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Abstract. We develop a fusion of logical and metrical principles for reasoning
about Markov processes. More precisely, we lift metrics from processes to sets of
processes satisfying a formula and explore how the satisfaction relation behaves
as sequences of processes and sequences of formulas approach limits. A key new
concept is dynamically-continuous metric bisimulation which is a property of
(pseudo)metrics. We prove theorems about satisfaction in the limit, robustness
theorems as well as giving a topological characterization of various classes of
formulas. This work is aimed at providing approximate reasoning principles for
Markov processes.

1 Introduction

Probabilistic bisimulation, introduced by Larsen and Skou [LS91] has become the key
concept for reasoning about the equivalence of probabilistic and stochastic systems.
Labelled Markov processes are the probabilistic analogs of labelled transition systems;
they have state spaces that might be continuous but include discrete state spaces as a
special case. The theory of probabilistic bisimulation has been extended to stochastic
bisimulation relating processes with continuous-state spaces and continuous distribu-
tions [DEP02,CLM11a]. These papers provided a characterization of bisimulation us-
ing a negation-free logic.

However, it is also widely realized that probabilistic and stochastic bisimulations are too
“exact” for most purposes — they only relate processes with identical behaviours. In
applications we need instead to know whether two processes that may differ by a small
amount in the real-valued parameters (rates or probabilities) have similar behaviours.
These motivated the search for a relaxation of the notion of equivalence of processes.
Giacalone, Jou and Smolka [GJS90] note that the idea of saying that “processes that
are close should have probabilities that are close” does not yield a transitive relation.
This leads them to propose that the correct formulation of the “nearness” notion is via
a metric.

The metric theory was initiated by Desharnais et al. [D+04] and greatly developed and
explored by van Breugel, Worrell and others [vBW01,vB+03]. The key idea was to con-
sider a behavioral pseudometric, i.e. a variation of the concept of metric for processes
where pairs of distinct processes are at distance 0 whenever the processes are bisimilar.
It was hoped that these metrics would provide a quantitative alternative to logic.



Such an alternative did not develop. Work was done on algorithms to compute the met-
ric [vBW01], approximation techniques [D+03] and approximate bisimulation [vB+03]
but approximate reasoning principles as such did not develop. The present work is a
step in that direction. We lift the metric between processes to a metric between logical
formulas by standard techniques, using the Hausdorff metric; but then we break new
ground by exploring the relationship between convergence of processes and of formu-
las. We thus lay the groundwork for a notion of approximate reasoning not by getting
rid of the logic but by fusing metric and logical principles. The completeness theorems
of [CLM11a,CLM11b] are a powerful impetus for the present paper.

Consider the sequence of stochastic processes represented in Figure 1. The process m
has only one state and one self-transition at rate 5; similarly, for each k ∈ N, the process
mk has one state and one transition at rate 4. 9..9︸︷︷︸

k

. Since the transitions of mk are always

different of the transitions of m, we cannot describe the relation between these processes
in terms of bisimulation. Instead, using a behavioral pseudometric, we expect to prove
that the sequence (mk)k∈N of processes converges to m, since the sequence of rates of
mk converges to the rate of m. We often meet such problems in practice where m is a
natural process that we need to analyze, while mk are increasingly accurate models of
m. If, in addition, we have a convergent sequence of logical formulas φk with limit φ
such that mk |= φk for each k, we want to understand whether we can infer m |= φ —
and this is one of the main goals of this paper.

Fig. 1. A sequence of convergent stochastic processes and their limit

In order to address such problems, we identify a general metrical notion that we call dy-
namical continuity. It characterizes the behavioral pseudometrics for which a sequence
of processes as the one in our example is convergent; and it allows us to relate the
convergence in formulas with convergence of the processes.

Using this concept we can address the above mentioned problem and prove that in
general we do not have, at the limit, m |= φ. For the probabilistic case m |= φ only if φ
is a positive formula. Positive formulas will be defined in the paper; they are restricted,
but they suffice for the modal characterization of probabilistic bisimulation. For the
stochastic case we have to restrict the set of formulas slightly more, remaining however
within a set of formulas that characterize bisimulation. In either case, even if m 6|= φ,
there exists a sequence of processes (nk)k∈N such that lim

k→∞
nk = m and nk |= φ for each

k ∈ N. So this gives a handle on constructing approximations satisfying prescribed
conditions. Along the way we give topological characterizations of various classes of
formulas as defining open, closed, Gδ or Fσ sets1. All these results hold whenever one

1 In topology, a Gδ set is a countable intersection of open sets and a Fσ set in a countable union
of closed sets.



has a dynamically-continuous metric bisimulation, as it is the case with the behavioral
pseudometrics introduced in [D+04,vBW01,vB+03].

The relevance of this work. We prove that the process of extrapolating properties from
arbitrary accurate approximations of a system to the system itself – a method widely ac-
cepted as valid and used in applications – is not always consistent. Often one constructs
better and better approximations of a system, proves properties of these approximations
and extrapolates the results to the original system. But can we indeed be sure that if,
for instance, the approximants show oscillatory behaviours [BMM09] then the original
system also oscillates? The mathematical framework developed in this paper allows us
to address such a question and to prove that the answer is no, in general: there may
exist sequences of arbitrarily accurate approximations of a system showing properties
that are not preserved to the limit; and this already happens for fragments of modal
probabilistic and stochastic logics, less expressive than CSL or pCTL. We prove that
the preservation to the limit depends on the logical structure of the property; “negative
information” and “approximations from above”, for instance, are obstructions to this
kind of limiting argument. Moreover, different logics behave differently to the limit.
In this paper we show that there is a considerable difference between probabilistic and
stochastic logical properties.

