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Abstract

In this paper we study paradigmatic tasks from classical distributed computing – leader
election and distributed consensus – in the presence of quantum resources. Our main contri-
bution is a demonstration of the special computational power of theW -state, and also of the
GHZ-state. We find that totally correct leader electionis possible in anonymous quantum net-
works, which is in stark contrast with the classical situation. Next, we prove that the specific
entanglement provided by theW - andGHZ-states, and their generalizations, is theonly kind
that exactly solves leader election and distributed consensus respectively. At the heart of the
proofs of these impossibility results lie symmetry arguments.

1 Introduction

The use of quantum resources in computational tasks has led to a revolution in algorithms [NC00].
Models of computation have been developed which serve as the basis for the design of quantum
algorithms. In the present paper we study paradigmatic tasks – leader election and distributed
consensus – from classical distributed computing [Lyn96, Tel94] in the presence of quantum re-
sources. Traditional algorithms are typically intended to establish an input-output correspondence;
the main interest in quantum algorithms is in the use of quantum resources to reduce the time com-
plexity of such algorithms. By contrast, our problems are aboutjoint decision makingby a group
of autonomous agents. It is much closer in spirit to communication protocols.

As with classical distributed algorithms a whole new arena for establishing impossibility results
becomes available. The notion of “universality” commonly used in algorithms is not relevant here
because that notion assumes that one can entangle any two (or more) qubits. In a distributed
system one has resources in separated locations and one’s actions are limited to what one can do
in a particular region. One cannot just demand that a particular global sequence of operations be
carried out; it is necessary to arrange coordination – usually involving communication – between
the agents acting at the separate locations (regions). Instead one has to ask what can be achieved
within the limits of a particular computational model with communication and other limitations
built in. In our case we study the quantum resources needed to carry out leader election and
distributed consensus inanonymousnetworks. We focus on achieving these tasks exactly (to be
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defined precisely below) rather than probabilistically. The ultimate goal is understanding how
information flows between different agents in a quantum setting.

Leader election algorithms have been studied extensively in numerous papers and for many dif-
ferent network settings. Distributed consensus is usually studied in a fault-tolerant context [FLP85],
a matter upon which we do not touch in this paper. In networks where processors have unique iden-
tifiers the symmetry is inherently broken via processor names [LeL77]. By contrast, in an anony-
mous situation purely deterministic leader election is impossible: there is nothing that can break
the symmetry if all the processors do the same thing [Ang80]. If each process has a coin then they
can elect a leader: for example they can each toss a coin and if they get a head they are the leader.
Of course this is not guaranteed to work, there may be more than one leader or no leaders and the
process will have to be repeated in the next round. This idea was first put forward in [Ang80] and
later generalized in [IR90]. With probability one this will terminate eventually but termination is
not guaranteed. There is no bound on how long this process will take, though the expected number
of rounds is just2. When two processors share a singlet state they can just measure it, such that
the one who gets, say,1 is the leader: this terminates in one step and always succeeds. How does
this generalize to more than two processors? Is such a protocol possible within our framework?

Our main result is that only very special shared quantum resources can be used to achieve the
tasks at hand. More precisely, we show that in an anonymous network if the processors share the
so-calledW -state then a trivial protocol allows them to solve the leader election problem and, more
importantly,this is the only possible shared resource that allows this problem to be solved at all.
Similarly theGHZ-state is the only shared quantum resource that allows solution of distributed
consensus. These are then essentially impossibility results: without theW -state leader election is
not solvable in the sense that we make precise below. The proof uses the concept ofsymmetric
configurations, and as such is similar to the work of Angluin. She writes that for anonymous
networks “ [. . . ] it seems intuitively that the behaviour of the network can only depend upon
the ‘local appearance’ of the underlying graph”. Our results are in the same vein, but with the
symmetry breaking being dictated by the (non-local) properties of the shared entangled quantum
state. The details of the proof are quite different, however.

The structure of this paper is as follows. In Sec. 2 we define the particular framework in
which our results are situated. Sec. 3 formalises symmetry concepts within this setting, which are
then used in the impossibility proofs of Secs. 4 and 5 concerning leader election and distributed
consensus respectively. We conclude in Sec. 6.

