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Abstract—We study the problem of constructing approxima-
tions to a weighted automaton. Weighted finite automata (WFA)
are closely related to the theory of rational series. A rational
series is a function from strings to real numbers that can be
computed by a WFA. Among others, this includes probability
distributions generated by hidden Markov models and proba-
bilistic automata. The relationship between rational series and
WFA is analogous to the relationship between regular languages
and ordinary automata. Associated with such rational series are
infinite matrices called Hankel matrices which play a funda-
mental role in the theory of minimal WFA. Our contributions
are: (1) an effective procedure for computing the singular value
decomposition (SVD) of such infinite Hankel matrices based on
their finite representation in terms of WFA; (2) a new canonical
form for WFA based on this SVD decomposition; and, (3) an
algorithm to construct approximate minimizations of a given WFA.
The goal of our approximate minimization algorithm is to start
from a minimal WFA and produce a smaller WFA that is close
to the given one in a certain sense. The desired size of the
approximating automaton is given as input. We give bounds
describing how well the approximation emulates the behavior
of the original WFA.

The study of this problem is motivated by the analysis of
machine learning algorithms that synthesize weighted automata
from spectral decompositions of finite Hankel matrices. It is
known that when the number of states of the target automaton
is correctly guessed, these algorithms enjoy consistency and
finite-sample guarantees in the probably approximately correct
(PAC) learning model. It has also been suggested that asking
the learning algorithm to produce a model smaller than the true
one will still yield useful models with reduced complexity. Our
results in this paper vindicate these ideas and confirm intuitions
provided by empirical studies. Beyond learning problems, our
techniques can also be used to reduce the complexity of any
algorithm working with WFA, at the expense of incurring a small,
controlled amount of error.

Index Terms—weighted automata; canonical form; Hankel
matrices; approximate minimization

I. INTRODUCTION

We address a relatively new issue for the logic and compu-
tation community: the approximate minimization of transition
systems or automata. This concept is appropriate for sys-
tems that are quantitative in some sense: weighted automata,
probabilistic automata of various kinds and timed automata.
This paper focuses on weighted automata where we are able
to make a number of contributions that combine ideas from
duality with ideas from the theory of linear operators and their
spectrum. Our new contributions are

• An algorithm for the SVD decomposition of infinite
Hankel matrices based on their representation in terms
of weighted automata.

• A new canonical form for weighted automata arising from
the SVD of its corresponding Hankel matrix.

• An algorithm to construct approximate minimizations
of given weighted automata by truncating the canonical
form.

Minimization of automata has been a major subject since
the 1950s, starting with the now classical work of the pioneers
of automata theory. Recently there has been activity on novel
algorithms for minimization based on duality [1], [2] which are
ultimately based on a remarkable algorithm due to Brzozowski
from the 1960s [3]. The general co-algebraic framework
permits one to generalize Brzozowski’s algorithm to other
classes of automata like weighted automata.

Weighted automata are very useful in a variety of practical
settings, such as machine learning (where they are used to
represent predictive models for time series data and text), but
also in the general theory of quantitative systems. There has
also been interest in this type of representation, for example,
in concurrency theory [4] and in semantics [5]. We discuss
the machine learning motivations at greater length, as they are
the main driver for the present work. However, we emphasize
that the genesis of one set of key ideas came from previous
work on a co-algebraic view of minimization.

Spectral techniques for learning latent variable models have
recently drawn a lot of attention in the machine learning
community. Following the significant milestone papers [6],
[7], in which an efficient spectral algorithm for learning hidden
Markov models (HMM) and stochastic rational languages was
given, the field has grown very rapidly. The original algorithm,
which is based on singular value decompositions of Hankel
matrices, has been extended to reduced-rank HMM [8], pre-
dictive state representations (PSR) [9], finite-state transducers
[10], [11], and many other classes of functions on strings [12],
[13], [14]. Although each of these papers works with slightly
different problems and analysis techniques, the key ingredient
turns out to be always the same: parametrize the target model
as a weighted finite automaton (WFA) and learn this WFA
from the SVD of a finite sub-block of its Hankel matrix [15].
Therefore, it is possible (and desirable) to study all these
learning algorithms from the point of view of rational series,
which are exactly the class of real-valued functions on strings



that can be computed by WFA. In addition to their use in
spectral learning algorithms, weighted automata are also com-
monly used in other areas of pattern recognition for sequences,
including: speech recognition [16], image compression [17],
natural language processing [18], model checking [19], and
machine translation [20].

Part of the appeal of spectral learning techniques comes
from their computational superiority when compared to iter-
ative algorithms like Expectation–Maximization (EM) [21].
Another very attractive property of spectral methods is the
possibility of proving rigorous statistical guarantees about
the learned hypothesis. For example, under a realizability
assumption, these methods are known to be consistent and
amenable to finite-sample analysis in the PAC sense [6]. An
important detail is that, in addition to realizability, these results
work under the assumption that the user correctly guesses the
number of latent states of the target distribution. Though this
is not a real caveat when it comes to using these algorithms in
practice – the optimal number of states can be identified using
a model selection procedure [22] – it is one of the barriers in
extending the statistical analysis of spectral methods to the
non-realizable setting.

Tackling the non-realizability question requires, as a special
case, dealing with the situation in which data is generated from
a WFA with n states and the learning algorithm is asked to
produce a WFA with n̂ < n states. This case is already a
non-trivial problem which – barring the noisiness introduced
by the use of statistical data instead of the original WFA
– can be easily interpreted as an approximate minimization
of WFA. From this point of view, the possibility of using
spectral learning algorithms for approximate minimization of
a small class of hidden Markov models has been recently
considered in [23]. This paper also presents some restricted
theoretical results bounding the error between the original
and minimized HMM in terms of the total variation distance.
Though incomparable to ours, these bounds are the closest
work in the literature to our approach1. Another paper on
which the issue of approximate minimization of weighted
automata is considered in a tangential manner is [25]. In this
case the authors again focus on an `1-like accuracy measure
to compare two automata: an original one, and another one
obtained by removing transitions with small weights occurring
during an exact minimization procedure. Though the removal
operation is introduced as a means of obtaining a numerically
stable minimization algorithm, the paper also presents some
experiments exploring the effect of removing transitions with
larger weights. With the exception of these timid results,
the problem of approximate minimization remains largely
unstudied. In the present paper we set out to initiate the
systematic study of approximate minimization of WFA. We
believe our results – beyond their intrinsic automata-theoretic
interest – will also provide tools for addressing important
problems in learning theory, including the robust statistical

1After the submission of this manuscript we became aware of the concurrent
work [24], where a problem similar to the one considered here is addressed,
albeit different methods are used and the results are not directly comparable.

analysis of spectral learning algorithms.
Let us conclude this introduction by mentioning the poten-

tial wide applicability of our results in the field of algorithms
for manipulating, combining, and operating with quantitative
systems. In particular, the possibility of obtaining reduced-size
models incurring a small, controlled amount of error might
provide a principled way for speeding up a number of such
algorithms.

The content of the paper is organized as follows. Section II
defines the notation that will be used throughout the paper and
reviews a series of well-known results that will be needed.
Section III establishes the existence of a canonical form for
WFA and provides a polynomial-time algorithm for computing
it (the first major contribution of this work). The computation
of this canonical form lies at the heart of our approximate
minimization algorithm, which is described and analyzed in
Section IV. Our main theoretical result in this section is
to establish bounds describing how well the approximation
obtained by the algorithm emulates the behavior of the original
WFA. In Section V we discuss two technical aspects of our
work: its relation and consequences with the mathematical
theory of low-rank approximation of rational series; and the
(ir)relevance of an assumption made in our results from
Sections III and IV. We conclude with Section VI, where we
point out interesting future research directions.

