
Universal Semantics for the Stochastic λ-Calculus
Pedro H. Azevedo de Amorim∗, Dexter Kozen∗, Radu Mardare†, Prakash Panangaden‡, Michael Roberts∗

∗Cornell University
†University of Strathclyde
‡McGill University

Abstract—We define sound and adequate denotational and
operational semantics for the stochastic lambda calculus. These
two semantic approaches build on previous work that used
an explicit source of randomness to reason about higher-order
probabilistic programs.

I. INTRODUCTION

Probabilistic programming has enjoyed a recent resurgence
of interest, buoyed by the emergence of new languages and
applications in the statistical analysis of large datasets and
machine learning. Recent foundational research has focused
on semantic models for higher-order functional languages.

One approach that is radically different from other ap-
proaches is that of [1], which involves Boolean-valued models
for the stochastic λ-calculus. Based on an original idea of
Scott [2], the paper [1] succeeded in incorporating random
variables in a set-theoretic model of the untyped λ-calculus.
The approach was formulated in terms of a nonstandard
Boolean-valued interpretation of set theory based on the idea
of Boolean-valued models of ZF set theory (see [3]). Boolean-
valued models were first introduced by Scott [4] as an alter-
native technique to Cohen forcing for obtaining independence
results in set theory. The independence of the Continuum
Hypothesis was obtained by introducing an arbitrarily large
set of real-valued random variables. The measure algebra of
a standard Borel space Ω, a complete Boolean algebra, was
used as a set of generalized truth values instead of the usual
two-element Boolean algebra.

Scott also observed that these ideas could be given a
probabilistic interpretation. The basic intuitions were briefly
laid out in [2] and the formal development carried out in
[1]. The primary goal was to develop an equational theory in
which equations between stochastic λ-terms have probabilistic
meaning and take values in a complete Boolean algebra. The
intention was to provide reasoning principles for evaluating the
equality of λ-terms under various program transformations.

The language contains a binary probabilistic choice operator
⊕, which captures the idea that a choice is to be made
between two terms based on a random process. The source
of randomness is called a tossing process, a random variable
T : Ω→ 2ω giving a sequence of independent fair coin flips.

The semantics presented in this paper differ from those
of [1] in several key ways. The semantics of [1] use static
scoping for random coins. This causes β-reduction for un-
restricted terms to be unsound, as a random coin may be

used in more than one probabilistic decision. It is sound
only under a certain restriction, namely that all probabilistic
decisions in the argument be resolved before applying the
function. This is a major impediment to the development of
an operational semantics for which adequacy can be proved;
indeed an operational semantics is not given in [1]. In contrast,
we dynamically scope random coins, allowing them to be
supplied at function call time. The nonstandard Boolean-
valued foundations of the [1] semantics further complicate the
development of an operational semantics, as they would call
for a Boolean-valued operational semantics. In this work, we
present a semantics with simpler domain-theoretic semantics
with standard foundations.

A more operational approach was taken in [5]. That
work presented an operational semantics for the stochastic
λ-calculus as an idealized version of the Church language
[6], along with reasoning principles and applications to the
correctness of an implementation of trace Markov chain Monte
Carlo processes. That work did not define a denotational
semantics, which obliged them to reason combinatorially about
programs.

In this paper we modify the approaches described above to
conform to each other. We amend the stochastic denotational
semantics of [1] to alter the scoping discipline of random
sources in a way that still permits the Boolean-valued view
of [1], yet allows the formulation of big- and small-step
operational rules similar to [5] without the artificial restriction
mentioned above. We prove soundness and adequacy of the op-
erational semantics with respect to the reformulated stochastic
semantics of [1], solving the main problem left open in that
paper.

The organization of this paper and our main contributions
are as follows.

Syntax: In §II we review the syntax of the stochastic λ-
calculus as presented in [1], but with one change: We use
capsules to represent recursive functions instead of an explicit
fixpoint constructor. A capsule [7] is a pair 〈M,σ〉, where M
is a stochastic λ-term and σ is an environment, such that
• FV(M) ⊆ domσ, and
• ∀x ∈ domσ FV(σ(x)) ⊆ domσ.

Capsules represent a finite coalgebraic representation of a
closed regular λ-coterm (an infinite λ-term). This represen-
tation obviates the need for an explicit fixpoint constructor.

Tossing Processes: In §III we undertake a comprehensive
exposition of tossing processes, or measure-preserving trans-
formations of the Cantor space of infinite coin sequences.978-1-6654-4895-6/21/$31.00 ©2021 IEEE

20
21

 3
6t

h
A

nn
ua

l A
C

M
/IE

EE
 S

ym
po

si
um

 o
n

Lo
gi

c
in

 C
om

pu
te

r S
ci

en
ce

 (L
IC

S)
 |

97
8-

1-
66

54
-4

89
5-

6/
20

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
LI

C
S5

22
64

.2
02

1.
94

70
74

7

Authorized licensed use limited to: University of Edinburgh. Downloaded on September 08,2021 at 10:38:33 UTC from IEEE Xplore. Restrictions apply.

These processes arise in the study of behavioral invariance of
programs, i.e. programs that behave the same way except for
coin usage. We characterize the computable and continuous
processes, both partial and total, and show their relationship
to prefix codes. We also identify a general class of processes
called tree processes that we later use in §VII to characterize
the relationship between the coin usage patterns of our big-
and small-step operational semantics.

Computability of tossing processes: Also in §III, we show
how to embed the Cantor space 2ω in a Scott domain in a
natural way, thereby laying the groundwork for our modified
denotational semantics. Consider the set 2≤ω of finite and
infinite binary strings ordered by the prefix relation. This is an
algebraic DCPO whose compact elements are the finite strings.
Define x↑ = {y ∈ 2≤ω | x � y} for x ∈ 2≤ω , where � is the
prefix relation. The basic Scott-open sets are x↑ for x ∈ 2∗.
These are well known folklore results;1 the domain is usually
known as the domain of binary streams.

The infinite streams or sequences, with the subspace topol-
ogy inherited from the Scott topology, is homeomorphic to
Cantor space. Lemmas 7 and 8 establish a formal relationship
between these two spaces and their continuous maps. This
“Scottified” Cantor space gives an explicit characterization
of functions that behave continuously with respect to coin
usage in the sense that halting computations depend only on
finite prefixes of the coin sequence. This allows us to discuss
computable and continuous tossing processes. All the tree
processes are Scott-continuous.

A Simplified Stochastic Semantics: In §IV, we review the
stochastic denotational semantics of [1]. That semantics is
based on a semantic map

L−M : Exp→ Env→ Cont→ Toss→ RV

where
• RV is the set of random variables Ω→ Val from a sample

space Ω taking values in a reflexive CPO Val,
• Exp is the set of stochastic λ-terms M ,
• Env is the set of environments e : Var→ RV,
• Cont is the set of continuations c : RV→ RV, and
• Toss is the set of tossing processes T : Ω→ 2ω .
Thus LM MECT : RV.
We can simplify the exposition as follows:
• Suppose we restrict continuations to be of the form
SF = λf .λω .Fω(fω) for some F : Ω → [Val →
Val], where [Val → Val] denotes the Scott-continuous
deterministic maps.2 Then all continuations that arise in
the inductive definition of LM M are also of this form.
Formally adopting this restriction allows us to eliminate
continuations altogether.

• A tossing process determines how a supplied source of
randomness is used in a computation. In [1] they are
of type Ω → 2ω , where Ω is an abstract sample space.
For our purposes, there is no reason not to assume that

1https://en.wikipedia.org/wiki/Scott domain
2The operation S is the familiar S-combinator from combinatory logic.

the sample space is 2ω with Lebesgue measure, so a
tossing process is now any measurable map T : 2ω → 2ω

such that T−1 preserves measure. Examples are tl(α) =
α1α2α3 · · · and evens(α) = α0α2α4 · · · . This allows a
more concrete treatment as developed in §III.

• We can omit the fixpoint operator of [1] using capsules
[7], as described in §III.

In the treatment of [1], general β-reduction is unsound,
precluding any standard operational semantics. This is be-
cause the source of randomness used by a function in the
evaluation of its body is a coin sequence packaged with
the function at the site of the function’s definition. Thus
randomness, like environments, is statically scoped. This can
lead to the reuse of coins at different locations in the program,
thereby breaking linearity. For example, in the evaluation of
(λx.xa(xb))(λy .cy⊕ dy), the same coin is used twice in the
resolution of two ⊕’s when the body of the first expression is
evaluated.