2 The model

A distributed system is a system in which several inter-communicating parties carry out compu-
tations concurrently. While this definition is quite general, there are a whole series of specific
implementations, depending on the communication structure, the degree of synchronization and
the computational capabilities of individual processors. The setting of this paper is that of syn-
chronous, anonymous, distributed quantum networks with broadcasts, where the network size is
known. Let us clarify these terms. First of all, while each processor is allowed a quantum state as
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well as a classical state, the communication between processors remains classical1. Classical and
quantum states are assumed to be finite – in fact, throughout this paper we work with qubit states.
Communication occurs viabroadcasts, which means that all messages are sent out publicly to all
processors along classical channels. Processors as well as communication are assumed to be non-
faulty. So far this framework is very similar to what is known in as LOCC, forlocal operations
and classical communication.

In the anonymous setting, all processors are completely identical, that is they do not carry
individual names with which they can be identified. As such the initial network specification must
be invariant under permutations of processors. One of the implications thereof is that processors
start out in identical local classical states. However, one has to carefully restate this when quantum
states are allowed. Indeed, due to the phenomenon of quantum entanglement, the network quantum
state is in general not a product state of individual (i.e. local) processor states. The hallmark
example is that of a network of two processors, call themA andB, such that each own one qubit
of the following Bell state|0〉A|0〉B + |1〉A|1〉B, where the indices were added to clarify which
qubit belongs to which processor. A simple calculation shows that it is not possible to write this
state as a product of a quantum state owned byA and one owned byB. In this situation, the most
sensible definition of anonymity is to demand that the network quantum state is invariant under
permutations of processor subspaces. This has as an immediate consequence that each processor
has the same local view on their quantum state, which in quantum mechanics is formally expressed
by the reduced density matrix. However, we use the slightly stronger assumption of invariance
with respect to subspace swaps, thus avoiding initial network states as for example|0〉A|0〉B +
eiθ|1〉A|1〉B. Hence, we propose the following definition.

Definition 2.1 An anonymous distributed quantum network has the property that each processor
i, wherei ∈ {1, · · · , n} executes the same local protocol and has identical initial classical state,
and furthermore that the initial network quantum state|ψ〉 ∈ H1 ⊗ . . . ⊗ Hn is invariant under
any permutation of the processor subspacesH1, . . . ,Hn.

Note that anonymity implies that allHi are identical. We denote the closure over all permutations
of a state|ψ〉 by Perm|ψ〉; for examplePerm|001〉 = |001〉+ |010〉+ |100〉.

Finally, the system is synchronous, which means that a protocol proceeds in a sequence of
rounds. During each round a processor receives messages that were sent to it in the previous
round, performs a local operation, and then broadcasts messages. The local operation, which
in general depends on received messages, consists of quantum operations followed by a classical
post-processing stage, such that, because of anonymity, each processor has identical decision trees.

We investigate distributed protocols within this framework, where we make one further distinc-
tion.

Definition 2.2 A totally correctdistributed protocol is a protocol that isterminating, i.e. it reaches
a terminal configuration in each computation, andpartially correct, i.e. for each of the reachable
terminal configurations the goal of the protocol is achieved.

1Initial qubits are distributed at the time the system is set up.
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Note that the above definition does not exclude the possibility of non-deterministic processes. In
this paper we study totally correct leader election and distributed consensus protocols. For aleader
electionprotocol, a correct terminating configuration is one in which there is exactly one leader
in the stateleader, while all other processes are in the statefollower. In the case ofdistributed
consensus, all processors should terminate with an identical bit value, which can be 0 or 1 with
equal probability. Probabilistic algorithms violate either termination or partial correctness. Proba-
bilistic leader election algorithms are generally Las Vegas algorithms, that is, they terminate with
positive probability and are partially correct, i.e. there are no reachable forbidden configurations.
In the current literature, probabilistic algorithms come about by equipping each processor with a
randomization tool, i.e. an random number generator or electronic coin. In our framework how-
ever, we allow only quantum operations and deterministic classical operations. Any qubit can of
course be used to implement a coin toss.

These definitions lead to the following propositions.

Proposition 2.3 No totally correct leader election protocol exists without prior shared entangle-
ment.

