y(z)(B) = χB(ωz′). Since
fz,z′ ◦ ωz = ωz′ , ωz ∈ B if and only if ωz′ ∈ B which concludes the proof of
the first point.

The second point is pretty straightforward.

Note that since R is the greatest bisimulation, we know that there is no group
of symmetries that generates a bigger equivalence (there may be different
groups of symmetries though, but they generate at most R).

With all integers distinguished: Let us consider the case when there
is a single atomic proposition and obs(x) = 1 if and only if x ∈ Z.

We have proven in [6] that two states x and y are bisimilar if and only if
x− bxc = y − byc, i.e. x− y ∈ Z.

Similarly to previous case, this equivalence is also a temporal equivalence
and furthermore, to prove that it is the greatest bisimulation we have only
used the initiation condition of temporal equivalence. This proves that R
is also the greatest temporal equivalence. The equivalence R is also trace
equivalence.
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The proof that this is a bisimulation also shows that the group of functions
{hk | k ∈ Z} where hk(z) = z + k is a group of symmetries. Similarly to
previous case, there may be other groups of symmetries but the equivalence
generated on the state space cannot be greater.

6.2.2 Fork

We used the following example to show how important the induction con-
dition is in the definition of bisimulation. It is an extension of the stan-
dard “vending machine” example in discrete time to our continuous-time
setting.

Let us consider the following state space:

There are two atomic propositions (denoted P and Q on the diagram), that
are satisfied by the final state of some of the branches. The process is a
drift at a constant speed to the right. When it reaches a fork, it moves
to either branch with probability 1/2 (and stops when he hits an atomic
proposition).

The state space is made explicit as:

E = {(0, 1)} ] ((0, 100]× {2, 3}) ] ([0, 95]× {4}) ] ((95, 100]× {5, 6})

We are going to use the following states:

x0 = (0, 1) y0 = (0, 4)

x1 = (95, 2) y1 = (95, 4)

x2 = (95, 3)

x3 = (100, 2) y2 = (100, 5)

x4 = (100, 3) y3 = (100, 6)

There are two atomic propositions P and Q and obs(x3) = obs(y2) = (1, 0),
obs(x4) = obs(y3) = (0, 1) and obs(z) = (0, 0) otherwise.
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The kernel is defined as follows for t ≤ 100:

Pt(x0, {(t, j)}) =
1

2
for j = 2, 3, t 6= 0

Pt((x, j), (x+ t, j)) = 1 for all j and for all t such that (x+ t, j) exists

Pt((y, 4), (y + t, j)) =
1

2
for j = 5, 6 and for all t such that (y + t, j) exists

Pt((100, j), (100, j)) = 1 for j = 2, 3, 5, 6

What we showed was that the states x0 and y0 cannot be bisimilar. In fact,
the greatest temporal equivalence (which is also the greatest bisimulation)
is

R = {(x, x) | x ∈ E}∪{((z, i), (z, j)) | z > 95 and (i, j ∈ {2, 5} or i, j ∈ {3, 6})}

Regarding groups of symmetries, let us define the following functions:

f2,5(z, i) =


(z, 5) for z > 95, i = 2

(z, 2) for z > 95, i = 5

(z, i) otherwise

f3,6(z, i) =


(z, 6) for z > 95, i = 3

(z, 3) for z > 95, i = 6

(z, i) otherwise

and g = f2,5 ◦ f3,6 = f3,6 ◦ f2,5. Note that f2,5 ◦ f2,5 = id and similarly for
f3,6. The set {id, f2,5, f3,6, g} is a group of symmetries that generates the
equivalence R.

6.3 Examples based on Brownian motion

It is especially interesting to read the proofs that were done for these exam-
ples with this new framework in mind. All the proofs follow the same steps.
First we define an equivalence. We then state that it is a bisimulation, by
actually displaying a set of functions which is a group of symmetries. Sec-
ond, we show that it is corresponds to trace equivalence and hence that it
is the greatest bisimulation (and also temporal equivalence/group of sym-
metries). We will only restate the results with our framework and let the
reader convince himself that the proofs indeed correspond to what we de-
scribed.
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6.3.1 Standard Brownian Motion

With zero distinguished: Let us consider the case when there is a single
atomic proposition and obs(x) = 1 if and only if x = 0.

Two states x and y are trace equivalent if and only if |x| = |y|. The corre-
sponding equivalence is also the greatest bisimulation and temporal equiva-
lence. This equivalence is also generated by the group of symmetries {s, id}
where s(x) = −x for every x ∈ R.

With all integers distinguished: Let us consider the case when there
is a single atomic proposition and obs(x) = 1 if and only if x ∈ Z.