To achieve adequacy with respect to an operational seman-
tics, we modify the denotational semantics of functions to
allow the random source to be supplied as a parameter at the
call site.

Deterministic Denotational Semantics: In §V, we observe
that in the stochastic semantics, the value of L−M depends
not on the whole tossing process T nor the environment E,
which are random variables parameterized by a sample point
ω ∈ Ω, but only on their values. Intuitively, each run of
the program corresponds to one trial, which is determined
by a single sample point ω. This is the same observation
used to eliminate continuations. This allows us to develop
an intermediate deterministic denotational semantics in which
probabilistic choices are resolved in advance, after which the
program runs deterministically, making probabilistic decisions
based on a presampled infinite stack of random numbers.

The deterministic denotational semantics is built on a
reflexive domain of values constructed using the Scottified
Cantor space of §III. In §VI, we prove the equivalence of
the stochastic denotational semantics of [1] (as modified in
§IV) and the deterministic semantics of §V (Theorem 16).

Operational Rules: In §VII, we give big-step and small-
step structured operational semantics in the style of [8]. The
big-step rules take the form 〈M, e〉 ⇓α 〈v, f〉, which means
that 〈M, e〉 reduces to normal form 〈v, f〉 with coins α ∈ 2ω .
The small-step rules take the form 〈M, e〉 →x 〈N, f〉, which
means that 〈M, e〉 reduces to 〈N, f〉 via a computation that
consumes exactly a prefix x ∈ 2∗ of the infinite coin sequence.

In Theorem 17, we prove the equivalence of the big- and
small-step rules, which use their random coins in a different
pattern. The relationship is characterized by a tree process as
described in §III.

Soundness and Adequacy: In §VIII, we prove the soundness
and adequacy of our denotational semantics with respect to
our big-step operational semantics (Theorem 18). Unlike most
adequacy proofs that use logical relations, this proof is a rela-
tively straightforward inductive argument, as the deterministic

2

Authorized licensed use limited to: University of Edinburgh. Downloaded on September 08,2021 at 10:38:33 UTC from IEEE Xplore. Restrictions apply.

denotational semantics and the big-step operational semantics
use their coins in the same pattern.

II. SYNTAX

Let Var be a countable set of program variables x, y,
Let Exp denote the set of untyped λ-terms M,N,K, . . .
with the usual abstraction and application operators plus an
additional binary operator ⊕ for probabilistic choice. Let Λ
denote the set of λ-abstractions, λ-terms of the form λx.M .

A. Capsules

A capsule is a pair 〈M,σ〉, where M ∈ Exp and σ : Var ⇁
Λ is a capsule environment, such that

(i) FV(M) ⊆ domσ
(ii) ∀x ∈ domσ FV(σ(x)) ⊆ domσ.

Here domσ refers to the domain of σ and FVM refers to
the set of free variables of M . A capsule is reduced if its
first component is in Λ. Reduced capsules are denoted with
lowercase letters, as 〈v, σ〉.

A capsule is a finite coalgebraic representation of a regular
closed λ-coterm (infinitary λ-term), which is an element of the
final coalgebra for the signature of the λ-calculus. Capsules
give a convenient representation of recursive functions without
the need of fixpoint combinators.

Capsules are considered equivalent modulo α-conversion,
including α-conversion of the variables used in σ. In terms
of nominal sets with the variables as atoms, the support of a
capsule is ∅. Capsules are also considered equivalent modulo
garbage collection in the sense that we can assume without
loss of generality that dom e is a minimal set of variables
satisfying (i) and (ii).

The capsule β-reduction rule is

〈(λx.M) v, σ〉 → 〈M [y/x], σ[v/y]〉 (y fresh)

applied in a call-by-value evaluation order. This mechanism
captures static scoping without closures, heaps, or stacks [7].
Here we are using the notation [−/−] for both substitution (as
in M [y/x]) and rebinding (as in σ[v/y]).

Capsules were introduced in [7]. For the stochastic λ-
calculus, we augment the system with the new syntactic
construct M ⊕N for probabilistic choice.

III. TOSSING PROCESSES

The Cantor space 2ω is the space of infinite bitstreams. It is
the topological power of ω copies of the two-element discrete
space 2 = {0, 1}. Elements of 2ω are denoted α, β, The
topology is generated by basic open sets Ix = {α ∈ 2ω | x ≺
α}, where x ∈ 2∗ and ≺ denotes the strict prefix relation. The
sets Ix are called intervals. The topology is also generated by
the standard metric d(α, β) = 2−n, where n is the length of
the longest common prefix of α and β, or 0 if α = β.

The Borel sets B of the Cantor space are the smallest σ-
algebra containing the open sets. The uniform (Lebesgue)
measure Pr on (2ω,B) is generated by its values on intervals:
Pr({α | x ≺ α}) = 2−|x|. The Lebesgue measurable sets are

the smallest σ-algebra containing the Borel sets and all subsets
of null sets. The set of null sets is denoted N .

A tossing process is any measurable map T : 2ω → 2ω

such that T−1 preserves measure; that is, for all A ∈ B,
Pr(T−1(A)) = Pr(A). Given an infinite bitstream α =
α0α1α2 · · · , we can define the examples tl(α) = α1α2α3 · · ·
and evens(α) = α0α2α4 · · · . A tossing process determines
how a supplied source of randomness is used in a computation.

Lemma 1. T is a tossing process iff for all x ∈ 2∗,

Pr({α | x ≺ T (α)}) = 2−|x|

Proof. We have x ≺ T (α) iff α ∈ T−1({γ | x ≺ γ}),
therefore

T is a tossing process

⇔ ∀x ∈ 2∗ Pr(T−1({γ | x ≺ γ})) = Pr({γ | x ≺ γ})
⇔ ∀x ∈ 2∗ Pr({α | x ≺ T (α)}) = 2−|x|.

A. Computable and Continuous Processes

For a function f : 2ω → 2ω to be computable, it must be
possible to emit each digit of the output stream after reading
only finitely many digits of the input stream. For example, one
can emit the nth digit of tlα after reading n+ 1 digits of α,
and one can emit the nth digit of evensα after reading the
first 2n− 1 digits of α.

Lemma 2. All computable tossing processes T : 2ω → 2ω are
continuous. All continuous functions 2ω → 2ω are uniformly
continuous with respect to the standard metric.

Proof. To be computable, it must be the case that any finite
prefix x ≺ Tα of the output is determined by some finite
prefix of the input α. This implies that x ≺ Tβ for any β that
agrees with α on a sufficiently long prefix; in other words, {β |
y ≺ β} ⊆ T−1({γ | x ≺ γ}) for some y ≺ α. Thus T−1({γ |
x ≺ γ}) is open. As x was arbitrary, T is continuous.

It is a standard result that any continuous function on a
compact metric space is uniformly continuous.

For example, tl is Lipschitz with constant 2: d(tlα, tlβ) ≤
2d(α, β). The maps evens and odds are not Lipschitz, but
they are Hölder of order 1/2; that is, both maps satisfy
d(Tα, Tβ) ≤

√
d(α, β).

There is a subtle distinction between “reading” and “con-
suming” a digit. The latter refers to using the digit to make a
probabilistic choice. One can read digits without consuming
them; they can be saved to make probabilistic choices later, at
which point they are consumed. It is important for indepen-
dence that digits not be consumed more than once.

Uniform continuity fails if we allow tossing processes to
be partial. A partial tossing process is a measure-preserving
partial measurable function T : 2ω ⇀ 2ω . Such a function
is necessarily almost everywhere defined, since domT =
T−1(2ω), which must have measure 1.

3

Authorized licensed use limited to: University of Edinburgh. Downloaded on September 08,2021 at 10:38:33 UTC from IEEE Xplore. Restrictions apply.

Lemma 3. All computable partial tossing processes T : 2ω →
2ω are continuous. There is a computable partial tossing
process that is continuous but not uniformly continuous.

Proof. Computable partial tossing processes T : 2ω → 2ω are
continuous for the same reason that total ones are.

For the second statement, define T coinductively as follows:

T (0∗10α) = 0T (α) T (0∗11α) = 1T (α).