II. BACKGROUND

A. Notation for Matrices

Given a positive integer d, we denote [d] = {1, . . . , d}.
We use bold letters to denote vectors v ∈ Rd and matrices
M ∈ Rd1×d2 . Unless explicitly stated, all vectors are column
vectors. We write I for the identity matrix, diag(a1, . . . , an)
for a diagonal matrix with a1, . . . , an in the diagonal, and
diag(M1, . . . ,Mn) for the block-diagonal matrix containing
the square matrices Mi along the diagonal. The ith coordinate
vector (0, . . . , 0, 1, 0, . . . , 0)> is denoted by ei. For a matrix
M ∈ Rd1×d2 , i ∈ [d1], and j ∈ [d2], we use M(i, :) and
M(:, j) to denote the ith row and the jth column of M
respectively. Given a matrix M ∈ Rd1×d2 we can consider
the vector vec(M) ∈ Rd1·d2 obtained by concatenating the
columns of M so that vec(M)((i−1)d2+j) = M(i, j). Given
two matrices M ∈ Rd1×d2 and M′ ∈ Rd′1×d′2 we denote their
Kronecker (or tensor) product by M⊗M′ ∈ Rd1d′1×d2d′2 , with
entries given by (M⊗M′)((i− 1)d′1 + i′, (j − 1)d′2 + j′) =
M(i, j)M′(i′, j′), where i ∈ [d1], j ∈ [d2], i′ ∈ [d′1], and
j′ ∈ [d′2]. For simplicity, we will sometimes write M⊗2 =
M ⊗M, and similarly for vectors. A rank factorization of
a rank n matrix M ∈ Rd1×d2 is an expression of the form
M = QR where Q ∈ Rd1×n and R ∈ Rn×d2 are full-rank
matrices.

Given a matrix M ∈ Rd1×d2 of rank n, its singular value
decomposition (SVD)2 is a decomposition of the form M =

2To be more precise, this is a reduced singular value decomposition, since
the inner dimensions of the decomposition are all equal to the rank. In this
paper we shall always use the term SVD to mean reduced SVD.



UDV> where U ∈ Rd1×n, D ∈ Rn×n, and V ∈ Rd2×n
are such that: U>U = V>V = I, and D = diag(s1, . . . , sn)
with s1 ≥ · · · ≥ sn > 0. The columns of U and V are called
left and right singular vectors respectively, and the si are its
singular values. The SVD is unique (up to sign changes in
associate singular vectors) whenever all inequalities between
singular values are strict. A similar spectral decomposition
exists for bounded operators between separable Hilbert spaces.
In particular, for finite-rank bounded operators one can write
the infinite matrix corresponding to the operator in a fixed
basis, and recover a concept of reduced SVD decomposition
for such infinite matrices which shares the same properties
described above for finite matrices [26].

For 1 ≤ p ≤ ∞ we will write ‖v‖p for the `p norm of vector
v. The corresponding induced norm on matrices is ‖M‖p =
sup‖v‖p=1 ‖Mv‖p. In addition to induced norms, we will also
need to define Schatten norms. If M is a rank-n matrix with
singular values s = (s1, . . . , sn), the Schatten p-norm of M
is given by ‖M‖S,p = ‖s‖p. Most of these norms have given
names: ‖ · ‖2 = ‖ · ‖S,∞ = ‖ · ‖op is the operator (or spectral)
norm; ‖ · ‖S,2 = ‖ · ‖F is the Frobenius norm; and ‖ · ‖S,1 =
‖ · ‖tr is the trace (or nuclear) norm. For a matrix M the
spectral radius is the largest modulus ρ(M) = maxi |λi(M)|
among the eigenvalues of M. For a square matrix M, the series∑
k≥0 Mk converges if and only if ρ(M) < 1, in which case

the sum yields (I−M)−1.
Sometimes we will name the columns and rows of a matrix

using ordered index sets I and J . In this case we will write
M ∈ RI×J to denote a matrix of size |I| × |J | with rows
indexed by I and columns indexed by J .

B. Weighted Automata, Rational Series, and Hankel Matrices

Let Σ be a fixed finite alphabet with |Σ| = k symbols, and
Σ? the set of all finite strings with symbols in Σ. We use λ to
denote the empty string. Given two strings p, s ∈ Σ? we write
w = ps for their concatenation, in which case we say that p
is a prefix of w and s is a suffix of w. We denote by |w| the
length (number of symbols) in a string w ∈ Σ?. Given a set
of strings X ⊆ Σ? and a function f : Σ? → R, we denote by
f(X) the summation

∑
x∈X f(x) if defined. For example, we

will write f(Σt) =
∑
|x|=t f(x) for any t ≥ 0.

Now we introduce our notation for weighted automata. We
want to note that we will not be dealing with weights on
arbitrary semi-rings; this paper only considers automata with
real weights, with the usual addition and multiplication opera-
tions. In addition, instead of resorting to the usual description
of automata as directed graphs with labelled nodes and edges,
we will use a linear-algebraic representation, which is more
convenient. A weighted finite automata (WFA) of dimension
n over Σ is a tuple A = 〈α0,α∞, {Aσ}σ∈Σ〉 where α0 ∈ Rn
is the vector of initial weights, α∞ ∈ Rn is the vector of final
weights, and for each symbol σ ∈ Σ the matrix Aσ ∈ Rn×n
contains the transition weights associated with σ. Note that
in this representation a fixed initial state is given by α0 (as
opposed to formalisms that only specify a transition structure),
and the transition endomorphisms Aσ and the final linear

form α∞ are given in a fixed basis on Rn (as opposed to
abstract descriptions where these objects are represented as
basis-independent elements over some n-dimensional vector
space).

We will use dim(A) to denote the dimension of a WFA.
The state-space of a WFA of dimension n is identified with the
integer set [n]. Every WFA A realizes a function fA : Σ? → R
which, given a string x = x1 · · ·xt ∈ Σ?, produces

fA(x) = α>0 Ax1
· · ·Axt

α∞ = α>0 Axα∞ ,

where we defined the shorthand notation Ax = Ax1
· · ·Axt

that will be used throughout the paper. A function f : Σ? → R
is called rational if there exists a WFA A such that f = fA.
The rank of a rational function f is the dimension of the
smallest WFA realizing f . We say that a WFA is minimal if
dim(A) = rank(fA).

An important operation on WFA is conjugation by an
invertible matrix. Suppose A is a WFA of dimension n and
Q ∈ Rn×n is invertible. Then we can define the WFA

A′ = Q−1AQ = 〈Q>α0,Q
−1α∞, {Q−1AσQ}〉 . (1)

It is immediate to check that fA = fA′ . This means that the
function computed by a WFA is invariant under conjugation,
and that given a rational function f , there exist infinitely
many WFA realizing f . In addition, the following result
characterizes all minimal WFA realizing a particular rational
function.

Theorem 1 ([27]). If A and B are minimal WFA realizing the
same function, then B = Q−1AQ for some invertible Q.

A function f : Σ? → R can be trivially identified with an
element from the free vector space RΣ?