Two states x and y are trace equivalent if and only if x − bxc = y − byc
or dye − y. The corresponding equivalence is also the greatest bisimulation
and temporal equivalence. This equivalence is also generated by the group
of symmetries {tk, sk | k ∈ Z} where sk(x) = k − x and tk(x) = x + k for
every x ∈ R. This group of symmetries can also be obtained as the closure
under composition and inverse of the set {s, t1}.

With an interval distinguished: Let us consider the case when there is
a single atomic proposition and obs(x) = 1 if and only if x ∈ [−1, 1].

Two states x and y are trace equivalent if and only if |x| = |y|. The corre-
sponding equivalence is also the greatest bisimulation and temporal equiva-
lence. This equivalence is also generated by the group of symmetries {s, id}
where s(x) = −x for every x ∈ R.

6.3.2 Brownian motion with drift

Let us consider a Brownian process with drift: W ′t = Wt + at (where Wt

is the standard Brownian motion and a > 0, note that the case a < 0 is
symmetric).

With zero distinguished: Let us consider the case when there is a single
atomic proposition and obs(x) = 1 if and only if x = 0.
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A state is only trace equivalent to itself. The corresponding equivalence is
also the greatest bisimulation and temporal equivalence. This equivalence
is also generated by the group of symmetries {id}.

With all integers distinguished: Let us consider the case when there
is a single atomic proposition and obs(x) = 1 if and only if x ∈ Z.

Two states x and y are trace equivalent if and only if x−bxc = y−byc. The
corresponding equivalence is also the greatest bisimulation and temporal
equivalence. This equivalence is also generated by the group of symmetries
{tk | k ∈ Z} where tk(x) = x+ k for every x ∈ R.

With an interval distinguished: Let us consider the case when there is
a single atomic proposition and obs(x) = 1 if and only if x ∈ [−1, 1].

A state is only trace equivalent to itself. The corresponding equivalence is
also the greatest bisimulation and temporal equivalence. This equivalence
is also generated by the group of symmetries {id}.

6.3.3 Brownian motion with absorbing wall

Another usual variation on Brownian motion is to add boundaries and to
consider that the process does not move anymore or dies once it has hit a
boundary. Since all our previous examples involved probability distributions
(as opposed to subprobabilities), we will see the boundary as killing the
process.

Absorption at 0: let us consider the case of Brownian motion with ab-
sorption at the origin and without any atomic proposition. The state space
is R>0.

A state is only trace equivalent to itself. The corresponding equivalence is
also the greatest bisimulation and temporal equivalence. This equivalence
is also generated by the group of symmetries {id}.

Absorption at 0 and b: let us consider the case of Brownian motion with
absorption at the origin and at b > 0 and without any atomic proposition.
The state space is therefore (0, b).
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Two states x and y are trace equivalent if and only if x = y or x = b − y.
The corresponding equivalence is also the greatest bisimulation and temporal
equivalence. This equivalence is also generated by the group of symmetries
{id, sb} where sb(x) = b− x for every x ∈ R.

Absorption at 0 and 2b with atomic proposition at b: let us consider
the case of Brownian motion with absorption at the origin and at 2b > 0,
so the state space is (0, 2b), and with a single atomic proposition such that
obs(b) = 1 and obs(x) = 0 for x 6= b.

Two states x and y are trace equivalent if and only if x = y or x = 2b− y.
The corresponding equivalence is also the greatest bisimulation and temporal
equivalence. This equivalence is also generated by the group of symmetries
{id, s2b} where s2b(x) = 2b− x for every x ∈ R.

Absorption at 0 and 4b with atomic proposition at b: let us consider
the case of Brownian motion with absorption at the origin and at 4b > 0,
so the state space is (0, 4b), and with a single atomic proposition such that
obs(b) = 1 and obs(x) = 0 for x 6= b.

A state is only trace equivalent to itself. The corresponding equivalence is
also the greatest bisimulation and temporal equivalence. This equivalence
is also generated by the group of symmetries {id}.

6.4 Poisson process

This is an example that we did not consider in [6]. Poisson process mod-
els the number of customer arriving at a taxi stop for instance. It is a
continuous-time process (Nt)t≥0 on the set of natural numbers N, a discrete
space. We define the set Ω of trajectories as usual on the state space. The
probability distribution on the set Ω is defined as

Pk(Nt = n) =
(λt)n−k

(n− k)!
e−λt for n ≥ k

We are going to study two cases. In the first case, we are able to test if there
is an even or odd number of customers that have arrived. In the second case,
we are able to test if there are more customers than a critical value.
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Testing parity of number of customers: There is a single atomic
proposition on the state space: obs(k) = 1 if and only if k is even.
Proposition 6.12. Two states x and y are bisimilar if and only if x ≡ y
mod 2.

