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Abstract

We observe that equivalence is not a robust concept in the presence of numerical information
- such as probabilities - in the model. We develop a metric analogue of weak bisimulation in
the spirit of our earlier work on metric analogues for strong bisimulation. We give a fixed point
characterization of the metric. This makes available coinductive reasoning principles and allows
us to prove metric analogues of the usual algebraic laws for process combinators. We also show
that quantitative properties of interest are continuous with respect to the metric, which says
that if two processes are close in the metric then observable quantitative properties of interest
are indeed close. As an important example of this we show that nearby processes have nearby
channel capacities - a quantitative measure of their propensity to leak information.
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1 Introduction

The starting point and conceptual basis for classical investigations in concurrency are the notions
of equivalence and congruence of processes — when can two processes be considered the same and
when can they be inter-substituted for each other. Most investigations into probabilistic concurrent
processes are also based on equivalences of one kind or another, e.g. [HJ90, JY95, LS91, HS86,
BBS95, JS90, CSZ92, Seg95, WSS97, PLS00].

As is now recognized, this style of reasoning is too fragile in the sense of being too depen-
dent on the exact numerical values of the probabilities1. This is particularly unfortunate for two
reasons: firstly, the probabilities appearing in models really cannot be viewed as exact numbers;
rather, they should be viewed as numbers with some error estimate. So, reasoning principles based
on the exact value of numbers are of dubious practical value. Secondly, probability distributions
over uncountably many states arise in even superficially discrete paradigms. For example, in the
presence of recursion or even iteration a binary choice inside a nonterminating computation de-
termines an uncountable tree of possible outcomes with a probability distribution defined on it.
Certainly in models of stochastic hybrid systems one has to deal with continuous state spaces. In
such continuous-state systems with general probability distributions, an effective handle on the
model is recovered by approximating with discrete probabilistic systems [DGJP00]. Clearly, these
approximants do not match the continuous state model exactly. While our earlier approximation
results show that working with finite-state systems is a good basis for dealing with general systems,
it forces us to think about approximate reasoning principles.

Thus, we really want an “approximate” notion of equality of processes. Furthermore, we want
a compositional version of such an approximate equality, i.e., we would like to move from the
classical study of “exactly inter-substitutable” processes to the study of the more robust notion of
“approximately inter-substitutable.”

A natural pathway to approximate reasoning is to work with a relaxed notion of truth - for
example using the interval [0, 1] as the collection of truth values instead of {0, 1}. This is precisely
Kozen’s seminal idea on logics in the context of probability [Koz81, Koz85]— moving from truth-
valued boolean functions to real-valued (measurable) functions qua logical formulas. This demands
that we take a more sophisticated view of the numerical probability values. This idea of the
importance of numerical quantities also guides the search for a relaxation of the notion of equivalence
of probabilistic processes. Jou and Smolka [JS90] note that the idea of saying that processes that
are close should have probabilities that are close does not yield a transitive relation. This leads
them to propose that the correct formulation of the “nearness” notion is via a metric.

Similar reasons motivate the study of Lincoln, Mitchell, Mitchell and Scedrov [LMMS98], our
earlier studies of metrics for real-time systems [GHJ97] and our study of metrics for labelled Markov
processes and strong bisimulation [DGJP99, DGJP00] and the study of the fine structure of these
metrics by van Breugel and Worrell [vBW01b, vBW01a]. In contrast to these investigations, this
paper will be carried out in the context of internal nondeterminism and weak bisimulation. The
importance of weak bisimulation comes from the need for abstraction. In order to construct larger
programs from smaller programs one works with the composition mechanisms of the language.
When doing so it is necessary to hide internal actions and work with weak (rather than strong)
bisimulation.

1Indeed this is a criticism of the use of equivalences for any model that uses quantitative information in a serious
way.
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1.1 An Informal Summary of Results

We define a pseudometric on mixed nondeterministic and probabilistic processes such that zero
distance corresponds to weak bisimilarity. Our main results are

• a fixed point characterization of this metric which permits coinductive proofs.

• a real-valued modal logic characterizing the metric.

• we show that several process combinators including parallel composition are non-expansive;
this is an analogue of the congruence properties of weak bisimulation.

• a demonstration that nearness in the metric corresponds to nearness in quantitative properties
of the processes - for example, we are able to generalize some common theorems about Markov
chains and information theory to the case of concurrent Markov chains. This is of interest in
its own right.

Working with nondeterminism and probability together (and with the metric analogue of weak
bisimulation) forces us to confront some new technical obstacles. More specifically:

• Nondeterminism destroys the additivity property of the probability distributions. For each
action we can now have multiple probabilistic distributions — letting the probability of a set
of states be the maximum (or minimum) of these probabilities invalidates additivity.

• The algebraic laws of weak bisimulation disable the basic technique used to achieve contractive
maps in the work on metric semantics, namely discounting future transitions and making
them quantitatively less important than the current transitions. For example, τ.P is weakly
bisimilar to P . Clearly, the ”corresponding” transitions of P in both P, τ.P have to be
weighted equally, even though they are delayed by a τ step in τ.P . We overcome this hurdle
by providing a novel explicit construction of the required (maximum) fixed point.

Criteria on Metrics for probabilistic processes A pseudometric2 d on processes yields a real
number distance for each pair of processes, i.e., d(P,Q) = d(Q,P ) and d(P,R) ≤ d(P,Q)+d(Q,R).
In our approach, we expect that the pseudometric d should satisfy:

• d(P,Q) = 0 ⇔ P is weakly bisimilar to Q

This constraint can be viewed as a soundness criterion on the distance notion identified by the
pseudometric.

The interesting cases of the distance function d are when it assigns a non-zero distance be-
tween two processes. We expect the pseudometric distance between processes to be roughly de-
termined by the differences in the probabilities of similar transitions. For example, we expect
d(Pε1 , Pε2) ≤ |ε1 − ε2|, where Pε = a1−ε.Q, is the process that does an a with probability 1− ε and
then behaves like Q. Such criteria have good pedigree in the form of the properties of the Hutchin-
son metric on probability measures [Hut81] on [0, 1] defined as h(µ, ν) = sup{|

∫
fdµ − fdν| |

f is a Lipschitz (non-expansive) function on [0,1]}. This metric plays a fundamental role in frac-
tals [Edg98] and also in the work of van Breugel and Worrell [vBW01b, vBW01a].

2Really we are working with pseudometrics on processes because d(P,Q) = 0 does not mean that P = Q.
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We define such a pseudometric d. We identify d as the maximum fixed point of a certain func-
tional on pseudometrics. This approach exploits the associated good (co)universal properties and
the associated coinduction proof rule permits us to recover much of the elegant proof techniques
for (weak) bisimilarity. We follow up with an explicit construction of d — we consider a class F of
[0, 1] valued functions on states, inspired by the logics for probabilistic transition systems [DEP98].
F is to be viewed as a real-valued modal logic. These functions enable the definition of d as
d(P,Q) = sup{|f(sP )− f(sQ)| | f ∈ F} (sp, sQ are start states of P,Q respectively). The key tech-
nical tool in both these routes is a linear programming characterization of pseudometric distances
inspired by the work of van Breugel and Worrell [vBW01a].

Process algebras provide the link to the desired compositional reasoning about approximate
equality in such a pseudometric framework. If d is a pseudometric on processes, we would like
non-expansiveness, expressed below as a desired compositional proof rule. For every n-ary process
combinator C[X1, . . . , Xn]:

d(Pi, Qi) ≤ εi, i = 1 . . . n
d(C(P1, . . . , Pn), C(Q1, . . . , Qn)) ≤

∑
i εi

.

If we set εi = 0 in the above equation, we get the condition that weak bisimulation is a congruence
with respect to the operator C[·].

We show that parallel composition, restriction, CSP style internal choice ⊕ and guarded sum
a.P + b.Q - where a, b are not τ - in this language, are non-expansive in the sense of the above
proof rule3. Our proofs are formally similar to the usual ones for pure labelled transition systems,
showing that approximate reasoning (in our sense) is no harder than exact reasoning. Since weak
bisimulation is not a congruence for CCS + even in purely nondeterministic contexts, such a result
does not hold for CCS +. Our extension of the theory to handle the CCS + operator follows the
spirit of the definition of observational congruence from weak bisimulation for labelled transition
systems, and involves stricter matching of initial τ transitions. We show that the + operator is
non-expansive for this extension.

An application: Secure Substitution. The context for our investigations is exemplified by
mobile code applications where programs (such as software for submitting income taxes) are down-
loaded as needed, executed on a trusted host (the home computer), require access to sensitive local
data (such as financial information) and yet should not be permitted to “leak information”. Thus,
we are in the situation where a “mole” may have penetrated inside the system, and the analysis
of the system has to account for the fact that this mole may be attempting to leak information to
the outside world. Our interest is in secure substitution — when can one component (say C2) can
be substituted for another (say C1) in the system without affecting the usual observations and the
capability of the mole to leak information.