. This vector space
contains several subspaces which will play an important role
in the rest of the paper. One is the subspace of all rational
functions, which we denote by R(Σ). Note that R(Σ) is
a linear subspace, because if f, g ∈ R(Σ) and c ∈ R,
then cf and f + g are both rational [27]. Another important
family of subspaces of RΣ?

are the ones containing all
functions with finite p-norm for some 1 ≤ p ≤ ∞, which
is given by ‖f‖pp =

∑
x∈Σ? |f(x)|p for finite p, and ‖f‖∞ =

supx∈Σ? |f(x)|; we denote this space by `p(Σ). Note that like
in the usual theory of Banach spaces of sequences, we have
`p(Σ) ⊂ `q(Σ) for p < q. Of these, `2(Σ) can be endowed
with the structure of a separable Hilbert space with the inner
product 〈f, g〉 =

∑
x∈Σ? f(x)g(x). Recall that in this case

we have the Cauchy–Schwarz inequality 〈f, g〉2 ≤ ‖f‖22 ‖g‖22.
In addition, we have its generalization, Hölder’s inequality:
given f ∈ `p(Σ) and g ∈ `q(Σ) with p−1 + q−1 ≤ 1,
then ‖f · g‖1 ≤ ‖f‖p‖g‖q , where (f · g)(x) = f(x)g(x).
By intersecting any of the previous subspaces with R(Σ) one
obtains `pR(Σ) = R(Σ) ∩ `p(Σ), the normed vector space
containing all rational functions with finite p-norm. In most
cases the alphabet Σ will be clear from the context and we
will just write R, `p, and `pR.

The space `1R of absolutely convergent rational series will
play a central role in the theory to be developed in this paper.



An important example of functions in `1R is that of probability
distributions over Σ? realized by WFA, also known as rational
stochastic languages. Formally speaking, these are rational
functions f ∈ R satisfying the constraints f(x) ≥ 0 and∑
x f(x) = 1. This implies that `1R includes all functions

realized by probabilistic automata with stopping probabilities
[28], hidden Markov models with absorbing states [29], and
predictive state representations for dynamical systems with
discounting or finite horizon [30]. Note that given a WFA
A, the membership problem fA ∈ `1R is known to be semi-
decidable [31].

Let H ∈ RΣ?×Σ?

be a bi-infinite matrix whose rows and
columns are indexed by strings. We say that H is Hankel3

if for all strings p, p′, s, s′ ∈ Σ? such that ps = p′s′ we
have H(p, s) = H(p′, s′). Given a function f : Σ? → R
we can associate with it a Hankel matrix Hf ∈ RΣ?×Σ?

with entries Hf (p, s) = f(ps). Conversely, given a matrix
H ∈ RΣ?×Σ?

with the Hankel property, there exists a unique
function f : Σ? → R such that Hf = H. The following
well-known theorem characterizes all Hankel matrices of finite
rank.

Theorem 2 ([27]). For any function f : Σ? → R, the Hankel
matrix Hf has finite rank n if and only if f is rational with
rank(f) = n. In other words, rank(f) = rank(Hf ) for any
function f : Σ? → R.

III. A CANONICAL FORM FOR WFA

In this section we discuss the existence and computation
of a canonical form for WFA realizing absolutely convergent
rational functions. Our canonical form is strongly related to the
singular value decomposition of infinite Hankel matrices. In
particular, its existence and uniqueness is a direct consequence
of the existence and uniqueness of SVD for Hankel matrices
of functions in `1R, as we shall see in the first part of this
section. Furthermore, the algorithm given in Section III-B for
computing the canonical form can also be interpreted as a
procedure for computing the SVD of an infinite Hankel matrix.

A. Existence of the Canonical Form

A matrix T ∈ RΣ?×Σ?

can be interpreted as the expression
of a (possibly unbounded) linear operator T : `2 → `2 in
terms of the canonical basis {ex}x∈Σ? . In the case of a Hankel
matrix Hf , the associated operator Hf is called a Hankel
operator, and corresponds to the convolution-like operation
(Hfg)(x) =

∑
y f(xy)g(y) (assuming the series converges).

Recall the operator norm of T : `2 → `2 is defined as
‖T‖op = sup‖f‖2≤1 ‖Tf‖2. An operator is bounded if ‖T‖op

is finite. Although not all Hankel operators are bounded, next
lemma gives a sufficient condition for Hf to be bounded.

Lemma 3. If f ∈ `1, then Hf is bounded.

3In real analysis a matrix M is Hankel if M(i, j) = M(k, l) whenever
i + j = k + l, which implies that M is symmetric. In our case we have
H(p, s) = H(p′, s′) whenever ps = p′s′, but H is not symmetric because
string concatenation is not commutative whenever |Σ| > 1.

Proof: Let h(x) = 1 + |x| and note that f ∈ `1 implies
supx |f(x)|(1+ |x|) <∞; i.e. f ·h ∈ `∞. Now let g ∈ `2 with
‖g‖2 = 1 and for any x ∈ Σ? define the function fx(y) =
f(xy). Then we have

‖Hfg‖22 =
∑
x

(∑
y

f(xy)g(y)

)2

=
∑
x

〈fx, g〉2

≤ ‖g‖22
∑
x

‖fx‖22 =
∑
x

∑
y

f(xy)2

=
∑
z

(1 + |z|)f(z)2 =
∑
z

|f(z)||(1 + |z|)f(z)|

≤ ‖f‖1‖f · h‖∞ <∞ ,

where we used Cauchy–Schwarz inequality, that the number
different ways to split a string z into a prefix and a suffix
equals 1 + |z|, and Hölder’s inequality. This concludes the
proof.

Theorem 2 and Lemma 3 imply that, for any f ∈ `1R,
the Hankel matrix Hf represents a bounded finite-rank linear
operator Hf on the Hilbert space `2. Hence, Hf admits a
reduced singular value decomposition Hf = UDV> where
U,V ∈ RΣ?×n and D ∈ Rn×n with n = rank(f). The
Hankel singular values of a rational function f ∈ `1R are
defined as the singular values of the Hankel matrix Hf . These
singular values can be used to define a new set of norms
on `1R: the Schatten–Hankel p-norm of f ∈ `1R is given by
‖f‖H,p = ‖Hf‖S,p = ‖(s1, . . . , sn)‖p. It is straightforward to
verify that ‖ · ‖H,p satisfies the properties of a norm.

Note an SVD of Hf yields a rank factorization given by
Hf = (UD1/2)(VD1/2)>. But SVD is not the only way to
obtain rank factorizations for Hankel matrices. In fact, if f
is rational, then every minimal WFA A realizing f induces a
rank factorization of Hf as follows. Let PA ∈ RΣ?×n be the
forward matrix of A given by PA(p, :) = α>0 Ap for any string
p ∈ Σ?. Similarly, let SA ∈ RΣ?×n be the backward matrix
of A given by SA(s, :) = (Asα∞)> for any string s ∈ Σ?.
Since Hf (p, s) = f(ps) = α>0 ApAsα∞ = PA(p, :)S>A(:
, s), we obtain Hf = PAS>A. This is known as the forward–
backward (FB) rank factorization of Hf induced by A [15].
The following result shows that among the infinity of minimal
WFA realizing a given rational function f ∈ `1R, there exists
one whose induced FB rank factorization coincides with Hf =
(UD1/2)(VD1/2)>.

Theorem 4. Let f ∈ `1R and suppose Hf =
(UD1/2)(VD1/2)> is a rank factorization induced by SVD.
Then there exists a minimal WFA A for f inducing the same
rank factorization. That is, A induces a FB rank factorization
of Hf given by PA = UD1/2 and SA = VD1/2.

Since we have already established the existence of an SVD
for Hf whenever f ∈ `1R, the theorem is just a direct
application of the following lemma.

Lemma 5. Suppose f ∈ `1R and Hf = PS> is a rank
factorization. Then there exists a minimal WFA A realizing
f which induces this factorization.



Proof: Let B be any minimal WFA realizing f and denote
n = rank(f). Then we have two rank factorizations PS> =
PBS>B for the Hankel matrix Hf . Therefore, the columns of
P and PB both span the same n-dimensional sub-space of
RΣ?

, and there exists a change of basis Q ∈ Rn×n such that
PBQ = P. This implies we must also have S> = Q−1S>B . It
follows that A = Q−1BQ is a minimal WFA for f inducing
the desired rank factorization.

The results above leads us to our first contribution: the
definition of a canonical form for WFA realizing functions
in `1R.