To summarize, the main contributions of this paper are
– identifying the notion of a dynamically-continuous metric bisimulation as a general
property of behavioural (pseudo)metrics that relax the concept of stochastic/probabilistic
bisimulation for Markov processes
– identifying the topologies of logical properties induced by a dynamically-continuous
metric bisimulation, both for probabilistic and stochastic logics
– studying the relation between the topology of processes and the topologies of logical
properties; we reveal essential differences between probabilistic and stochastic logics.
– theorems that tells when parallel sequences of formulas and processes converge to
give satisfaction in the limit
– topological characterizations of various classes of formulas, both for probabilistic and
stochastic logics.

2 Preliminaries

In this section we introduce notation and establish terminology. We assume that the
basic terminology of topology and measure theory is familiar to the reader. In appendix
we collect some basic definitions and the proofs of the major results.

Sets and Measurability. If (M, Σ) is a measurable space with σ-algebra Σ ⊆ 2M , we
use ∆(M, Σ) to denote the set of measures µ : Σ → R+ on (M, Σ) and Π(M, Σ) to denote
the set of probability measures µ : Σ → [0, 1] on (M, Σ).

We organize ∆(M, Σ) and Π(M, Σ) as measurable spaces: for arbitrary S ∈ Σ and r > 0,
let Θ = {µ ∈ ∆(M, Σ) : µ(S ) ≤ r} and Ω = {µ ∈ Π(M, Σ) : µ(S ) ≤ r}; let Θ and Ω be the
σ-algebras generated by Θ and Ω on ∆(M, Σ) and Π(M, Σ) respectively.



Given two measurable spaces (M, Σ) and (N, Σ′), we use ~M → N� to denote the class
of measurable mappings from (M, Σ) to (N, Σ′).

Given a relation R ⊆ M × M, the set N ⊆ M is R-closed iff {m ∈ M | ∃n ∈ N, (n,m) ∈
R} ⊆ N. If (M, Σ) is a measurable space, we denote Σ(R) = {S ∈ Σ | S is R-closed}.

Distances. Let M be a set. A function d : M × M → R+ is a pseudometric on M if it
satisfies, for arbitrary x, y, z ∈ M, the following axioms.

(1): d(x, x) = 0 (2): d(x, y) ≤ d(x, z) + d(z, y) (3): d(x, y) = d(y, x).

If d is a pseudometric, (M, d) is a pseudometric space.

Given a pseudometric space (M, d), we define the following distances for arbitrary
a ∈ M and A, B ⊆ M with A , ∅ , B.

(1): dh(a, B) = inf
b∈B

d(a, b), (2): dH/2(A, B) = sup
a∈A

inf
b∈B

d(a, b),

(3): dH(A, B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

We call dH the Hausdorff pseudometric (associated to d).

Lemma 1. If (M, d) is a pseudometric space and X is the closure of X ⊆ M in the open
ball topology Td, then for arbitrary A, B ⊆ M,
(1): dH(A, B) = 0 iff A = B, (2): dH(A, B) = dH(A, B) = dH(A, B) = dH(A, B).

In what follows, we consider for pseudometric spaces (M, d) the following notions of
convergence in the open ball topologies Td and TdH respectively2:
– For an arbitrary sequence (mk)k∈N of elements of M and an arbitrary m ∈ M, we write
m ∈ lim

k→∞
mk (or lim

k→∞
mk 3 m) to denote that lim

k→∞
d(mk,m) = 0.

– For an arbitrary sequence (S k)k∈N of subsets of M and an arbitrary set S ⊆ M, we
write S ∈ lim

k→∞
S k (or lim

k→∞
S k 3 S ) to denote that lim

k→∞
dH(S k, S ) = 0.

Lemma 2. Let (M, d) be a pseudometric space and (Bi)i∈N a decreasing sequence of
compact subsets of M in the topology Td. If lim

k→∞
Bk 3 A, then dH(A,

⋂
i∈N

Bi) = 0.

Lemma 3. Let (M, d) be a pseudometric space and (mk)k∈N ⊆ M, (S k)k∈N ⊆ 2M con-
vergent sequences with m ∈ lim

k→∞
mk and S ∈ lim

k→∞
S k. If mk ∈ S k for each k ∈ N, then

dh(m, S ) = 0. In particular, if S is closed, then m ∈ S .

3 The Pseudometric Spaces of Processes

In this section we introduce two classes of processes, discrete-time Markov processes
(DMPs), which are similar to the ones studied in [Pan09,DEP02,Dob07]; and continuous-
time Markov processes (CMPs) [CLM11a], which are models of stochastic systems

2 A pseudometric space is not a Hausdorff space and consequently the limits are not unique.



with continuous time transitions. We emphasize that the terms “discrete” and “contin-
uous” refer to time and not to the state space. In this paper we use for both classes
the definitions proposed in [CLM11a,CLM11b], which exploits an equivalence be-
tween the definitions of Harsanyi type spaces [MV04] and a coalgebraic view of la-
belled Markov processes [dVR99]. However, with respect to [CLM11a,CLM11b] or
to [Pan09,DEP02,Dob07], we do not consider action labels. The subtle issues all in-
volve convergence and other analytical aspects; the labels can easily be added without
changing any of these aspects of the theory.

Definition 1 (Processes). Let (M, Σ) be an analytic space, where Σ is its Borel algebra.
• A discrete Markov kernel (DMK) is a tupleM = (M, Σ, θ), where θ ∈ ~M → Π(M, Σ)�;
if m ∈ M, (M,m) is a discrete Markov process.
• A continuous Markov kernel (CMK) is a tupleM = (M, Σ, θ), where θ ∈ ~M → ∆(M, Σ)�;
if m ∈ M, (M,m) is a continuous Markov process.
For both types of processes, M is called the support set ofM denoted by supp(M).

If m is the current state of a DMP and N is a measurable set of states, the transition
function θ(m) is a probability measure on the state space and θ(m)(N) ∈ [0, 1] represents
the probability of a transition from m to an arbitrary state n ∈ N.

