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Abstract

We develop a quantitative analogue of equational reasoning which
we call quantitative algebra. We define an equality relation indexed
by rationals: a =ε b which we think of as saying that “a is ap-
proximately equal to b up to an error of ε”. We have 4 interesting
examples where we have a quantitative equational theory whose
free algebras correspond to well known structures. In each case we
have finitary and continuous versions. The four cases are: Haus-
dorff metrics from quantitive semilattices; p-Wasserstein metrics
(hence also the Kantorovich metric) from barycentric algebras and
also from pointed barycentric algebras and the total variation met-
ric from a variant of barycentric algebras.

1. Introduction

One of the exciting themes in research in programming language
theory is the algebraic study of computational phenomena initiated
by Moggi (Moggi 1988, 1991) where he showed how one can view
notions of computation as monads. This allowed the incorporation
of computational effects into a functional core in a compositional
way. This became enormously influential and even led to mon-
ads being directly incorporated into programming languages like
Haskell. It was a decade later that Plotkin and Power (Plotkin and
Power 2001, 2002) began the study of computational effects from
the point of view of equations and operations. From a categorical
perspective one is moving from monads to Lawvere theories; see
the excellent historical survey by Hyland and Power for more de-
tails (Hyland and Power 2007).

One aspect of computational effects that has attracted significant at-
tention is probabilistic computation (Saheb-Djahromi 1978, 1980;
Kozen 1981, 1985; Jones and Plotkin 1989). This is, in fact, grow-
ing significantly with recent work spurred by interest from the ma-
chine learning community; see for example (Borgström et al. 2011;
Gordon et al. 2014) among many other research efforts on the the-
ory and practice of probabilistic programming as it applies to ma-
chine learning applications and (Foster et al. 2015) for a recently
developed probabilistic programming language for network appli-
cations. Early work on lambda-calculi for probabilistic program-
ming is due to Saheb-Djahromi (Saheb-Djahromi 1980). Claire
Jones (Jones 1990) developed a probabilistic λ-calculus in her the-
sis, gave an operational semantics and proved adequacy results. The
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fundamental work on probability monads is due to Lawvere (Law-
vere 1964) (before monads were invented!) and Gıry (Giry 1981).
One can develop a probabilistic λ-calculus using this monad (Ram-
sey and Pfeffer 2002).

In the present paper we develop an equational approach to reason-
ing about quantitative phenomena. The key new idea is to introduce
equations annotated with rational numbers written =ε to capture
the notion of approximate equality. One should think of s =ε t
as saying that s and t are “within ε of each other.” Essentially we
are working with enriched Lawvere theories; see (Robinson 2002)
for an expository account of this subject. We do not emphasize the
category-theoretic underpinnings here; instead we concentrate on
presenting the notion of quantitative equations as concretely as pos-
sible. The bulk of the paper is spent on some very pleasing exam-
ples and on the general notions developed in the spirit of traditional
universal algebra. In later work we will carefully spell out the cat-
egorical picture.

The examples are all of the following form: we give a simple set of
equations and define the algebras of the resulting theory. We then
induce metrics on the free algebra (our metrics can be extended in
that they can take value∞) and identify them with (extended ver-
sions of) commonly defined metrics. Thus, for example, we show
that the Hausdorff metric arises from a quantitative version of semi-
lattices. We show that the total variation metric arises from an ax-
iomatization of convexity in terms of barycentric axioms. We show
that the famous Kantorovich1 metric (Villani 2008; van Breugel
and Worrell 2001; Panangaden 2009) arises from a variation of the
same axioms. In fact, already the p-Wasserstein metric, which is
a generalization of the Kantorovich metric arises from a variation
of the same axioms. These metrics (especially Kantorovich) play a
fundamental role in the study of probabilistic bisimulation (Panan-
gaden 2009) and transport theory (Villani 2008). We present both
finitary and infinitary versions of these constructions.

Metric ideas have been important in denotational semantics from
the beginning especially in Jaco de Bakker’s school; see (van
Breugel 2001) for a survey. It may seem that for probabilistic rea-
soning one needs to work with measure theory. This is, of course,
true but measure theory works best when there is metric struc-
ture; as witnessed, for example, by the ubiquity of Polish spaces
in discussions of measure theory. The algebraic approach to ef-
fects (Plotkin and Power 2001, 2002, 2003, 2004; Hyland et al.
2006, 2007) has not, until now, been considered in a metric con-
text. Owing to the increasing importance of probability in computer
science it seems worthwhile to investigate this now. The first order
of business then is to see how some familiar and important mon-
ads fit into this approach. In this paper, we only consider monads
related to probabilistic and nondeterministic systems. However the
well-known basic examples (exceptions, states, I/O) also fit into

1 This metric goes by many names: Hutchinson, Wasserstein (with numer-
ous variations in spelling) and Kantorovich-Rubinstein. Perhaps the most
commonly used name is Wasserstein.



the framework of this paper, albeit with some inessential limita-
tions arising from our working with operations with finite discrete
arities.

2. Quantitative Equational Theories

An algebraic similarity type consists of a finite set of function sym-
bols each with fixed finite arity. Consider an algebraic similarity
type Ω and algebras of this type.

Given a countable set X of variables, let TX be the set of terms
constructed over Ω from X , this is the term algebra of Ω over
X .

A substitution is a function σ : X −→ TX . It can be canonically
extended to terms σ : TX −→ TX by:

• for any f : n ∈ Ω, σ(f(t1, ..tn)) = f(σ(t1), ..σ(tn)).

In what follows a substitution is just a function σ : TX −→ TX
satisfying the conditions stated above and Σ(X) denotes the set of
substitutions on TX .

If Γ ⊆ TX and σ ∈ Σ(X), let σ(Γ) = {σ(t) | t ∈ Γ}.

Let V(X) denote the set of indexed equalities of the form x =ε y
for x, y ∈ X and ε ∈ Q+; similarly, let V(TX) denote the set of
indexed equalities of the form t =ε s for t, s ∈ TX , ε ∈ Q+. We
call them quantitative equations.

DEFINITION 2.1 (Deducibility Relation). Given an algebraic sim-
ilarity type Ω and a set X of variables, a deducibility relation of
type Ω over X is a relation `⊆ 2V(TX) × V(TX) closed under
the following rules stated for arbitrary t, s, u, t1, · · · tn ∈ TX ,
ε, ε′ ∈ Q+, Γ,Γ′ ⊆ V(TX) and φ, ψ ∈ V(TX); where (Γ, φ) ∈`
is written as Γ ` φ:

(Refl) ∅ ` t =0 t

(Symm) {t =ε s} ` s =ε t.

(Triang) {t =ε s, s =ε′ u} ` t =ε+ε′ u.