Definition 6. Let f ∈ `1R. A singular value automaton (SVA)
for f is a minimal WFA A realizing f such that the FB
rank factorization of Hf induced by A has the form given
in Theorem 4.

Note the SVA provided by Theorem 4 is unique up to the
same conditions in which SVD is unique. In particular, it is
easy to verify that if the Hankel singular values of f ∈ `1R
satisfy the strict inequalities s1 > · · · > sn, then the transition
weights of the SVA A of f are uniquely defined, and the initial
and final weights are uniquely defined up to sign changes.

Then next subsection gives a polynomial-time algorithm for
computing the SVA of a function f ∈ `1R starting from a WFA
realizing f .

B. Computing the Canonical Form

As we have seen above, a bi-infinite Hankel matrix Hf

of rank n can actually be represented with the n(2 + kn)
parameters needed to specify the initial, final and transition
weights of a minimal WFA A realizing f . Though in principle
A contains enough information to reconstruct Hf , a priori
it is not clear that A provides an efficient representation
for operating on Hf . Luckily, it turns out WFA possess a
rich algebraic structure allowing many operations on rational
functions and their corresponding Hankel matrices to be per-
formed in “compressed” form by operating directly on WFA
representing them [27]. In this section we show it is also
possible to compute the SVD of Hf by operating on a minimal
WFA realizing f ; that is, we give an algorithm for computing
SVA representations.

We start with a simple linear algebra fact showing how
to leverage a rank factorization of a given matrix in order
to compute its reduced SVD. Let M ∈ Rp×s be a matrix
of rank n and suppose M = PS> is a rank factorization.
Let Gp = P>P ∈ Rn×n be the Gram matrix of the
columns of P. Since Gp is positive definite, it admits a
spectral decomposition Gp = VpDpV

>
p . Similarly, we have

Gs = S>S = VsDsV
>
s . With this notation we have the

following.

Lemma 7. Let M̃ = D
1/2
p V>p VsD

1/2
s with reduced SVD

M̃ = ŨD̃Ṽ>. If Qp = VpD
−1/2
p Ũ, U = PQp, Qs =

VsD
−1/2
s Ṽ, V = SQs, and D = D̃, then M = UDV> is

a reduced SVD for M.

Proof: We just need to check the columns of U and V
are orthonormal, and M = UDV>:

U>U = Q>p P>PQp

= Ũ>D−1/2
p V>p GpVpD

−1/2
p Ũ

= Ũ>D−1/2
p V>p VpDpV

>
p VpD

−1/2
p Ũ

= Ũ>Ũ

= I ,

V>V = Q>s S>SQs

= Ṽ>D−1/2
s V>s GsVsD

−1/2
s Ṽ

= Ṽ>D−1/2
s V>s VsDsV

>
s VsD

−1/2
s Ṽ

= Ṽ>Ṽ

= I ,

UDV> = PQpDQ>s S>

= PVpD
−1/2
p ŨD̃Ṽ>D−1/2

s V>s S>

= PVpD
−1/2
p M̃D−1/2

s V>s S>

= PVpD
−1/2
p D1/2

p V>p VsD
1/2
s D−1/2

s V>s S>

= PS>

= M .

Note the above result we does not require p and s to be
finite. In particular, when M is an infinite matrix associated
with a finite-rank bounded operator, the computation of Qp

and Qs can still be done efficiently as long as Gp and Gs are
available.

Our goal now is to leverage this result in order to compute
the SVD of the bi-infinite Hankel matrix Hf associated with a
rational function f ∈ `1R. The key step will be to compute the
Gram matrices associated with the rank factorization induced
by a minimal WFA for f . We start with a lemma showing how
to compute the inner product between two rational functions.

Lemma 8. Let A = 〈α0,α∞, {Aσ}〉 and B =
〈β0,β∞, {Bσ}〉 be minimal WFA realizing functions fA, fB ∈
`2R. Suppose the spectral radius of the matrix C =

∑
σ Aσ ⊗

Bσ satisfies ρ(C) < 1. Then the inner product between fA
and fB can be computed as:

〈fA, fB〉 = (α0 ⊗ β0)
>

(I−C)
−1

(α∞ ⊗ β∞) .

Proof: First note g(x) = fA(x)fB(x) is in `1 by Hölder’s
inequality. Therefore 〈fA, fB〉 =

∑
x g(x) ≤

∑
x |g(x)| <∞.

In addition, g is rational [27] and can be computed by the WFA
C = 〈γ0,γ∞, {Cσ}〉 given by

γ0 = α0 ⊗ β0 ,

γ∞ = α∞ ⊗ β∞ ,

Cσ = Aσ ⊗Bσ .

Now note one can use a simple induction argument to show
that for any finite t ≥ 0 we have

st =
∑
x∈Σt

γ>0 Cxγ∞ = γ>0 Ctγ∞ .



Because g ∈ `1, the series
∑
t≥0 st is absolutely convergent.

Thus we must have limk→∞
∑
t≤k st = L for some finite L ∈

R. Since ρ(C) < 1 implies the identity
∑
t≥0 Ct = (I−C)−1,

we must necessarily have L = γ>0 (I−C)−1γ∞.
Note the assumption ρ(C) < 1 is an essential part of

our calculations. We shall make similar assumptions in the
remaining of this section. See Section V-B for a discussion on
this assumption and how to remove it.

The following result shows how to efficiently compute the
Gram matrices associated with the rank factorization induced
by a minimal WFA for a function f ∈ `1R.

Lemma 9. Let f ∈ `1R with rank(f) = n, and A =
〈α0,α∞, {Aσ}〉 be a minimal WFA for f inducing the FB
rank factorization Hf = PS>. Let A⊗ =

∑
σ A⊗2

σ . If
ρ(A⊗) < 1, then the Gram matrices Gp,Gs ∈ Rn×n associ-
ated with the factorization induced by A satisfy vec(Gp)

> =
(α⊗2

0 )>(I−A⊗)−1 and vec(Gs) = (I−A⊗)−1α⊗2
∞ .

Proof: For i ∈ [n] let pi = P(:, i) ∈ RΣ?

be the
ith column of P. The key observation is that the function
pi : Σ? → R defined by pi(x) = pi(x) is in `2R. To show
rationality one just needs to check pi is the function realized
by the WFA Ap,i = 〈α0, ei, {Aσ}〉 by construction of the
induced rank factorization. The fact that ‖pi‖2 is finite follows
from Theorem 4 by noting that pi is a linear combination of
left singular vectors of Hf , which belong to `2 by definition.
Thus, Gp(i, j) = p>i pj is well-defined and corresponds to the
inner product 〈pi, pj〉 which, by Lemma 8 can be computed
as

(α⊗2
0 )>

(
I−A⊗

)−1
(ei ⊗ ej) .

Since ei ⊗ ej = e(i−1)n+j , we obtain the desired expression
for vec(Gp). The expression for vec(Gs) follows from an
identical argument using automata As,i = 〈ei,α∞, {Aσ}〉.

Combining the results above we now show it is possible to
compute an SVA for f ∈ `1R starting from a minimal WFA
realizing f . The procedure is called ComputeSVA and its
description is given in Algorithm 1.

Algorithm 1: ComputeSVA
Input: A minimal WFA A with n states for f ∈ `1R
Output: An SVA A′ for f

1 Compute Gp and Gs /* cf. Lemma 9 */
2 Compute Qp, Qs, and D /* cf. Lemma 7 */
3 Let A′ = D1/2Q>s AQpD

1/2 /* cf. Eq. (1) */
4 return A′

Theorem 10. Let A = 〈α0,α∞, {Aσ}〉 be a minimal WFA
for f such that A⊗ =

∑
σ A⊗2

σ satisfies ρ(A⊗) < 1. Then
the WFA A′ computed by ComputeSVA(A) is an SVA for f .

