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Abstract

We extend our previous duality theorem for Markov processes by equipping the processes with a pseudometric
and the algebras with a notion of metric diameter. We are able to show that the isomorphisms of our
previous duality theorem become isometries in this quantitative setting. This opens the way to developing
theories of approximate reasoning for probabilistic systems.
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1 Introduction

Stone-type dualities are recognized as being ubiquitous, especially in computer

science. For example Plotkin [22] and Smyth [23] (see also [21]) emphasized that the

duality between state-transformer semantics and predicate-transformer semantics is

an instance of Stone-type duality. A similar duality was observed for probabilistic

transition systems [14]. Recently several authors, see for example [3], have emphasized

the duality between logics and transition systems from a coalgebraic perspective.

Mislove et al. [19] have found a duality between labelled Markov processes and

C∗-algebras based on the closely related classical Gelfand duality.

In a recent paper [15], a Stone-type duality was developed for Markov processes

defined on continuous state spaces. The algebraic counterpart of the Markov

processes were called Aumann algebras in honour of Aumann’s work on probabilistic

reasoning [1]. Aumann algebras capture, in algebraic form, a modal logic in which

bounds on probabilities enter into the modalities. This logic can be stripped down

to a very spartan core – just the modalities and finite conjunction – and still

characterize bisimulation for labelled Markov processes [5, 6]. However, to obtain

the strong completeness properties that are implied by the duality theorems, one

needs infinitary proof principles [12].
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One of the critiques [11] of logics and equivalences used for the treatment of proba-

bilistic systems is that boolean logic is not robust with respect to small perturbations

of the real-valued system parameters. Accordingly, a theory of metrics [7, 8, 24, 25]

was developed and metric reasoning principles were advocated. In the present paper

we extend our exploration of duality theory with an investigation into the role of

metrics and exhibit a metric analogue of the duality theory. This opens the way for

an investigation into quantitative aspects of approximate reasoning.

In the present paper we integrate quantitative information into the duality of [15]

by endowing Markov processes with a (pseudo)metric and Aumann algebras with a

quantitative “norm-like” structure called a metric diameter. The interplay between

the pseudometric and the boolean algebra is somewhat delicate and had to be

carefully examined for the duality to emerge. The final results have easy proofs but

the correct way to impose quantitative structure on Aumann algebras was elusive.

The key idea is to axiomatize the notion of metric diameter on the Aumann algebra

side. This is a concept more like a norm than a distance, but one can derive a metric

from it. The idea comes from a paper by Banaschewski and Pultr [2] on Stone

duality for metric spaces. However, our formulation is not quite the same as theirs.

2 Background

Given a relation R ⊆M ×M , the set N ⊆M is R-closed iff

{m ∈M | ∃n ∈ N, (n,m) ∈ R} ⊆ N.

We assume that the reader is familiar with the definitions of field of sets, σ-algebra,

measurable function, measurable space and measure.

If (M,Σ) is a measurable space and R ⊆ M ×M is a relation on M , then Σ(R)

denotes the set of measurable R-closed subsets of M .

Given a measurable space M = (M,Σ), we view the set ∆(M,Σ) of measures

defined on Σ, as itself being a measurable space by endowing it with the σ-algebra F

generated by the sets F (S, r) = {µ ∈ ∆(M,Σ) : µ(S) ≥ r} for arbitrary S ∈ Σ and

r > 0.

Measure theory works most smoothly in conjunction with certain topological assump-

tions. A Polish space is the topological space underlying a complete separable metric

space. An analytic space is the image of a Polish space X under a continuous function

f : X → Y , where Y is also a Polish space. The special properties of analytic spaces

were crucial in the proof of the logical characterization of bisimulation [6].

Let M be a set and d : M ×M → R.
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Definition 2.1 We say that d is a pseudometric on M if for arbitrary x, y ∈M ,

(1): d(x, x) = 0

(2): d(x, y) = d(y, x)

(3): d(x, y) ≤ d(x, z) + d(z, y)

We say that (M,d) is a pseudometric space.