Similarly, if m is the current state of a CMP and N is a measurable set of states, the
transition function θ(m) is a measure on the state space and θ(m)(N) ∈ R+ represents
the rate of an exponentially distributed random variable that characterizes the duration
of a transition from m to an arbitrary state n ∈ N. Indeterminacy in such systems is
resolved by races between events executing at different probabilities/rates.

Notice that, in both cases, θ is a measurable mapping between the space of processes
and the space of (probabilistic/stochastic) measures. These requirements are equivalent
to the conditions on the corresponding two-variable probabilistic/rate function used in
[Pan09,DEP02,Dob07] to define labelled Markov processes and in [DP03] to define
continuous Markov processes (for the proof see, Proposition 2.9 [Dob07]).

The definitions of bisimulation for DMPs and CMPs follow the line of the Larsen-Skou
definition of probabilistic bisimulation [LS91].

Definition 2 (Bisimulation). Given the DMK (CMK) M = (M, Σ, θ), a bisimulation
relation onM is a relationR ⊆ M×M such that whenever (m, n) ∈ R, for any C ∈ Σ(R),
θ(m)(C) = θ(n)(C). Two processes (M,m) and (M, n) are bisimilar, written m ∼M n, if
they are related by a bisimulation relation.

The bisimulation relation between processes with different Markov kernels is defined
by taking the disjoint union of the two [Pan09,DEP02,CLM11a,CLM11b]. For this rea-
son, in what follows we use ∼ without extra indices to denote the largest bisimulation
relation. We call the largest bisimulation of DMPs probabilistic bisimulation and the
largest bisimulation of CMPs stochastic bisimulation.

As we have already underlined in the introduction, the concept of bisimulation for prob-
abilistic or stochastic processes is very strict. We can however relax it by introducing



a behavioral pseudometric [D+04,Pan09] which, formally, is a distances between pro-
cesses that measure their similarity in terms of quantitative behaviour: the kernel of a
behavioral pseudometric is a bisimulation. Moreover, we expect that a behavioral pseu-
dometric can prove that a sequence of processes as (mk)k∈N represented in Figure 1 is
convergent to m. Hereafter in this section we identify a sufficient condition satisfied by
any behavioral pseudometric that can prove such a convergence.

Before proceeding with the definition, recall that the convergences are in the corre-
sponding open ball topologies, as defined in the preliminary section. In addition, we
define the kernel of d as being the set ker(d) = {(m, n) ∈ M × M | d(m, n) = 0}.

Definition 3 (Dynamically-continuous metric bisimulation). Given the DMK (CMK)
M = (M, Σ, θ), a pseudometric d :M×M→ R+ is
– a metric bisimulation if ker(d) =∼

– dynamically-continuous if whenever (mk)k∈N ∈ M with lim
k→∞

mk 3 m (in Td), for any

S ∈ Σ(∼) there exists a decreasing sequence (S k)k∈N ⊆ Σ(∼) of compact sets in the
topology Td such that lim

k→∞
S k 3 S (in TdH ) and lim

k→∞
θ(mk)(S k) = θ(m)(S ).

This new concept seems very natural to us and in fact all the behavioral pseudometrics
defined in [D+04,vBW01,vB+03] are dynamically-continuous metric bisimulations,
due to properties of the Kantorovich metric. Notice also the coinductive nature of this
definition, which is reminiscent of the general definition of bisimulation.

Example 1. Let us now convince ourselves that any behavioral pseudometric that can
prove the convergence in Figure 1 is indeed a dynamically-continuous metric bisim-
ulation. Formally, in Figure 1 we have represented the CMK M = (M, Σ, θ) where
M = {m,m1, ..mk, ..}, Σ = 2M , θ(mk)({mk}) = 4. 9..9︸︷︷︸

k

for k ∈ N and θ(m)({m}) = 5.

If in the open ball topology we can prove that lim
k→∞

mk 3 m, then for each k ∈ N,

S k = {m,mk,mk+1, ..} is a compact set – since it is closed and bounded in a com-
plete pseudometric space; S k ⊇ S k+1 and lim

k→∞
S k 3 {m}. Because θ(mk) is a mea-

sure, θ(mk)(S k) = θ(mk)({mk}) + θ(mk)(S k+1). But θ(mk)(S k+1) = 0, hence θ(mk)(S k) =

θ(mk)({mk}). This implies that lim
k→∞

θ(mk)(S k) = lim
k→∞

θ(mk)({mk}) = θ(m)({m}) and veri-

fies the second condition of the previous definition. All these arguments motivate our
choice for the definition of dynamically-continuous metric bisimulation. ut

4 Markovian Logics

In this section we present two logics for Markovian processes: the discrete Markovian
Logic (DML) for semantics based on DMPs, similar to the logics introduced in the liter-
ature, for example in [Aum99,FH94,LS91]; and the continuous Markovian logic (CML)
for semantics based on CMPs [CLM11a]. In addition to the boolean operators, these
logics are endowed with probabilistic/stochastic modal operators that approximate the



probabilities/rates of transitions. For r ∈ Q+, Lrφ characterizes (M,m) whenever the
probability/rate of the transition from m to the class of states satisfying φ is at least r;
symmetrically, Mrφ is satisfied when this probability/rate is at most r.

Definition 4 (Syntax). The formulas of L are introduced by the following grammar.
L : φ := > | ¬φ | φ ∧ φ | Lrφ | Mrφ, r ∈ Q+.

We isolate the fragment L[0, 1] ⊆ L defined only for r ∈ [0, 1] ∩ Q+. L contains the
well-formed formulas of CML, L[0, 1] contains the well-formed formulas of DML. As
usual, both logics use all the boolean operators including ⊥ = ¬>.