Proof: Let Q = QpD
1/2. Our first observation is that

Q−1 = D1/2Q>s and thus A and A′ are minimal WFA for f .

Indeed, we already showed in the proof of Lemma 7 that

QpD
1/2D1/2Q>s = QpDQ>s = I .

In addition, it is immediate to check that if A induces the rank
factorization Hf = PS>, then A′ induces the rank factoriza-
tion Hf = (PQpD

1/2)(D1/2Q>s S>), which by Lemma 7
satisfies PQpD

1/2 = UD1/2 and D1/2Q>s S> = D1/2V>.

We conclude this section by mentioning that it is possible
to modify ComputeSVA to take as input a non-minimal WFA
A realizing a function f ∈ `1R under the same assumption on
the spectral radius of the matrix A⊗ as we have here. We
shall present the details of this modification somewhere else.
Nonetheless, we note that if given a non-minimal WFA A,
one always has the option to minimize A (e.g. using the WFA
minimization algorithm in [27]) before attempting the SVA
computation.

C. Computational Complexity

To bound the running time of ComputeSVA(A) we recall
the following facts from numerical linear algebra (see e.g.
[32]):
• The SVD of M ∈ Rd1×d2 (d1 ≥ d2) can be computed in

time O(d1d
2
2).

• The spectral decomposition of a symmetric matrix M ∈
Rd×d can be computed in time O(d3).

• The inverse of an invertible matrix M ∈ Rd×d can be
computed in time O(d3).

Now note that according to Lemma 9, computing the Gram
matrices requires O(kn4) operations to obtain I −A⊗, plus
the inversion of this n2 × n2 matrix, which can be done in
time O(n6). From Lemma 7 we see that once the n × n
Gram matrices Gp and Gs are given, then computing the
singular values D and the change of basis matrices Qp

and Qs can be done in time O(n3). Finally, the cost of
conjugating the WFA A into A′ takes time O(kn3), where
k = |Σ| and n = dim(A). Hence, the overall running time of
ComputeSVA(A) is O(n6 + kn4). Of course, this is a rough
estimate which does not take into account improvements that
might be possible in practice, especially in those cases where
the transition matrices of A are sparse – in such case the
complexity of most operations could be bounded in terms of
the number of non-zeros.

D. A Fundamental Property of SVA

This section gives a fundamental property of SVA. Namely,
a bounds on the transition coefficients of an SVA in terms
of the Hankel singular values of the function it realizes. In
the next section we shall exploit this fundamental property of
SVA for designing and analysing approximate minimization
algorithms for WFA.

Lemma 11. Let A = 〈α0,α∞, {Aσ}〉 be an SVA with n
states realizing a function f ∈ `1R with Hankel singular values
s1 ≥ · · · ≥ sn. Then the following are satisfied:

1) For all j ∈ [n],
∑
i si
∑
σ Aσ(i, j)2 = sj −α0(j)2,



2) For all i ∈ [n],
∑
j sj

∑
σ Aσ(i, j)2 = si −α∞(i)2.

Proof: Recall that A induces the rank factorization Hf =
PS> = (UD1/2)(D1/2V>) corresponding to the SVD of
Hf . Let pj be the jth column of P = [p1 · · ·pn] and note
we have ‖pj‖22 = sj . By appropriately decomposing the sum
in ‖pj‖22 we get the following4:

sj = pj(λ)2 +
∑
σ∈Σ

∑
x∈Σ?

pj(xσ)2 . (2)

Let us write pσj for the element of `2(Σ) given by pσj (x) =
pj(xσ). Note that by construction we have pσj = P · Aσ(:
, j) =

∑
i∈[n] piAσ(i, j). Since A is an SVA, the columns of

P are orthogonal and therefore we have

‖pσj ‖22 =

〈∑
i

piAσ(i, j),
∑
i′

pi′Aσ(i′, j)

〉
=
∑
i,i′

Aσ(i, j)Aσ(i′, j)〈pi,pi′〉

=
∑
i

siAσ(i, j)2 .

Plugging this into (2) and noting that pj(λ) = α0(j), we
obtain the first claim. The second claim follows from applying
the same argument to the columns of S.

To see the importance of this lemma for approximate min-
imization, let us consider the following simple consequence
which can be derived by combining the bounds for Aσ(i, j)
obtained from considering it belongs to the ith row and the
jth column of Aσ:

|Aσ(i, j)| ≤ min

{√
si
sj
,

√
sj
si

}
=

√
min{si, sj}
max{si, sj}

.

This bound is telling us that in an SVA, transition weights
further away from the diagonals of the Aσ are going to be
small whenever there is a wide spread between the largest and
smallest singular values; for example, |Aσ(1, n)| ≤

√
sn/s1.

Intuitively, this means that in an SVA the last states are very
weakly connected to the first states, and therefore removing
these connections should not affect the output of the WFA too
much. Theorem 12 below exploits this intuition and turns it
into a definite quantitative statement.

IV. APPROXIMATE MINIMIZATION OF WFA

In this section we describe and analyse an approximate
minimization algorithm for WFA. The algorithm takes as input
a minimal WFA A with n states and a target number of states
n̂, and outputs a new WFA Â with n̂ states approximating
the original WFA A. To obtain Â we first compute the SVA
A′ associated to A, and then remove the n − n̂ states asso-
ciated with the smallest singular values of HfA . We call this
algorithm SVATruncation (see Algorithm 2 for details).
Since the algorithm only involves a call to ComputeSVA

4Here we are implicitly using the fact that
∑

x pj(x)2 is absolutely (and
therefore unconditionally) convergent, which implies that any rearrangement
of its terms will converge to the same value.

and a simple algebraic manipulation of the resulting WFA,
the running time of SVATruncation is dominated by the
complexity of ComputeSVA, and hence is polynomial in |Σ|,
dim(A) and n̂.

Algorithm 2: SVATruncation
Input: A minimal WFA A with n states, a target number

of states n̂ < n
Output: A WFA Â with n̂ states

1 Let A′ ← ComputeSVA(A)
2 Let Π = [In̂ 0] ∈ Rn̂×n
3 Let Âσ = ΠA′σΠ> for all σ ∈ Σ
4 Let α̂0 = Πα′0
5 Let α̂∞ = Πα′∞
6 Let Â = 〈α̂0, α̂∞, {Âσ}〉
7 return Â

Roughly speaking, the rationale behind SVATruncation
is that given an SVA, the states corresponding to the smallest
singular values are the ones with less influence on the Hankel
matrix, and therefore should also be the ones with less influ-
ence on the associated rational function. However, the details
are more tricky than this simple intuition. The reason being
that a low rank approximation to Hf obtained by truncating its
SVD is not in general a Hankel matrix, and therefore does not
correspond to any rational function. In particular, the Hankel
matrix of the function f̂ computed by Â is not obtained by
truncating the SVD of Hf . This makes our analysis non-trivial.

The main result of this section is the following theorem,
which bounds the `2-distance between the rational function
f realized by the original WFA A, and the rational function
f̂ realized by the output WFA Â. The principal attractive
of our bound is that it only depends on intrinsic quantities
associated with the function f ; that is, the final error bound
is independent of which WFA A is given as input. To comply
with the assumptions made in the previous section, we shall
assume like in previous section that the input WFA A sat-
isfies ρ(A⊗) < 1. The same precepts about this assumption
discussed in Section V-B apply here.

Theorem 12. Let f ∈ `1R with rank(f) = n and fix 0 <
n̂ < n. If A is a minimal WFA realizing f and such that
ρ(A⊗) < 1, then the WFA Â = SVATruncation(A, n̂)
realizes a function f̂ satisfying

‖f − f̂‖22 ≤ Cf
√
sn̂+1 + · · ·+ sn , (3)

where Cf is a positive constant depending only on f .