Pseudometrics arise as metric analogues of bisimulation [7, 8]. A pseudometric

defines an equivalence relation called the kernel of the pseudometric, by x ∼ y iff

d(x, y) = 0. The metrics defined in [7, 8] had bisimulation as the kernel.

In a pseudometric space (M,d), the open ball with center x ∈M and radius ε > 0

is the set {y ∈ M | d(x, y) < ε}. The collection of open balls forms a base for a

topology called the metric topology. We can extend the pseudometric to sets in a

manner analogous to the way in which one extends metrics to compact sets.

Definition 2.2 For a pseudometric d on M we define the Hausdorff pseudometric

dH on the class of subsets of X by

dH(X,Y ) = max(sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)).

We need to verify that these are indeed pseudometrics. The proof of the following

lemma is omitted here; it is not too hard.

Lemma 2.3 If d : M ×M → [0, 1] is a pseudometric on M , then dH is a pseudo-

metric on subsets of M .

Markov processes (MPs) are models of probabilistic systems with a continuous

state space and probabilistic transitions [6, 9, 20]. In earlier papers, they were called

labeled Markov processes to emphasize the fact that there were multiple possible

actions, but here we will suppress the labels, as they do not contribute any relevant

structure for our results.

Definition 2.4 [Markov process] A Markov process (MP) is a tupleM = (M,Σ, θ),

where (M,Σ) is an analytic space and θ ∈ JM → ∆(M,Σ)K.

In a Markov process M = (M,Σ, θ), M is the support set, denoted by suppM, and

θ is the transition function. For m ∈M , θ(m) : Σ→ [0, 1] is a probability measure

on the state space (M,Σ). For N ∈ Σ, the value θ(m)(N) ∈ [0, 1] represents the

probability of a transition from m to a state in N .

The condition that θ is a measurable function JM → ∆(M,Σ)K is equivalent to the

condition that for fixed N ∈ Σ, the function m 7→ θ(m)(N) is a measurable function

JM → [0, 1]K (see e.g. Proposition 2.9 of [9]).

Markovian logic (ML) is a multi-modal logic for semantics based on MPs

[1, 4, 10, 13, 16, 18, 26]. In addition to the Boolean operators, this logic is equipped
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with probabilistic modal operators Lr for r ∈ Q0 that bound the probabilities of tran-

sitions. Intuitively, the formula Lrϕ is satisfied by m ∈M whenever the probability

of a transition from m to a state satisfying ϕ is at least r.

Definition 2.5 [Syntax] The formulas of L are defined by the grammar

ϕ ::= ⊥ | ϕ→ ϕ | Lrϕ

where r can be any element of Q0.

The Boolean operators ∨, ∧, ¬, and > are defined from → and ⊥ as usual. For

r1, . . . , rn ∈ Q0 and ϕ ∈ L, let

Lr1···rnϕ = Lr1 · · ·Lrnϕ.

The semantics for Lrϕ is defined as follows; the semantics of the other constructs

are obvious. For MP M = (M,Σ, θ) and m ∈M ,

M,m |= Lrϕ if θ(m)(JϕK) ≥ r,

where JϕK = {m ∈M | M,m |= ϕ}.

For this to make sense, JϕK must be measurable, this is readily verified. We define

negation in the obvious fashion and use the words valid and satisfiable in the usual

way.

This logic can be axiomatized using Hilbert-style axioms. The (strong) complete-

ness of this logic is proved in [12, 18, 26] by assuming Lindenbaum’s lemma (every

consistent set can be expanded to a maximal consistent set) as a meta-axiom. The

duality theorem of Kozen et al. [15] implies strong completeness without needing

this assumption.

The logical equivalence induced by ML on the class of MPs coincides with bisimulation

equivalence [6, 20]. The proof requires that the state space be an analytic space.

3 Stone Duality for Markov Processes

In this section we briefly summarize the results of our previous duality paper [15].

We introduce an algebraic version of Markovian logic consisting of a Boolean algebra

with operators Fr for r ∈ Q0 corresponding to the operators Lr of ML. We call these

algebras Aumann algebras. They are dual to certain Markov processes constructed

from zero-dimensional Hausdorff spaces called Stone–Markov processes (SMPs).