Proof Outline. Without entanglement the network’s quantum state is in a product state, and no
entanglement can be created through LOCC operations [BPR+01]. Therefore each processor is
essentially equipped with a coin throughout the protocol. As a result, either termination or partial
correctness is compromised, since there is in a nonzero probability that local measurement results
are identical.

Proposition 2.4 Totally correct leader election algorithms for anonymous quantum networks are
fair, i.e. each processor has equal probability of being elected leader.

Proof Recall that the processor state is finite, i.e. each processor can be in one of finitely many clas-
sical states and has only a finite number of qubits. Moreover, with qubits branching due to quantum
measurements occurs in a finite way as well. Hence there are only finitely many computations, so
it suffices to count these. Suppose then that by a terminating and correct computation configura-
tion C is reached, wherein, say, processA is elected leader. Then there exists a corresponding
configurationC ′ in which processB is elected leader, by defining a permutation of processorsσ
such thatσ(A) = B and runningC ′ on the permuted set of processors.C ′ is necessarily correct
because of the anonymity of the network. This reasoning holds for arbitrary processorsA andB in
the network, hence there are equally many terminal configurations that elect each of the processors
as leader respectively, and our result follows.

The protocols described below are presented with respect to the computational basis. Specifi-
cally, quantum measurements occur within this same basis – this is in fact quite general since mea-
surements in any other basis can be brought back to these by first applying the appropriate unitary
transform in an anonymous way, i.e. locally and identical for all processors. We frequently denote
basis states in their integer representation if the number of qubits is clear, for example|2〉 = |010〉
for a 3-qubit state. Normalization factors are suppressed throughout this paper because the crux of
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the argument will depend upon the symmetry rather than on the actual probability amplitudes. Fur-
thermore, we only address symmetry-breaking capabilities of the quantum parts of our protocol,
since it is known from previous results that classical protocols, and thus classical post-processing,
cannot break the symmetry in anonymous networks.

3 Symmetric moves

We first need to set up some machinery. Specifically, we prove that certain types of superposi-
tion terms are possibly present throughout a computation. This corresponds to a branch of the
computation in which a group of processors evolve symmetrically.

Definition 3.1 Suppose ann-partite state|ψ〉 ∈ H⊗n, whereH is a 2m−dimensional Hilbert
space, is distributed overn processors. We say that there exists ak-symmetric movefor the
processorsi1, . . . , ik with respect to|ψ〉, where0 < k ≤ n, if for all observablesM =

∑J
j=1 λjPj,

with J ≤ 2m and allPj projectors, we have that

∃l ∈ {1, . . . , J} : (Pl)
⊗k
i1,...,ik

(Pjk+1 6=l)ik+1
. . . (Pjn 6=l)in|ψ〉 6= 0 (1)

The idea is that all measurements potentially give identical measurement results fork out of the
n processors. Because anonymous networks are invariant under permutations we need not specify
any particular subset of processors.

Lemma 3.2 There exists ak-symmetric move for an anonymous quantum state|ψ〉 ∈ H⊗n if
and only if |ψ〉 = Perm|ω〉 + |ω′〉 , where|ω〉 = |η〉⊗k ⊗n

j=k+1 |ηj〉, |η〉 and |ηj〉 ∈ H, |ω〉 and
|ω′〉 ∈ H⊗n, and〈ηj|η〉 = 0 for all j.

This is trivial in one direction and an easy calculation in the other. Only whenH = C2 k-
symmetric moves imply(n− k)-symmetric moves; for example, 1- and(n− 1)-symmetric moves
exist for all network states containing a term of the form|1〉|0〉⊗(n−1). Note that for any state
|ψ〉 some incomplete measurements, for whichJ < 2m, always result in more thank processors
obtaining the same results (the trivial example being the identity projector), while for complete
measurementsJ = 2m there is always a branch leading to exactlyk of the processors measuring
identical values. The point of Def. 3.1 is of course that it is a statement aboutall possible measure-
ments. A particular execution of a distributed protocol follows ak-symmetric branchif it occurs
by a sequence ofk-symmetric moves. We have the following result.