A few remarks about this result are in order. The first is to
observe that because s1 ≥ · · · ≥ sn, the error decreases when
n̂ increases, which is the desired behavior: the more states
Â has, the closer it is to A. The second is that (3) does not
depend on which representation A of f is given as input to
SVATruncation. This is a consequence of first obtaining
the corresponding SVA A′ before truncating. Obviously, one
could obtain another approximate minimization by truncating



A directly. However, in that case the final error would depend
on the initial A and in general it does not seem possible to use
this approach for providing representation independent bounds
on the quality of approximation.

A. Proof Sketch for Theorem 12

A full detailed proof of Theorem 12 can be found in the
technical report [33]. Here we will only give an outline of how
the main ideas behind the proof, and sketch the key technical
lemmas.

The first step in the proof is to combine A′ and Â into a
single WFA B computing fB = (f−f̂)2, and then decompose
the error as

‖f − f̂‖22 =
∑
t≥0

(∑
x∈Σt

fB(x)

)
.

One can then proceed to bound fB(Σt) for all t ≥ 0 in
terms of the weights of A′; this involves lengthy algebraic
manipulations with many intermediate steps exploiting a va-
riety of properties of matrix norms and Kronecker products.
The reader can consult [34] for a comprehensive account of
these properties. The last and key step is to exploit the internal
structure of the SVA canonical form in order to turn these
bounds into representation independent quantities. This part
of the analysis is based on the powerful Lemma 11.

Step 1: We start by noting that, without loss of gener-
ality, we can assume the automaton A given as input to
SVATruncation is in SVA form (in which case A′ = A).

Now we introduce some notation by splitting the weights
conforming A into a block corresponding to states 1 to n̂, and
another block containing states n̂+1 to n. With this, we write
the following:

α0 =
[
α

(1)
0 α

(2)
0

]
,

α∞ =

[
α

(1)
∞

α
(2)
∞

]
,

Aσ =

[
A

(11)
σ A

(12)
σ

A
(21)
σ A

(22)
σ

]
.

It is immediate to check that Â = SVATruncation(A, n̂)

is given by α̂0 = α
(1)
0 , α̂∞ = α

(1)
∞ , and Âσ = A

(11)
σ . For

simplicity of notation, we assume here and throughout the
rest of the proof that initial weights of WFA are given as row
vectors.

Although Â has n̂ states, it is convenient to define a WFA
with n states computing the same function as Â. We call this
WFA Ã, and its construction is explained in the following
claim, whose proof is a simple calculation exploiting the
structure of the matrices Ãσ .

Claim 1. The WFA Ã = 〈α̃0, α̃∞, {Ãσ}〉 with n states given

below satisfies f̃ = fÃ = f̂ :

α̃0 = α0 ,

α̃∞ =

[
α

(1)
∞
0

]
,

Ãσ =

[
A

(11)
σ 0

0 A
(22)
σ

]
= diag(A(11)

σ ,A(22)
σ ) .

By combining A and Ã we can obtain a WFA computing
squares of differences between f and f̂ . The construction is
given in the following claim, which follows from the same
argument used in the proof of Lemma 8.

Claim 2. Let B = 〈β⊗2
0 ,β⊗2

∞ , {B⊗2
σ }〉 be the WFA with 4n2

states where

β0 = [α0 − α̃0] ,

β∞ =

[
α∞
α̃∞

]
,

Bσ =

[
Aσ 0

0 Ãσ

]
= diag(Aσ, Ãσ) .

Then fB = (f − f̃)2.

From the weights of automaton B we define the following
vectors and matrices:

γ0 = α0 ⊗ [α0 − α̃0] = α0 ⊗ β0 ,

γ∞ = α∞ ⊗
[

α∞
α̃∞

]
= α∞ ⊗ β∞ ,

γ̃∞ = α̃∞ ⊗
[

α∞
α̃∞

]
= α̃∞ ⊗ β∞ ,

Cσ = Aσ ⊗
[

Aσ 0 ,

0 Ãσ

]
= Aσ ⊗Bσ ,

C̃σ = Ãσ ⊗
[

Aσ 0

0 Ãσ

]
= Ãσ ⊗Bσ .

We will also write C =
∑
σ Cσ and C̃ =

∑
σ C̃σ .

Step 2: The notations defined about let us state the follow-
ing claim, which will be the starting point of our bounds. The
result follows from the same calculations used in the proof of
Lemma 8 and the observation that β⊗2

0 = [γ0 − γ0].

Claim 3. For any t ≥ 0 we have

∆t =
∑
x∈Σt

(f(x)− f̂(x))2 = γ0

(
Ctγ∞ − C̃tγ̃∞

)
.

Note that the error that we need to bound in order to proof
Theorem 12 can be written as ‖f − f̂‖22 =

∑
t≥0 ∆t. Our

strategy is to obtain a separate bound for each ∆t and then
sum them all together. We start by bounding |∆t| in terms of
the norms of the matrices and vectors defined above.

Lemma 13. For any t ≥ 0 the following bound holds:

|∆t| ≤ ‖γ0‖‖C̃‖t‖γ∞ − γ̃∞‖
+ t‖γ0‖‖γ∞‖max{‖C‖, ‖C̃‖}t−1‖C− C̃‖ .



Proof (sketch): We proceed by induction on t. The base
case is easy. For the inductive step, first use the triangle
inequality to show that

|∆t+1| ≤ ‖γ0‖‖C̃‖t+1‖γ∞ − γ̃∞‖
+ ‖γ0‖‖C‖t‖C− C̃‖‖γ∞‖
+ |∆′t| ,

where ∆′t = γ0

(
CtC̃γ∞ − C̃tC̃γ∞

)
. Next we note that our

inductive hypothesis can be seen to imply the bound

|∆′t| ≤ t‖γ0‖‖γ∞‖max{‖C‖, ‖C̃‖}t‖C− C̃‖ .

A simple algebraic simplification combining the two bounds
yields the desired result.

Now we proceed to derive individual bounds for all the
terms that appear in previous lemma. We start with the
following claim which gives two bounds that are clear by
definition.
Claim 4. We have ‖γ0‖ =

√
2‖α0‖2 and ‖γ∞‖ ≤√

2‖α∞‖2.
The next step is to bound the term involving the norms

‖C‖ and ‖C̃‖. This leads to the definition of a representation
independent parameter we call ρf .

Lemma 14. Let ρf = ‖
∑
σ Aσ⊗Aσ‖. Then ρf is a positive

constant depending only on f which satisfies:

‖C̃‖ ≤ ‖C‖ = ρf .

Proof: We start by noting that ‖C‖ = max{‖
∑
σ Aσ ⊗

Aσ‖, ‖
∑
σ Aσ ⊗ Ãσ‖}. Then we use ‖

∑
σ Aσ ⊗ Ãσ‖ =

‖
∑
σ Ãσ ⊗ Aσ‖ = max{‖

∑
σ A

(11)
σ ⊗ Aσ‖, ‖

∑
σ A

(22)
σ ⊗

Aσ‖} to show that ‖C‖ = ‖
∑
σ Aσ ⊗Aσ‖, since the rest of

terms in the maximum correspond to norms of sub-matrices of∑
σ Aσ ⊗Aσ . Now a similar argument can be used to show

that

‖C̃‖ = max{‖
∑
σ

A(11)
σ ⊗Aσ‖, ‖

∑
σ

A(11)
σ ⊗ Ãσ‖,

‖
∑
σ

A(22)
σ ⊗Aσ‖, ‖

∑
σ

A(22)
σ ⊗ Ãσ‖}

≤ ‖
∑
σ

Aσ ⊗Aσ‖ .

Note ρf is representation independent because it only depends
on the transition weights of the SVA form of f , which is
unique.