(Max) For ε′ > 0, {t =ε s} ` t =ε+ε′ s.

(Arch) For ε ≥ 0, {t =ε′ s | ε′ > ε} ` t =ε s.

(NExp) {t1 =ε s1, . . . tn =ε sn} ` f(t1, ..tn) =ε f(s1, ..sn),
for any f : n ∈ Ω,

(Subst) If σ ∈ Σ(X), Γ ` t =ε s implies σ(Γ) ` σ(t) =ε σ(s).

(Cut) If Γ ` φ for all φ ∈ Γ′ and Γ′ ` ψ, then Γ ` ψ.

(Assumpt) If φ ∈ Γ, then Γ ` φ.

Let E(TX) = Pf (V(TX)) × V(TX), where Pf (A) is the finite
powerset of A; we call its elements quantitative inferences on TX .
If (V, φ) ∈ E(TX), we refer to the elements of V as the hypothe-
ses of the inference. An unconditional quantitative inference is a
quantitative inference with an empty set of hypotheses.

Of particular interest for us is the subclass E(X) = Pf (V(X)) ×
V(TX) of quantitative inferences, hereafter called basic quantita-
tive inferences, where the hypotheses are finite sets of quantitative
equations between variables. The axioms for theories will be basic
quantitative inferences.

Notation: Hereafter in the paper we fix a countable set X of
variables that we use to define quantitative equational theories over
various algebraic similarity types.

DEFINITION 2.2 (Quantitative Equational Theory). Given a set
S ⊆ E(X) of basic quantitative inferences on TX , denote by `S
the smallest deducibility relation that contains S. The quantitative
equational theory induced by S is the set

U def
= (`S) ∩ E(TX).

The elements of S are the axioms of the theory U .

Note that in our current setting a quantitative equational theory
does not contain any conditional equation with infinitely many
hypotheses, nor indeed does the set S. However, in constructing U
from S, we can use the infinitary archimedean rule in derivations.
This setting can be extended to include inferences with a countable
set of hypothesis; and the basic theory developed in what follows
can be easily adapted.

If U is a quantitative equational theory and ∅ ` s =e t ∈ U , we
will abuse notation and also write U ` s =e t.

DEFINITION 2.3 (Consistent theories). A quantitative equational
theory U over TX is inconsistent if U ` x =0 y, where x, y ∈ X
are two distinct variables. U is consistent if it is not inconsistent.

3. Quantitative Algebras

DEFINITION 3.1 (Quantitative Algebra). A quantitative algebra is
a tuple A = (A,ΩA, dA), where (A,ΩA) is an algebra of type
Ω and dA : A × A −→ R+ ∪ {∞} is a metric on A (possibly
taking infinite values) such that all the operators in the signature
are non-expansive. i.e., for any f : n ∈ ΩA, any ai, bi ∈ A,
i = 1, ..n and any ε ≥ 0, dA(ai, bi) ≤ ε for all i = 1, ..n implies
dA(f(a1, .., an), f(b1, .., bn)) ≤ ε.

A quantitative algebra is degenerate if its support is empty or it is a
singleton.

As expected, a homomorphism of quantitative algebras of signature
Ω is just a non-expansive homomorphism of Ω-universal algebras.
The quantitative algebras of type Ω and their homomorphisms form
a category, denoted Ω-QA.

The quantitative algebra B = (B,Ω, dB) is a subalgebra of the
quantitative algebra A = (A,Ω, dA), denoted by B ≤ A, if B
is a subalgebra of A as universal algebra and, in addition, for any
a, b ∈ B, dB(a, b) = dA(a, b).

DEFINITION 3.2 (Universal mapping property). Let K be a sub-
category of quantitative algebras of type Ω, C an arbitrary cate-
gory, G : K −→ C a functor and C an object in C. A universal
morphism from C to G is a pair (A, α) consisting of a quantita-
tive algebra A ∈ K and a morphism α : C −→ GA in C, such that
for every pair (B, β) with B ∈ K and β : C −→ GB a morphism
in C, there exists a unique homomorphism of quantitative algebras
h : A −→ B such that Gh ◦ α = β. Diagrammatically

in C in K
C GA A

GB B

β

α

Gh h

A quantitative algebraA has the universal mapping property for C
to G if there exists a universal morphism (A, α) from C to G.



4. Algebraic Semantics

Given a quantitative algebra A = (A,ΩA, dA) of type Ω and a set
X of variables, an assignment on A is a function ι : X −→ A that
is canonically extended to ι : TX −→ A over Ω-terms by

• for any f : n ∈ Ω, ι(f(t1, . . . , tn)) = fA(ι(t1), . . . ι(tn)).

We denote by T(X|A) the set of assignments on A.

DEFINITION 4.1 (Satisfiability). Consider a quantitative alge-
bra A = (A,ΩA, dA) and a set X of variables. A satisfies
a quantitative inference Γ ` s =ε t ∈ E(TX) over TX ,
written Γ |=A s =ε t, if for all assignments ι ∈ T(X|A)
it is the case that dA(ι(t′), ι(s′)) ≤ ε′ for all s′ =ε′ t

′ ∈
Γ implies dA(ι(s), ι(t)) ≤ ε.

In these cases we say that A is a model of the inference. Similarly,
for a set of quantitative inferences Γ, we say thatA is a model of Γ
ifA satisfies each element of Γ. A quantitative inference (a quanti-
tative equational theory) is satisfiable if it has a model.

Instead of ∅ |=A s =ε t we also write A |= s =ε t.

DEFINITION 4.2 (Equational Class of Quantitative Algebras). For
a quantitative equational theory U over the Ω-terms TX , the equa-
tional class induced by U is the class of quantitative algebras of
signature Ω satisfying U .

We denote this class as well as the full subcategory of Ω-quantitative
algebras satisfying U by K(Ω,U). It is closed under isomorphic
images, subalgebras and small products.

5. Completeness for Quantitative Algebras

Fix a signature Ω and a quantitative equational theory U over Ω-
terms in TX with variables in the countable set X . We consider
a set M of generators and we construct a quantitative algebra
T[M ] with support a quotient of TM w.r.t. 0-provability induced
by U .

Define the pseudometric dU : TX×TX −→ R+∪{∞} by

dU (t, s) = inf{ε | ∅ ` t =ε s ∈ U}

It is not difficult to verify that dU is also characterized by

dU (t, s) = inf{ε | ∀V ∈ Pf (V(X)), V ` s =ε t ∈ U} .

Let P be the set of all pseudometrics that makes all the assignments
in T(X|TM) non-expansive. We define the following pseudomet-
ric on TM for arbitrary p, q ∈ TM :

d(p, q) = sup{δ(p, q) | δ ∈ P} ,

This construction is known as the final pseudometric for a cone of
functions, where in this specific case the cone is T(X|TM).