Proof. Let us define the following equivalence

R = {(2k, 2l), (2k + 1, 2l + 1) | k, l ∈ N}

First, it is indeed a bisimulation. Consider y = x + 2n where n ∈ N (note
that obs(x) = obs(y)) and B a measurable, time-R-closed set.

For a measurable set B′, Px(B′) = Px+2n(B′ + 2n), where B′ + 2n = {t 7→
ω(t) + 2n} | ω ∈ B}. In particular Px(B) = Py(B + 2n). Since B is time-R-
closed, B + 2n ⊂ B, so Px(B) ≤ Py(B).

For the reverse direction, let M be the set of non-decreasing trajectories.
The set M is measurable:

M = {ω | ∀t, s ∈ R, t > s ⇒ ω(t) ≥ ω(s)}
= {ω | ∀t, s ∈ Q, t > s ⇒ ω(t) ≥ ω(s)}

=
⋂

t,s∈Q,t>s
{ω | ω(t) ≥ ω(s)}

=
⋂

t,s∈Q,t>s

⋃
k∈N

⋃
l∈N,l≥k

{ω | ω(t) = l} ∩ {ω | ω(s) = k}

Write B0 = B ∩ M ∩ {ω | ω(0) = y}. Note that the process can only
realize non-decreasing trajectories, therefore Py(B) = Py(B0). Define B1 =
{t 7→ ω(t) − 2n | ω ∈ B0}. Note that for every ω′ ∈ B1 and s ≥ 0,
ω′(s) ∈ N since for every ω ∈ B0 and t ≥ 0, ω(t) ≥ ω(0) = x + 2n. Since
B1 + 2n = B0, we have that Py(B0) = Px(B1). Furthermore, B1 ⊂ B
since B is time-R-closed: consider ω1 ∈ B1, this means that there exists
ω0 ∈ B0 ⊂ B such that for every t ≥ 0, ω1(t) = ω0(t) − 2n which implies
that ω1(t) R ω0(t) which allows us to conclude. Finally, putting all this
together: Py(B) = Py(B0) = Px(B1) ≤ Px(B).

This concludes the proof that R is a bisimulation. Now, notice that x R y if
and only if obs(x) = obs(y). Since this is weaker than trace equivalence, we
have that R is trace equivalence and the greatest bisimulation and temporal
equivalence.
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Remark 6.13. This situation may look a lot like the deterministic or Brow-
nian drift with parity as the atomic proposition. However, there is one key
difference here: we are preventing the set of translations by an even number
to be a group of symmetries by only allowing positive numbers. These trans-
lations are however FD-homomorphisms. Proving that there is no greater
group of symmetries than {id} is not as trivial as it may look.

Testing for a critical value: Fix m ∈ N≥0, we define the function obs
by obs(x) = 1 if and only if x ≥ m.
Proposition 6.14. Two states x 6= y are bisimilar if and only if x, y ≥ m.

Proof. Denote

R = {(x, x) | x < m} ∪ {(x, y) | x, y ≥ m}

Let us show that it is a bisimulation. Consider x R y and assume x 6= y.
This means that x, y ≥ m and hence obs(x) = obs(y).

Now consider a measurable time-R-closed set B. Define B′ = B ∩ M ∩
{ω | ω(0) ≥ m} where M is the set of non-decreasing functions. Similarly to
previous example, M is measurable. Note that the process can only realize
non-decreasing trajectories, therefore Py(B) = Py(B′) (and similarly for x).

There are now two cases to consider:

• If B′ is empty, Py(B) = Px(B) = 0.

• Otherwise, there exists ω′ ∈ B′. Note that for every time t ≥ 0,
ω′(t) ≥ ω′(0) ≥ m since ω′ is non-decreasing.

We claim that B′ = {ω | ω(0) ≥ m} ∩ M . The direct inclusion is
by definition. For the reverse implication, consider a non-decreasing
trajectory ω such that for every time ω(0) ≥ m. This implies that for
every time t ≥ 0, ω(t) ≥ m and since we also have that ω′(t) ≥ m, in
particular ω(t) R ω′(t). Since ω′ ∈ B′ ⊂ B and B is time-R-closed,
ω ∈ B and hence ω ∈ B′.

So this means that for every z ≥ m, Pz(B′) = Pz({ω | ω(0) ≥ m} ∩
M) = 1. And in particular, this shows that Px(B) = Py(B) = 1.