In the remaining of the proof we will assume the following
holds.
Assumption 1. The SVA A is such that ρf = ‖

∑
σ A⊗2

σ ‖ < 1.
This assumption is not essential, and is only introduced to

simplify the calculations involved in the proof. See the remarks
at the end of this appendix for a discussion on how to remove
the assumption.

In order to bound ‖γ∞ − γ̃∞‖ and ‖C− C̃‖ we make an
extensive use of the properties of SVA given in Lemma 11.
This allows us to obtain bounds that only depend on the

Hankel singular values of f , which are intrinsic representation-
independent quantities associated with f .

Lemma 15.

‖γ∞ − γ̃∞‖ ≤
√

2‖α∞‖
√

sn̂+1 + · · ·+ sn .

Proof: We start by unwinding the definitions of γ∞ and
γ̃∞ to obtain the bound:

‖γ∞ − γ̃∞‖ = ‖(α∞ − α̃∞)⊗ β∞‖
= ‖α∞ − α̃∞‖‖β∞‖
= ‖α(2)

∞ ‖
√
‖α∞‖2 + ‖α̃∞‖2

≤
√

2‖α∞‖‖α(2)
∞ ‖ ,

where we used that ‖α̃∞‖ ≤ ‖α∞‖. Now note that Lemma 11
yields the crude estimate α∞(i)2 ≤ si for all i ∈ [n]. We
use this last observation to obtain the following bound and
complete the proof:

‖α(2)
∞ ‖ =

√√√√ n∑
i=n̂+1

α∞(i)2 ≤
√

sn̂+1 + · · ·+ sn .

Lemma 16.

‖C− C̃‖ ≤
√∑

σ

‖Aσ‖2
√

sn̂+1 + · · ·+ sn
sn̂

.

Proof (sketch): Let Γ = C− C̃ =
∑
σ(Aσ− Ãσ)⊗Bσ .

By expanding Aσ − Ãσ in this expression one can see that

Γ =

[
0 Γ(12)

Γ(21) 0

]
,

where Γ(ij) =
∑
σ A

(ij)
σ ⊗Bσ for ij ∈ {12, 21}. Since both

Γ(12) and Γ(21) are unitarily equivalent to block-diagonals
matrices, Γ is also unitarily equivalent to a block-diagonal
matrix. Thus, after a calculation we get

‖Γ‖ = max

{
‖
∑
σ

A(12)
σ ⊗Aσ‖, ‖

∑
σ

A(21)
σ ⊗Aσ‖

}
.

(4)
Finally one bounds the two terms in the maximum above as
follows. First use the triangle and Cauchy–Schwarz inequali-
ties to show that:

‖
∑
σ

A(12)
σ ⊗Aσ‖ ≤

√∑
σ

‖A(12)
σ ‖2

√∑
σ

‖Aσ‖2 .

Then use Lemma 11 to obtain the bound∑
σ

‖A(12)
σ ‖2 ≤

∑
σ

‖A(12)
σ ‖2F ≤

sn̂+1 + · · ·+ sn
sn̂

.

A similar bound on the second term in (4) follows mutatis
mutandis from a mimetic argument.



Step 3: Now we can put all the above together in order to
obtain the bound in Theorem 12. We start with the following
bound for |∆t| for some fixed t, which follows from simple
algebraic manipulations:

|∆t| ≤

(
C ′1ρ

t
f + C ′2

tρt−1
f√
sn̂

)√
sn̂+1 + · · ·+ sn ,

where C ′1 = 2‖α0‖2‖α∞‖ and C ′2 =

2‖α0‖2‖α∞‖2
(∑

σ ‖Aσ‖2
)1/2

are constants depending
only on f .

Finally, using that ‖f − f̂‖22 =
∑
t≥0 ∆t, we can sum all

the bounds on ∆t and obtain

‖f − f̂‖22 ≤
(
C1 +

C2√
sn̂

)√
sn̂+1 + · · ·+ sn

≤ Cf
√
sn̂+1 + · · ·+ sn ,

with C1 = C ′1/(1 − ρf ), C2 = C ′2/(1 − ρf )2, and Cf =
C1 + C2/

√
sn. This concludes the proof of Theorem 12.

Note that Assumption 1 played a crucial role in asserting
the convergence of

∑
t≥0 ρ

t
f . Although the assumption may

not hold in general, it can be shown using the results from
[35, Section 2.3.4] that there exists a minimal WFA D with
fD = f2 such that ‖

∑
σ Dσ‖ < 1. Thus, by Theorem 1 we

have Dσ = Q−1A⊗2
σ Q for some Q. It is then possible to

rework the proof of Lemma 13 using D and obtain a similar
bound involving ‖

∑
σ Dσ‖ instead of ‖C‖ and ‖C̃‖. The

details of this approach will be developed in a longer version
of this paper, but it suffices to say here that in the end one
obtains the same bound given in Theorem 12 with a different
constant C ′f .

V. TECHNICAL DISCUSSIONS

This section collects in-detail discussions about two tech-
nical aspects of our work. The first one is the relation and
consequences of our results with respect to the mathematical
theory of low-rank approximation of rational series. The
second part makes some remarks about the assumption on the
spectral radius of WFA made in our results from Sections III
and IV.

A. Low-rank Approximation of Rational Series

We have already discussed how the behavior of the bound
(3) matches what intuition suggests. Let us now discuss a
little bit more about the quantitative aspects of the bound.
In particular, we want to make a few observations about the
connection of (3) with low-rank approximation of matrices.
We hope these will shed some light on the mathematical theory
of low-rank approximation of rational series, and its relations
with low-rank approximations of infinite Hankel matrices – a
question which certainly deserves further investigation.

Recall that given a rank-n matrix M ∈ Rd1×d2 and some
1 ≤ n̂ < n, the matrix low-rank approximation problem
asks for a matrix M̂ attaining the optimal of the following
optimization problem:

min
rank(M′)≤n̂

‖M−M′‖F .

It is well-known the solution to this problem can be computed
using the SVD of M and satisfies the following error bounds
in terms of Schatten p-norms:

‖M− M̂‖S,p = ‖(sn̂+1, . . . , sn)‖p .

Using these results it is straightforward to give lower
bounds on the approximation errors achievable by low-rank
approximation of rational series in terms of Schatten–Hankel
norms (cf. Section III-A). Let 1 ≤ p ≤ ∞ and suppose f ∈ `1R
has rank n and Hankel singular values s1 ≥ · · · ≥ sn. Then
the following holds for every f ′ ∈ `1R with rank(f ′) ≤ n̂:

‖f − f ′‖H,p ≥ ‖(sn̂+1, . . . , sn)‖p . (5)

On the other hand, we define the optimal `2 approximation
error of f with respect to all rational functions of rank at most
n̂ as

εoptn̂ = inf
rank(f ′)≤n̂

‖f − f ′‖2 .

It is easy to see the infimum will be attained at some
f̂optn̂ ∈ `2R. If f̂ svan̂ ∈ `2R denotes the function realized by
the solution obtained from our SVATruncation algorithm,
then Theorem 12 implies the bound

εoptn̂ ≤ ‖f − f̂
sva
n̂ ‖2 ≤ C

1/2
f ‖(sn̂+1, . . . , sn)‖1/41 . (6)

Combining the bounds (5) and (6) above, we can conclude
that the performance of our approximation f̂ svan̂ with respect
to f and f̂optn̂ can be bounded as follows:

‖f − f̂optn̂ ‖2 ≤ ‖f − f̂
sva
n̂ ‖2 ≤ C

1/2
f ‖f − f̂

opt
n̂ ‖

1/4
H,1 .

In future work we plan to investigate the tightness of these
bounds and the computational complexity of (approximately)
computing f̂optn̂ .