Let (T[M ], d
∼=) be the metric space induced by the pseudometric d

after quotienting TM w.r.t. the equivalence relation ∼= = {(p, q) |
d(p, q) = 0}. Let T[M ] be the set of ∼=-equivalence classes on
TM ; hence, d∼=(p

∼=, q
∼=) = d(p, q), for any p, q ∈ TM .

The fact that the equational theory is axiomatized by basic quan-
titative inferences allows us to prove that ∼= is a congruence w.r.t.
the operators in Ω, i.e., for any f : n ∈ Ω and pi, qi ∈ TM ,
i = 1, . . . , n,

pi ∼= qi implies f(p1, . . . , pn) ∼= f(q1, . . . , qn) .

Due to this property, we can endow T[M ] with the structure of an
Ω-algebra by interpreting f : n ∈ Ω as follows:

f(p
∼=
1 , . . . , p

∼=
n ) = (f(p1, . . . pn))

∼= .

Thus we get a quantitative algebra T[M ] = (T[M ],Ω, d
∼=).

THEOREM 5.1. T[M ] = (T[M ],Ω, d
∼=
U ) ∈ K(Ω,U).

Term Quantitative algebra. In particular, the previous construc-
tion can also be done for the case when M = X and we obtain
the quantitative algebra T[X] = (T[X],Ω, d

∼=) of terms modulo
0-provability.

We prove now that when we construct the distance d on TX what
we get is, in fact, exactly dU .

Note that any assignment ι ∈ T(X|T [X]) is a substitution on TX
and applying (Subst), for any ι ∈ T(X|T [X]),

∅ ` s =e t ∈ U iff ∅ ` ι(s) =e ι(t) ∈ U .
An immediate consequence of this is that for any ι ∈ T(X|T [X]),

dU (s, t) = dU (ι(s), ι(t)).

Hence, any ι ∈ T(X|T [X]) is non-expansive. This means that
dU ∈ P, then by definition d ≥ dU .

On the other hand, dU ≥ d, because d must make all the maps
in T(X|TX) non-expansive, and in particular, it must make the
identity on TX non-expansive.

Hence, for M = X we get that d = dU .

This equality allows us to further speak about T[X] = (T[X],Ω, d
∼=
U )

as the algebra generated by the set X .

Completeness. These results allow us now to prove the following
strong completeness theorem.

THEOREM 5.2 (Completeness). Given a quantitative equational
theory U over the set X of variables and signature Ω,

[Γ |=A φ for any A ∈ K(Ω,U)] iff Γ ` φ ∈ U .

Proof. The right-to-left implication (soundness) is a direct conse-
quence of the definition of K(Ω,U).

It remains for us to prove the left-to-right implication:

[Γ |=A φ for any A ∈ K(Ω,U)] implies Γ ` φ ∈ U .
Suppose that the left-hand side is satisfied. Assume that φ is the
quantitative equation s =e t.

Let U ∪ Γ be the quantitative equational theory induced by U ∪
{∅ ` ψ | ψ ∈ Γ}. Obviously, U ∪ Γ is a theory over TX . Applying
Theorem 5.1, we obtain that (T[X],Ω, d

∼=
U∪Γ

) is a model for U ∪ Γ,
hence both for U and for {∅ ` ψ | ψ ∈ Γ}.

Because (T[X],Ω, d
∼=
U∪Γ

) ∈ K(Ω,U), (T[X],Ω, d
∼=
U∪Γ

) satisfies
Γ ` φ. And because (T[X],Ω, d

∼=
U∪Γ

) is a model of Γ, we obtain
that (T[X],Ω, d

∼=
U∪Γ

) is also a model for s =e t. Consequently,
inf{ε | U ∪ Γ ` s =ε t} ≤ e, i.e., dU∪Γ(s, t) ≤ e.

Suppose now that Γ ` s =e t 6∈ U .
If ∅ ` s =e t ∈ U , applying (Cut) we get that Γ ` s =e t ∈ U -
contradiction.
Also, ∅ ` s =e t 6∈ {∅ ` ψ | ψ ∈ Γ}, because otherwise s =e t
is derived from the hypothesis in Γ and the use of some of the
closure conditions in Definition 2.2, i.e., Γ ` s =e t is guaranteed
by the closure rules in Definition 2.2. But then, we also have
Γ ` s =e t ∈ U - contradiction.



Since ∅ ` s =e t 6∈ U ∪Γ, if ∅ ` s =e t ∈ U ∪ Γ, then there exists
Γ′ ⊆ Γ and ∆ ∈ U such that Γ′ ∪∆ ` s =e t ∈ U . Then, using
(Assumpt) and (Cut), we must also have Γ ∪∆ ` s =e t ∈ U .

Because ∅ ` ρ ∈ U for all ρ ∈ ∆, we also have Γ ` ρ ∈ U for
all ρ ∈ ∆ and applying (Assumpt) we get further Γ ` ρ ∈ U for
all ρ ∈ Γ ∪∆. Since Γ ∪∆ ` s =e t ∈ U , applying (Cut) we get
Γ ` s =e t ∈ U - contradiction.

Hence, ∅ ` s =e t 6∈ Γ ∪ U .

Let i = inf{ε | Γ ∪ U ` s =ε t} = dΓ∪U (s, t).

If i ∈ Q, then using (Arch) we can prove that Γ ∪ U ` s =i t and
further (Max) guarantees that i > e, since ∅ ` s =e t 6∈ Γ ∪ U .

If i 6∈ Q, from ∅ ` s =e t 6∈ Γ ∪ U we derive that i ≥ e. But since
e ∈ Q, this means that i > e.

Hence, dΓ∪U (s, t) > e, contradicting dU∪Γ(s, t) ≤ e.

The next theorem proves that the construction of T[M ] is universal
(in a categorical sense) with respect to all the quantitative algebras
satisfying the quantitative equational theory U . Specifically, T[M ]
has the universal mapping property for M to the (obvious) forget-
ful functor USet : K(Ω,U) −→ Set. Concretely, for any quanti-
tative algebra A = (A,ΩA, dA) ∈ K(Ω,U) and any set-map
α : M −→ A, there exists a unique morphism of quantitative al-
gebras h : T[M ] −→ A that makes the following diagram commu-
tative.

in Set in K(Ω,U)

M T[M ] T[M ]

A A

α

ηM

h h

where ηM : M −→ T[M ] is the map given by ηM (m) = m
∼=.

The map h is characterized as follows:

• for m ∈M , h(m
∼=) = α(m);

• for f : n ∈ Ω and p1, . . . , pn ∈ TM ,

h((f(p1, . . . , pn))
∼=) = fA(h(p

∼=
1 ), . . . , h(p

∼=
n )).