The major difference between the two logics is reflected in their semantics. The seman-
tics of DML is defined for DMPs, while the semantics of CML is defined in terms of
CMPs. The satisfiability relations is similar for the two logics. It assumes a fixed struc-
tureM = (M, Σ, θ) that represents a DMK when it refers to DML, and a CMK when it
refers to CML; and m ∈ M is an arbitrary process.

m |= > always,
m |= ¬φ iff it is not the case that m |= φ,
m |= φ ∧ ψ iff m |= φ and m |= ψ,
m |= Lrφ iff θ(m)(~φ�) ≥ r,
m |= Mrφ iff θ(m)(~φ�) ≤ r,

where ~φ� = {m ∈ M | m |= φ}.

When it is not the case that m |= φ, we write m 6|= φ.

The semantics of Lrφ and Mrφ are well defined only if ~φ� is measurable. This is guar-
anteed by the fact that θ is a measurable mapping – for the proof see [CLM11a].

In spite of their apparent similarities, the two logics are very different at the provability
level. In Appendix we present, in Table 1, a complete axiomatization for DML [Zho07]
and in Table 2 a complete axiomatization for CML [CLM11a]. The key differences be-
tween the two logics consists of the relation between Lrφ and Mrφ. In the discrete logic
the two are related by De Morgan dualities, stating that the probability of a transition
to a state satisfying φ depends of the probability of a transition to some state satisfying
¬φ: ` Lrφ ↔ M1−r¬φ and ` Mrφ ↔ L1−r¬φ. In the continuous case, the two modal
operators are independent [CLM11a]. We will see in the following sections that this
difference is deeply reflected in the topologies of the two spaces of formulas.

There exist strong relations between logical equivalence and bisimulation both for the
probabilistic and for the stochastic cases. In [DP03,Pan09] it was shown that the logi-
cal equivalence induced by L[0, 1] on the class of DMPs coincides with probabilistic
bisimulation. A similar result holds for CML, [CLM11a].

5 The Topological Space of Logical Formulas

Since a dynamically-continuous metric bisimulation is a relaxation of the bisimulation
relation, in what follows we try to identify similar logical characterization results for



dynamically-continuous metric bisimulation. In order to do this, we organize the space
of the logical formulas as a pseudometric space, by identifying a logical formula with
the set of its models and using the Hausdorff distance.

Formally, assume that the space M of the continuous (or discrete) Markov kernel is
a pseudometric space defined by d : M × M → R+. The Hausdorff pseudometric
dH associated to d is a distance between the sets ~φ� of models, for arbitrary φ ∈ L
(or φ ∈ L[0, 1] respectively). Consequently, we can define, for arbitrary φ, ψ ∈ L (or
φ, ψ ∈ L[0, 1] respectively), a distance δ by δ(φ, ψ) = dH(~φ�, ~ψ�).

Proposition 1. (L, δ) and (L[0, 1], δ) are pseudometric spaces.

5.1 The topology of Discrete Markovian Logic

In this subsection we concentrate on the discrete Markovian logic. LetM = (M, Σ, θ) be
the universal DMP organized as a pseudometric space by the behavioural pseudometric
d. Let (L[0, 1], δ) be the pseudometric space of logical formulas.

To understand deeper the relation between the induced topologies, in what follows we
isolate the following fragments of L[0, 1].

L[0, 1]+ : f := > | f ∨ f | f ∧ f | Lrφ | Mrφ, φ ∈ L[0, 1],
L[0, 1]− = {¬ f | f ∈ L[0, 1]+}.

As in the preliminaries, we use Td to denote the open ball topology, X and Xint to denote
the closure and the interior of X ⊆ M, respectively.

Proposition 2. Let d is a dynamically-continuous metric bisimulation onM.
1. If φ ∈ L[0, 1]+, then ~φ� is a closed set in the topology Td.
2. If φ ∈ L[0, 1]−, then ~φ� is an open set in the topology Td.
3. ~¬Mrφ� = ~Lrφ� and ~¬Lrφ� = ~Mrφ�.
4. ~Mrφ�

int = ~¬Lrφ� and ~Lrφ�
int = ~¬Mrφ�.

At this point we want to understand more about the kernel of δ and its relation to prov-
ability. Since the axiomatic system of DML is complete, the next theorem follows from
the definition of Hausdorff distance.

Theorem 1. If φ, ψ ∈ L[0, 1] and ` φ↔ ψ, then δ(φ, ψ) = 0.

The next results and the example will show that actually the reverse of Theorem 1 is
not true: not all the formulas at distance zero are logically equivalent.

Theorem 2. Let d be a dynamically-continuous metric bisimulation and φ, ψ ∈ L[0, 1]
such that δ(φ, ψ) = 0.
1. If φ ∈ L[0, 1]+, then ` ψ→ φ.
2. If φ, ψ ∈ L[0, 1]+, then [δ(φ, ψ) = 0 iff ` φ↔ ψ].



Proof. 1. δ(φ, ψ) = 0 is equivalent to dH(~φ�, ~ψ�) = 0, which is equivalent, as stated
in Lemma 1, to ~φ� = ~ψ�. If φ ∈ L[0, 1]+, by Proposition 2, ~φ� is closed. Hence,
~ψ� = ~φ�. This implies that ~ψ� ⊆ ~φ�, i.e., |= ψ→ φ, which is equivalent to ` ψ→ φ.

ut

Example 2. There exist logical formulas that are at distance zero without being logi-
cally equivalent:

δ(Lrφ,¬Mrφ) = 0, ` ¬Mrφ→ Lrφ but 0 Lrφ→ ¬Mrφ.
To prove these, observe that for any model m ∈ M, if m |= ¬Mrφ, then m |= Lrφ. This
guarantees that the closure of ~¬Mrφ� is included in ~Lrφ�. Observe that if θ(m)(~φ�) =

r, then m |= Lrφ, but m 6|= ¬Mrφ.
Suppose that there exists a model m ∈ M such that m ∈ ~Lrφ� and dh(m, ~¬Mrφ�) > 0.
Then, θ(m)(~φ�) ≥ r and θ(m)(~φ�) < r - impossible. Hence the closure of ~¬Mrφ�
coincides with ~Lrφ� and this proves that δ(Lrφ,¬Mrφ) = 0. ut

The next theorem states that whenever (mk)k∈N is a sequence of increasingly accurate
approximations of m, if mk |= φk for each k, we cannot guarantee that m satisfies the limit
φ of (φk)k∈N; but, there exists a sequence of approximations of m satisfying φ.