To prove that it is the greatest bisimulation, we show that it corresponds
to trace equivalence. The proof above can be easily adapted to show that
x, y ≥ m are trace equivalent.
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Clearly if x < m and y ≥ m, then x and y cannot be trace equivalent since
Px({ω | obs(ω(0)) = 0}) = 1 and Py({ω | obs(ω(0)) = 0}) = 0.

Consider the case when x 6= y are both less than m. Consider a time t > 0
and define Bt = {ω | ω(t) ≥ m}. This set is time-obs-closed and for k < m,

Pk(Bt) =
∑
n≥m

Pk(Nt = n)

=
∑
n≥m

(λt)n−k

(n− k)!
e−λt

= e−λt
∑

n≥m−k

(λt)n

n!

This allows us to conclude that if x 6= y, Px(Bt) 6= Py(Bt).

7 Conclusion

The main lesson we have learned is that the continuous-time setting is far
more complex and richer than the discrete-time setting. There are entirely
new phenomena at work, for example, the concept of local time or the fact
that exit and entry times are not always easily definable when the state space
is also a continuum. Not surprisingly, there are different possible extensions
of the discrete-time equivalences to the continuous-time setting. We have
uncovered a few different behavioural equivalences; we expect some of them
to be equivalent with some reasonable restrictions on the systems studied.
The question of when they are really different is open and tends to get mired
in measurability issues.

One of the interesting prospects is the pursuit of the symmetry group point
of view. There are Nöther-like theorems for such systems [1] and it would
be very interesting to explore such theorems in our setting.

There is still ongoing work to extend logical characterization and event
bisimulation to the continuous-time setting. We are also exploring be-
havioural metrics in this setting.
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[7] Florence Clerc, Nathanaël Fijalkow, Bartek Klin, and Prakash Panan-
gaden. Expressiveness of probabilistic modal logics: A gradual ap-
proach. Information and Computation, 267:145 – 163, 2019.

[8] Vincent Danos, Josée Desharnais, François Laviolette, and Prakash
Panangaden. Bisimulation and cocongruence for probabilistic systems.
Information and Computation, 204(4):503–523, 2006.

[9] J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labeled
Markov processes. Information and Computation, 179(2):163–193, Dec
2002.

[10] Josée Desharnais and Prakash Panangaden. Continuous stochastic logic
characterizes bisimulation for continuous-time Markov processes. Jour-
nal of Logic and Algebraic Progamming, 56:99–115, 2003. Special issue
on Probabilistic Techniques for the Design and Analysis of Systems.

[11] R. M. Dudley. Real Analysis and Probability. Wadsworth and
Brookes/Cole, 1989.

[12] A. Einstein. The theory of the brownian movement. Ann. der Physik,
17:549, 1905.

33



[13] Nathanael Fijalkow, Bartek Klin, and Prakash Panangaden. The ex-
pressiveness of probabilistic modal logic revisited. In Proceedings of the
44th International Colloquium on Automata Languages and Program-
ming, 2017.

[14] Ioannis Karatzas and Steven Shreve. Brownian motion and stochastic
calculus, volume 113. Springer Science and Business Media, 2012.

[15] K. G. Larsen and A. Skou. Bisimulation through probablistic testing.
Information and Computation, 94:1–28, 1991.

[16] R. Milner. A Calculus for Communicating Systems, volume 92 of Lec-
ture Notes in Computer Science. Springer-Verlag, 1980.

[17] Prakash Panangaden. Labelled Markov Processes. Imperial College
Press, 2009.

[18] D. Park. Concurrency and automata on infinite sequences. In Pro-
ceedings of the 5th GI Conference on Theoretical Computer Science,
number 104 in Lecture Notes In Computer Science, pages 167–183.
Springer-Verlag, 1981.

[19] L. Chris G. Rogers and David Williams. Diffusions, Markov processes
and martingales: Volume 1. Foundations. Cambridge university press,
2nd edition, 2000.

[20] Davide Sangiorgi. On the origins of bisimulation and coinduction. ACM
Transactions on Programming Languages and Systems (TOPLAS),
31(4):15, 2009.

[21] W. Whitt. An Introduction to Stochastic-Process Limits and their Ap-
plications to Queues. Springer Series in Operations Research. Springer-
Verlag, 2002.

34


	Introduction
	Feller-Dynkin Processes
	Brownian motion as a FD process

	Bisimulation
	Symmetry groups of the process
	Definition
	Relation to bisimulation

	Game Interpretation
	Game interpretation of bisimulation
	Game interpretation of temporal equivalence

	Justification for these behavioural equivalences
	Discrete-time Case
	Basic examples
	Deterministic Drift
	Fork

	Examples based on Brownian motion
	Standard Brownian Motion
	Brownian motion with drift
	Brownian motion with absorbing wall

	Poisson process

	Conclusion