THEOREM 5.3. (T[M ], ηM ) is a universal arrow from M ∈ Set
to USet.

Since X and U are arbitrarily chosen, Theorem 5.3 justifies calling
T[X] the free Ω-quantitative algebra generated over X .

In standard universal algebras, the set of terms gives rise to a
monad, the term monad. As one would expect, this is the case also
for quantitative algebras, with the only difference that now terms
are quotiented w.r.t. 0-provability in U .

The free-construction above provides a functor TU : Set −→ Set
that maps objects M ∈ Set to the set T[M ] of Ω-terms. TU is
monadic, with unit and multiplication given by the natural trans-
formations η : Id ⇒ TU and µ : TUTU ⇒ TU , characterized, for
arbitrary m ∈ M , t ∈ T[M ], f : n ∈ Ω, C1, .., Cn ∈ T[T[M ]]
by:

ηM (m) = m
∼= , µM (t) = t ,

µM (f(C1, .., Cn)
∼=) = f

(
µM (C1), .., µM (Cn)

)∼=
.

Note that this monad corresponds to the standard equational term
monad constructed from the equational for universal algebras. In
the next sections we show that quantitative equational theories
are actually stronger then their non-quantitative counterparts, by
allowing the construction of metric term monads.

6. Free Quantitative Algebras over Metric
Spaces

Consider a quantitative equational theory U of type Ω over TX ,
where X is the countable set of variables.

There is an obvious forgetful functor UMet : K(Ω,U) −→ Met
from the category K(Ω,U) of algebras satisfying U to the cate-
gory of metric spaces and non-expansive maps. Similarly to Theo-
rem 5.3, we aim to show that any metric space (M,d) generates a
free quantitative algebra Td[M ] in K(Ω,U).

Let ΩM = Ω ∪ {m : 0 | m ∈ M} be the extension of Ω with
additional constant symbols taken from M (assume that Ω ∩M =
∅); and let UM be the smallest quantitative equational theory of type
ΩM over X , containing U and satisfying, for all m,n ∈ M , the
additional axioms ∅ ` m =ε n, whenever d(m,n) ≤ ε .

The construction ofUM guarantees that any algebra in K(ΩM ,UM )
can be turned into an algebra in K(Ω,U) simply by forgetting the
interpretations of the constants in M . Conversely, given a non-
expansive map α : M −→ A, any algebra A = (A,ΩA, dA) ∈
K(Ω,U) can be turned into an algebra in K(ΩM ,UM ) just by in-
terpreting each constant symbolm : 0 ∈M as α(m) ∈ A.

This relation is functorial, and it gives the (forgetful) functor

U : K(ΩM ,UM ) −→ K(Ω,U) .

Consider T[∅] ∈ K(ΩM ,UM ), the free ΩM -quantitative algebra
generated over the empty set and define

Td[M ] = U(T[∅]) ∈ K(Ω,U)

where Td[M ] = (Td[M ],Ω, d
∼=
M ).

The following theorem states that Td[M ] is the quantitative algebra
in K(Ω,U) freely generated from the metric space (M,d). Specif-
ically, Td[M ] has the universal mapping property for (M,d) ∈
Met to the forgetful functor UMet : K(Ω,U) −→ Met. This is
described by the commutative diagram below:

in Met in K(Ω,U)

(M,d) (Td[M ], d
∼=
M ) Td[M ]

(A, dA) A

α

ηM

h h

where ηM : M −→ Td[M ] is given by ηM (m) = m
∼=.

THEOREM 6.1. (Td[M ], ηM ) is a universal arrow from (M,d) ∈
Met to UMet.

The free-construction described above gives rise to the metric term
monad: given a quantitative equational theory U , one can define
the functor TU : Met −→ Met that maps an object (M,d) ∈
Met to the metric space (Td[M ], d

∼=
M ) of Ω-terms constructed

over M and quotiented w.r.t. 0-provability in UM , with metric d∼=M
induced by the equational theory UM . TU is monadic, with unit
and multiplication being the natural transformations η : Id ⇒ TU
and µ : TUTU ⇒ TU , defined for arbitrary m ∈ M , t ∈ Td[M ],
f : n ∈ Ω, and C1, .., Cn ∈ Td[Td[M ]], by

ηM (m) = m
∼= , µM (t) = t ,

µM (f(C1, .., Cn)
∼=) = f

(
µM (C1), .., µM (Cn)

)∼=
.



Unlike the monad described in the previous section, this monad
lives in Met and the metrics associated with the set of terms are
uniquely induced by the quantitative equational theories U .

We conclude this section with a characterization of the consistency
of UM from a metric perspective.

We say that a metric space is degenerate if its support is empty or
a singleton.

THEOREM 6.2. If (M,d) is a non-degenerate metric space, then
UM is consistent iff the map ηM : (M,d) −→ (Td[M ], d

∼=
M ) is an

isometry2.

COROLLARY 6.3. If (M,d) is non-degenerate, then UM is incon-
sistent iff U is inconsistent.

7. Free models over complete metric spaces

A basic result that we will sketch in this section is the following: if
one takes a quantitative theory and forms its free algebra in the cat-
egory of metric spaces and then takes its metric completion (suit-
ably extending the operations) then that is the free algebra in the
category of complete metric spaces. This gives a general character-
ization of the monad on complete metric spaces; though, of course,
for specific examples one can give much better characterizations.
The corresponding result fails for dcpos.

Recall that our metrics take values in the extended positive reals.
The category of such metric spaces and non-expansive maps has
coproducts and products, whereas the usual metric spaces only
have finite products and, in general, no coproducts. One defines
components of a metric space by defining an equivalence relation
x ∼ y if d(x, y) <∞. The equivalence classes are ordinary metric
spaces, these are the components. A metric space is the coproduct
of its components.

The usual metric completion C(M) of an ordinary metric space
M is universal in the category of extended metric spaces. The
extension of a non-expansive map f : M −→ N to f is determined
by the equation:

f(limxi) = lim f(xi).

One can now form the metric completion of any space M in the
usual way. We note that it is exactly the coproduct of the com-
pletions of its components; thus one has a universal completion of
any space. The usual metric completion of a finite product of or-
dinary spaces is the product of their metric completions, so the fi-
nite product of the universal completions is a universal completion.
This argument extends to components. One has then the expected
extensions of n-ary functions to completions.

One can extend this completion to algebras. Given an algebra A
on a metric space M one obtains an algebra A on a complete
metric space by taking the completion of M and then extending
the operations on M to the completion as we described above. One
can readily verify that A is the universal completion of A.