The definition of channel capacity in information theory offers a route to quantifying “infor-
mation leakage”. Channel capacity attempts to characterize the maximum amount of information
that can be transmitted by a communication channel. In the context that we are considering, we
are interested in measuring the information flow of the channel that is identified by the interface of
the downloaded untrustworthy program. The (sequences of) labels on the internal interactions of

3Such a language is a probabilistic variant of languages for which weak bisimulation is known to be a congruence,
for example languages in the ISOS format of Ulidowski [Uli92, Uli94].
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this component with the system constitute the input symbols of the channel. The “mole” is viewed
as attempting to leak information about the sequences of these input symbols by interacting with
the outside world, the (sequences of) labels on these interactions constitute the output symbols.
The outside observer is attempting to deduce input traces while only viewing the output traces.

The first technical obstacle that we need to overcome is that in the presence of nondeterminism,
we are working with sets of distributions rather than single distributions. We model worst case
assumptions by permitting the mole to control the (nondeterministic) scheduler, by permitting the
mole to serve as (a possibly probabilistic) oracle to guide the scheduler4. Our definition of channel
capacity captures these worst case assumptions.

Given this modelling assumption, we describe the following results. Using basic results from
information theory and exploiting the non-expansive properties, we show that there is a constant k
only dependent on C1 such that: d(C1, C2) < ε implies that the difference in the channel capacities
of C1, C2 is at most kε. Thus, the channel capacity is a continuous function of the pseudometric.
This analysis provides an à posteriori justification for the criteria on pseudometrics discussed earlier.
This result assumes particular force in conjunction with the non-expansiveness of the basic process
combinators and gives us the basic rudiments of a methodology to determine if a component can
be securely substituted for another.

An application: Quantitative reasoning Very often one wants not just logical properties but
quantitative properties of systems. For example, one more likely wants to know the average size
of a queue rather than, say, the fact that it is nonempty with probability one. Similarly one often
wants to know large deviation probabilities away from the mean.

Consider a queueing system with multiple servers and a stream of customers arriving with a
given distribution. There are two basic strategies: one can have all the customers in a single queue
with each server taking the next customer from the common queue (as is typical in banks) or
one could have a queue for each server with the customer committing to a queue upon entry to
the system (as in supermarkets). Given distributions for arrival times and service times we would
like to know if these systems are close in their quantitative properties such as expected waiting
times, average throughput. Clearly the two systems are quite different in terms of their exact
logical properties and one would get no sense of how different they are if we were to compare
them on that basis. In terms of modelling with a probabilistic process algebra, we cannot really
make comparisons using a metric analogue of strong bisimulation because the transitions are very
different right away. However, if we hide the internal details of how processes are allocated to
different queues and discount these internal transitions we would have the basis for a quantitative
comparison.

It might appear, at first sight, that abstracting from the internal transitions would destroy the
temporal information. However, time really passes while waiting in the queues and while interacting
with the servers. One can set up a timer process to keep track of the times. What one is really
abstracting over are the internal transitions that govern the interactions with the queue(s). It is
not hard to show that such average quantitative properties are continuous which means that if two

4Our modelling differs from the study of Lincoln, Mitchell, Mitchell and Scedrov [LMMS98] in this aspect. They
use a probabilistic process algebra to explore the power of arbitrary probabilistic polynomial time processes in the
context of security protocols. In their model, the system is probabilistically determinate and the adversary is “outside”
the system and thus has no useful control over the scheduler of the system. Rather, it derives its power from the
ability to intercept and alter messages.
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systems are metrically close their quantitative properties will be close as well. Thus the metric
distance gives a good measure of how closely the quantitative properties of two systems match.

2 Definitions

We begin with a review of the underlying framework — our definitions are adapted from [PLS00].
We work in the context of the “alternating model” for labelled concurrent Markov chains [Han94],
labelled transition systems with non-determinism and probability.

Definition 2.1 A labelled concurrent Markov chain (henceforth LCMC), is a tuple K = (K, Act,−→, k0),
where
(1) K = Kp ∪Kn, a countable set, is partitioned into the probabilistic states, Kp, and the nonde-
terministic states Kn. k0 is the start state.
(2) Act is a finite set of action symbols that contains a special action τ .
(3) The transition relation −→=−→p ∪ −→n is partitioned into probabilistic and nondeterminis-
tic transitions. −→n⊆ Kn × Act ×Kp is image-finite, i.e. for each s ∈ Kn and a ∈ Act, the set
{s′ ∈ Kp | s

a→ s′} is finite. −→p⊆ Kp×(0, 1]×Kn satisfies that for each s ∈ Kp
∑

(s,π,t)∈−→p
π ≤ 1.

Thus, transitions from nondeterministic states are finitely branching5 and labelled. Transitions
from probabilistic states are un-labelled and are associated with numbers that are interpreted as
probabilities. In this paper, we will work with finite state systems, the domain of definition of the
weak bisimulation definition of Lee, Philippou and Sokolsky [PLS00].

Every probabilistic state s induces a distribution P on K given by P (t) =
∑

(s,π,t)∈−→p
π for

every t ∈ K. We sometimes write s→p P to emphasize this distribution.
The LCMC model does not need to be strictly alternating. One can work with a model that only

restricts states to be either purely nondeterministic or purely probabilistic and does not enforce
strict alternation. We discuss this variant at the end of this section.

Example 2.2 (Constructions on LCMCs)

Given LCMC K, we construct the LCMC for restriction, K\a, for some a 6= τ . Formally, K\a =
(K, Act,−→′ , k), where −→′ has all probabilistic transitions from −→ and all nondeterministic
transitions whose labels are not a.

Given LCMCs K1,K2, the LCMC for internal choice, K1 ⊕ K2 is constructed by adding a new
start state with τ transitions to the start states of K1,K2. Formally, assume that K1 and K2 have
disjoint sets of states and their start states are probabilistic and let −→i be the transition relations
of Ki, i = 1, 2. Then, K1 ⊕K2 = (K1 ∪K2 ∪ {s}, Act,−→1 ∪ −→2 ∪{s

τ→ k1, s
τ→ ks}, s).

Given LCMCs Ki, the LCMC
∑

i ai.Ki, where ai, i = 1, . . . n is a finite collection of labels, is
constructed by adding an ai-transition to Ki. Assume that the Ki’s have pairwise disjoint state
spaces and let −→i be their transition relations and si their start states, which are assumed to be
probabilistic. Let s 6∈ ∪Ki. Then,

∑
i ai.Ki = (∪Ki ∪ {s}, Act,

⋃
i −→i ∪{s

ai→ si | i = 1, . . . n}, s).
Given finitely many LCMCs Ki and πi such that

∑
i πi ≤ 1, the LCMC for probabilistic choice,∑

i(πi,Ki) is constructed as follows. Assume that the Ki’s have pairwise disjoint state spaces and let
−→i be their transition relations and si their start states, which are assumed to be non-deterministic.
Let s 6∈ ∪Ki. Then,

∑
i(πi,Ki) = (∪Ki ∪ {s}, Act, {s

πi→ si | i} ∪
⋃
i −→i, s).

5Since we have a finite action set, “image finite” and “finitely branching” the same thing.
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Given LCMCs K1,K2, the LCMC K1 + K2 is constructed as follows. Formally, assume that K1

and K2 have disjoint sets of states except for the start state k which is nondeterministic and let
−→i be the transition relations of Ki, i = 1, 2. Then, K1 +K2 = (K1 ∪K2, Act,−→1 ∪ −→2, k).

We use some notation for sequences (of states or transitions). We use ε for the empty sequence and
· for concatenation. Every sequence, say σ, of transitions has an associated probability prob(σ),
obtained by multiplying the probabilities occurring on the path. Thus, we attribute 1 to a nondeter-
ministic transition in a path, and multiply in the probability of a probabilistic transition. Similarly,
every sequence σ of transitions has an associated weak sequence of labels Weak(σ) ∈ (Act− {τ})∗,
obtained by removing the τ ’s. Thus probabilistic transitions and nondeterministic transitions with
label τ do not contribute to the weak label.

We define computations of an LCMC as transition trees obtained by unfolding the LCMC
from the root, resolving the nondeterministic choices (i.e. each nondeterministic state has at most
one transition coming out of it) and taking all probabilistic choices at a probabilistic state. A
computation can thus be viewed as a purely (sub)probabilistic labelled Markov chain. We elide
standard definitions of trees.

Definition 2.3 Let K be a LCMC, a ∈ Act. An a-computation from s ∈ K is a computation such
that every path from the root has weak label a or ε.

We allow a ε label in order to allow paths that could be extended to have an a-transition in an
extended a-computation.

Each computation induces a distribution on its leaf states in the standard way — the probability
of a leaf node is the probability of the (unique) path going to it. Here we insist that the paths
contributing to the distribution do have an a-label.

Definition 2.4 Let K be a LCMC, s ∈ K, and let Q be a distribution on states.
We write s a⇒ Q, if there is an a-computation such that for all si ∈ K, Q(si) ≤

∑
σ prob(σ) where

the summation is taken over paths σ with weak label a that start in s and end in the leaf si.
We extend this notation to linear combinations of Q’s. Let si

a⇒ Qi, and let
∑

i λi = 1. Then,
we write:

∑
i λi × (si

a⇒ Qi). In the special case where all si = s, we write s a⇒
∑

i λi ×Qi.

We sometimes refer to the transitions s
a⇒ Q that are not linear combinations as “basic” to

distinguish them from transitions that are of the form
∑

i λi × (si
a⇒ Qi). For s 6= t, the notation

λ×(s a⇒ P )+(1−λ)×(t a⇒ Q) is merely notational convenience. However, s a⇒ [λ×P+(1−λ)×Q]
is reminiscent of the randomized schedulers [Seg95].