Proposition 3.3 Any anonymous distributed quantum protocol that can follow ak-symmetric move
initially has ak-symmetric branch.
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Proof Without loss of generality, we assume that local quantum operations during one round con-
sist of an isometric operationU, i.e. a unitary operation along with creation of ancillae, followed
by a measurementM . If Def. 3.1 holds for the initial network state|ψ〉, then it must hold for
U⊗n|ψ〉; indeed, after such an operation we again obtain a network state as in Lemma 3.2. Sup-
pose that for the subsequent measurementM the protocol follows the existingk-symmetric move,
corresponding to identical measurement resultsj and projections on|φj〉. Knowing that classical
post-processing cannot break symmetry in anonymous networks, in this case identical measure-
ment results are broadcast, such that the local operations applied in the next round, depending on
these results, are identical. Moreover, at this point the network state still allows ak-symmetric
move, since it contains a term of the form|φj〉⊗k|φj〉⊥. Then by induction we can construct a
k-symmetric branch for the entire protocol.

4 Quantum leader election

Theorem 4.1 A necessary and sufficient condition for a totally correct anonymous quantum leader
election (QLE) protocol, where each processor owns 1 qubit initially, is that processor qubits are
entangled in aW -state.

We prove this theorem in both directions in the following two subsections.

4.1 W is sufficient

The idea is to share a specific entangled state between all parties, which allows to break the sym-
metry in one step. The state used is known as theW -state, where

Wn =
n∑

j=1

|2j〉 (2)

For exampleW3 = |001〉+ |010〉+ |100〉. This state can be used as a symmetry-breaking quantum
resource. Each processori carries out the protocol below.

1. q ← ith qubit ofWn

b=0
result=wait

2. b:= measureq

3. if b = 1 thenresult:= leader, elseresult:=follower.

Protocol 1: The QLE protocol.
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This is a totally correct protocol with time complexityO(1); no message passing is required2.
Note that Protocol 4.1 works also for different communication graphs or in asynchronous networks.

4.2 W is necessary

For this part of the proof we use the tools from Sec.3. Specifically, we prove that for certain types
of superposition terms in the initial quantum state total correctness is compromised.

Proof Any protocol for whichk-symmetric branches exist withk different from 1 orn − 1 is not
totally correct. Indeed, for such a branch the protocol either does not terminate or it terminates
in a forbidden configuration. Hence by Prop. 3.3, the initial network state|ψ〉 cannot allowk-
symmetric moves fork /∈ {1, n− 1}. By Lemma 3.2 with|ψ〉 ∈ (C2)⊗n anonymous in the sense
of Def. 2.1, this leaves us withWn, or unitary transforms thereof, as the only possibility.

4.3 More qubits per processor

One can repeat the same symmetry argument in the case where each processor hasm qubits, i.e.
H = C2m. Taking{|φi〉} to be a basis forH, this leads to initial network states of the form

|ψ〉 =
2l∑

i=1

αiPerm|φi〉
n⊗

j=2

|φij〉 (3)

Here we need one extra ingredient: as before, each processor knows beforehand which measure-
ment results lead to them becoming a leader. However, since up tom different results are pos-
sible the situation is slightly more complicated. So supposeL is spanned by the leader labels
{|φi〉, i = 1, . . . , 2l} andF is spanned by the follower labels{|φij〉}. Then |ψ〉 cannot allow
(k > 1)-symmetrical moves with respect toL, which means concretely that none of the|φi〉 can
appear in the tensor product in Eq. (3), or in other words we takeH = L ⊕ F . Note that Eq. (3)
includes the more stringent dual situation wheren− 1 processors are symmetric w.r.t.F . A QLE
protocol would then succeed by measuring|ψ〉, such that the processor obtaining a result inL ap-
points itself leader, while those obtaining results inF become followers. As a result, we obtain a
family of W -like states as the only possible entanglement resources for totally correct anonymous
QLE protocols.

4.4 An instructive example

The following example shows the drastic impact of anonymity on the success of a protocol. Sup-
pose we have an odd number of processorsn, and each processor carries out Protocol 4.1 given
below3. Becausen is odd one of the candidates always gets more votes. However, in order to be

2We could also have used the stateWn, the complement ofWn, to carry out the protocol; in this case the processor
measuring|0〉 becomes the leader.