The domain of definition of T is (0∗1)ω , the measure-1 set of
streams containing infinitely many 1’s. It is continuous, since
if α and β share a prefix with at least 2n 1’s, then Tα and
Tβ share a prefix of length n. It is not uniformly continuous,
as there is no bound on the number of input digits that need
to be read before producing the next output digit.

The T of the previous lemma is undefined on the nullset
2∗0ω . One can define T arbitrarily on this set, but Lemma
2 says that the resulting total tossing process cannot be
continuous. This does not rule out the possibility that every
total tossing process might be equivalent modulo N to some
continuous partial tossing process. However, this too is false.

Lemma 4. There is a tossing process that is not equivalent
modulo N to any continuous partial tossing process.

Proof. The proof uses [9, Exercises 7 and 8, p. 59]. A
complete proof can be found in the Appendix.

Lemma 5. All continuous tossing processes, partial or total,
are surjective.

Proof. For any β ∈ 2ω , T−1({β}) =
⋂
n T
−1({α | αn =

βn}). This is the intersection of a collection of closed sets with
the finite intersection property in a compact space, therefore
it is nonempty.

Every tossing process T is equivalent modulo N to a partial
T ′ that is “almost continuous” in the sense that all T ′−1

({α |
x ≺ α}) are ∆0

2, that is, both Gδ and Fσ . One can obtain T ′

from T by deleting countably many nullsets Gx \ Fx, where
Gx and Fx are Gδ and Fσ , respectively, such that Pr(Fx) =
Pr(Gx) and Fx ⊆ T−1({α | x ≺ α}) ⊆ Gx. The sets Fx and
Gx exist by Lebesgue measurability.

The following theorem gives a characterization of the con-
tinuous partial and total tossing processes T : 2ω → 2ω . A
binary prefix code is a nonempty set of prefix-incomparable
finite-length binary strings. A binary prefix code P is exhaus-
tive if all α ∈ 2ω have a prefix in P . An exhaustive prefix
code is necessarily finite by compactness.

If P and Q are two binary prefix codes, write P � Q if
every element of Q is an extension of some element of P ;
that is, for every y ∈ Q, there exists x ∈ P such that x � y.

A coding function is a map x 7→ Px, where Px is a prefix
code, such that
• Pε = {ε};
• if x and y are prefix-incomparable, then Px ∩ Py = ∅;
• if x � y, then Px � Py .

In addition, x 7→ Px is said to be exhaustive provided

• if P is an exhaustive prefix code, then so is
⋃
x∈P Px.

Theorem 6. For every continuous partial tossing process T ,
there is a unique coding function x 7→ Px such that

(i) x ≺ Tα iff y ≺ α for some y ∈ Px; in other words,

T−1(Ix) = {α | x ≺ Tα} =
⋃
y∈Px

Iy;

(ii) Px is �-minimal among prefix codes satisfying (i);
(iii) Pr(

⋃
y∈Px

Iy) = 2−|x|.
If T is total, then x 7→ Px is exhaustive. Moreover, every
coding function of this form gives rise to a continuous partial
or total tossing process.

Proof. A proof can be found in the Appendix.

B. Tree Processes

Let t : 2∗ → ω be a labeled tree with no repetition of
labels along any path; that is, if x, y ∈ 2∗ with x ≺ y, then
t(x) 6= t(y). Each such tree gives rise to a continuous tossing
process T : 2ω → 2ω as follows. Given α = α0α1α2 · · · ∈ 2ω ,
let T (α) = β0β1β2 · · · , where βn = αt(β0β1···βn−1). Thus the
bit of the input sequence α that is tested in the nth step can
depend on the outcomes of previous tests as determined by t.
The restriction “no repetition of labels along any path” ensures
that no coin is used more than once.

Every such T is measurable and measure-preserving, thus
a tossing process:

T−1({γ | β0 · · ·βn−1 ≺ γ}) = {α | β0 · · ·βn−1 ≺ T (α)}

= {α |
n−1∧
i=0

T (α)i = βi} =

n−1⋂
i=0

{α | αt(β0···βi−1) = βi}

Pr(T−1({γ | β0 · · ·βn−1 ≺ γ}))

= Pr(

n−1⋂
i=0

{α | αt(β0···βi−1) = βi})

=

n−1∏
i=0

Pr({α | αt(β0···βi−1) = βi}) = 2−n.

Such processes are called tree processes.
Tree processes are uniformly continuous in the standard

metric: T (α) and T (β) agree on their length-n prefixes
provided α and β agree on their length-m prefixes, where
m is the supremum of the labels on all nodes of depth n or
less in the tree t.

C. Scottifying the Cantor Space

We can embed the Cantor space 2ω in a Scott domain in a
natural way. Consider the set 2≤ω of finite and infinite binary
strings ordered by the prefix relation. This is an algebraic CPO
whose compact elements are the finite strings. Define x↑ =
{y ∈ 2≤ω | x ≺ y} for x ∈ 2≤ω . The basic Scott-open sets
are x↑ for x ∈ 2∗.

Lemma 7.

4

Authorized licensed use limited to: University of Edinburgh. Downloaded on September 08,2021 at 10:38:33 UTC from IEEE Xplore. Restrictions apply.

(i) If B is a Scott-open set of 2≤ω , then B∩2ω is a Cantor-
open set of 2ω .

(ii) If A is a Cantor-open set of 2ω , then {x ∈ 2≤ω | x↑ ⊆
A} is a Scott-open set of 2≤ω , and is largest Scott-open
set B such that B ∩ 2ω = A.

Thus the Cantor space 2ω is a subspace of the Scott
space 2≤ω . The “Scottified” Cantor space gives an explicit
characterization of functions that behave continuously with
respect to coin usage in the sense that computations depend
only on finite prefixes of the coin sequence.

Let D be a continuous ω-CPO ordered by v with a meet
operation

d
. Let ≺ be the proper prefix relation on strings.

Lemma 8.
(i) If f : 2≤ω → D is Scott-continuous, then f � 2ω : 2ω →
D is Cantor-continuous.

(ii) If g : 2ω → D is Cantor-continuous, then g extends to a
Scott-continuous map λx.

d
x≺α g(α) : 2≤ω → D.

2ω D

2≤ω

f � 2ω

f

2ω D

2≤ω

g

λx.
d
x≺α g(α)

Proof. A proof can be found in the Appendix.

IV. STOCHASTIC SEMANTICS

We review briefly the stochastic semantics from [1]. This
semantics was based on a map

L−M : Exp→ Env→ Cont→ Toss→ RV

where
• RV is the set of random variables Ω→ Val from a sample

space Ω taking values in a reflexive CPO Val,
• Exp is the set of stochastic λ-terms M ,
• Env is the set of environments E : Var→ RV,
• Cont is the set of continuations C : RV→ RV, and
• Toss is the set of tossing processes T : Ω→ 2ω .

Thus LM MECT : RV. The Boolean-valued semantics inter-
preted properties in the Boolean algebra of measurable sets of
Ω.

We can simplify the definition of [1] with a few observa-
tions.

(i) In [1], the map L−M is parameterized by continuations
C : (Ω → Val) → (Ω → Val). Suppose we restrict
continuations to be of the form SF = λf .λω .Fω(fω)
for some F : Ω → [Val → Val], where [Val → Val] de-
notes the Scott-continuous deterministic maps.3 Then all
continuations that arise in the inductive definition of L−M
are also of this form. Formally adopting this restriction
allows us to eliminate continuations altogether, thereby
simplifying the presentation. This also makes sense at an

3The operation S is the familiar S-combinator from combinatory logic.

intuitive level: A single trial is a single evaluation of the
program and depends only on one sample from Ω.

(ii) Tossing processes in [1] are of type Ω → 2ω , where
Ω is an abstract sample space. A large part of the
development of [1] was concerned with invariance prop-
erties of measure-preserving transformations of Ω. For
our purposes, there is no reason not to take the sample
space to be 2ω with the standard Lebesgue measure.
Thus tossing processes become measure-preserving maps
T : 2ω → 2ω . This allows a more concrete treatment.
A comprehensive characterization of such processes is
given in §III.

(iii) The definition of [1] included a fixpoint operator. Our use
of capsules allows us to eliminate this operator without
loss of expressiveness.

In addition to these simplifications, we introduce a more
radical change that will admit a full-fledged operational se-
mantics, namely the dynamic scoping of the random source.