We define the “probability” from a state s to a subset of states via a path with weak label a by
taking the supremum over all possible computations.

Definition 2.5 Let K be a LCMC, s ∈ K,E ⊆ K. Then, the probability of going from s to E via
a, denoted by P (s, a, E), is defined as:

P (s, a, E) = sup{
∑
s∈E

Q(s) | s a⇒ Q}.

The supremum in this definition is the source of the subtlety of weak bisimulation — P (s, a, .)
does not satisfy additivity. The computation yielding the maximum probability is constructed by
choosing at every non-deterministic state, the transition that maximizes the probability. Thus, we
get:
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Lemma 2.6 P (s, a, E) =
∑

t∈E Q(t) for some s a⇒ Q.

Proof. We provide a recipe to pick out the computation that reaches P (s, a, E). Let Qi be such
that s a⇒ Qi. Clearly, if there are only finitely many of these there is nothing to prove. According
let us suppose that there are infinitely many such Qi. Let pi = Qi(E), p = sup pi. Since the
nondeterministic branching at any state is finite, there is at least one branch with a given source
state that is chosen by infinitely many Qi. The computation constructed by making these choices
must give a probability of p or one of the finitely many other computations attains the probabilty
p.
We are now ready to define weak bisimulation. Our presentation of this definition is different
from [PLS00] — we will prove later that it does indeed coincide with [PLS00] for finite state
systems. We consider equivalence relations on the set of states. Given an equivalence relation R,
we say a set E is R-closed if E = {s | ∃t ∈ E such that tRs}.
Definition 2.7 An equivalence relation R on K is a weak bisimulation if for all s, t ∈ K such that
s R t and all R-closed E ⊆ K, we have:

(∀a ∈ Act) [P (s, a, E) = P (t, a, E)].

There is a maximum weak bisimulation, denoted by ≈.

The equational laws supported by this definition extend the usual ones for nondeterministic
labelled transition systems or purely probabilistic transition systems. Indeed, the usual relations
that witness the bisimulation are carried over essentially unchanged, for example, τ.K ≈ K, and un-
folding a LCMC yields a weakly bisimilar system. See [BS01] for a full axiomatization of equational
laws for finite processes.

Minor extensions to the model. The LCMC model does not need to be strictly alternating.
One can work with a model that restricts states to be either purely nondeterministic or purely
probabilistic. Any such transition system U = (U, Act,−→, u0) has a (weak) bisimulation preserving
translation into K = (K, Act,−→, k0), a strictly alternating transition system as follows. The states
K = Up ∪ Un are a disjoint union of two copies of the states of U . For all s ∈ U such that s has
only nondeterministic transitions, define sp 1→ sn and sn a→ tp if s a→ t in U . Similarly, for all s ∈ U
such that s has only probabilistic transitions, define sn τ→ sp and sp

π→ tn if s π→ t in U . There is
clearly a weak bisimulation relating U and K.

Coincidence with the definition of Lee, Philippou and Sokolsky. Our definition of weak
bisimulation, Definition 2.7 coincides with [PLS00]. The key structural properties exploited in the
proof that our definition implies their definition are:

• If t is a nondeterministic state, and s is a probabilistic state, such that t is weakly bisimilar
to s, then there is a tau transition from t to some t′ such that t′ is weakly bisimilar to s.

• A linear programming criterion that foreshadows our later development for pseudometrics.

Theorem 2.8 Given an LCMC which satisfies the property that the total of all the probabilities
from any probabilistic state is 1, if states s and t in it are bisimilar then they are bisimilar according
to the definition of Lee, Philippou and Sokolsky [PLS00].

Proof. See Appendix.
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The converse of this theorem is also true. The converse relies on the ability to mimic computa-
tions at bisimilar states.

Lemma 2.9 Let s ≈ t. Let s a⇒ P . Then, there exists t a⇒ Q such that for all states u: P ([u]) =
Q[u]).

Proof. The result for linear combinations follows from the result for basic transitions s a⇒ P . We
prove this case below.

Formally, let us be given s
a⇒ P and a matching transition t

a⇒ Q such that P,Q agree, ie. for
all states u: P ([u]) = Q[u]).

Let s a⇒ P ′ extend s a⇒ P by adding a one-step transition at one of the leaves of P , say u, by a
nondeterministic transition u

b→ u′. Let P (u) = p. In this case, consider t a⇒ Q′, the extension of
Q by matching transitions v b⇒ Qi from all the v ≈ u that are leaves. The required transition from
t is obtained by a linear combination t⇒ [λ×Q′ + (1− λ)×Q], where λ = p/P ([u]).

The case when s
a⇒ P ′ extends s a⇒ P by adding a one-step probabilistic transition at one of

the leaves of P is similar and is omitted.
This lemma provides the tools to establish that the definition of [PLS00] implies our definition.

Theorem 2.10 Given a finite state LCMC which satisfies the property that the total of all the
probabilities from any probabilistic state is 1, if states s and t in it are bisimilar according to the
definition of Lee, Philippou and Sokolsky [PLS00], then they are bisimilar.

Proof.
Let s, t be bisimilar by the definition of Lee, Philippou and Sokolsky. To show that s ≈ t, it

suffices to show that for every finite L-computation rooted at s, say C, there is a L-computation
rooted at t that assigns the same probabilities to the leaves of C. This follows easily from the
lemma 2.9.

3 The Pseudometric as a maximum fixed point

Our first presentation of the pseudometric is as a maximum fixed point of a certain functional.
We fix an LCMC and consider pseudometrics on its set of states.

Definition 3.1 M is the class of 1-bounded pseudometrics on states with the ordering

m1 � m2 if (∀s, t) [m1(s, t) ≥ m2(s, t)]

Lemma 3.2 (M,�) is a complete lattice.

Proof. The least element is given by: ⊥(s, t) = 0 if s = t, 1 otherwise. The top element is given
by (∀s, t)>(s, t) = 0. Greatest lower bounds are given by: (u{mi})(s, t) = supimi(s, t). Note
that:

(u{mi}(s, t) = sup
i
mi(s, t)

≤ sup
i

[mi(s, u) +mi(t, u)]

≤ sup
i

[mi(s, u)] + sup
i

[mi(t, u)]

≤ (u{mi}(s, u) + (u{mi}(u, t)

8



m ∈ M is extended to distributions on sets of states as follows. The definition is based on the
Hutchinson metric on probability measures — we have merely simplified the definition for our
context of discrete finite state distributions.

Definition 3.3 Let m ∈ M. Let P,Q be distributions on states such that the total mass of P is
not less than the total mass of Q. Then m(P,Q) is given by the solution to the following linear
program:

max
∑
i

(P (si)−Q(si))ai

subject to : ∀i.0 ≤ ai ≤ 1
∀i, j. ai − aj ≤ m(si, sj).

We need the constraints ai ≤ 1 if the distributions do not have equal total probability, without
them the maximum is unbounded. Equivalently, following the analysis of [vBW01a], m(P,Q) is
given by the solution to the following dual linear program:

min
∑
i,j

lijm(si, sj) +
∑
i

xi +
∑
j

yj

subject to : ∀i.
∑

j lij + xi = P (si)
∀j.
∑

i lij + yj = Q(sj)
∀i, j. lij , xi, yj ≥ 0.

The following lemma shows that this extension to distributions satisfies the triangle inequality and is
consistent with the ordering on pseudometrics. The proof of the first item is an elementary exercise
using the primal linear program. The proof of the second item uses the dual linear program —
every solution to the (dual) linear program m′(P,Q) is also a solution to the (dual) linear program
for m(P,Q).

Lemma 3.4

• Let m ∈M. Then, (∀P,Q,R) m(P,Q) ≤ m(P,R) +m(Q,R).

• Let m,m′ ∈ M such that m � m′. Then, for all distributions on states P,Q, m(P,Q) ≥
m′(P,Q).

Proof.

• For the first item, we proceed as follows. We first prove that if total mass of P is less than
the total mass of Q, then

max
∑
i

(P (si)−Q(si))ai < max
∑
i

(Q(si)− P (si))ai

where the ai are subject to the usual constraints 0 ≤ ai ≤ 1, ai − aj ≤ m(si, sj).∑
i

(P (si)−Q(si))ai =
∑
i

(Q(si)− P (si))(1− ai)−
∑
i

Q(si) +
∑
i

P (si)

<
∑
i

(Q(si)− P (si))(1− ai)

9



Now bi = 1− ai also satisfy the constraints on the ai above, proving the result.

To prove the triangle inequality, given distributions P,Q,R,
∑

i(P (si)−Q(si))ai =
∑

i(P (si)−
R(si))ai +

∑
i(R(si) − Q(si))ai. Taking the maximum over the ai for the left side, we get

m(P,Q) ≤ m(P,R) +m(R,Q).

• For the second item, note that every solution to the linear program defining m′(P,Q) is also
a solution to the linear program defining m(P,Q). So, the maximum value m(P,Q) is ≥
m′(P,Q).

The dual linear program is a key tool to move from distributions to states in the following sense.
Given close-by distributions P , Q, the dual linear program permits us to construct a matching of
states (that may include “splitting” of the probabilities assigned by P,Q), in such a way that
exactly the distance between P,Q can be recovered.