Theorem 3. If d is a dynamically-continuous metric bisimulation and (φk)k∈N ⊆ L[0, 1],
(mk)k∈N ⊆ M are two convergent sequences such that lim

k→∞
φk 3 φ, lim

k→∞
mk 3 m and for

each k ∈ N, mk |= φk, then there exists a convergent sequence (nk)k∈N ⊆ M such that
lim
k→∞

nk 3 m and nk |= φ for each k ∈ N.

Proof. If we apply Lemma 3 for S k = ~φk� and S = ~φ�, we obtain that dh(m, ~φ�) = 0
which implies that there exists a sequence (nk)k∈N ⊆ ~φ� such that lim

k→∞
nk = m. ut

There exist, however, properties that can be ”taken to the limit”.

Theorem 4. Let d be a dynamically-continuous metric bisimulation and (φk)k∈N ⊆

L[0, 1], (mk)k∈N ⊆ M two convergent sequences such that lim
k→∞

φk 3 φ, lim
k→∞

mk 3 m

and mk |= φk for each k ∈ N. If φ ∈ L[0, 1]+, then m |= φ.

Proof. As in Theorem 3, dh(m, ~φ�) = 0. Since φ ∈ L[0, 1]+, Proposition 2 guarantees
that ~φ� is closed and using the second part of Lemma 3 we obtain m ∈ ~φ�. ut

5.2 The topology of the continuous logic

In this subsection we investigate similar problems for the case of CMPs and continuous
Markovian logic. Hereafter, let M be the universal CMP organized as a pseudomet-
ric space by the behavioural pseudometric d. Let (L, δ) be the pseudometric space of
logical formulas.



Lemma 4. For arbitrary φ ∈ L,
1. ~¬Mrφ� = ~Lrφ�, 3. ~Mrφ� =

⋂
k∈N

~¬Lr+ 1
k
φ�

2. ~Mrφ�
int = ~¬Lrφ�, 4. ~Lrφ� =

⋂
k∈N

~¬Mr− 1
k
φ�.

In the following examples we show that, unlike in the probabilistic case, ~Mrψ� is
sometimes neither open nor closed in Td.

Example 3. We return to the stochastic system described in Example 1 and represented
in Figure 1. Notice that, for each k ∈ N, mk |= M0L5> meaning that each mk cannot
do a transition to a state (which is equivalent with ”it does it at rate 0”) where from
it is possible to do a transition at rate at least 5. But at the limit, m |= ¬M0L5> since
θ(m)(~L5>�) = 5 > 0. Consequently, ~M0L5>� is not closed in Td, since we found a
sequence of processes from ~M0L5>� with a limit outside ~M0L5>�.

To prove that sometimes ~Mrψ� is not open either, consider the same processes as
before only that for each k ∈ N, θ(mk)({mk}) = rk, where (rk)k∈N ∈ Q

+ is a strictly
decreasing sequence with limit 5. In this case, for each k ∈ N, mk |= ¬M5>, since
θ(mk)({mk}) > 5. However, to the limit we have m |= M5> proving that ~¬M5>� is not
closed in Td, hence, ~M5>� is not open. ut

To understand this topology more deeply, we isolate the following fragments of L.
L+ : f := > | f ∧ f | f ∨ f | Lrφ | Mrφ, L− = {¬ f | f ∈ L+},
L0 : f := > | f ∧ f | ¬ f | Lrφ,
L+

0 : f := > | f ∧ f | f ∨ f | Lrφ, L−0 = {¬ f | f ∈ L+
0 },

where in the previous definitions φ ∈ L[0, 1]+.

The next lemma marks essential differences between the topology of DML formulas
and the topology of CML formulas. Recall that, in topology, a Gδ set is a countable
intersection of open sets and a Fσ set is a countable union of closed sets.

Theorem 5. If d is a dynamically-continuous metric bisimulation, then
1. If φ ∈ L+

0 , then ~φ� is a closed set in the topology Td.
2. If φ ∈ L−0 , then ~φ� is an open set in the topology Td.
3. If φ ∈ L+, then ~φ� is a Gδ set in the topology Td.
4. If φ ∈ L−, then ~φ� is a Fσ set in the topology Td.

As for DML, logical equivalence is a subset of the kernel of δ.

Theorem 6. If ` φ↔ ψ, then δ(φ, ψ) = 0.

However, Theorem 2 does not hold for CML. Instead we have the following weaker
result relying on the fact that ~φ� is closed whenever φ ∈ L+

0 .

Theorem 7. Let d be a dynamically-continuous metric bisimulation and φ, ψ ∈ L such
that δ(φ, ψ) = 0.



1. If φ ∈ L+
0 , then ` ψ→ φ.

2. If φ, ψ ∈ L+
0 , then [δ(φ, ψ) = 0 iff ` φ↔ ψ].

A similar result to Theorem 3 holds for CML.

Theorem 8. If d is a dynamically-continuous metric bisimulation and (φk)k∈N ⊆ L,
(mk)k∈N ⊆ M are two convergent sequences such that lim

k→∞
φk 3 φ, lim

k→∞
mk 3 m and

mk |= φk for each k ∈ N, then there exists a convergent sequence (nk)k∈N ⊆ M such that
lim
k→∞

nk 3 m and nk |= φ for each k ∈ N.