The type of the semantic map is now

L−M : Exp→ Env→ Toss→ RV.

The values RV do not form a reflexive CPO, however they are
built out of a reflexive CPO, as explained below in §VI-A.

Fun : RV→ [Toss→ RV→ RV]

Lam : [Toss→ RV→ RV]→ RV

We will define these functions explicitly below in §VI-A.

Definition 9.
(i) LxMET = E(x)

(ii) LMN MET = Fun(LM ME(π3
0 ◦ T))(π3

1 ◦ T)(LN ME(π3
2 ◦

T))
(iii) Lλx.M MET = Lam(λTv .LM ME[v/x]T)
(iv) LM ⊕ N MET = λω . hd(Tω) ? LM ME(tl ◦T)ω :

LN ME(tl ◦T)ω

where clause (ii) uses the notation π3
i (α) (αi when evident

from the context) to refer to the subsequence of α consisting
of bits whose indices are i mod 3; thus π3

1(α0α1α2 · · ·) =
α1α4α7 · · · , and clause (iv) uses the ternary predicate

b ? s : t =

{
s, if b = 1,
t, if b = 0.

(1)

In LM ME, we assume that FV(M) ⊆ domE.

V. DETERMINISTIC SEMANTICS

The observation of §IV that allowed continuations to be
eliminated can be carried further. All components in the
definition of L−M are parameterized by sample points ω ∈ Ω,
but as observed, there is no resampling in the course of a single
trial; it is the same ω. The function L−M does not really depend
on the whole tossing process T or the whole environment E,
which are random variables, but only on their values. This
observation allows us to develop an intermediate deterministic
denotational semantics in which all probabilistic choices are

5

Authorized licensed use limited to: University of Edinburgh. Downloaded on September 08,2021 at 10:38:33 UTC from IEEE Xplore. Restrictions apply.

resolved in advance. The program runs deterministically, re-
solving probabilistic choices by consulting a preselected stack
of random bits. In this section we introduce this semantics
and develop some of its basic properties. Later, in §VI, we
will prove that it is equivalent to the stochastic semantics of
[1] as modified in §IV (Theorem 16).

A. A Domain of Values

Barendregt [10, §5] presents several constructions of re-
flexive CPOs that can serve as denotational models of the
untyped λ-calculus. One concrete such model, due to Engeler
[11], [12], is a reflexive ω-algebraic CPO P(Q) ordered by
inclusion, where Q is a certain countable set. The basic Scott-
open sets are a↑ = {b | a ⊆ b}, where a is a finite subset of
Q. A function P(Q)→ P(Q) is continuous if it is continuous
in this topology; equivalently, if fb =

⋃
c∈Pfin(b) fc.

In this section we present a version of the Engeler model
modified to include a random source as an argument to
continuous functions using the Scottified Cantor space of
§III-C. Define

Q0 = {∅} Qn+1 = Qn] (2∗ × Pfin(Qn)×Qn) Q =
⋃
n

Qn

and let Val = P(Q), ordered by inclusion. The basic Scott-
open sets of Val are a↑ = {b | a ⊆ b}, where a ∈ Pfin(Q).
A function Val→ Val is continuous if it is continuous in this
topology.

A function f : 2ω → Val → Val is continuous if it is con-
tinuous in both variables with respect to the Scott topology on
Val and the Cantor topology on 2ω . The continuous functions
of this type are denoted [2ω → Val → Val]. Intuitively, f is
continuous if its value on α ∈ 2ω and b ∈ Val depends only
on finite prefixes of α and finite subsets of b.

Lemma 10. Let f : [2ω → Val→ Val]. Then

fαb =
⋃

c∈Pfin(b)

⋃
x≺α

⋂
β∈Ix

fβc.

Proof. Let c ∈ Val. By the continuity of f in its first argument,
λα.fαc : 2ω → Val is continuous, therefore for any basic
open set a↑,

α ∈ (λα.fαc)−1(a↑)⇔ ∃x ≺ α Ix ⊆ (λα.fαc)−1(a↑).

Then

a ⊆ fαc⇔ fαc ∈ a↑
⇔ α ∈ (λα.fαc)−1(a↑)
⇔ ∃x ≺ α Ix ⊆ (λα.fαc)−1(a↑)
⇔ ∃x ≺ α ∀β ∈ Ix β ∈ (λα.fαc)−1(a↑)
⇔ ∃x ≺ α ∀β ∈ Ix a ⊆ fβc

⇔ a ⊆
⋃
x≺α

⋂
β∈Ix

fβc.

As a was arbitrary, for any b ∈ Val,

fαb =
⋃

c∈Pfin(b)

fαc =
⋃

c∈Pfin(b)

⋃
x≺α

⋂
β∈Ix

fβc.

To obtain a reflexive domain, we need to construct contin-
uous maps

fun : Val→ [2ω → Val→ Val]

lam : [2ω → Val→ Val]→ Val

such that fun ◦ lam = id.

fun a = λβv .{q ∈ Q | ∃x ≺ α ∃b ∈ Pfin(v) (x, b, q) ∈ a}

=
⋃
x≺α

⋃
c∈Pfin(b)

{q | (x, c, q) ∈ a} (2)

lam f = {(x, c, q) ∈ 2∗ × Pfin(Q)×Q | ∀β ∈ Ix q ∈ fβc}
∪ {∅}. (3)

Then

fun(lam f)αb =
⋃
x≺α

⋃
c∈Pfin(b)

{q | (x, c, q) ∈ lam f}

=
⋃
x≺α

⋃
c∈Pfin(b)

{q | ∀β ∈ Ix q ∈ fβc}

=
⋃

c∈Pfin(b)

⋃
x≺α

⋂
β∈Ix

fβc = fαb.

Also, note that since ⊥ = ∅ in Val, fun ⊥ = λβv .⊥, but
lam⊥ = {∅} 6= ⊥. This is important for call-by-value, as
we must distinguish Ω from λx.Ω for our adequacy result of
§VIII.

B. The Semantic Function

For partial functions f : D ⇀ E, define dom f = {x ∈ D |
f(x) is defined}. Equivalently, for functions f : D → E⊥,
define dom f = {x ∈ D | f(x) 6= ⊥}. Let FV(M) denote the
free variables of M .

The type of our deterministic semantic function is

((−)) : Exp→ Env′ → 2ω → Val,

where Env′ = Var → Val is the set of (deterministic)
environments.

Definition 11.
(i) ((x))eα = e(x)

(ii) ((MN))eα = fun(((M))e(π3
0(α)))(π3

1(α))(((N))e(π3
2(α)))

(iii) ((λx.M))eα = lam(λβv .((M))e[v/x]β)
(iv) ((M ⊕N))eα = hdα ? ((M))e(tlα) : ((N))e(tlα)

where clause (iv) uses the ternary predicate (1) and fun
and lam are defined in (2) and (3), respectively. In ((M))e,
we assume that FV(M) ⊆ dom e. In (iii), we interpret the
metaexpression λβv .((M))e[v/x]β as strict; thus

(λβv .((M))e[v/x]β)α⊥ = ⊥.

Note that this is completely deterministic. Probabilistic
choices are resolved by consulting a preselected stack of
random bits α.

In the clause for MN , instead of evens and odds as in [1],
we divide the coins into three streams for use in, respectively,

6

Authorized licensed use limited to: University of Edinburgh. Downloaded on September 08,2021 at 10:38:33 UTC from IEEE Xplore. Restrictions apply.

the evaluation of M , the evaluation of N , and the application
of the value of M to the value of N .

This definition is well founded, but the resulting metaex-
pression is a λ-term that must be evaluated in the metasystem,
and that evaluation may not terminate. We define the value
to be ⊥ when that happens. For example, consider ((Ω))eα,
where Ω = (λx.xx)(λx.xx). Define

u , ((λx.xx))eα

= lam (λβv .((xx))e[v/x]β)

= lam (λβv . fun (((x))e[v/x]β0)β1 (((x))e[v/x]β2))

= lam (λβv . fun v β1 v) 6= ⊥.

Note that this value is independent of α, due to the fact that
coins are dynamically scoped. Then

((Ω))eα = (((λx.xx)(λx.xx)))eα

= fun(((λx.xx))eα0)α1 (((λx.xx))eα2)

= funuα1 u

= fun(lam(λβv . fun v β1 v))α1 u

= (λβv . fun v β1 v)α1 u

= fun uα11 u

= · · ·

Lemma 12. For e1, e2 : Var→ Val, if e1 v e2 and FV(M) ⊆
dom e1, then ((M))e1 v ((M))e2.