Lemma 3.5 Let P and Q be probability distributions on a set of states K. Let P1 and P2 be such
that: P = P1 + P2. Then, there exist Q1, Q2, such that Q1 +Q2 = Q and

m(P,Q) = m(P1, Q1) +m(P2, Q2).

Proof. Let {lij}, {xi} and {yj} be such that the minimum is attained in the dual linear program
above: that is, m(P,Q) =

∑
i,j lijm(si, sj) +

∑
i xi +

∑
j yj . Define: Qk(sj) =

∑
i lijPk(si)/P (si) +

yjPk(K)/P (K), for k = 1, 2. Then, Q1 +Q2 = Q.
Furthermore, setting l1ij = [P1(si)/P (si)]lij , y1

j = [P1(K)/P (K)]yj , x1
i = [P1(si)/P (si)]xi, we

get: ∑
i

l1ij + y1
j = Q1(sj)∑

j

l1ij + x1
i =

∑
j

[P1(si)/P (si)]lij + [P1(si)/P (si)]xi

= [P1(si)/P (si)](
∑
j

lij + xi)

= [P1(si)/P (si)]P (si)
= P1(si).

Thus, m(P1, Q1) ≤
∑

i,j l
1
ijm(si, sj). Similarly, m(P2, Q2) ≤

∑
i,j l

2
ijm(si, sj).

Thus:

m(P1, Q1) +m(P2, Q2) ≤
∑
i,j

l1ijm(si, sj) +
∑
i

x1
i +

∑
j

y1
j +

∑
i,j

l2ijm(si, sj) +
∑
i

x2
i +

∑
j

y2
j

=
∑
i,j

[l1ij + l2ij ]m(si, sj) +
∑
i

(x1
i + x2

i ) +
∑
j

(y1
j + y2

j )

=
∑
i,j

lij ∗m(si, sj) +
∑
i

xi +
∑
j

yj

= m(P,Q).
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To show that m(P1, Q1) +m(P2, Q2) ≥ m(P,Q), consider the ai which achieves the maximum
in the definition of m(P,Q). Then (note that if P (K) ≥ Q(K), then Pi(K) ≥ Qi(K))

m(P1, Q1) +m(P2, Q2) ≥
∑
i

(P1(si)−Q1(si))ai +
∑
i

(P2(si)−Q2(si))ai

=
∑
i

(P (si)−Q(si))ai

= m(P,Q).

As a straightforward corollary, we get a complete matching on individual states.

Corollary 3.6 Given distributions P,Q there exist distributions Pi, Qi such that

• Pi are point distributions that are non-zero at only one state.

• P =
∑
Pi, Q =

∑
Qi

• m(P,Q) =
∑
m(Pi, Qi).

We now define a functional F onM that closely resembles the usual functional for weak bisimula-
tion.

Definition 3.7 Define F , a functional on M as follows. F (m)(s, t) < ε if:

• (∀s a⇒ P ) (∃t a⇒ Q) [m(P,Q) < ε].

• (∀t a⇒ Q) (s a⇒ P ) [m(P,Q) < ε].

F (m) is well-defined because of the following lemma. The triangle inequality on F (m) follows from
the triangle inequality on m extended to distributions.

Lemma 3.8 F (m) is a pseudometric given by:

F (m)(s, t) = max(max
a∈Act

sup
s
a⇒P

inf
t
a⇒Q

m(P,Q), max
a∈Act

sup
t
a⇒Q

inf
s
a⇒P

m(P,Q)).

Proof. We prove the triangle inequality. Let F (m)(s, t) < ε1, F (m)(t, u) < ε2. Let s a⇒ P . Since
F (m)(s, t) < ε1, there exists a t a⇒ Q such that m(P,Q) < ε1. Since F (m)(t, u) < ε2, there exists
a u a⇒ R such that m(Q,R) < ε2. From the triangle inequality on m (extended to distributions),
m(P,R) < ε1 + ε2.
F is monotone on M.

Lemma 3.9 F is monotone on M.

Proof. Let m2 � m1. We need to show that F (m2) � F (m1), i.e., (∀s, t)F (m1)(s, t) ≤
F (m2)(s, t).

Let F (m2)(s, t) < ε. Then,

• For all transitions s a⇒ P , there exists t a→ Q such that m2(P,Q) < ε.

• For all transitions t a⇒ Q, there exists a transition s
a⇒ P such that m2(P,Q) < ε.

Since, m2(P,Q) ≥ m1(P,Q), F (m1)(s, t) < ε as required.
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Using Tarski’s fixed point theorem, F has a maximum fixed point. Using the image finiteness of
LCMC, we can show that the closure ordinal of F is ω. The proof proceeds standardly, by showing
that the maximum fixed point m is given by m = timi, where m0 = > and mi+1 = F (mi).

Lemma 3.10 The closure ordinal of F is ω.

Proof. Let m(s, t) < ε. Let s a⇒ P . Then, for each mi there is a Qi such that t a⇒ Qi and
mi(P,Qi) < ε. Since the LCMC is image finite, there is a Qi (say Q) such that for all but finitely
many i, t a⇒ Q and mi(P,Q) < ε.

The maximal fixed point of F is sound with respect to bisimulation. The forward implication of
the proof uses the pseudometric m′ defined as: m′(s, t) = 0 iff s and t are bisimilar and 1 otherwise.
m′ satisfies m′ � F (m′). The converse proceeds by showing that the equivalence relation R induced
by 0 distance is a bisimulation.

Lemma 3.11 s ≈ t⇔ m(s, t) = 0, where m is the maximum fixed point of F .

Proof. For the forward direction, consider the pseudometric m′ defined as: m′(s, t) = 0 iff s and
t are bisimilar and 1 otherwise. Using lemma 2.9, F (m′) ≤ m′.

For the converse, consider the relation R induced by 0 metric distance. Clearly, this is an
equivalence relation. We show that this equivalence relation is a bisimulation. Let m(s, t) = 0.
Let P (s, a, E) = p, for some R-closed set E. Then, using lemma 2.6, there is a computation with
root s that assigns the maximum probability p to E. Thus, there exists a transition s

a⇒ P , such
that P (E) =

∑
s∈E P (s) = p. Given any ε > 0, since m(s, t) = 0, we get a transition (or a

linear combination of transitions) t a⇒ Q such that m(P,Q) < dε/n2, where n is the number of
states and d = min{m(si, sj)|si, sj are states in the system ,m(si, sj) > 0}. Then in the dual linear
program, lij < ε/n2 for all i, j such that m(si, sj) > 0, and so are xi and yj . Now |P (si)−Q(si)| =∑

j lij + xi −
∑

k lki − yi < ε/n as lii cancels out, and there are at most n positive and n negative
terms on the RHS. Thus |P (E) − Q(E)| < ε, so Q witnesses p − ε ≤ P (t, a, E). This calculation
holds for any ε, ensuring p ≤ P (t, a, E).

Finally, we show that it suffices to consider one-step transitions for the hypothesis in the def-
inition of the functional F . F ′ demands only matching of “one-step” transitions. However, by
using corollary 3.6 to move from distributions to states, we can show that F ′ enforces the matching
required by F . Let δs means the Dirac measure at s

Lemma 3.12 Define F ′ :M→M as follows: F ′(m)(s, t) < ε if:

• (∀s a→ s′) (∃t a⇒ Q) [m(δs′ , Q) < ε]. (∀s→p P ) (∃t τ⇒ Q) [m(P,Q) < ε].

• (∀t a→ t′) (∃s a⇒ P ) [m(P, δt′) < ε]. (∀t→p Q) (∃s τ⇒ P ) [m(P,Q) < ε].

Then, the maximum fixed points of F, F ′ coincide.

Proof. Clearly F imposes more conditions than F ′, since the one step computations considered
are also weak transitions. So, any fixed point of F is a fixed point of F ′.

For the converse, given a fixed point of F ′, and a transition s
a⇒ P , we need to construct a

matching transition t
a⇒ Q. The result for transitions of the form s

a⇒
∑

i Pi follows from that for
basic transitions s a⇒ P by considering linear combinations.
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Let m(s, t) < ε. For basic transitions s a⇒ P , we build the required transition t
a⇒ Q by

mimicking each step in s
a⇒ P . Formally, let us be given s

a⇒ P and a matching transition t
a⇒ Q

such that d(P,Q) < ε. Let s a⇒ P ′ extend s
a⇒ P by adding a one-step transition at one of the

leaves of P , say u, by a nondeterministic transition u b→ u′6. We show how to construct a matching
t
a⇒ Q′ such that m(P ′, Q′) < ε. Let s1, . . . , sn be all the states in the two transition systems. Let

Pi, i = 1 . . . n be the distributions such that Pi(si) = P (si), Pj(si) = 0, j 6= i. Then P =
∑

i Pi.
Using corollary 3.6, we deduce Qi, i = 1 . . . n such that

∑
im(Pi, Qi) = m(P,Q). Wlog, let u = s1.

Consider Q1. In this special case where P1 is a point-state distribution, the dual linear program
reduces to:

min
∑
j

ljm(s1, sj) + x+
∑
j

yj

subject to : ∀i.
∑
j

lj + x = P1(s1)

∀j.lj + yj = Q1(sj)
∀i, j. lij , xi, yj ≥ 0.