Theorem 4 does not hold for CML. But since ~φ� is closed whenever φ ∈ L+
0 , we have

a weaker version of it that does not involve the operators of type Mr.

Theorem 9. Let d be a dynamically-continuous metric bisimulation and (φk)k∈N ⊆ L,
(mk)k∈N ⊆ M two convergent sequences such that mk |= φk for each k ∈ N, lim

k→∞
φk 3 φ

and lim
k→∞

mk 3 m. If φ ∈ L+
0 , then m |= φ.

6 Conclusions

The main contributions of the present paper are the following results:
– The definition of dynamically-continuous metric bisimulation which is the correct
distance-based counterpart of the concept of probabilistic/stochastic bisimulation.
– The definition of the topology of logical formulas canonically induced by the be-
havioural pseudometrics.
– Theorems that establish when parallel sequences of (probabilistic or stochastic) pro-
cesses and formulas converge to give satisfaction in the limit; these results reveal im-
portant differences between the probabilistic and stochastic Markovian logics.
–Theorems regarding the relationships between logical formulas being at zero distance
and logical equivalence/provability.
– Topological characterization of various classes of formulas.

There are many new things to explore. We currently prepare a coalgebraic presentation
of this work that helped us understanding a metric analogue of Stone duality for Markov
processes. These results are in preparation and are directly inspired by the present work.
One topic that we have not understood to our satisfaction is the precise relationship
between the kernel of the Hausdorff metric on formulas and provability. We would like
to find a definition of the logical distance independent of the semantics and, in this
sense, we exploit our previous works on completeness of Markovian logics. Another
topic that we are currently explore is the relation with the approximation theory for
Markov processes that, we believe, can highly benefit from this work.
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Appendix

In this appendix we have collected some basic definitions from topology and measure
theory and the proofs of the major results presented in the paper.

(A1): ` L0φ

(A2): ` Lr>

(A3): ` Lrφ↔ M1−r¬φ

(A4): ` Lrφ→ ¬Ls¬φ, r + s > 1
(A5): ` Lr(φ ∧ ψ) ∧ Ls(φ ∧ ¬ψ)→ Lr+sφ, r + s ≤ 1
(A6): ` ¬Lr(φ ∧ ψ) ∧ ¬Ls(φ ∧ ¬ψ)→ ¬Lr+sφ, r + s ≤ 1
(R1): If ` φ→ ψ then ` Lrφ→ Lrψ

(R2): {¬Mrψ | r < s} ` Lsψ

(B1): ` L0φ

(B2): ` Lr+sφ→ ¬Mrφ, s > 0
(B3): ` ¬Lrφ→ Mrφ

(B4): ` ¬Lr(φ ∧ ψ) ∧ ¬Ls(φ ∧ ¬ψ)→ ¬Lr+sφ

(B5): ` ¬Mr(φ ∧ ψ) ∧ ¬Ms(φ ∧ ¬ψ)→ ¬Mr+sφ

(S1): If ` φ→ ψ then ` Lrφ→ Lrψ

(S2): {Lrψ | r < s} ` Lsψ

(S3): {Mrψ | r > s} ` Msψ

(S4): {Lrψ | r > s} ` ⊥
Table 1: The axiomatic system of DML Table 2: The axiomatic system of CML

Distances. Let (M, d) be a pseudometric space. The open ball with center x ∈ M and
radius e > 0 is the set {y ∈ M | d(x, y) < e}. The class of open balls forms a basis for a
topology called the open ball topology of d that we denote by Td.

Lemma. If d is a pseudometric, then the Hausdorff distance dH is a pseudometric.

Proof: For arbitrary A ⊆ M, dH/2(A, A) = sup
a∈A

inf
a′∈A

d(a, a′) = 0 since inf
a′∈A

d(a, a′) = 0.

Consequently, dH(A, A) = 0.

Consider arbitrary A, B,C ⊆ M and arbitrary a ∈ A, b ∈ B, c ∈ C. Then the triangle
inequality for d guarantees that d(a, c) ≤ d(a, b) + d(b, c). Because inf

c∈C
d(a, c) ≤ d(a, c)

for arbitrary c ∈ C, we obtain that dh(a,C) ≤ d(a, b) + d(b, c). There exists (bk)k∈N ⊆ B
such that lim

k→∞
d(a, bk) = d(a, B). We also have, for each k, dh(a,C) ≤ d(a, bk) + d(bk, c)

and going to the limit, we obtain that dh(a,C) ≤ dh(a, B) + lim
k→∞

d(bk, c). Now we ob-

tain dh(a,C) ≤ dh(a, B) + inf
c∈C

lim
k→∞

d(bk, c), which is equivalent to dh(a,C) ≤ dh(a, B) +

lim
k→∞

dh(bk,C). But because (bk)k∈N ⊆ B, lim
k→∞

dh(bk,C) ≤ sup
b∈B

dh(b,C) ≤ dH/2(B,C).

Consequently, dh(a,C) ≤ dh(a, B)+dH/2(B,C) implying further dH/2(A,C) ≤ dH/2(A, B)+
dH/2(B,C). Similarly, dH/2(C, A) ≤ dH/2(B, A) + dH/2(C, B) implying further dH(A,C) ≤
dH(A, B) + dH(B,C). ut

Analytic Spaces. A Polish space is the topological space underlying a complete, sepa-
rable metric space; i.e. it has a countable dense subset or equivalently a countable basis
of open sets. An analytic space is the image of a Polish space under a continuous func-
tion from one Polish space to another. A good exposition of analytic spaces is contained
in [Dud89] or [Arv76].