B. Spectral Radius Assumptions

The algorithms presented in Sections III and IV assume
their input is a WFA A = 〈α0,α∞, {Aσ}〉 such that A⊗ =∑
σ Aσ ⊗Aσ has spectral radius ρ(A⊗) < 1. This condition

is used in order to guarantee the existence of a closed-
form expression for the summation of the series

∑
t≥0(A⊗)t.

Algorithm ComputeSVA uses this expression for computing
the Gram matrices Gp = P>APA and Gs = S>ASA associated
with the FB rank factorization HfA = PAS>A induced by A.
A first important remark is that since ρ(A⊗) is defined in
terms of the eigenvalues of A⊗, the assumption can be tested
efficiently. The rest of this sections discusses the following
two questions: (1) is the assumption always true in general?
and, (2) if not, is there an alternative way to compute the Gram
matrices needed by ComputeSVA?

Regarding the first question, let us start by pointing out a
natural way in which one could try to prove that the assump-
tion always hold. This approach is based on the following
result due to F. Denis [36].

Proposition 17. Let A = 〈α0,α∞, {Aσ}〉 be a minimal WFA
realizing fA ∈ `1R. Then the spectral radius of A =

∑
σ Aσ

satisfies ρ(A) < 1.



In view of this, a natural question to ask is whether the
fact ρ(A) < 1 implies ρ(A⊗) < 1. While this follows from
the equation ρ(M ⊗M) = ρ(M)2 in the case with |Σ| = 1,
the result is not true in general for arbitrary matrices. In fact,
obtaining interesting bounds on the spectral radius of matrices
of the form M1⊗M1 +M2⊗M2 is an area of active research
in linear algebra [37]. Following this approach would require
proving new bounds along these lines that apply to matrices
defining WFA for absolutely convergent rational series. An
alternative approach based on Proposition 17 could be to show
that the automaton computing f2

A obtained in Lemma 8 is
minimal. However, this is not true in general as witnessed by
the following example. Let A be the WFA over Σ = {a, b}
with 2 states given by: α>0 = [1 0], α>∞ = [1/3 1/3],

Aa =

[
0 1/3

1/3 0

]
,

Ab =

[
−1/3 0

0 1/3

]
.

Note that ‖fA‖1 = 1 and therefore we have fA ∈ `1R. It is
easy to see, by looking at the rows of HfA corresponding
to prefixes λ and a, that rank(fA) = 2; thus, A is minimal.
On the other hand, one can check that f2

A(x) = 3−2(|x|+1)

for every x ∈ Σ?. Thus, f2
A has rank 1 and the 4-state WFA

for f2
A constructed in Lemma 8 is not minimal. In conclusion,

though we have not been able to provide a counter-example to
the fact that ρ(A⊗) < 1 when A is a minimal WFA realizing a
function fA ∈ `1R, we suspect that making progress in either
proving or disproving this assumption will require a deeper
understanding of the structure of absolutely convergent rational
series.

The second question is whether it is possible to compute
an SVA efficiently for a WFA such that ρ(A⊗) ≥ 1. The key
ingredient here is to provide an alternative way of computing
the Gram matrices required in ComputeSVA. A first remark
is that such Gram matrices are guaranteed to exist regardless
of whether the assumption on the spectral radius of A⊗ holds
or not; this follows from the proof of Lemma 9. It also follows
from the same proof that each entry Gp(i, j) corresponds to
the inner product 〈pi, pj〉 between two rational functions in
`2R; the same holds for the entries of Gs. This observation
suggests that, instead of computing the Gram matrices in “one
shot” as in Lemma 9, it might be possible to compute each
entry Gp(i, j), 1 ≤ i ≤ j ≤ n, separately – note the constraint
on the indices exploits the fact that Gp is symmetric. This
can be done as follows. Recall that Ap,i = 〈α0, ei, {Aσ}〉
computes pi for all i ∈ [n]. Then the function fp,i,j = pi · pj
is computed by the WFA Ap,i,j = 〈α⊗2

0 , ei ⊗ ej , {A⊗2
σ }〉

with n2 states. Now observe that by Hölder’s inequality we
have fp,i,j ∈ `1R. Therefore, if Ãp,i,j = 〈α̃0, α̃∞, {Ãσ}〉 is a
minimization of Ap,i,j with rank(fp,i,j) states, then we must
have ρ(Ã) < 1 by Proposition 17, where Ã =

∑
σ Ãσ . Using

the same argument as in Lemma 8 we can conclude that

Gp(i, j) = 〈pi, pj〉 =
∑
x∈Σ?

fp,i,j(x) = α̃>0 (I− Ã)−1α̃∞ .

This gives an alternate procedure for computing Gp and Gs

which involves Θ(n2) WFA minimizations of automata with
n2 states, each of them taking time O(n6) (cf. [27]). Hence,
the cost of this alternate procedure is of order O(n8), and
should only be used when it is not possible to use the O(n6)
procedure given in Section III-B.

VI. CONCLUSIONS AND FUTURE WORK

With this paper we initiate a systematic study of approx-
imate minimization problems of quantitative systems. Here
we have focused our attention on weighted finite automata
realizing absolutely convergent rational series. These are, of
course, not all rational series but include many situations of
interest, for example, all fully probabilistic automata. We have
shown how the connection between rational series and infinite
Hankel matrices yields powerful tools for analysing approx-
imate minimization problems for WFA: the singular value
decomposition of infinite Hankel matrices and the singular
values themselves. Our first contribution: an algorithm for
computing the SVD of an infinite Hankel matrix by operating
on its “compressed” representation as a WFA uses these tools
in a crucial way. Such a decomposition leads us to our second
contribution: the definition of the singular value automaton
(SVA) associated with a rational function f . SVA provide a
new canonical form for WFA which is unique under the same
conditions guaranteeing uniqueness of the SVD decomposition
for Hankel matrices. We were also able to give an efficient
algorithm for computing the SVA of a rational function f from
any WFA realizing f .

Our second set of contributions are related to the application
of SVA canonical forms to the approximate minimization
of WFA. The algorithm SVATruncation and the corre-
sponding analysis presented in Theorem 12 provide novel
and rigorous bounds on the quality of our approximations
measured in terms of ‖f − f̂‖2, the `2 norm between the
original and minimized functions. The importance of such
bounds lies in the fact that they depend only on intrinsic
quantities associated with f .

The present paper opens the door to many possible ex-
tensions. First and foremost, we will seek further applica-
tions and properties of the SVA canonical form for WFA.
For example, a simple question that remains unanswered
is to what extent the equations in Lemma 11 are enough
to characterize the weights of an SVA. In the near future
we are also interested in conducting a thorough empirical
study by implementing the algorithms presented here. This
should serve to validate our ideas and explore their possible
applications to machine learning and other applied fields where
WFA are used frequently. We will also set out to study the
tightness of the bound in Theorem 12 in practical situations,
and conjecture further refinements if necessary. It should also
be possible to extend our results to other classes of systems
closely related to weighted automata. In particular, we want
to study approximate minimization problems for weighted tree
automata and weighted context-free grammars, for which the
notions of Hankel matrix can be naturally extended. Along



these lines, it will be interesting to compare our approach
to recent works that improve the running time of parsing
algorithms by reducing the size of probabilistic context-free
grammars using low-rank tensor approximations [38], [39].

Though we have not emphasized it in the present paper,
this work is inspired, in part, from the general co-algebraic
view of Brzozowski-style minimization [2]. We have expressed
everything in very concrete matrix algebra terms because we
are using the singular value decomposition in a crucial way.
However, there are other minimization schemes for other types
of automata coming from other dualities [1] for which we think
similar approximate minimization schemes can be developed.
A general abstract notion of approximate minimization is, of
course, a very tempting subject to pursue and, after we have
more examples, it would be certainly high on our agenda.
For the moment, however, we will concentrate on concrete
instances.
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