For each sj , j = 1 . . . n, for any δ > 0, the hypothesis on matching one step transitions from

s1 yields sj
b⇒ Q′j such that m(u′, Q′j) < m(s1, sj). Choosing δ sufficiently small, the required

matching transition for the one step transition u b→ u′ is yielded by the transition
∑

j lj(sj
b⇒ Q′j).

The transition matching s a⇒ P ′ is given by t a⇒ Q′ arises for Q′(sj) = Q(sj)− (lj +yj)+
∑

i li×
Q′i(sj).

4 Explicit construction of pseudometric

In this section, we provide an explicit construction of the maximum fixed point by considering a
class of [0, 1] valued functions. These functions ought to be viewed as the analogues of formulas in
a real-valued modal logic.

Definition 4.1 F is a set of function expressions whose syntax is given by:

f ::= 1 | max(f, f) | h ◦ f | a.f

where a is a label, possibly τ and h is any non-expansive operator on [0,1] (|h(x)−h(y)| ≤ |x− y|).
Given an LCMC (K, Act,−→, k0), these function expressions are evaluated on K as follows:

1(s) = 1
max(f1, f2)(s) = max(f1(s), f2(s))

h ◦ f(s) = h(f(s))

τ.f(s) =
{

max(f(s), {τ.f(s′)|s τ→n s
′}) if s ∈ Kn

max(f(s),
∑

i P (si)τ.f(si)) if s→p P

if a 6=τ

a.f(s) =
{

max({τ.f(s′)|s a→n s
′} ∪ {a.f(s′)|s τ→n s

′}) if s ∈ Kn∑
i P (si)a.f(si) if s→p P.

6the proof for the case when the one step extension is a probabilistic transition is similar and is omitted.
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These functions are inspired by a simple modal logic. 1 corresponds to the formula true, max(f1, f2)
corresponds to disjunction, and a.f corresponds to the next modality operator. h ◦ f encompasses
both testing and negation — h(x) = 1− x corresponds to negation, whereas h(x) = x− q if x > q,
0 otherwise allows testing the probability values. We define a pseudometric d as follows.

Definition 4.2 d(s, t) = supf∈F |f(s)− f(t)|

In the rest of this section, we examine the structure of d. Our aim is to prove that d coincides with
the maximum fixed point of the functional F of the previous section.

The distance between two probabilistic states is closely related to their outgoing distributions as
will be shown in Corollary 4.5, this observation yields a natural definition for the distance between
two distributions on the set of states of a LCMC.

Definition 4.3 Let P and Q be probability distributions on a set of states. Then:

• We write f(P ) to mean
∑

i P (si)f(si), the expectation of f under P .

• the distance between P and Q is defined as

d(P,Q) = sup
f∈F
|f(P )− f(Q)|.

The following lemma shows that when computing the distance between two states, we can
restrict to function expressions that are of the form a.f .

Lemma 4.4 For every pair of states s, t,

d(s, t) = sup
a∈Act,f∈F

{|a.f(s)− a.f(t)|}.

Proof. We prove by induction on the structure of f that there exists a function a.g such that
|a.g(s)− a.g(t)| ≥ |f(s)− f(t)|. The base case f = 1 is trivial, and so is the case f = a.f ′.

Let f = h ◦ f ′. Since h is non-expansive, we have that

|f(s)− f(t)| ≤ |f ′(s)− f ′(t)| ≤ |a.g(s)− a.g(t)|

where g is given by induction from f ′.
Let f = max(f1, f2). By induction, we have g1, g2 such that:

|fj(s)− fj(t)| ≤ |aj .gj(s)− aj .gj(t))|, j = 1, 2.

But |f ′(s) − f ′(t)| ≤ max(|f1(s) − f1(t)|, |f2(s) − f2(t)|). So the required function expression g is
one of g1, g2.
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The following result relates the distance between two probabilistic states and the distance
between their probabilistic transitions distributions.

Corollary 4.5 Let s, t be probabilistic states such that s→p P and t→p Q. Then

d(s, t) = d(P,Q).

Proof. We want to show that d(s, t) = supf∈F{|
∑

i(P (si)−Q(si))f(si)|}. By the preceding
lemma, we have that d(s, t) = supa∈Act,f∈F{|a.f(s) − a.f(t)|}. For a 6= τ , we have that for all
f ∈ F , |a.f(s) − a.f(t)| = |

∑
i(P (si) −Q(si))a.f(si)|, as wanted, by definition of a.f . For a = τ ,

we have that for all f ∈ F

|τ.f(s)− τ.f(t)| = |max(f(s),
∑
i

P (si)τ.f(si))−max(f(t),
∑
i

Q(si)τ.f(si))|

≤ max(|f(s)− f(t)|, |
∑
i

P (si)τ.f(si))−
∑
i

Q(si)τ.f(si))|.

If the maximum is obtained from the second argument, then the result follows. If the maximum is
obtained from |f(s)− f(t)|, we know from the proof of the preceding lemma that there exist a and
g such that |f(s)− f(t)| ≤ |a.g(s)− a.g(t)| = |

∑
i(P (si)−Q(si))a.g(si)|, as wanted.

The pseudometric d satisfies the requirements of definition 3.3.

Lemma 4.6 ((Adapted from [vBW01a])) Let K be a LCMC and P and Q be two probability
distributions on its set of states. Then the distance between P and Q is given by the solution to the
linear program (assuming P (K) ≥ Q(K)):

max
∑
i

(P (si)−Q(si))ai, subject to: 0 ≤ ai ≤ 1
∀i, j ai − aj ≤ d(si, sj)

.

Proof. Let us write L(P,Q) for the solution of the given linear program. For any function f ,
ai = f(si) satisfies the constraints. Let us prove that |f(P )− f(Q)| ≤ L(P,Q) for every f ∈ F . If
f(P ) ≥ f(Q), then |f(P )− f(Q)| ≤ L(P,Q). Otherwise consider the ai’s be given by the function
1− f . Then |f(P )− f(Q)| = f(Q)− f(P ) = (1− f)(P )− (1− f)(Q) ≤ L(P,Q).

Now consider a set of real numbers {ai} which maximizes the expression of L(P,Q). For every
ε > 0, we want to find a function expression f such that

∑
i(P (si) − Q(si))ai − ε ≤

∑
i(P (si) −

Q(si))f(si) Let ε > 0; we can determine for each si and sj a function fij such that fij(si) = ai,
and fij(sj) ≤ ai − d(si, sj) + ε. Define fi = minj(fij). Then fi(si) = ai, and for all j 6= i, fi(sj) ≤
ai − d(si, sj) + ε ≤ aj + ε. Define f = maxi fi. Thus for all i, ai ≤ f(si) ≤ ai + ε. Thus
d(P,Q) ≥ L(P,Q)− ε.

We first relate the evaluation of a.f over states with its evaluation over the distributions to
which these states have a weak a-transition.

Lemma 4.7 For any label a ∈ Act, a.f(s) = sup
s
a⇒P

f(P )

Proof. We first prove that a.f(s) ≥ f(P ) for all P such that s
a⇒ P . The result for

linear combinations s a⇒
∑

i λi × Pi follows from the result for basic transitions s a⇒ P , since
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f(λi ×Pi) =
∑

i λif(Pi) from definition 4.3. It suffices to prove this for computation trees of finite
depth, since f(P ) = supi f(Pi), where Pi is a distribution on the leaves of the computation tree
which assigns value 0 to all leaves of depth > i.

The proof proceeds by induction on the depth of the computation tree C underlying s
a⇒ P .

If its depth is 0, then C has a single node s, and a = τ . The result follows since τ.f(s) ≥ f(s).
Assume the claim is true for computations of depth n or less, and let C be a computation of depth
n+ 1.

If s ∈ Kn, then the result follows easily by definitions. Now assume that s ∈ Kp. For every si
such that s →p si we have by induction that a.f(si) ≥ f(Pi) where Pi given by the branch of the
computation that goes through si. Let s→p Q. Then we have P (sj) =

∑
iQ(si)Pi(sj). Then

a.f(s) ≥ a.f(Q) =
∑
i

Q(si)a.f(si)

≥
∑
i

Q(si)f(Pi)

≥
∑
i

Q(si)(
∑
j

Pi(sj)f(sj)) = f(P ).

The first inequality is by definition of a.f .
We now prove that for every s ∈ K there is a distribution P such that s a⇒ P and f(P ) = a.f(s).

We construct the (possibly infinite) corresponding C as follows.
If a = τ and τ.f(s) = f(s) or 0, the required computation is the single node s.
Otherwise, if s is a probabilistic state we simply choose the full probabilistic transition as the

first transition out of s. If s is a non-deterministic state, then the definition of a.f yields either a
transition s

a→n s
′ such that a.f(s) = τ.f(s′) or a transition s

τ→n s
′ such that a.f(s) = a.f(s′).

We choose this transition as the first transition out of s.
Next, we establish d as a fixed point of the functional F from the previous section.

Lemma 4.8 Let s, t be two states, and d(s, t) < δ. Let s a⇒ P . Then, there exists a transition
t
a⇒ Q such that d(P,Q) < δ.