In this paper we will make use of analytic spaces to introduce Markov processes. The
point of working with analytic spaces is that they have some remarkable properties that
are needed for the proof of the logical characterization of bisimulation including the
striking fact that one can characterize bisimulation with a very limited modal logic that
has no infinite branching nor any kind of negative construct like negation, implication
or even just the constant False [DEP02,CLM11a].

Proof (Lemma 1). 1. dH(A, B) = 0 iff max{dH/2(A, B), dH/2(B, A)} = 0 iff [dH/2(A, B) =

0 and dH/2(B, A) = 0] iff [sup
a∈A

inf
b∈B

d(a, b) = 0 and sup
b∈B

inf
a∈A

d(a, b) = 0] iff [for arbitrary

a ∈ A and b ∈ B, d(a, B) = d(b, A) = 0] iff [for arbitrary a ∈ A and b ∈ B, a ∈ B and
b ∈ A] iff A = B.

2. We have the triangle inequalities dH(A, B) ≤ dH(A, B) + dH(B, B) and dH(A, B) ≤
dH(A, B)+dH(B, B). From 1 we have that dH(B, B) = dH(B, B) = 0 implying dH(A, B) =

dH(A, B). The other equalities can be proved in the same way. ut

Proof (Lemma 2). Notice that (2M , dH) is a pseudometric space and, hence, not a Haus-
dorff space, so a convergent sequence might have more than one limit. In fact if a se-
quence of sets converges to some X and dH(X,Y) = 0 then the sequence will also
converge to Y .

To prove our result, we prove for the beginning that for arbitrary A ⊆ M, dH/2(A,
⋂
i∈N

Bi) =

sup
i∈N

dH/2(A, Bi).

Let B =
⋂
i∈N

Bi. Consider arbitrary a ∈ A. Since Bi ⊇ Bi+1 ⊇ B for each i, the se-

quence dh(a, Bi) is increasing and dh(a, B) ≥ dh(a, Bi). Hence, dh(a, Bi) is convergent
and lim

i→∞
dh(a, Bi) = sup

i∈N
dh(a, Bi) ≤ dh(a, B). Since dh(a, Bi) = inf

b∈Bi
d(a, b) and Bi is com-

pact, there exists bi ∈ Bi such that d(a, bi) = dh(a, Bi). Consequently, lim
i→∞

dh(a, Bi) =

lim
i→∞

d(a, bi).

Let b ∈ lim
i→∞

bi, which exists (for a subsequence) since Bi are compact. Clearly, b ∈ B1

and (bi)i∈N ⊆ B1. Suppose b < B. Then, there exists k ∈ N such that b ∈ Bk and for any
i ≥ 1, b < Bk+i. Then, for all i ≥ k, bi ∈ Bk \ Bk+1, which is impossible since bi ∈ Bi

converges to b.

Consequently, b ∈ B, lim
i→∞

d(a, bi) = d(a, b) and since d(a, b) ≥ dh(a, B), we obtain

lim
i→∞

dh(a, Bi) ≥ dh(a, B).

Hence, lim
i→∞

dh(a, Bi) = dh(a, B) implying sup
a∈A

lim
i→∞

dh(a, Bi) = sup
a∈A

dh(a, B) and further

dH/2(A, B) = sup
i∈N

dH/2(A, Bi).



Now we return to the result we want to prove.

Consider x ∈ B. This means that for any k, x ∈ Bk. We have dh(x, A) ≤ dH(Bk, A) and
the latter sequence of numbers converges to 0 by assumption. Therefore dh(x, A) = 0,
i.e. x ∈ A. We have proved that B ⊆ A and hence dH/2(B, A) = 0.

We prove now that dH/2(A, B) = 0.
Since dH(A, Bk) converges to 0 by assumption, using Lemma 1, we obtain that dH(A, Bk)
converges to 0 and further that dH/2(A, Bk) converges to 0. This implies that for any
a ∈ A, dh(a, Bk) converges to 0, since dh(a, Bk) ≤ dH/2(A, Bk).
Consequently, the sequence dh(a, Bk) of positive numbers converges to 0; moreover, this
sequence is increasing, since (Bk)k∈N is decreasing. Hence, for each k ∈ N, dh(a, Bk) = 0
and this is true for each a ∈ A. From here we get that dH/2(A, Bk) = 0, for all k ∈ N.
Using 1, dH/2(A, B) = sup

k∈N
dH/2(A, Bk) = 0.

We have proved that dH/2(B, A) = dH/2(A, B) = 0 which implies dH(A, B) = 0. Using
Lemma 1, dH(A, B) = 0. ut

Proof (Lemma 3). Observe that dH(S ′, S ′′) = max{ sup
m′∈S ′

dh(m′, S ′′), sup
m′′∈S ′′

dh(m′′, S ′)}.

Because mk ∈ S k implies dh(mk, S ) ≤ dH(S k, S ) and because lim
k→∞

dH(S k, S ) = 0, we

obtain that lim
k→∞

dh(mk, S ) = 0.

On the other hand, lim
k→∞

mk = m implies lim
k→∞

dh(mk, S ) = dh(m, S ), hence dh(m, S ) = 0.

If S is closed, dh(m, S ) = 0 implies m ∈ S . ut

Proof (Proposition 2). 1. Induction on φ ∈ L[0, 1]+. The Boolean cases are trivial, since
the entire universeM = ~>� and the intersection and the union of two closed sets are
closed.