Proof. Note that if e1 v e2, then dom e1 ⊆ dom e2 and
e1(x) v e2(x) for all x ∈ dom e1. The proof is a straight-
forward induction on the structure of M . Suppose e1 v e2.

((x))e1α = e1(x) v e2(x) = ((x))e2α, x ∈ dom e1.

((MN))e1α = fun(((M))e1(π3
0(α)))(π3

1(α))(((N))e1(π3
2(α)))

v fun(((M))e2(π3
0(α)))(π3

1(α))(((N))e2(π3
2(α)))

= ((MN))e2α.

((λx.M))e1α = lam(λβv .((M))e1[v/x]β)

v lam(λβv .((M))e2[v/x]β)

= ((λx.M))e2α.

((M ⊕N))e1α = hdα ? ((M))e1(tlα) : ((N))e1(tlα)

v hdα ? ((M))e2(tlα) : ((N))e2(tlα)

= ((M ⊕N))e2α.

To extend ((−)) to capsules, we combine a semantic envi-
ronment Var → Val as used in Definition 11 and a capsule
environment Var → Λ⊥ in a single mixed environment

σ : Var→ Val+Λ⊥
4. From this we can obtain a new semantic

environment σ∗ : Var→ Val as follows. Consider the map

Pσ : (Var→ Val)→ (Var→ Val)

Pσ(`)(x) =

σ(x), σ(x) ∈ Val

((σ(x)))`α, σ(x) ∈ Λ

⊥, σ(x) = ⊥

where in the second case we use Definition 11(iii). The α
there can be any element of 2ω , as ((λx.M))` : 2ω → Val is
a constant function. The third case is already included in the
first, so henceforth we omit explicit mention of it. Note that
domPσ(`) = domσ.

Lemma 13. Pσ(`) is monotone in both σ and `.

Proof. Since Λ⊥ is a flat domain, if σ1 v σ2 and σ1(x) ∈ Λ,
then σ1(x) = σ2(x). It follows that for all ` : Var→ Val and
x ∈ Var,

Pσ1
(`)(x) =

{
σ1(x), σ1(x) ∈ Val

((σ1(x)))`α, σ1(x) ∈ Λ

v

{
σ2(x), σ2(x) ∈ Val

((σ1(x)))`α, σ2(x) ∈ Λ
(4)

=

{
σ2(x), σ2(x) ∈ Val

((σ2(x)))`α, σ2(x) ∈ Λ

= Pσ2
(`)(x).

If `1 v `2, then by Lemma 12, ((σ(x)))`1α v ((σ(x)))`2α for
σ(x) ∈ Λ, therefore Pσ(`1)(x) v Pσ(`2)(x).

By the Knaster-Tarski theorem, Pσ has a least fixpoint

σ∗(x) =

{
σ(x), σ(x) ∈ Val

((σ(x)))σ∗α, σ(x) ∈ Λ
(5)

and we define ((M))σα = ((M))σ∗α, where the right-hand
side is by Definition 11. With this formalism, we have

((rec f .λx.M))σ = ((f))σ[λx.M/f].

Lemma 14. If σ1, σ2 : Var → Val + Λ⊥ are mixed en-
vironments with σ1 v σ2, then σ∗1 v σ∗2 . In addition, if
σ1(x) = σ2(x) for all x ∈ domσ1, then σ∗1(x) = σ∗2(x)
for all x ∈ domσ∗1 = domσ1.

Proof. From (5) and the fact that ((λx.M))eα 6= ⊥ we have
that domσi = domσ∗i . By Lemma 13, we have Pσ1

(σ∗2) v
Pσ2

(σ∗2) = σ∗2 , so σ∗2 is a prefixpoint of Pσ1
. Since σ∗1 is the

least prefixpoint, σ∗1 v σ∗2 .
In addition, if σ1 and σ2 agree on domσ1, then for x ∈

domσ1, equality holds in (4), thus Pσ1(`)(x) = Pσ2(`)(x).
As this is true for all `, we have

σ∗1(x) = sup
α
Pασ1

(⊥)(x) = sup
α
Pασ2

(⊥)(x) = σ∗2(x).

4In the coproduct, the ⊥’s of the two domains are coalesced.

7

Authorized licensed use limited to: University of Edinburgh. Downloaded on September 08,2021 at 10:38:33 UTC from IEEE Xplore. Restrictions apply.

Lemma 15. Let σ : Var→ Val+Λ⊥ be a mixed environment.
If v ∈ Λ, y 6∈ FV(v), and y 6∈ domσ, then σ[v/y]∗ =
σ∗[((v))σ∗α/y].

Proof.

σ[v/y]∗(y)

= Pσ[v/y](σ[v/y]∗)(y)

=

{
σ[v/y](y), σ[v/y](y) ∈ Val

((σ[v/y](y)))σ[v/y]∗α, σ[v/y](y) ∈ Λ

= ((v))σ[v/y]∗α (6)
= ((v))σ∗α (7)
= σ∗[((v))σ∗α/y](y),

where the inference (6) is because σ[v/y](y) = v and v ∈ Λ
and the inference (7) is by Lemma 14. For x 6= y, x ∈ domσ,

σ[v/y]∗(x)

= Pσ[v/y](σ[v/y]∗)(x)

=

{
σ[v/y](x), σ[v/y](x) ∈ Val

((σ[v/y](x)))σ[v/y]∗α, σ[v/y](x) ∈ Λ

=

{
σ(x), σ(x) ∈ Val

((σ(x)))σ[v/y]∗α, σ(x) ∈ Λ
(8)

=

{
σ(x), σ(x) ∈ Val

((σ(x)))σ∗α, σ(x) ∈ Λ
(9)

= Pσ(σ∗)(x)

= σ∗(x)

= σ∗[((v))σ∗α/y](x),

where the inference (8) is because σ[v/y](x) = σ(y) and the
inference (9) is by Lemma 14.

VI. RELATING THE STOCHASTIC AND DETERMINISTIC
SEMANTICS

In Definition 9, we have reworked the semantic function of
[1] to be of type

L−M : Exp→ Env→ Toss→ RV,

and in Definition 11 we have given a deterministic semantics
of type

((−)) : Exp→ Env′ → 2ω → Val,

where
• RV are the random variables Ω → Val from a sample

space Ω taking values in a reflexive CPO Val,
• Exp are the stochastic λ-terms M ,
• Env are the (stochastic) environments E : Var→ RV,
• Env′ are the (deterministic) environments e : Var→ Val,
• Toss are the tossing processes T : Ω→ 2ω .
In this section we establish the formal relationship between

these two semantics (Theorem 16). The idea is that in the
stochastic semantics, although all data are parameterized by a
sample point ω ∈ Ω, it is actually the same ω throughout a

single run of the program. All independence requirements are
satisfied by the way randomness is allocated to the different
tasks. For example, in the clause for LMN M, the coin sequence
is broken into three disjoint sequences to use in three distinct
tasks (evaluation of M , evaluation of N , and application of
M to N). This is equivalent to three independent tossing
processes. In the clause for ⊕, we resolve the probabilistic
choice using the head coin, but then throw it away and
continue with the tail of the coin sequence, so the head coin
is not reused. Because of these considerations, linearity is
maintained.

A. Fun and Lam

We first show how to define Fun and Lam with the desired
properties from fun and lam. Recall that

Val [2ω → Val → Val]
fun

lam

and we need

Ω → Val [(Ω → 2ω) → (Ω → Val) → (Ω → Val)].
Fun

Lam

We define Fun and Lam in two steps:

Fun = Fun2 ◦ Fun1 Lam = Lam1 ◦ Lam2,

where

Ω → Val [Ω → (2ω → Val → Val)]
Fun1

Lam1

[(Ω → 2ω) → (Ω → Val) → (Ω → Val)]
Fun2

Lam2

Fun1 and Lam1 are just the covariant hom-functor in Set
applied to fun and lam, respectively.