Definition 3.1 [Aumann algebra] An Aumann algebra (AA) is a structure A =

(A,→,⊥, {Fr}r∈Q0
,≤) where

• (A,→,⊥,≤) is a Boolean algebra;

• for each r ∈ Q0, Fr : A→ A is a unary operator; and

4



Kozen, Mardare, and Panangaden

• the axioms in Table 1 hold for all a, b ∈ A and r, s, r1, . . . , rn ∈ Q0.

The Boolean operations ∨, ∧, ¬, and >, are defined from → and ⊥ as usual.

Morphisms of Aumann algebras are Boolean algebra homomorphisms that commute

with the operations Fr. The category of Aumann algebras and Aumann algebra

homomorphisms is denoted AA.

We abbreviate Fr1 · · ·Frna by Fr1···rna.

(AA1) > ≤ F0a

(AA2) > ≤ Fr>

(AA3) Fra ≤ ¬Fs¬a, r + s > 1

(AA4) Fr(a ∧ b) ∧ Fs(a ∧ ¬b) ≤ Fr+sa, r + s ≤ 1

(AA5) ¬Fr(a ∧ b) ∧ ¬Fs(a ∧ ¬b) ≤ ¬Fr+sa, r + s ≤ 1

(AA6) a ≤ b⇒ Fra ≤ Frb

(AA7)
(∧

r<s Fr1···rnra
)

= Fr1···rnsa

Table 1
Aumann algebra

The operator Fr is the algebraic counterpart of the logical modality Lr. The first

two axioms state tautologies, while the third captures the way Fr interacts with

negation. Axioms (AA4) and (AA5) assert finite additivity, while (AA6) asserts

monotonicity.

The most interesting axiom is the infinitary axiom (AA7). It asserts that Fr1···rnsa

is the greatest lower bound of the set {Fr1···rnra | r < s} with respect to the natural

order ≤. In SMPs, it implies countable additivity.

As expected, the formulas of Markovian logic modulo logical equivalence form a

free countable Aumann algebra. Define ≡ on formulas in the usual way and let [ϕ]

denote the equivalence class of ϕ modulo ≡, and let L≡ = {[ϕ] | ϕ ∈ L}.

Theorem 3.2 The structure

(L/≡,→, [⊥], {Lr}r∈Q0
,≤)

is an Aumann algebra, where [ϕ] ≤ [ψ] iff ` ϕ→ ψ.

A Stone–Markov process (SMP) is a Markov process (M,A, θ), where A is a distin-

guished countable base of clopen sets that is closed under the set-theoretic Boolean

operations and the operations

Fr(A) = {m | θ(m)(A) ≥ r |}, r ∈ Q0.

The measurable sets Σ are the Borel sets of the topology generated by A. Morphisms

of such spaces are required to preserve the distinguished base; thus a morphism

f :M→N is a continuous function such that

5



Kozen, Mardare, and Panangaden

• for all m ∈M and B ∈ ΣN ,

θM(m)(f−1(B)) = θN (f(m))(B);

• for all A ∈ AN , f−1(A) ∈ AM.

Unlike Stone spaces, SMPs are not topologically compact, but we do postulate a

completeness property that is a weak form of compactness, which we call saturation.

One can saturate a given SMP by a completion procedure that is reminiscent of

Stone–Čech compactification [15]. Intuitively, one adds points to the structure

without changing the represented algebra. An MP is saturated if it is maximal with

respect to this operation.

Definition 3.3 [Stone–Markov Process] A Markov process M = (M,A, θ) with

distinguished base is a Stone–Markov process (SMP) if it is saturated.

The morphisms of SMPs are just the morphisms of MPs with distinguished base as

defined above.

The category of SMPs and SMP morphisms is denoted SMP.

Fix an arbitrary countable Aumann algebra

A = (A,→,⊥, {Fr}r∈Q0
,≤).