Now we introduce the continuous equation scheme to capture the
idea that equations depend on their variables in a continuous way.

DEFINITION 7.1 (Continuous equation scheme). Let Ω be an al-
gebraic similarity type. A set

{{x1 =e1 y1, .., xn =en yn} ` s =f(e1,..,en) t | e1, .., en ∈ R+}

2 By isometry in this context we mean a distance-preserving map, since η is
obviously not a bijection.

of basic quantitative inference over TX such that f is a continuous
function in all variables is called a continuous equation scheme on
TX .

We say that a quantitative algebra satisfies a continuous equation
scheme if it satisfies all the elements of the continuous equation
scheme.

PROPOSITION 7.2. If a quantitative algebraA satisfies a continu-
ous equation scheme, so does its completion A.

From the above, one obtains the following results.

THEOREM 7.3. Consider a quantitative equational theory U ax-
iomatized by continuous equation schemes and a metric space
(M,d). The freely generated quantitative algebra Td[M ] over
the completion (M,d) of (M,d) is isomorphic to the completion
Td[M ] of the quantitative algebra Td[M ].

COROLLARY 7.4. Consider a quantitative equational theory ax-
iomatized by continuous equation schemes, over a signature with
countably many operation symbols. Then the free model over a
complete separable metric space M is separable, with countable
set of generators being the least subalgebra containing any count-
able set of generators of M .

8. Left-Invariant Barycentric Algebras

In this section we present a first example of quantitative univer-
sal algebra, the left-invariant barycentric algebra, and demonstrate
that the freely generated one is, in this case, the algebra of proba-
bility distributions with finite support over the set of generators and
the metric space is induced by the total-variation distance between
distributions.

Consider the algebraic similarity type

B = {+e : 2 | e ∈ [0, 1]}
containing, for each e ∈ [0, 1], a binary operator +e. We call it the
barycentric signature.

DEFINITION 8.1 (Left-Invariant Barycentric Equational Theory).
This theory is given by the following axiom schemata, where
x, x′, x′′ ∈ X (X is the countable set of variables) and e, e′ ∈
[0, 1]:

(B1) ` x+1 x
′ =0 x

(B2) ` x+e x =0 x

(SC) ` x+e x
′ =0 x

′ +1−e x

(SA) ` (x+e x
′)+e′ x

′′ =0 x+ee′ (x
′+ e′−ee′

1−ee′
x′′) provided that

e, e′ ∈ (0, 1)

(LI) ` x′ +e x =ε x
′′ +e x where e ≤ ε ∈ Q+

(SC) stands for skew commutativity and (SA) for skew associativity.
We call (LI) the left-invariance axiom schema. Observe that if
e ∈ Q, (LI) takes the simpler form:

` x′ +e x =e x
′′ +e x.

The algebras satisfying left-invariant barycentric equational theo-
ries are called left-invariant barycentric algebras or LIB algebras
for short.

Hereafter we focus on the the class K(B,ULI) defined by the left-
invariant barycentric equational theory ULI .



8.1 The Freely-Generated Algebra

If (S,Σ) is a measurable space and ∆[S,Σ] is the class of probabil-
ity measures over (S,Σ), the total variation distance between prob-
ability measures is defined, for arbitrary µ, ν ∈ ∆[S,Σ] by

T (µ, ν) = sup
E∈Σ
|µ(E)− ν(E)| .

Let now M be a set and T[M ] be the LIB algebra in K(B,ULI)
freely generated from M . By Theorem 5.3, T[M ] has the universal
mapping property for M to USet : K(B,ULI) −→ Set.

Denote by Π[M ] the set of finitely-supported discrete probabil-
ity distributions on M . Next we will show that Π[M ] endowed
with the total-variation distance can be organized as a LIB alge-
bra in K(B,ULI) having the universal mapping property for M to
USet : K(B,ULI) −→ Set. From the uniqueness of the universal
arrows, we will get that Π[M ] and T[M ] are isomorphic.

We can organize Π[M ] as an algebra of type B by interpreting each
operator +e : 2 ∈ B, for arbitrary µ, ν ∈ Π[M ], as follows

µ+e ν = eµ+ (1− e)ν ,
We can further regard Π[M ] as a quantitative algebra by taking the
total-variation distance as a metric on Π[M ].

THEOREM 8.2. Π[M ] = (Π[M ],B, T ) ∈ K(B,ULI).

The next theorem shows that Π[M ] has the universal mapping
property for M to USet, with universal arrow (Π[M ], δM ), where
δM : M −→ Π[M ] maps m ∈ M to δm ∈ Π[M ] —the Dirac
measure with probability mass concentrated at m ∈M .

THEOREM 8.3. (Π[M ], δM ) is an universal arrow fromM ∈ Set
to USet.

The next result follows directly by Theorem 5.3 and 8.3.

COROLLARY 8.4. The quantitative B-algebras Π[M ] and T[M ]
are isomorphic with bijective isometry h : Td[M ] −→ Π[M ] given,
for m ∈M and t, s ∈ TM by

h(m
∼=) = δm , h((t+e s)

∼=) = eh(t
∼=) + (1− e)h(s

∼=) .

Consequently, the metric induced by the quantitative equational
theory ULI coincides with the total variation distance on Π[M ].
Thus we say thatULI axiomatizes the total variation distance.

9. Quantitative Semilattices with a zero

In this section we provide a first example of free quantitative al-
gebra over metric spaces. We discuss the case of the quantitative
semilattices with a zero and show how their axiomatization in-
duces Hausdorff distances both in the finitary and in the continuous
case.

The (extended) Hausdorff metric induced by d on the set of all com-
pact subsets ofM , is defined, for arbitrary compact setsA,B ⊆M
by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

where, d(m,N) = infn∈N d(m,n) denotes the distance from an
element m ∈M to a set N ⊆M .

Consider the signature of (bounded join-) semilattices with a
zero

S = {+ : 2, 0 : 0}

containing one binary operator + and one constant 0.

DEFINITION 9.1 (Quantitative Semilattice Equational Theory).
This theory is given by the following axiom schemata where
x, x′, x′′, y, y′ ∈ X (X is the countable set of variables) and
ε, ε′ ∈ [0, 1]:

(S0) ` x+ 0 =0 x

(S1) ` x+ x =0 x

(S2) ` x+ x′ =0 x
′ + x

(S3) ` (x+ x′) + x′′ =0 x+ (x′ + x′′)

(S4) {x =ε y, x
′ =ε′ y

′} ` x + x′ =δ y + y′, where δ =
max{ε, ε′}.

In this section we focus on the algebras satisfying quantitative
semilattice equational theories; we call these quantitative semilat-
tices with a zero.

Hereafter we focus on the class K(S,US) defined by the quantita-
tive semilattice equational theory US .