Fun1 = Set(Ω, fun) = fun ◦−
Lam1 = Set(Ω, lam) = lam ◦−

Then

(Fun1 ◦ Lam1)f = ((fun ◦−) ◦ (lam ◦−))f

= (fun ◦−)(lam ◦f) = fun ◦ lam ◦f = f,

so Fun1 ◦ Lam1 = id. Also,

Lam1(λω .f) = (lam ◦−)(λω .f)

= lam ◦λω .f = λω .(lam ◦λω .f)ω

= λω . lam((λω .f)ω) = λω . lam(f). (10)

We define

Fun2 = λfg .S(Sfg),

where S = λghω .gω(hω) is the familiar S-combinator from
combinatory logic. Then

Fun2fghω = S(Sfg)hω = Sfgω(hω) = (fω)(gω)(hω).
(11)

8

Authorized licensed use limited to: University of Edinburgh. Downloaded on September 08,2021 at 10:38:33 UTC from IEEE Xplore. Restrictions apply.

The function Fun2 is injective:

Fun2f1 = Fun2f2

⇒ λg .S(Sf1g) = λg .S(Sf2g)

⇒ ∀g∀h∀ω (f1ω)(gω)(hω) = (f2ω)(gω)(hω)

⇒ ∀y∀z∀ω f1ωyz = f2ωyz

⇒ f1 = f2.

We define Lam2 to be the inverse of Fun2 on the image of
Fun2. Thus

Lam2(λghω .(fω)(gω)(hω)) = Lam2(Fun2f) = f. (12)

Also,

Fun2(Lam2(λghω .(fω)(gω)(hω)))

= Fun2f = λghω .(fω)(gω)(hω),

so Fun2 ◦ Lam2 = id on its domain. Then

Fun ◦ Lam = Fun2 ◦ Fun1 ◦ Lam1 ◦ Lam2

= Fun2 ◦ Lam2 = id.

Moreover, using (10), (11), and (12),

Fun fghω = Fun2(Fun1f)ghω

= Fun2(fun ◦f)ghω

= (fun ◦f)ω(gω)(hω) = fun(fω)(gω)(hω) (13)
Lam(λghω .f(gω)(hω))

= Lam1(Lam2(λghω .(λω .f)ω(gω)(hω)))

= Lam1(λω .f) = λω . lam(f). (14)

Note that the domain Ω → Val is not reflexive with respect
to [(Ω → 2ω) → (Ω → Val) → (Ω → Val)] under Fun and
Lam, but only with respect to [Ω→ (2ω → Val→ Val)] (and
its image in [(Ω → 2ω) → (Ω → Val) → (Ω → Val)] under
Fun2). However this is all we need for Theorem 16.

B. Relating the Deterministic and Stochastic Semantics

The following theorem gives the formal relationship be-
tween the stochastic and deterministic denotational semantics.

Theorem 16. λω .((M))e(Tω) = LM M(λxω .ex)T .

Proof. The proof follows by case analysis. A complete proof
can be found in the appendix.

VII. OPERATIONAL SEMANTICS

In this section we give big- and small-step operational rules
in the style of [8] and prove their equivalence. The two styles
use their coins in different patterns and the relationship must
be formally specified. This is done using the tree processes of
§III-B.

A. Big-step rules

The notation 〈M, e〉 ⇓α 〈v, f〉 means that 〈M, e〉 reduces
to 〈v, f〉 under the big-step rules below with coins α ∈ 2ω .

〈x, e〉 ⇓α 〈e(x), e〉
〈M, e〉 ⇓α 〈v, f〉

〈M ⊕N, e〉 ⇓0α 〈v, f〉
〈N, e〉 ⇓α 〈v, f〉

〈M ⊕N, e〉 ⇓1α 〈v, f〉
〈M, e〉 ⇓π3

0(α) 〈λx.K, e0〉
〈N, e0〉 ⇓π3

1(α) 〈u, e1〉
〈K[y/x], e1[u/y]〉 ⇓π3

2(α) 〈v, f〉

〈MN, e〉 ⇓α 〈v, f〉

where in the third premise of the last rule, y is a fresh variable.

B. Small-step rules

The notation 〈M, e〉 →x 〈N, f〉 means that 〈M, e〉 reduces
to 〈N, f〉 under the small-step rules below via a computation
that consumes exactly coins x ∈ 2∗ in order from left to right.
The notation 〈M, e〉 →α 〈N, f〉 means that 〈M, e〉 →x 〈N, f〉
for some x ≺ α, where α ∈ 2ω .

〈M, e〉 →x 〈M ′, f〉
〈MN, e〉 →x 〈M ′N, f〉

〈N, e〉 →x 〈N ′, f〉
〈vN, e〉 →x 〈vN ′, f〉

〈M, e〉 →ε 〈M, e〉 〈x, e〉 →ε 〈e(x), e〉

〈(λx.M)v, e〉 →ε 〈M [y/x], e[v/y]〉 (y fresh)

〈M ⊕N, e〉 →0 〈M, e〉 〈M ⊕N, e〉 →1 〈N, e〉

〈M, e〉 →x 〈N, f〉 〈N, f〉 →y 〈K, g〉
〈M, e〉 →xy 〈K, g〉

〈M, e〉 →x 〈N, f〉 x ≺ α
〈M, e〉 →α 〈N, f〉

C. Relation of Big- and Small-Step Semantics

The big- and small-step operational semantics use their
coins in different patterns, and we need a way to characterize
how they relate. The big-step rule for application breaks its
coin sequence up into three independent coin sequences to
evaluate the function, to evaluate the argument, and to apply
the function, respectively; whereas the small-step rules just
use their coins sequentially.

The relationship is characterized by a tree process as
described in §III. The construction is given in the proof of
the following theorem.

Theorem 17. For all 〈M, e〉 there exists a tree process T〈M,e〉
such that for all α, v, f ,

〈M, e〉 ⇓α 〈v, f〉 ⇔ 〈M, e〉 →T〈M,e〉(α) 〈v, f〉.

Proof. The rules for the big-step semantics define proof trees
by which one concludes that an instance of the big-step
relation holds. We proceed by induction on the structure of
these proof trees. The base case corresponds to reading a
variable from the environment: 〈x, e〉 ⇓α 〈e(x), e〉. This case
is immediate since we can just take the tree process to be the

9

Authorized licensed use limited to: University of Edinburgh. Downloaded on September 08,2021 at 10:38:33 UTC from IEEE Xplore. Restrictions apply.

one that defines the identity function; note that the environment
stores only values so there is no further reduction.

For the case

〈M, e〉 ⇓α 〈v, f〉
〈M ⊕N, e〉 ⇓0α 〈v, f〉

we have, by induction, a tree process T〈M,e〉, call it T ′ for
short, such that

〈M, e〉 →T ′(α) 〈v, f〉

and analogously for the other branch of the choice. We can
define the tree t〈(,M〉⊕N)e by

t〈M⊕N,e〉(α) = =

{
t〈M,e〉(α

′) if α = 0α′

t〈N,e〉(α
′) if α = 1α′

It is a routine calculation to verify the result in this case.
For the case 〈MN, e〉, take the tree

t〈MN,e〉(w) =

3 · t〈K[y/x],e1[u/y]〉(z) + 2,

if w = xyz ∧ 〈M, e〉 →x

〈λx.K, e0〉
and 〈N, e0〉 →y 〈u, e1〉,

3 · t〈N,e0〉(y) + 1,

if w = xy∧〈M, e〉 →x 〈λx.K, e0〉
and 〈N, e0〉 →y NV,

3 · t〈M,e〉(w), if 〈M, e〉 →w NV,

where NV means “some capsule that is not reduced,” and let
T〈MN,e〉 be the associated tossing process. Then 〈MN, e〉 ⇓α
〈v, f〉 occurs iff there exist K,u, e0, e1, and y fresh such that

〈M, e〉 ⇓π3
0(α) 〈λx.K, e0〉 〈N, e0〉 ⇓π3

1(α) 〈u, e1〉
〈K[y/x], e1[u/y]〉 ⇓π3

2(α) 〈v, f〉

By the induction hypothesis, this occurs iff there exist x, y, z
such that

〈M, e〉 →x 〈λx.K, e0〉 x ≺ T〈M,e〉(π
3
0(α))

〈N, e0〉 →y 〈u, e1〉 y ≺ T〈N,e0〉(π
3
1(α))

〈K[y/x], e1[u/y]〉 →z 〈v, f〉 z ≺ T〈K[y/x],e1[u/y]〉(π
3
2(α))

By construction of t〈MN,e〉(α), xyz ≺ T〈MN,e〉(α), so this
occurs iff

〈MN, e〉 →x 〈(λx.K)N, e0〉 →y 〈(λx.K)u, e1〉
→ε 〈K[y/x], e1[u/y]〉 →z 〈v, f〉,

which occurs iff 〈MN, e〉 →T〈MN,e〉(α) 〈v, f〉.