Let U∗ be the set of all ultrafilters of A. The classical Stone construction gives a

Boolean algebra of sets isomorphic to A with elements

LaM∗ = {u ∈ U∗ | a ∈ u}, LAM∗ = {LaM∗ | a ∈ A}.

The sets LaM∗ generate a Stone topology τ∗ on U∗, and the LaM∗ are exactly the

clopen sets of the topology.

Let F be the set of elements of the form αr = Ft1···tnra for a ∈ A and t1, . . . , tn, r ∈ Q0.

As before, we consider this term as parameterized by r; that is, if αr = Ft1···tnra,

then αs denotes Ft1···tnsa. The set F is countable since A is. Axiom (AA7) asserts

all infinitary conditions of the form

αs =
∧
r<s

αr. (1)

for αs ∈ F . Let us call an ultrafilter u bad if it violates one of these conditions in

the sense that for some αs ∈ F , αr ∈ u for all r < s but αs 6∈ u. Otherwise, u is

called good. Let U be the set of good ultrafilters of A.

Let τ = {B ∩ U | B ∈ τ∗} be the subspace topology on U , and let

LaM = {u ∈ U | a ∈ u} = LaM∗ ∩ U LAM = {LaM | a ∈ A}.

Then τ is countably generated by the sets LaM and all LaM are clopen in the subspace

topology.
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We can now form a Markov process M(A) = (U ,Σ, θ), where Σ is the σ-algebra

generated by LAM and θ : U → LAM→ [0, 1] is defined on the generators by

θ(u)(LaM) = sup{r ∈ Q0 | Fra ∈ u} = inf{r ∈ Q0 | ¬Fra ∈ u}.

It can be shown that θ extends uniquely to a transition function [15].

Theorem 3.4 If A is a countable Aumann algebra, then M(A) = (U , LAM, θ) is a

Stone Markov process.

Most of the technical difficulties of our earlier paper are in the proof of this theorem.

Let M = (M,B, θ) be a Stone Markov process with distinguished base B. By

definition, B is a field of clopen sets closed under the operations

Fr(A) = {m ∈M | θ(m)(A) ≥ r}.

Theorem 3.5 The structure B with the set-theoretic Boolean operations and the

operations Fr, r ∈ Q0 is a countable Aumann algebra.

We denote this algebra by A(M). Now we have the duality theorem.

Theorem 3.6 (Duality Theorem [15])

(i) Any countable Aumann algebra A is isomorphic to A(M(A)) via the map

β : A → A(M(A)) defined by

β(a) = {u ∈ supp(M(A)) | a ∈ u} = LaM.

(ii) Any Stone Markov process M = (M,A, θ) is homeomorphic to M(A(M)) via

the map α :M→M(A(M)) defined by

α(m) = {A ∈ A | m ∈ A}.

In [15], we also give a categorical version of this theorem with the contravariant

functors between the two categories given explicitly.

4 Extending the Duality to Metrized Markov Processes

We add quantitative structure to both Markov processes and Aumann algebras.

We prove an extended version of the representation theorem for metrized Markov

processes versus metrized Aumann algebras. This theorem states that starting

from an arbitrary metrized Markov process, we can extend the Aumann algebra

constructed in the previous section to a metrized Aumann algebra that preserves the

pseudometric and conversely. In other words the natural isomorphisms that arise in

the duality of [15] will turn out to be isometries.
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We equip Stone Markov processes with a pseudometric that measures distances

between the states of the MP. The key condition that we impose is that for a

particular state m, the diameters of the clopens containing m converges to 0.

Definition 4.1 [Metrized Markov process] A metrized Markov process is a tuple

(M, d), where M = (M,A, θ) is a Stone Markov process with A its countable base

of clopens and d : M ×M → [0, 1] is a pseudometric on M satisfying for arbitrary

m ∈M the property

(M) inf
c∈A,m∈c

sup{d(n, n′) | n, n′ ∈ c} = 0.

The following lemma gives a number of conditions equivalent to (M). In particular,

it shows the connection between the topology of the Stone Markov space and the

pseudometric topology.