9.1 The Finitary Case

Fix a metric space (M,d). Let Td[M ] be the quantitative semilat-
tice with a zero in K(S,US) freely generated from (M,d). By The-
orem 6.1, Td[M ] has the universal mapping property for (M,d) to
UMet : K(S,US) −→Met.

Denote by F[M ] the set of all finite subsets of M . In what follows
we show that F[M ] can be organized as a quantitative semilattice
with a zero in K(S,US) where the metric structure is defined
by the Hausdorff metric Hd; moreover, F[M ] has the universal
mapping property for (M,d) to UMet : K(S,US) −→ Met. This
will prove that F[M ] and Td[M ] are isomorphic S-quantitative
algebras.

We organize F[M ] as an universal algebra of type S by defining, for
arbitrary A,B ∈ F[M ], A + B = A ∪ B, 0 = ∅. We can further
organize F[M ] as a quantitative algebra by taking the Hausdorff
metric Hd induced by d.

THEOREM 9.2. F[M ] = (F[M ],S, Hd) ∈ K(S,US).

The next theorem states that F[M ] has the universal mapping prop-
erty for (M,d) to UMet, with universal arrow (F[M ], χM ), where
χM : M −→ F[M ] is the map that assigns to arbitrary m ∈ M ,
the singleton set χM (m) = {m}. Note that, Hd({m}, {n}) =
d(m,n), hence χM is non-expansive.

THEOREM 9.3. (F[M ], χM ) is an universal arrow from (M,d) ∈
Met to UMet.

Theorem 6.1 and Theorem 9.3 prove the following corollary.

COROLLARY 9.4. The quantitative S-algebras F[M ] and Td[M ]
are isomorphic with bijective isometry h : Td[M ] −→ F[M ] given,
for m ∈M and t, s ∈ TM by

h(m
∼=) = {m} , h((t+ s)

∼=) = h(t
∼=) ∪ h(s

∼=) .

Hence, the distance induced by the quantitative equational theory
US extended with the axioms relative to the generator (M,d) is the
Hausdorff metric induced by d. Thus we say that USM axiomatizes
the Hausdorff distance.



9.2 The Continuous Case

We now focus on the class of the compact subsets of a complete
separable metric space and prove that it can be organized as a
quantitative semilattice with a zero. It turns out that this is the freely
generated algebra in the category of quantitative semilattices with a
zero over complete separable metric spaces. As might be expected,
the proofs here are more analytic in contrast with the combinatorial
proofs of the previous subsection.

Consider a complete separable metric space (M,d). Let G[M ] be
the set of the compact subsets of M in the open-ball topology of d.
We show that by interpreting + by ∪, 0 by ∅ and endowing G[M ]
with the Hausdorff metric Hd, we obtain a quantitative semilattice
with a zero that satisfies US .

As shown in the previous section, we can also construct the
freely generated quantitative semilattice with a zero Td[M ] =
(Td[M ],S, d∼=M ), which is isomorphic to F[M ] = (F[M ],S, Hd).

However, (Td[M ], d
∼=
M ) is separable (with countable dense subset

given by Td[D], where D is the countable dense set in M ) but it is
not a complete metric space.

Consider (Td[M ], d
∼=
M ), the completion of (Td[M ], d

∼=
M ). Since

Td[M ] is isomorphic to F[M ], their completions must be isomor-
phic metric spaces.

Let KS be the subcategory of quantitative semilattices with a zero
over complete separable metric spaces. We prove that G[M ] =

(G[M ],S, Hd) and Td[M ] = (Td[M ],S, d∼=M ) are isomorphic
quantitative semilattices with a zero.

THEOREM 9.5. If (M,d) is a complete separable metric space,
then G[M ] ∈ KS . Moreover, G[M ] is isomorphic to Td[M ].

Proof. Verifying the axioms of the quantitative semilattices with a
zero for G[M ] is routine. What we need to prove further is that
(G[M ], Hd) is a complete separable metric space.

Let D ⊆ M be a countable dense subset of M (its existence is
guaranteed by the fact that (M,d) is a separable space). F[D] is
countable and we now show that it is dense in G[M ].

Consider an arbitrary compact set C ∈ G[M ]. The set S = D ∩C
is countable and dense in C. Suppose that S = {s1, s2, . . .}. Then,
the sets Si = {s1, . . . , si}, i ∈ N are all compact, hence elements
of F[M ], and their sequence converges toC in (G[M ], Hd). Hence,
F[D] is dense in G[M ].

Previously, we have shown that d∼=M = Hd on F[M ], hence also
on F[D]. Since the completion of F[D] is unique and it gives
us (G[M ], Hd), we obtain the isomorphism between Td[M ] and
G[M ]; hence also an isomorphism of metric spaces.

Next we state that Td[M ] is the quantitative algebra in KS
freely generated from the complete separable metric space (M,d).
Specifically, Td[M ] has the universal mapping property for (M,d) ∈
CSMet (the category of complete separable metric spaces with
non-expansive maps) to the forgetful functor

UCSMet : KS −→ CSMet .

This situation is described by the commutative diagram below
(cf. Definition 3.2):

in CSMet in KS

(M,d) (Td[M ], d
∼=
M ) Td[M ]

(A, dA) A

α

ηM

h h

THEOREM 9.6. (Td[M ], ηM ) is a universal morphism from (M,d) ∈
CSMet to UCSMet.

10. Interpolative Barycentric Algebras

In this section we study a variation of quantitative barycentric alge-
bras, which is similar to the left-invariant barycentric algebra dis-
cussed in Section 8 but with one slightly stronger axiom than (LI).
The signature remains the same but the axioms though, superfi-
cially, only slightly different give a very different metric. Instead of
axiomatizing the total variation distance, we get an axiomatization
of the p-Wasserstein metric for p ≥ 1, both in the finitary and the
continuous cases. For p = 1 this reduces to the Kantorovich metric.
We call these algebras interpolative barycentric algebras or p-IB
algebras for short. The new axiom is a kind of interpolation axiom.
In this section we are always assuming the underlying metric takes
values in [0, 1]; they are called one-bounded metrics.

Consider the barycentric signature B = {+e : 2 | e ∈ [0, 1]} from
Section 8.

DEFINITION 10.1 (p-IB Equational Theory). This theory is given
by the axiom-schemata (B1), (B2), (SC), (SA) from Definition 8.1)
and the following axiom-scheme (IBp), where ε1, ε2 ∈ [0, 1] and
δ ∈ Q+ ∩ [0, 1]:

(IBp) {x =ε1 y, x′ =ε2 y′} ` x +e x
′ =δ y +e y

′, where
(eεp1 + (1− e)εp2)1/p ≤ δ.