VIII. SOUNDNESS AND ADEQUACY

The following theorem asserts the soundness and adequacy
of our denotational semantics with respect to our big-step
operational semantics.

Theorem 18.
(i) If 〈M,σ〉 ⇓α 〈λx.N, τ〉, then for any γ, ((M))σ∗α =

((λx.N))τ∗γ = lam (λβv .((N))τ∗[v/x]β).

(ii) If ((M))σ∗α = lam f for some f : [2ω → Val → Val],
then 〈M,σ〉⇓α.

Proof. (i) The proof is by induction on the derivation of
〈M,σ〉 ⇓α 〈v, τ〉. Let us do the easy cases first. For variables,
we have 〈x, σ〉 ⇓α 〈σ(x), σ〉 and

((x))σ∗α = σ∗(x) = Pσ(σ∗)(x) = ((σ(x)))σ∗β.

For abstractions, we have 〈λx.M, σ〉 ⇓α 〈λx.M, σ〉 and

((λx.M))σ∗α = ((λx.M))σ∗β

for any β, since the semantics of abstractions does not depend
on α.

For choice, suppose 〈M ⊕ N, σ〉 ⇓α 〈v, τ〉. If hdα =
0, then 〈M,σ〉 ⇓tlα 〈v, τ〉. By the induction hypothe-
sis, ((M))σ∗(tlα) = ((v))τ∗β, so ((M ⊕N))σ∗(0 tlα) =
((v))τ∗β. By a similar argument, if hdα = 1, then
((M ⊕N))σ∗(1 tlα) = ((v))τ∗β. Thus in either case,
((M ⊕N))σ∗α = ((v))τ∗β.

The most involved case is application. Suppose
〈MN,σ〉 ⇓α 〈v, τ〉. Then for some λx.K, σ0, u, and
σ1 such that σ v σ0 v σ1 v τ ,

〈M,σ〉 ⇓π3
0(α) 〈λx.K, σ0〉 〈N, σ0〉 ⇓π3

2(α) 〈u, σ1〉

〈K[y/x], σ1[u/y]〉 ⇓π3
1(α) 〈v, τ〉

where y ∈ Var is fresh. By the induction hypothesis,

((M))σ∗(π3
0(α)) = ((λx.K))σ∗0β (15)

((N))σ∗0(π3
2(α)) = ((u))σ∗1β (16)

((K[y/x]))σ1[u/y]∗(π3
1(α)) = ((v))τ∗β. (17)

Then

fun(((M))σ∗(π3
0(α)))

= fun(((λx.K))σ∗0γ) by (15)
= fun(((λy .K[y/x]))σ∗0γ), y fresh by α-conversion
= fun(lam(λβv .((K[y/x]))σ∗0 [v/y]β))

= λβv .((K[y/x]))σ∗0 [v/y]β. (18)

By (16) and Lemma 14, since σ0 is an extension of σ,

((N))σ∗(π3
2(α)) = ((N))σ∗0(π3

2(α)) = ((u))σ∗1β. (19)

By Lemma 15, since y is fresh,

σ1[u/y]∗ = σ∗1 [((u))σ∗1γ/y]. (20)

Using (17)–(20) and Lemma 14,

((MN))σ∗α

= fun(((M))σ∗(π3
0(α)))(π3

1(α))(((N))σ∗(π3
2(α)))

= (λβv .((K[y/x]))σ0[v/y]β)(π3
1(α))(((u))σ∗1γ)

= ((K[y/x]))σ∗0 [((u))σ∗1γ/y](π3
1(α))

= ((K[y/x]))σ∗1 [((u))σ∗1γ/y](π3
1(α))

= ((K[y/x]))σ1[u/y]∗(π3
1(α))

= ((v))τ∗β.

10

Authorized licensed use limited to: University of Edinburgh. Downloaded on September 08,2021 at 10:38:33 UTC from IEEE Xplore. Restrictions apply.

(ii) For variables, we have ((x))σ∗α = σ∗(x) = lam f for
some f : [2ω → Val → Val]. Since domσ = domσ∗, we
must have σ(x) = λx.K for some λx.K ∈ Λ. By definition
of σ∗, σ∗(x) = ((λx.K))σ∗α = lam(λβv .((K))σ∗[v/x]β).
As lam is injective, f = λβv .((K))σ∗[v/x]β, and 〈x, σ〉 ⇓α
〈λy .K, σ〉.

For λ-abstractions, ((λx.M))σ∗α =
lam(λβv .((M))σ∗[v/x]β) and 〈λx.M, σ〉 ⇓α 〈λx.M, σ〉.

For choice, we have ((M ⊕N))σ∗α =
hdα ? ((M))σ∗(tlα) : ((N))σ∗(tlα) = lam f . Either
hdα = 1, in which case ((M))σ∗(tlα) = lam f and
〈M,σ〉⇓tlα by the induction hypothesis, or hdα = 0, in
which case ((N))σ∗(tlα) = lam f and 〈N, σ〉⇓tlα by the
induction hypothesis. In either case, 〈M ⊕ N, σ〉⇓α by the
big-step rule for choice.

Finally, for applications, suppose ((MN))σ∗α = lam f . We
have

((MN))σ∗α = fun (((M))σ∗α0)α1 (((N))σ∗α2)

If ((M))σ∗α0 = ⊥, then

((MN))σ∗α = fun (((M))σ∗α0)α1 (((N))σ∗α2)

= fun ⊥α1 (((N))σ∗α2)

= (λβv .⊥)α1 (((N))σ∗α2)

= ⊥,

contradicting our assumption. Similarly, if ((M))σ∗α0 =
lam g but ((N))σ∗α2 = ⊥, then

((MN))σ∗α = fun (((M))σ∗α0)α1 (((N))σ∗α2)

= fun(lam g)α1⊥
= g α1⊥
= ⊥,

again contradicting our assumption. So we can assume that
((M))σ∗α0 = lam g and ((N))σ∗α2 6= ⊥. By the induction
hypothesis and Lemma 15,

〈M,σ〉 ⇓α0 〈λx.K, σ0〉 〈N, σ0〉 ⇓α2 〈u, σ1〉
g = λβv .((K))σ∗0 [v/x]β ((N))σ∗0α2 = ((u))σ∗1(−).

((MN))σ∗α = fun (((M))σ∗α0)α1 (((N))σ∗0α2)

= fun(lam g)α1 (((u))σ∗1(−))

= g α1 (((u))σ∗1(−))

= (λβv .((K))σ∗0 [v/x]β)α1 (((u))σ∗1(−))

= ((K))σ∗0 [((u))σ∗1(−)/x]α1

= ((K[y/x]))σ∗0 [((u))σ∗1(−)/y]α1

= ((K[y/x]))σ∗1 [((u))σ∗1(−)/y]α1

= ((K[y/x]))σ1[u/y]∗α1,

and by the induction hypothesis, 〈K[y/x], σ1[u/y]〉⇓α1
. By

the big-step rule for application, 〈MN,σ〉⇓α.

Corollary 19. For every capsule 〈M,σ〉

{α ∈ 2ω | 〈M,σ〉⇑α} = {α ∈ 2ω | ((M))σα = ⊥}

IX. RELATED WORK AND CONCLUDING REMARKS

In probability theory, stochastic processes are modeled as
random variables (measurable functions) defined on a proba-
bility space, which is viewed as the source of randomness. It is
natural to think of probabilistic programming in a similar vein,
and in many of the related approaches one sees a programming
formalism augmented by a source of randomness.

The idea of modeling probabilistic programs with a stream
of random data in the λ-calculus has been used in [5] as
well. In that work, the authors define big-step and small-
step operational semantics for an idealized version of the
probabilistic language Church. Their operational semantics,
like ours, is a binary relation parameterized by a source of
randomness. Although their language can handle continuous
distributions and soft conditioning, they have not given a
denotational semantics. Our approach could accommodate
continuous distributions simply by changing the source of
randomness to R. We might interpret R either as the usual
real numbers or as its constructive version as in Real PCF
[13]. To accommodate soft conditioning, we could adopt the
solution proposed in [14] of adding a write-only state cell to
store the weight of the execution trace, which can be done
by slightly changing our domain equation. These extensions
would complicate our semantics and its presentation, so we
leave them for future work.