Proof. We prove by contradiction. Let ε = δ − d(s, t). Let Q1, Qn, be all the distributions
such that t a⇒ Qi. If none of these satisfy the condition, then for each i there exists a function fi
such that fi(P ) = d(s, t) + ε, fi(Qi) = 0. We will show how construct a finite subset of functions
fi such that f = min fi, f(P ) = d(s, t) + ε, and f(Qi) ≤ ε/2 for all i. Thus using lemma 4.7,
a.f(s)− a.f(t) > d(s, t), which is a contradiction.

The finite subset can be chosen as follows: if distributions q =
∑
qisi and q′ =

∑
q′isi are

such that |qi − q′i| < ε/rn2 (where r = min d(si, sj), and n is the number of states), we get
d(q, q′) ≤ ε/rn2

∑
ai ≤ ε/rn2 ∗ rn2/2 = ε/2. So if we regard each distribution as a vector in a

finite dimensional cube of side 1, then the whole cube can be partitioned into finitely many cubes
of sides ε/rn2. If we choose the fi corresponding to a distribution q in each tiny cube, then for all
the other distributions q′ in the cube, fi(q′) ≤ fi(q) + d(q′, q) = ε/2. Thus we have finitely many fi
satisfying the property.
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Corollary 4.9

d(s, t) = max(max
a∈Act

sup
s
a⇒P

inf
t
a⇒Q

d(P,Q), max
a∈Act

sup
t
a⇒Q

inf
s
a⇒P

d(P,Q))).

Proof. Let M stand for the maximum on the right hand side of the claim. d(s, t) ≥ M by
Lemma 4.7. We now show that d(s, t) ≤ M . We want to show that for all f and ε > 0, there
exists a ∈ Act, P ∈ A, Q ∈ B, g ∈ F such that |f(s) − f(t)| ≤ |g(P ) − g(Q)| + ε ≤ M + ε. a
and g are given by Lemma 4.4, which yields |f(s)− f(t)| ≤ |a.g(s)− a.g(t)|. Then by Lemma 4.7,
a.g(s) = sup{g(P )|s a⇒ P} and similarly for t; this implies that for every ε > 0 there are P ∈ A,
Q ∈ B, such that |f(s)− f(t)| ≤ |g(P )− g(Q)|+ ε, as wanted.

The maximum fixed point of F is the pseudometric d that we have already studied. Corollary 4.9
already shows that d is a fixed point of F . For the converse, we define the depth of functional
expressions as follows:

depth(1) = 0
depth(h ◦ f) = depth(f)

depth(max(f1, f2)) = max(depth(f1), depth(f2))
depth(〈a〉.f) = depth(f) + 1

and show that mi � di for all i, where di is the pseudometric induced by functions of depth ≤ i.

Theorem 4.10 d is the maximum fixed point of F .

Proof. Corollary 4.9 shows that d is a fixed point of F . So d � m.
We prove the converse now. It suffices to show thatmi � di for all i, where di is the pseudometric

induced by functions of depth ≤ i. Proof proceeds by an induction on i. The proof is immediate
for base case i = 0. For the inductive case i = k + 1, using lemma 3.8,

F (mi)(s, t) = max(max
a∈Act

sup
s
a⇒P

inf
t
a⇒Q

mi(P,Q), max
a∈Act

sup
t
a⇒Q

inf
s
a⇒P

mi(P,Q)).

By induction, for all functions f of depth k, forall P,Q mi(P,Q) ≥ |f(P ) − f(Q)|. Thus, for
all functions 〈a〉.f , mi+1(s, t) ≥ |〈a〉.f(s) − 〈a〉.f(Q)|. The results for the cases max and h◦ are
immediate since they are non-expansive.

5 Process algebra

Prefixing, Internal choice, Probabilistic choice, Restriction. The constructions have
already been described in example 2.2.

Lemma 5.1 Prefixing, internal choice, probabilistic choice and restriction are non-expansive.

Proof.
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• Prefixing: Let m be the pseudometric witnessing d(s1, s2) < ε. We will construct a prefixed
point m′ such that m′(u1, u2) < ε, where ui are the start states of a.si. Define m′ as follows:
Define m′(u1, u2) = m(s, t). For all other states x 6= u1, u2, m′(u1, x) = m′(u2, x) = 1.
Finally, m′(x, y) = m(x, y) for all states x, y 6∈ {u1, u2}. Using lemma 3.12, we only need
to worry about the a transition out of u1, u2. For this case, u1

a→ s, u2
a→ s2 serve for the

required match since m′(u1, u2) = m(s, t).

• Internal choice: Let m be the pseudometric witnessing d(s1, s2) < ε. Let ui be the start state
of si ⊕ t, i = 1, 2. We will construct a prefixed point m′ such that m′(u1, u2) < ε. Define
m′(u1, u2) = m(s1, s2). For all other states x 6= u1, u2, m′(u1, x) = m′(u2, x) = 1. Finally,
m′(x, y) = m(x, y) for all states x, y 6∈ {u1, u2}. Using lemma 3.12, we only need to worry
about the τ transitions out of u1, u2. For this case, u1

τ→ s1, u2
τ→ s2 serve for the required

match since m′(u1, u2) = m(s, t). Similarly, u1
τ→ t, u2

τ→ t serve for the required match since
m′(t, t) = 0.

• Probabilistic choice: Let m be the pseudometric witnessing d(s1, s2) < ε. Let ui be the start
state of rsi+(1− r)t, i = 1, 2. We will construct a prefixed point m′ such that m′(u1, u2) < ε.
Define m′(u1, u2) = r ×m(s1, s2). For all other states x 6= u1, u2, m′(u1, x) = m′(u2, x) = 1.
Finally, m′(x, y) = m(x, y) for all states x, y 6∈ {u1, u2}. Using lemma 3.12, we only need
to worry about the probabilistic transitions out of u1, u2. First, note that the dual form of
the linear program defining m for distributions has a solution rε [by setting all xi, yj to zero,
and setting ltt = 1 − r, ls1,s2 = r]. So, m({(r, s1), (1 − r, t)}, {(r, s2), (1 − r, t)}) ≤ rε. This
immediately gives us the required match for the probabilistic transitions out of u1, u2.

• Restriction: Let m be the pseudometric witnessing d(s1, s2) < ε. Then, m also witnesses
d(s1\a, s2\a) < ε.

Parallel composition. For any LCMC, we can construct a bisimilar “saturated” transition
system, that has the property that every nondeterministic state has a bisimilar copy in probabilistic
states and vice versa. Given K = (K, Act,−→, k0), construct U = (U, Act,−→, u0) as follows:
replace each transition s

a→ t from a nondeterministic state s by a sequence s a→ s1, s1
1→ s2,

s2
τ→ t, where s1, s2 are new states not in K. Then, for every nondeterministic state s add the

following self-loop: s τ→ sp, sp 1→ s, where sp is again a new state.
We will now define the parallel composition of LCMCs. Assume that both LCMCs are saturated

and that their start states are nondeterministic. When restricted to LTSs, our definition agrees
upto weak bisimilarity. On saturated LCMCs, our definition agrees upto strong bisimulation with
the definition of Hansson and Johnson [HJ90] as modified in the thesis of Hansson [Han94].

Given saturated LCMCs K,L whose start states are nondeterministic, we define M = K||L
as follows. For any nondeterministic state s (in either of K,L), we use sp to refer to the cor-
responding bisimilar probabilistic state to which s has a τ transition. The nondeterministic
(resp. probabilistic) states of M are {(s, t) | s ∈ K, t ∈ L}, both nondeterministic} (resp.
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{(s, t) | s ∈ K, t ∈ L}, both probabilistic}). The transition relation is:

(s, t) a→ (s′, tp), (t, s) a→ (tp, s′) if s a→ s′

(s, t) τ→ (s′, t′) if s a→ s′, t
ā→ t′

(s, t)
p×q→ (s′, t′) if s

p→ s′, t
q→ t′

This definition preserves saturation and strict alternation of nondeterministic and probabilistic
transitions.

Lemma 5.2 Parallel composition is non-expansive.

Proof.(Sketch) Consider K1||L and K2||L. Let m be the pseudometric witnessing d(s1, s2) < ε,
where si ∈ Ki. Define m′((s1, t), (s2, t)) = m(s1, s2), where si ∈ Ki, both s1, s2 nondeterministic or
probabilistic. The required witness m′ such that m′(u1, u2) < ε is defined by m′((s1, t), (s2, t)) = 1,
where si ∈ Ki, one of s1, s2 nondeterministic and the other probabilistic.

Handling CCS +. We now sketch the extension of the theory to handle the CCS + operator.
Weak bisimulation is not a congruence for CCS + operator even in LTSs, a situation remedied by
a stricter matching of initial τ transitions.

We follow this standard trick in the metric context. We write s τ
+

⇒ P for a computation P from
s such that every path from s has at least one τ transition. The dc pseudometric agrees with d wrt
matching of all non-τ transitions. For τ -transitions, we demand a match by a transition of form

s
τ+

⇒ P .

Definition 5.3

dc(s, t) = max


d(s, t),
max (supP∈A infQ∈B d(P,Q),

supQ∈B infP∈A d(P,Q)))

where A = {P | s τ
+

⇒ P}, B = {Q | t τ
+

⇒ Q}.

Zero distance in dc agrees with the largest congruence contained in weak bisimulation [BS01].