Note that (IBp) is not an unconditional quantitative inference as are
the previous examples. Moreover, it is stronger than the axiom (LI)
in Definition 8.1 for 1-bounded metrics, in the sense that (LI) is
than just an instantiation of (IBp). Hence, this new proof system
can prove more basic quantitative equations.

If we state (IB1), we get the axiom below.

(IB1) {x =ε1 y, x′ =ε2 y′} ` x +e x
′ =δ y +e y

′, where
eε1 + (1− e)ε2 ≤ δ.

In this section we focus on the class K(B,UIB) defined by the p-IB
barycentric equational theory UIB .

Kantorovich-Wasserstein Duality

Let (M,d) be a one-bounded complete separable metric space and
let p ≥ 1. The p-Wasserstein metric induced by d on the set ∆[M ]
of Radon3 probability measures over M , is defined, for arbitrary
µ, ν ∈ ∆[M ] as

W p
d (µ, ν)p = inf

{∫
dp dω | ω ∈ C(µ, ν)

}
.

3 Radon measures are tight. This means that for every ε > 0 there is a
compact setKε such that the measure ofM \Kε is less than ε. On complete
separable metric spaces all Borel measures are Radon.



In particular, for p = 1, one gets the Kantorovich metric induced
by d on ∆[M ]:

Kd(µ, ν) = sup

{∣∣∣∣∫ f dµ−
∫
f dν

∣∣∣∣} .

with supremum ranging over the set positive 1-bounded non-
expansive real-valued functions over M .

We will generally work with Polish spaces in this section. A Polish
space is a separable topological space for which can be metrized
so that it is complete. Note that a space like (0, 1) is Polish even,
though it is not complete with the usual metric. However, it is
homeomorphic to (0,∞), hence can be given a complete metric
that gives the same topology. In a Polish space all Borel measures
are Radon.

THEOREM 10.2 (Kantorovich Duality - Thm 5.10, (Villani 2008)).
Let (M,d) be a Polish metric space with the metric taking real val-
ues. Then, for arbitrary Borel probability measures4 µ, ν ∈ ∆[M ]

Kd(µ, ν) = min

{∫
d dω | ω ∈ C(µ, ν)

}
.

An optimal coupling for W 1
d , i.e., the one that attains the minimum

in the characterization above, always exists. So that, by monotonic-
ity of Lebesgue integral, a minimal coupling exists also for the gen-
eral case p > 1.

Moreover, note that the total variation distance is just a particular
case of the Wassertstein metric, namely, T (µ, ν) = K1 6=(µ, ν) =
W 1

1 6=(µ, ν), where 1 6= is the metric that assigns distance 1 to all
distinct pairs of points.

10.1 The Finitary Case

Fix a metric space (M,d) with the metric taking real values. Let
Td[M ] be the p-IB algebra in K(B,UIB) freely generated from
(M,d), as constructed in Section 6. By Theorem 6.1, Td[M ] has
the universal mapping property for (M,d) to

UMet : K(B,UIB) −→Met.

THEOREM 10.3. If (M,d) is a non-degenerate metric space then
Td[M ] is a non-degenerate p-IB algebra. In particular, UIB is a
consistent quantitative theory.

Denote by Π[M ] the set of finitely supported Borel probability
measures onM —i.e., those that can be represented as finite convex
combinations of Dirac distributions δm, for m ∈ M . Next we will
show that Π[M ] can be organized as a p-IB algebra in K(B,UIB),
with metric given by the p-Wasserstein metric W p

d . Moreover, we
show that this algebra enjoys the universal mapping property for
(M,d) to UMet : K(B,UIB) −→ Met; consequently Π[M ] and
Td[M ] are isomorphic B-algebras.

Similarly to Section 8, we regard Π[M ] as a universal algebra of
type B by interpreting each operator +e : 2 ∈ B, for arbitrary
µ, ν ∈ Π[M ], as

µ+e ν = eµ+ (1− e)ν ,
However, unlike the situation in Section 8, Π[M ] will be viewed
as a quantitative algebra by taking as a metric the p-Wasserstein
metric W p

d induced by d, rather then the total variation distance.
Note that finitely supported Borel probability measures are Radon,
so that W p

d is a well defined metric on Π[M ].

4 Since the space is Polish, these measures are Radon.

THEOREM 10.4. Π[M ] = (Π[M ],B,W p
d ) ∈ K(B,UIB), i.e.,

Π[M ] |= UIB .

The next theorem shows that Π[M ] has the universal mapping
property for (M,d) to USMet, with universal arrow (Π[M ], δM ),
where δM : M −→ Π[M ] maps m ∈ M to δm ∈ Π[M ] —
the Dirac measure with probability mass in m ∈ M . Note that,
W p
d (δm, δn) = d(m,n), hence δM is non-expansive.

THEOREM 10.5. (Π[M ], δM ) is an universal arrow from (M,d) ∈
Met to UMet.

The next result follows directly by theorems 6.1 and 10.5.

COROLLARY 10.6. The quantitativeB-algebras Π[M ] and Td[M ]
are isomorphic with bijective isometry h : Td[M ] −→ Π[M ] char-
acterized, for m ∈M and t, s ∈ TM by

h(m
∼=) = δm , h((t+e s)

∼=) = eh(t
∼=) + (1− e)h(s

∼=) .

This means that the quantitative equational theory UIB , further ex-
tended with the axioms relative to the space (M,d), axiomatizes
the p-Wasserstein metric induced by d; and for p = 1 it character-
izes the Kantorovich metric.

10.2 The Continuous Case

We now focus on the class of the general Borel probability mea-
sures over a complete separable metric space and prove that it
forms a p-IB algebra. In this case we are not restricting to finitely-
supported distributions. It turns out that this is the freely-generated
algebra in the category of the p-IB algebras defined for complete
separable one-bounded metric spaces.

Consider a complete separable metric space (M,d) with the metric
taking values in [0, 1]. Let ∆[M ] be the set of all Borel probability
measures on M . Note that since (M,d) is complete and separable,
all the measures in ∆[M ] are Radon. We endow ∆[M ] with the
signature B, where we define for arbitrary µ, ν ∈ ∆[M ] and
r ∈ [0, 1],

µ+r ν = rµ+ (1− r)ν.
As shown previously, Td[M ] = (Td[M ],B, d∼=M ) is a barycentric
algebra isomorphic to Π[M ] = (Π[M ],B,Wd). However, we
prove below that (Td[M ], d

∼=
M ) is separable but it is not a complete

metric space.

Consider the metric space (Td[M ], d
∼=
M ) obtained by the comple-

tion of (Td[M ], d
∼=
M ).

We need now to recall a series of definitions and results that re-
lates the concept of weak topology and the p-Wasserstein dis-
tance.