In a similar vein, the category of Quasi-Borel Spaces (Qbs)
defined in [15] also assumes that probability comes from an
ambient source of randomness, which they model as a set of
random variables of type R→ A satisfying certain properties.
Furthermore, they show that in Qbs there is a Giry-like monad
that uses the set of random variables in its definition. In [16],
to accommodate arbitrary recursion, they equip every Quasi-
Borel space with a complete partial order and require the set
of random variables to be closed with respect to directed
suprema. It would be interesting to better understand how
our requirement of continuity of coin usage relates to their
construction.

There has also been alternative operational semantics for
languages similar to ours. In [17], an operational semantics is
defined in terms of Markov kernels over the values. Since
the focus of that work is on syntactic methods to reason
about contextual equivalence, a denotational semantics is not
defined. However, by our adequacy and soundness theorems,
we can also use our semantics to reason about contextual
equivalence. Furthermore, since the set {α ∈ 2ω | 〈M,σ〉⇓α}
is measurable, one can prove by induction on reduction
sequences that the semantics of [17] and ours are equivalent.

An alternative domain theoretical tool that has been used
to interpret randomness is the probabilistic powerdomain
construction. Recently the Jung-Tix problem [18] has been
solved [19], showing that it is possible to define a commu-
tative probabilistic monad in a cartesian closed category of
continuous domains. We tackle the problem from a different
perspective. We leave for future work to understand the con-
nections between the probabilistic powerdomain and our func-

11

Authorized licensed use limited to: University of Edinburgh. Downloaded on September 08,2021 at 10:38:33 UTC from IEEE Xplore. Restrictions apply.

tor MX = 2≤ω → X . It is worth noting that this functor is the
Reader monad from functional programming. Unfortunately, if
we were to use the same monad multiplication from the Reader
monad—i.e. µX(t) = λα.t αα—we would reuse the same
source of randomness twice, breaking linearity of usage of
random data and probabilistic independence. Furthermore, for
any other natural transformation M2 ⇒M that preserves such
linearity conditions, the associativity monad law holds only up
to a measure-preserving function. As an example, suppose that
we chose the natural transformation µX(t) = λα : 2ω.t α0 α1

as our monad multiplication. In this case the associativity law
becomes:

λt : M3(X)α : 2ω. t α00 α10 α1 =

λt : M3(X)α : 2ω. t α0 α10 α11

Obviously the equation above does not hold.
As a final example of a related formalism, we mention

probabilistic coherence spaces [20], [21], which use the de-
composition of the usual function space into a linear function
space and an exponential comonad. In [21], a fully abstract
semantics is given for a probabilistic extension to PCF. They
model higher-order probability by using a generalization of
transition matrices. Cones of measures have also been used
to construct a model of higher-order probabilistic computa-
tion [22]. It is a fascinating question to understand precisely
the relationship between all these formalisms for higher-order
probabilistic computation.

To conclude, while other approaches to denotational se-
mantics for higher-order probabilistic computation have been
taken, no such construction is the obviously ”correct” one.
To clarify this matter, the connections between different ap-
proaches would need to be well understood. But this is a
hard open problem and requires in-depth understanding of the
various possible approaches and how they relate, and the field
is not there yet. Even though the approaches mentioned above
are interesting, we do not see that they have any compelling
argument suggesting that they are the only ”right” semantics
for probabilistic higher-order computation. In this paper we
contributed to the area by focusing on the Boolean-valued
semantics of [1] and modified it to accommodate a call-by-
value operational semantics which we proved it sound and
adequate with respect to the modified denotational semantics,
solving the main open problem from that work.

ACKNOWLEDGMENTS

Thanks to Giorgio Bacci, Fredrik Dahlqvist, Robert Furber
and Arthur Azevedo de Amorim. Special thanks to Dana Scott
for many inspiring conversations. Thanks to the Bellairs Re-
search Institute of McGill University for providing a wonderful
research environment.

This material is based upon work supported by a grant
from the National Science Foundation under grants No. AitF-
1637532, No. SaTC-1717581, and No. CCF-2008083. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do

not necessarily reflect the views of the National Science
Foundation.

Panangaden is funded by NSERC (Canada).

REFERENCES

[1] G. Bacci, R. Furber, D. Kozen, R. Mardare, P. Panangaden, and D. Scott,
“Boolean-valued semantics for the stochastic λ-calculus,” in Logic in
Computer Science (2018), 2018.

[2] D. S. Scott, “Stochastic λ-calculi,” Journal of Applied Logic, vol. 12,
no. 3, pp. 369–376, 2014.

[3] J. L. Bell, Set theory: Boolean-valued models and independence proofs.
Oxford University Press, 2011, vol. 47.

[4] D. Scott, “A proof of the independence of the continuum hypothesis,”
Mathematical systems theory, vol. 1, no. 2, pp. 89–111, 1967.

[5] J. Borgström, U. Dal Lago, A. D. Gordon, and M. Szymczak, “A
lambda-calculus foundation for universal probabilistic programming,”
in International Conference on Functional Programming (ICFP), 2016.

[6] N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum, “Church: a language for generative models,” arXiv preprint
arXiv:1206.3255, 2012.

[7] J.-B. Jeannin and D. Kozen, “Computing with capsules,” in International
Workshop on Descriptional Complexity of Formal Systems. Springer,
2012, pp. 1–19.

[8] G. D. Plotkin, A structural approach to operational semantics. Aarhus
university, 1981.

[9] R. Walter, “Real and complex analysis,” 1974.
[10] H. P. Barendregt, The lambda calculus. North-Holland Amsterdam,

1984, vol. 3.
[11] E. Engeler, “Algebras and combinators,” Algebra universalis, vol. 13,

no. 1, pp. 389–392, 1981.
[12] G. Longo, “Set-theoretical models of λ-calculus: theories, expansions,

isomorphisms,” Annals of pure and applied logic, vol. 24, no. 2, pp.
153–188, 1983.

[13] M. H. Escardó, “Pcf extended with real numbers,” Theoretical Computer
Science, vol. 162, no. 1, pp. 79–115, 1996.

[14] S. Staton, F. Wood, H. Yang, C. Heunen, and O. Kammar, “Semantics
for probabilistic programming: higher-order functions, continuous dis-
tributions, and soft constraints,” in Logic in Computer Science (LICS),
2016.

[15] C. Heunen, O. Kammar, S. Staton, and H. Yang, “A convenient category
for higher-order probability theory,” in Logic in Computer Science
(LICS), 2017.

[16] M. Vákár, O. Kammar, and S. Staton, “A domain theory for statistical
probabilistic programming,” in Principles of Programming Languages
(POPL), 2019.

[17] V. Vignudelli, “Behavioral equivalences for higher-order languages with
probabilities,” Ph.D. dissertation, Università di Bologna, 2017.

[18] A. Jung and R. Tix, “The troublesome probabilistic powerdomain,”
Electronic Notes in Theoretical Computer Science, vol. 13, pp. 70–91,
1998.

[19] X. Jia, B. Lindenhovius, M. Mislove, and V. Zamdzhiev, “Commutative
monads for probabilistic programming languages,” in Logic in Computer
Science (LICS), 2021.

[20] V. Danos and T. Ehrhard, “Probabilistic coherence spaces as a model of
higher-order probabilistic computation,” Information and Computation,
vol. 209, no. 6, pp. 966–991, 2011.

[21] T. Ehrhard, C. Tasson, and M. Pagani, “Probabilistic coherence spaces
are fully abstract for probabilistic pcf,” in Principles of Programming
Languages (POPL), 2014.

[22] T. Ehrhard, M. Pagani, and C. Tasson, “Measurable cones and stable,
measurable functions: a model for probabilistic higher-order program-
ming,” in Principles of Programming Languages(POPL), 2017.

12

Authorized licensed use limited to: University of Edinburgh. Downloaded on September 08,2021 at 10:38:33 UTC from IEEE Xplore. Restrictions apply.

		2021-07-05T07:30:39-0400
	Preflight Ticket Signature