Lemma 5.4 Let dc(s, t) = 0. Then:

• For all one-step transitions s a→ s′, there exists t a⇒ Q such that d(s′, Q) = 0, if a 6= τ .

• For all one-step τ transitions s τ→ P , there exists t τ
+

⇒ Q such that d(P,Q) = 0.

• If s is a probabilistic state with targets of the probabilistic fan given by the distribution P ,

there exists a transition t
τ+

⇒ Q such that d(P,Q) = 0.

Proof. The only non-trivial case to consider is s τ
+

⇒ P . In this case, since dc(s, t) = 0, there is a

t
τ+

⇒ Q such that d(P,Q) = 0.
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Lemma 5.5 + is non-expansive wrt dc.

Proof. Let dc(s1, s2) < ε. Let ui = si + t, i = 1, 2. We will prove that dc(u1, u2) < ε. Let u1
a→ u′.

There are three cases:

• The transition is caused by a transition t a→ u′. In this case, the required matching transition
u2

a→ u′ is immediate.

• a 6= τ and the transition is caused by a transition s1
a→ u′. In this case the required

transition s2
a⇒ Q such that d(s′, Q) < ε is yielded by the hypothesis dc(s1, s2) < ε since

d(s1, s2) ≤ dc(s1, s2).

• The key case is when a = τ and this transition is caused by s1
τ→ u′. The required transition

s2
a⇒ Q such that d(s′, Q) < ε is yielded by the hypothesis dc(s1, s2) < ε.

dc can be captured in the explicit construction of the metric by adding a function expression τ+.f
that is evaluated at a state s of an LCMC as:

τ+.f(s) =
{

max({τ.f(s′)|s τ→n s
′}) if s ∈ Kn

max(
∑

i P (si)τ.f(si)) if s→p P.

The addition of a top-level τ+ test is exactly what is needed to enable the real-valued modal logic
to capture dc. The proof proceeds by demonstrating that the new function τ+ satisfies lemmas 4.7
and that dc, τ+ satisfy the characterization of lemma 4.8. This enables us to adapt the proof of
lemma 4.9 to this case.

Lemma 5.6

dc(s, t) = max
{

supf∈F |τ+.f(s)− τ+.f(t)|
supf∈F |f(s)− f(t)|

Proof. It suffices to prove that

sup
f∈F
|τ+.f(s)− τ+.f(t)| = max(sup

P∈A
inf
Q∈B

d(P,Q), sup
Q∈B

min
P∈A

d(P,Q)))

where A is the set of distributions P such that s τ+

⇒ P , and B is the set of distributions Q such

that t τ
+

⇒ Q.
The proof that the LHS ≤ RHS follows the proof of lemma 4.8. The proof that the RHS

≤ LHS follows the proof of lemma 4.9. Following the proof of lemma 4.7, we can show that:

τ+.f(s) = sup
s
τ+
⇒P

f(P ). Thus: τ+.g(s) = sup{g(P )|s τ
+

⇒ P}, τ+.g(t) = sup{g(Q)|t τ
+

⇒ Q}. For any P ,

there is a Q such that: |g(P )− g(Q)| ≤ LHS. Thus, |τ+.g(s)− τ+.g(t)| ≤ LHS.
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6 Secure substitution

The context for our investigations is exemplified by mobile code applications where programs (such
as tax software) are downloaded as needed, executed on a trusted host (the home computer), require
access to sensitive local data (such as financial information) and yet should not be permitted to
“leak information”. Thus, we are in the situation where a “mole” has been permitted inside the
system and we are interested in measuring the information that the mole can leak to the outside
world. We use the definition and basic results about channel capacity from information theory —
see [CT91] for details.

We first formalize the interface of this channel. Fix an LCMC, K = (K, Act,−→, k0). Fix
O ⊂ Act − {τ}, a subset of labels not including τ that is intended to model the “output labels”
visible to the external observer. The remaining labels, I = (Act − {τ}) \ O is the set of “input
labels”. The (sequences of) labels from I constitute the input symbols of the channel. The “mole”
is viewed as attempting to leak information using these input symbols by influencing the (sequences
of) O labels. These sequences of output labels constitute the output symbols. Thus, the outside
observer is attempting to deduce input traces (elements of I?) while only viewing the output traces
(elements of O?).

Next, we identify the probabilistic transducers from input symbols to output symbols associated
with this channel. Inevitably, in the presence of nondeterminism, we cannot identify a single
transducer, rather we are forced to accommodate a set of probabilistically determinate transducers.
The following definition of O-determinate subtransition systems captures the conditions on the
elements of this set. The conditions reflect two aims. First, we want to ensure liveness conditions
that prevent the adversary from blocking the system from progress, if it is possible. Secondly, we
want to ensure that the nondeterminism is resolved enough to get a (probability) distribution on
output symbols once the input symbols are fixed.

First some notation. For purely notational convenience, assume that the LCMC is completely
unrolled into a tree. We say that two sequences of transitions σ, σ′ are consistent, if the choices
at nondeterministic states that occur in both σ, σ′ are consistent. For a state s and a subset of
transitions T , define EnabledT (s) = {a|a 6= τ, there is a path with weak label a from s in T}. We
will consider subsets T of transitions that satisfy:

1. Liveness: For all s, |EnabledT (s) ∩ Act| = 0⇒ |Enabled−→(s) ∩ Act| = 0.

2. I-liveness: For all s such that |EnabledT (s) ∩O| = 0, EnabledT (s) ∩ I = Enabled−→(s) ∩ I.

3. O-determinacy: Let s be such that |EnabledT (s) ∩ O| ≥ 1. Let a, b ∈ Act \ {τ}. Let
σ1 = s

τ∗→ s′1
a→ s1 and σ2 = s

τ∗→ s′2
b→ s2 be sequences of transitions in T . Then, σ1, σ2 are

consistent.

4. I-determinacy: Let a ∈ I, s a state. Let σ1 = s
τ∗→ s′1

a→ s1 and σ2 = s
τ∗→ s′2

a→ s2 be
sequences of transitions in T . Then, σ1, σ2 are consistent.

The first condition ensures that T cannot reject all labels. The second condition states that the
only reason for T to reject an input symbol (that might otherwise be accepted) at a state is a
nondeterministic choice leading to an output symbol. The third condition ensures that the choices
at states that can perform a weak O-labelled transition are purely probabilistic. The last condition
ensures that at any state, there is only one computation for a given I-label.
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The transition systems satisfying these conditions induce probabilistic transformers from se-
quences (say of length m) of I-labels to sequences of O-labels (say of length n). Let σ \A,A ⊆ Act
denote the subsequence of A-actions in Weak(σ).

Definition 6.1 Let T ⊆−→ satisfy the above conditions. Let y ∈ Om, x ∈ In. Define:

pm,nT (y|x) =
∑
{prob(σ) | σ = s→ s1 → . . .

a→ t,

a 6= τ, σ \O = y, σ \I = x}
pm,nT (δ|x) = 1−

∑
y∈Om

pm,nT (y|x)

δ is a special symbol to indicate absence of output from Om. pm,nT (.|x) is a probability distribution
on Om ∪ {δ}.

The channel capacity of a single probabilistic transformer such as the one above is defined in a
standard fashion — see [CT91] for detailed intuitions.

Definition 6.2 Given a joint probability distribution f(x, y), define mutual information, written
I(f) as:

I(f) = −
∑
x∈X

∑
y∈Y

f(x, y) log[
f(x, y)

f(x)× f(y)
].

The channel capacity of p(y|x), a probabilistic transducer from inputs x to outputs y, written
Ch(p), is maxr I(g) where r(x) is a probability distribution on inputs x and g(x, y) = r(x)×p(y|x).

The general theorems of information theory guarantee that the channel capacity calculated as per
the above definition can be achieved operationally by repeated use of the transducer p. This defi-
nition can of course be used on pm,nT ((.)|x) defined above since it is a pure probabilistic transducer.

Recall that we model worst case assumptions about the mole by allowing the mole to control
the (nondeterministic) scheduler and by permitting it to serve as oracle to guide the scheduler.

Definition 6.3 The O-channel capacity of a state s, written Ch(s) is defined as the supremum
over all m,n, T of the channel capacity of pm,nT ((.)|x).

As per this definition, the mole can choose a nondeterministic scheduler to derive a purely proba-
bilistic computation that gets arbitrarily close to the value of the O-channel capacity of a state s.
The mole does not gain anything by using probabilities to combine several such purely probabilistic
computations because of the convexity of mutual information:

Theorem 6.4 ( [CT91]) Let p1(y|x), p2(y|x) be probabilistic transducers from inputs x to outputs
y. Let r(x) be any distribution on inputs. Let gi(x, y) = r(x)× pi(y|x), for i = 1, 2. Let 0 ≤ λ ≤ 1.
Then I(λg1 + (1− λ)g2)) ≤ λI(g1) + (1− λ)g2

Thus, mixing probabilistic transducers diminishes the channel capacity, validating our definition 6.3
as the correct modelling of the worst case assumptions.

Basic information theory also provides bounds on changes in channel capacity as a function of
changes in probability for purely probabilistic transducers.