DEFINITION 10.7. The p-weak topology on ∆[M ] is the topology
such that convergence of the sequence of measures νi to ν means
that for all continuous real-valued functions f such that for arbi-
trary m ∈ M , |f(m)| ≤ C(1 + d(m0,m)p), for some C ∈ R+,
and m0 ∈M , ∫

f dνi −→
∫
f dν.

If (M,d) is a Polish space then it is known that p-Wasserstein
W p
d metrizes the p-weak topology on ∆[M ] (see Theorem 6.9 and

Corollary 6.13 in (Villani 2008)).

The following lemma is well known (see Theorem 6.18 in (Villani
2008)).



PROPOSITION 10.8. Let M be a Polish space and let {ci}ki=1 be
positive real numbers such that

∑k
i=1 ci = 1. Let {mi}ki=1 be

points in M . Then measures of the form
∑k
i=1 ciδmi are p-weakly

dense in ∆[M ].

Let KB be the class of IB algebras with complete separable metric
spaces. We prove that ∆[M ] = (∆[M ],B,W p

d ) is isomorphic, as
a barycentric algebra, to Td[M ] = (Td[M ],B, d∼=M ).

THEOREM 10.9. If (M,d) is a complete separable metric space,
then ∆[M ] ∈ KB. Moreover, ∆[M ] is isomorphic to Td[M ].

Proof. Verifying the axioms of the barycentric algebras for ∆[M ]
is routine and follows closely the proof of Theorem 10.4. What we
need to prove further is that ∆[M ] is a complete separable metric
space.

Let D ⊆ M be a countable dense subset of M (its existence is
guaranteed by the fact that (M,d) is a separable space). Now Π[D]
is of course not countable but we can take all distributions that
assign only rational measures to points and get a countable set. We
call this P[D] for short. We now show that it is dense in ∆[M ].

Let ρ ∈ ∆[M ]. Since (M,d) is Polish, W p
d metrizes the p-weak-

topology on ∆[M ], which is also a Polish space (Corollary 6.13
in (Villani 2008)). Moreover, Π[M ] is dense in ∆[M ] with respect
to this topology by Prop. 10.8. Hence, there exists a sequence
(ρi)i∈N ⊆ Π[M ] of distributions with finite support on M that
converges to ρ. Since D is dense in M and the rationals are dense
in [0, 1], for any sequence (εi)i∈N ∈ [0, 1] that converges to 0, we
can find a sequence (ρ′i)i∈N ⊆ P[D] such that W p

d (ρi, ρ
′
i) < εi.

Thus, {ρi | i ∈ N} ∪ {ρ′i | i ∈ N} is a Cauchy sequence in
Π[M ] and since (ρi)i∈N converges to ρ and Π[M ] is complete,
also (ρ′i)i∈N converges to ρ. And this proves that P[D] is dense in
∆[M ].

In the previous section we have shown that d∼=M = W p
d on Π[M ],

hence also on Π[D]. Since the completion of Π[D] is unique and it
gives us (∆[M ], d

∼=
M ), we obtain the isomorphism between Td[M ]

and ∆[M ]; hence, also the isomorphism of metric spaces.

Next we show that Td[M ] is the quantitative algebra in KB
freely generated from the complete separable metric space (M,d).
Specifically, Td[M ] has the universal mapping property for (M,d) ∈
CSMet (the category of complete separable metric spaces with
non-expansive maps) to the forgetful functor

UCSMet : KB −→ CSMet .

This situation is described by the commutative diagram below
(cf. Definition 3.2):

in CSMet in KB

(M,d) (Td[M ], d
∼=
M ) Td[M ]

(A, dA) A

α

ηM

h h

THEOREM 10.10. (Td[M ], ηM ) is a universal morphism from
(M,d) ∈ CSMet to UCSMet.

All the results of this section can be readily extended to the case
of subprobability measures by introducing a new constant in the
signature where the “missing mass” can reside. These are called
pointed barycentric algebras. Results similar to those presented in
this section hold for pointed barycentric algebras.

11. Related work

The closest related work is by van Breugel et al. (van Breugel
et al. 2007) and by Adamek et al. (Adámek et al. 2012) both of
which were important precursors to the present work. The first pa-
per really shows why the Hausdorff and Kantorovich metrics are
canonical. The second one shows the finitary natures of these mon-
ads. In the paper by van Breugel et al. (van Breugel et al. 2007)
it was shown that the Kantorovich functor is left adjoint to a for-
getful functor from a suitable algebraic category (mean-value al-
gebras) to complete metric spaces. Similarly they show that a suit-
able Hausdorff functor can be treated in a similar way. Their results
are intended to exhibit the power of an approach to solving recur-
sive equations using the theory of accessible categories. Adamek et
al. (Adámek et al. 2012) have studied the finitary versions of the
same functors and have given equational presentations.

A fairly important difference with the present work is that we use
the barycentric axioms rather than the mean value axioms. The
major difference, however, is our use of quantitative equations that
capture the idea of approximate equality.

The difference between the mean-value axiomatization and the
barycentric axiomatization may seem unimportant but we feel that
barycentric algebras are more fundamental. They allow all binary
choices to be directly available; they are of course all definable
from the mean-value if you allow infinite terms but certainly not
if you want everything to be finitary. The barycentric algebras
are the axioms for abstract convex spaces and arise widely in
mathematics; see the historical remarks in (Keimel and Plotkin
2015). Barycentric algebras work very well in other settings too.
For example, if one takes the free pointed barycentric algebras
in other categories like sets or cpos one gets the structures one
expects: finite probability distributions for the case of sets and the
valuation powerdomain for the case of continuous dcpos.

We do not see as yet how all this fits with the program being
pursued by Bart Jacobs and his group at Nijmegen where they
have a general notion of quantitative logic based on structures that
they call an “effectus.”(Cho et al. 2015). There are many intriguing
possibilities but we must defer a proper comparison until we have
digested effectus theory more deeply. One of the motivating strands
of that work was various dualities involving convex structures so
there certainly should be connections.

12. Future work

There is clearly much more to do both in the general theory and
in specific examples. A fundamental task is to understand how to
combine effects just as in the non-quantitative case; many of the
basic results (Hyland et al. 2006, 2007) apply. It should be possible
to extend the results of Section 10.2 to metrics that take extended
real values by suitable rescalings of the metric.

We are actively looking at Markov processes as an example; this
could benefit from a many-sorted extension of the basic theory or
could alternatively use recursive domain equations. As far as we
know, an equational presentation of Markov processes does not
exist. Other possible examples are general distributions coming
from a suitable axiomatization of cones and also an axiomatization
of Choquet capacities which are of interest in games.
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