3H is the Hadamard transform, defined byH|0〉 = |0〉+ |1〉 andH|1〉 = |0〉 − |1〉.
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able to appoint a leader, either the voters have to be able to name the candidate they voted for, or
the candidates must differ in that they know which votes are intended for them. Both possibilities
violate anonymity. Note however, that Protocol 4.4 would work when adapted for a network where
the communication graph is a ring and the processors have a sense of direction. Indeed, suppose
each candidate sends a message in say, the clockwise direction, such that the first candidate receiv-
ing this message proclaims itself the leader. This works because whenn is odd both messages are
ensured to arrive in different rounds. Both time and message complexity are in this caseO(n).

1. q ← ith qubit ofW2,n−2 = Perm(|1〉⊗2|0〉⊗(n−2))
b=0
result=wait

2. b:=measureq

3. if b = 1 thenresult:= candidate, elseresult:=voter

4. if result:=voter then{b=measure H(q), broadcastb}

Protocol 2: Attempting odd-party leader election.

5 Quantum distributed consensus

The results here are similar in spirit to the results for leader election: they also depend on a sym-
metry property, this time on symmetry preservation rather than symmetry breaking.

Theorem 5.1 A necessary and sufficient condition for a totally correct anonymous quantum dis-
tributed consensus (QDC) protocol, where each processor owns 1 qubit initially, is that processor
qubits are entangled in aGHZ-state.

We prove this theorem in both directions in the following two sections.

5.1 GHZ is sufficient

The trick is to share a specific entangled state between all parties, which allows to create symmet-
rical knowledge in one step. The state used is known in the quantum computation community as
theGHZ-state, where

GHZn = |0〉⊗n + |1〉⊗n (4)

This state can be used as a symmetry-creating quantum resource. Each processori carries out the
following protocol below.
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1. q ← ith qubit ofGHZn

result=wait

2. result:= measureq

Protocol 3: The QDC protocol.

This is a totally correct protocol with time complexityO(1); no message passing is required.
Note that Protocol 5.1 works as well for different communication graphs or in asynchronous net-
works.

5.2 GHZ is necessary

The proof is analogous to that of the previous section.

Proof For a QDC protocol to be totally correct it can have onlyn-symmetric branches. Indeed,
anyk-symmetric branch withk < n results in a non-zero probability that onlyk processors obtain
symmetrical knowledge. Thus neither partial correctness nor termination can be guaranteed, since
eitherk processors terminate with different knowledge as then−k others, or they do not terminate
precisely because of this. Hence by Prop. 3.3, the initial network state|ψ〉 should allow onlyn-
symmetric moves. With|ψ〉 ∈ (C2)⊗n anonymous in the sense of Def. 2.1, this leaves us with
GHZn, or unitary transforms thereof, as the only possibility.

5.3 More qubits per processor

Again one can repeat the same symmetry argument in the case where each processor hasm qubits.
Taking{|φi〉} to be a basis forH, this leads to initial network states of the form

|ψ〉 =
2m∑
i=1

αi|φi〉⊗n (5)

An 2m-valued QDC protocol would then consist of measuring this state. Again, requiring total
correctness means that one cannot but use states of this type as a resource.

6 Conclusion

The main contribution of this paper is a demonstration of the special computational power of
theW -state, and also of theGHZ-state, and generalizations thereof. A number of new results
are established. First, totally correct leader electionis possible in anonymous quantum networks,
which is in stark contrast with the classical situation. Next, we prove that the specific entanglement
provided by theW - andGHZ-states, and their generalizations, is theonlykind that exactly solves
leader election and distributed consensus respectively. TheW -state has been thought about less in
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quantum information theory than many other entangled states though it does possess remarkable
properties [DVC00]. It is highly persistent for example, unlike the graph states[RBB03] it requires
many more measurements on average to destroy the entanglement.

In the programming languages community the relative power of synchronous vs. asynchronous
process calculi were compared using symmetry breaking arguments: in fact on the ability to im-
plement leader election [Pal03]. The results of the present paper would have similar consequences
on the expressive power of quantum process calculi. In joint work with others we are developing
such calculi.

One can and should study the role of theW -state more thoroughly. For example what can be
done with it in a variant of the one-way model based onW -states? We are actively investigating
these and related questions.
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