Lemma 6.5 Let p(y|x), p′(y|x) be probabilistic transducers from inputs to outputs such that maxx,y |p(y|x)−
p′(y|x)| < ε. Then: |Ch(p)− Ch(p′)| < kε, for some constant k that depends only on p.
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The coinduction infrastructure that we have described earlier permits us to match nondetermin-
istic choices between nearby processes. Thus, if s, t are close, every probabilistically determinate
computation from s that contributes to the channel-capacity of s can be matched by one from t.
This permits us to lift the bound described above for single probabilistic transducers to sets of
probabilistic transducers and reach our goal of showing that nearby states have almost the same
channel capacities.

Theorem 6.6 Let d(s, t) < ε. Then |Ch(s)− Ch(t)| < kε, for some constant k that depends only
on s. Thus, Ch(·) is a continuous function w.r.t. pseudometric d.

Proof. Let T ⊆−→ be a subset of transitions rooted at s satisfying conditions liveness, O-
determinacy, I-determinacy and I-liveness. Let d(s, t) < ε. Then, since F (d) � d, following the
proof of lemma 3.12, we can construct T ′ ⊆−→, a subset of transitions rooted at t satisfying condi-
tions O-determinacy, I-determinacy and I-liveness, such that (∀m,n), pm,nT ((.)|x) and pm,nT ′ ((.)|x)
satisfy the hypothesis of lemma 6.5. Result follows from the conclusion of lemma 6.5.

7 Conclusions

We have described a fixed-point approach to a metric analogue for weak bisimulation. This is the
first time to our knowledge that the “ε-analogue” of the usual process algebra equations for weak
(or strong for that matter) bisimulation have been developed. The fixed point approach was crucial
to this development since it made coinductive techniques possible. We were able to make use of
the beautiful duality principle from linear programming.

We have also explored the quantitative meaning of the metric. In particular we have shown that
the analogue of the information theory analysis of Markov chains can be extended to this setting
(i.e.to concurrent Markov chains). This involved an extension of the usual concepts like channel
capacity.

It may appear that our use of linear programming forces us into the setting of finite state
systems. However, the notion of duality works well for infinite-dimensional spaces [AN87] and we
are exploring this extension. We have not stressed the logical characterization of weak bisimulation
in this paper though that can also be done. In another paper being written the logical version of
the theory is being developed as well as the proof that we get a sound and complete model for
pCTL*.
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A Proof of Lemma A.1

Lemma A.1 Given a countable set of states A, with every pair of states in A non-bisimilar, there
exists s ∈ A such that P (s, ∅, A \ {s}) < 1.

Proof. Let A = {si | i = 1, 2, . . .}. We first prove that if ((∀si ∈ A) [P (si, ∅, A \ {si}) = 1]) then
the same statement is true for A \ {sj}, for any sj ∈ A.

Define an ”E-maximal” L-computation as follows. Consider computations under the prefix
ordering on trees. Given E ⊆ K, an L-computation from s ∈ K is E-maximal if it is maximal
among computations that satisfy: any node n such that State(n) ∈ E is a leaf. Thus an E-maximal
L-computation intuitively “does its best” to reach an E node — a node n with State(n) 6∈ E can
be a leaf only if every possible extension of the path from the root to n leads to a weak label not
in L.

Let Ci be the computation that induces the maximum value, namely 1, of P (si, ∅, A \ {si}),
and let Pi be the distribution induced by this computation on A \ {si}. We can assume that Ci is
A \ {si}-maximal. Then

1 = P (s1, ∅, [A \ {s1}]) = P1(s2) + P1(A \ {s1, s2}) and
1 = P (s2, ∅, [A \ {s2}]) = P2(s1) + P2(A \ {s1, s2})

We want to prove that for all sj ∈ A \ {s1}, P (sj , [A \ {s1, sj}]) = 1.

P (sj , ∅, [A \ {s1, sj}]) ≥ Pj([A \ {s1, sj}]) + Pj(s1)P (s1, ∅, [A \ {s1, sj}])
≥ Pj([A \ {s1, sj}])

+Pj(s1)(P1([A \ {s1, sj}]) + P1(sj)P (sj , ∅, [A \ {s1, sj}])).

Thus since Pj(s1)P1(sj) < 1 (otherwise s1Rsj), we have

P (sj , ∅, [A \ {s1, sj}]) ≥
Pj([A \ {s1, sj}]) + Pj(s1)P1([A \ {s1, sj}])

1− Pj(s1)P1(sj)
.

But this fraction is equal to 1 because of the two equalities above. Thus it follows that
P (sj , ∅, [A \ {s1, sj}]) = 1.

Thus we can remove any finite set of states from A, and still have it satisfy the property
((∀si ∈ A) [P (si, ∅, A \ {si}) = 1]). In particular, if Ai

d= A \ {s1, . . . , si}, then P (s1, ∅, Ai) = 1 for
all i ≥ 1. Thus P (s1, ∅,∩iAi) = 1, or P (s1, ∅, ∅) = 1, which is a contradiction.

B Complete Proof of Theorem 2.8

Theorem B.1 Given an LCMC which satisfies the property that the total of all the probabilities
from any probabilistic state is 1, if states s and t in it are bisimilar then they are bisimilar according
to the definition of Lee, Philippou and Sokolsky [PLS00].

Proof.
The definition of [PLS00] is as follows: (we have recast the definitions in terms of computations

rather than schedulers)
An equivalence relation R ⊆ S × S is a weak bisimulation iff whenever sRt, then
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• if s, t ∈ Sn, α ∈ Act and (s, α, s′) ∈−→, then there exists a computation C such that
PC(t, {α}, [s′]) = 1.

• there exists a computation C such that for all M ∈ S/R− [s], µR(s,M) = PC(t, ∅,M).

µR is the probability distribution from s ∈ Sp “normalized” by weighting by the probability of
exiting [s]:

µR(s,M) =

{
µ(s,M), if µ(s, [s]) = 1
µ(s,M)

1−µ(s,[s]) , otherwise

Now we will show that the relation ≈ satisfies both these conditions. The first condition is
satisfied easily: If (s, α, s′) ∈−→, P (s, {α}, [s′]) = 1. Since s ≈ t, P (t, {α}, [s′]) = 1, and using
Lemma 2.6, we have an {α}-computation C such that PC(t, {α}, [s′]) = 1.

For the second condition, let s ∈ Sp. Let si, i = 1, . . . be the targets of the probabilistic
transition from s that are not ≈-related to s. Our proof for this case proceeds in the following
steps.

If t ∈ Sn, we show that there exists t′ ≈ t such that (t, τ, t′) ∈−→, thus reducing this case to
the case when t is probabilistic.

If t ∈ Sp,we show that the targets of the probabilistic transition from t are precisely the si with
identical “normalized” probabilities.

• Suppose t ∈ Sn. In this case, we will show that there exists t′ ≈ t such that (t, τ, t′) ∈−→.
For each ≈-closed set E there is a state tE belonging to the targets of τ -transitions from
t such that P (t, ∅, E) = P (tE , ∅, E); this state is given by the computation obtained from
Lemma 2.6. Let A = [s1, . . . , sn]. Then P (tA, ∅, A) = P (t, ∅, A) = P (s, ∅, A) = 1. Also for
all E, 1 = P (t, ∅, [tE ]) = P (s, ∅, [tE ]). If for any E, [t] = [tE ], then we have tE ≈ t, and we
can apply case 2. Otherwise it follows that for all E, P (si, ∅, [tE ]) = 1 for all si and hence for
every element of A. Thus P (tA, ∅, [tE ]) = 1 and hence

P (tA, ∅, E) ≥ P (tE , ∅, E) = P (t, ∅, E) ≥ P (tA, ∅, E).

From this we can show that tA ≈ s ≈ t and we can apply the following case.

• Let t ∈ Sp. If t has a probability 1 transition to another state, then it is bisimilar to that
state, reducing us to the case above. Otherwise, w.l.o.g., assume that: (i) none of the si are
bisimilar, or bisimilar to s.
(ii) The targets of the probabilistic transition from t are also s1, s2, . . .. This is possible
because there are only countably many bisimulation classes, and these could be the si’s, some
with 0 probability.

Suppose that the “normalized” probability assigned by s (resp. t) to si is pi (resp. p′i). Let
A be a set of states such that for any state sj 6∈ A, pi = p′i (A can be the empty set). Then
P (s, ∅, A) =

∑
si∈A pi +

∑
sj 6∈A pjP (sj , A). Using the same equality on the t side, and using

P (s, ∅, A) = P (t, ∅, A), we have that 0 =
∑

si∈A(pi − p′i).
Now by Lemma A.1 there exists an sk ∈ A such that P (sk, ∅, A \ {sk}) < 1. Now P (s, ∅, A \
{sk}) =

∑
si∈A,i6=k pi + pkP (sk, ∅, A \ {sk}) +

∑
sj 6∈A pjP (sj , A \ {sk}). By using a similar
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equality for t, we have 0 =
∑

si∈A,i6=k(pi − p
′
i) + (pk − p′k)P (sj , A \ {sk}). Subtracting this

equation from the previous equation, we have (pk − p′k)(1−P (sj , A \ {sk}) = 0, which means
that pk = p′k, as P (sj , A \ {sk}) < 1.

Thus if the set {si | pi 6= p′i} was non-empty, we can derive a contradiction as shown above.
So pi = p′i for all i.
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