[The case φ = Lrψ for some ψ ∈ L]: Suppose that lim
k→∞

mk = m and for each k ∈ N,

mk |= Lrψ. Because d is a dynamically-continuous metric bisimulation and ~ψ� ∈ Σ(∼),
there exists a decreasing sequence (S k)k∈N ⊆ Σ(∼) of compact sets in Td such that
lim
k→∞

S k 3 ~ψ� and lim
k→∞

θ(mk)(S k) = θ(m)(~ψ�). From Lemma 2, dH(~ψ�,
⋂
k∈N

S k) = 0

and using Lemma 1, ~ψ� =
⋂
k∈N

S k. Hence, ~ψ� ⊆ ~ψ� ⊆ S k for any k. Since mk |= Lrψ,

θ(mk)(~ψ�) ≥ r implying θ(mk)(S k) ≥ θ(mk)(~ψ�) and further, θ(mk)(S k) ≥ r. Hence,
lim
k→∞

θ(mk)(S k) ≥ r, implying θ(m)(~ψ�) ≥ r, i.e., m |= Lrψ.

[The case φ = Mrψ for some ψ ∈ L]: from the soundness of ` Mrφ ↔ L1−r¬φ we
obtain ~Mrφ� = ~L1−r¬φ�. Now we can use the fact that ~L1−r¬φ� is open.

2. It is a direct consequence of 1, since ~¬ψ� is the complement of ~ψ�.

3. Because |= ¬Mrφ→ Lrφ, ~¬Mrφ� ⊆ ~Lrφ�.
Consider a sequence (mk)k∈N of elements ofM such that lim

k→∞
mk = m ∈ M and for each



k, mk |= ¬Mrφ. To prove that ~¬Mrφ� = ~Lrφ�, we need to verify that m |= Lrψ.
Since d is a dynamically-continuous metric bisimulation, there exists a decreasing se-
quence of compact sets (S k)k∈N such that lim

k→∞
S k 3 ~ψ� and lim

k→∞
θ(mk)(S k) = θ(m)(~ψ�).

Because S k ⊇ ~ψ� (see the proof of 1.), θ(mk)(S k) ≥ θ(mk)(~ψ�) and from mk |= ¬Mrψ
we get θ(mk)(~ψ�) > r. Hence, θ(mk)(S k) > r, implying lim

k→∞
θ(mk)(S k) ≥ r. This is

equivalent to θ(m)(~ψ�) ≥ r, i.e., m |= Lrψ.
To prove the other equality, notice that using axiom (A3) we have ~¬Lrφ� = ~¬M1−r¬φ�.
We apply the first equality and obtain ~¬M1−r¬φ� = ~L1−r¬φ� and using again axiom
(A3), ~L1−r¬φ� = ~Mrφ�.

4. It is a direct consequence of 3. ut

Proof (Lemma 4). 1. Because |= ¬Mrφ→ Lrφ, ~¬Mrφ� ⊆ ~Lrφ�.
Consider a sequence (mk)k∈N of elements ofM such that lim

k→∞
mk = m ∈ M and for each

k, mk |= ¬Mrφ. To prove that ~¬Mrφ� = ~Lrφ�, we need to verify that m |= Lrψ.
Since d is a dynamically-continuous metric bisimulation, there exists a decreasing se-
quence (S k)k∈N of compact elements of Σ(∼) such that lim

k→∞
S k 3 ~ψ� and lim

k→∞
θ(mk)(S k) =

θ(m)(~ψ�).
Because S k ⊇ ~ψ�, θ(mk)(S k) ≥ θ(mk)(~ψ�) and from mk |= ¬Mrψ we get θ(mk)(~ψ�) >
r. Hence θ(mk)(S k) > r, implying lim

k→∞
θ(mk)(S k) ≥ r. This is equivalent to θ(m)(~ψ�) ≥

r, i.e., m |= Lrψ.

2. It is a direct consequence of 1.

3. It is a consequence of the fact that [0, r] =
⋂
k∈N

[0, r +
1
k

).

4. This follows from [r,∞) =
⋂
k∈N

(r −
1
k
,∞). ut

Proof (Theorem 5). 1. Induction on φ ∈ L+
0 . The Boolean cases are trivial and use the

fact that the entire universeM = ~>�, hence it is closed and that the intersection and
the union of two closed sets are closed.

The case φ = Lrψ for some ψ ∈ L: Suppose that lim
k→∞

mk = m and for each k ∈ N,

mk |= Lrψ; we have to prove that m |= Lrψ.
Because d is a dynamically-continuous metric bisimulation, lim

k→∞
mk = m and ~ψ� ∈

Σ(∼), there exists a decreasing sequence (S k)k∈N ⊆ Σ(∼) of compact sets in Td such
that lim

k→∞
S k 3 ~ψ� and lim

k→∞
θ(mk)(S k) = θ(m)(~ψ�).

From Lemma 2, dH(~ψ�,
⋂
k∈N

S k) = 0 and using Lemma 1, ~ψ� =
⋂
k∈N

S k, since
⋂
k∈N

S k is

closed. Hence, ~ψ� ⊆ ~ψ� ⊆ S k for any k.



Since mk |= Lrψ, θ(mk)(~ψ�) ≥ r. ~ψ� ⊆ S k implies θ(mk)(S k) ≥ θ(mk)(~ψ�) and further,
θ(mk)(S k) ≥ r. Hence, lim

k→∞
θ(mk)(S k) ≥ r, implying θ(m)(~ψ�) ≥ r, i.e., m |= Lrψ.

2. It is a direct consequence of 1 since ψ ∈ L−0 iff ¬ψ ∈ L+
0 and ~¬ψ� is the complement

of ~ψ�.

3. Induction on φ ∈ L+. The Boolean cases are trivial, since the union and the inter-
section of two countable interactions of open sets is a countable intersection of open
sets.

The case φ ∈ L+
0 : follows from 1, since any closed set in a pseudometrizable space is

Gδ.

The case φ = Mrψ for some ψ ∈ L: From Lemma 4, ~Mrψ� =
⋂
k∈N

~¬Lr+ 1
k
ψ�. Because

~¬Lr+ 1
k
ψ� are open, we obtain that ~Mrψ� is a Gδ set.

4. This is a consequence of 3, since ~¬ψ� is the complement of ~ψ�. ut