Lemma 4.2 For a metrized MP (M, d), where M = (M,A, θ), the following are

equivalent:

(i) ∀m, inf
c∈A,m∈c

sup{d(n, n′) | n, n′ ∈ c} = 0

(ii) ∀m,m′ inf
c∈A,m,m′∈c

sup{d(n, n′) | n, n′ ∈ c} = d(m,m′)

(iii) ∀m, ∀ε > 0 ∃c ∈ A (m ∈ c ∧ ∀n, n′ ∈ c d(n, n′) < ε)

(iv) ∀m ∀ε > 0 ∃c ∈ A (m ∈ c ∧ ∀n ∈ c d(m,n) < ε)

(v) The topology generated by A refines the pseudometric topology generated by d.

(vi) The pseudometric d is continuous in both arguments with respect to the A-

topology.

Proof. Note that (i) is just (M).

(i) ⇔ (iii) is immediate from the definitions.

For (iii) ⇒ (iv), we can substitute m,n for n, n′ in (iii).

For (iv) ⇒ (iii), let m and ε > 0 be arbitrary, and let c ∈ A such that m ∈ c

and for all n ∈ c, d(m,n) < ε/2 and d(n,m) < ε/2. Then for any n, n′ ∈ c,

d(n, n′) ≤ d(n,m) + d(m,n′) < ε/2 + ε/2 = ε.

For (iv) ⇔ (v), let Nε(m) = {x | d(m,x) < ε}. Then,

∀m ∀ε > 0 ∃c ∈ A (m ∈ c ∧ ∀n ∈ c d(m,n) < ε ∧ d(n,m) < ε)

⇔ ∀m ∀ε > 0 ∃c ∈ A (m ∈ c ∧ ∀n ∈ c n ∈ Nε(m))

⇔ ∀m ∀ε > 0 ∃c ∈ A (m ∈ c ∧ c ⊆ Nε(m)).

The last statement says that every basic open neighborhood of the pseudometric

topology contains a basic open neighborhood of the A-topology, which says exactly

that the A-topology refines the pseudometric topology.
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For (iii) ⇒ (vi), to show that d is continuous in its second argument, let m,x and

ε > 0 be arbitrary and let c ∈ A such that x ∈ c and for all n, n′ ∈ c, d(n, n′) < ε.

Then for all y ∈ c,

d(m, y) ≤ d(m,x) + d(x, y) < d(m,x) + ε

d(m,x) ≤ d(m, y) + d(y, x) < d(m, y) + ε

so d(m, y) ∈ (d(m,x) − ε, d(m,x) + ε). That d is continuous in its first argument

follows from symmetry.

For the other direction, suppose d is continuous in its second argument. Then for

all m and ε > 0, the set Nε(m) is open and contains m, thus there exists a basic

open set c ∈ A such that m ∈ c and c ⊆ Nε(m). Thus the A-topology refines the

pseudometric topology of d.

Statement (ii) implies (i) immediately by taking m′ = m in (ii).

To show (i) implies (ii), let m,m′ and ε > 0 be arbitrary. From (iv), we have c ∈ A
such that m ∈ c and from (iii) we have that for all n, n′ ∈ c, d(n, n′) < ε/2 and we

have c′ ∈ A such that m′ ∈ c′ and for all n, n′ ∈ c′, d(n, n′) < ε/2. We claim that

for all n, n′ ∈ c ∪ c′, d(n, n′) < d(m,m′) + ε, which will establish (ii).

If n, n′ ∈ c, then

d(n, n′) ≤ d(n,m) + d(m,n′) < ε/2 + ε/2 = ε ≤ d(m,m′) + ε.

If n, n′ ∈ c′, the argument is the same, replacing m by m′. If n ∈ c and n′ ∈ c′, then

d(n′, n) = d(n, n′) ≤ d(n,m) + d(m,m′) + d(m′, n′)

< ε/2 + d(m,m′) + ε/2 = d(m,m′) + ε.

Definition 4.3 [Isometric Markov processes] Given two metrized MPs (Mi, di),

where Mi = (Mi,Σi, θi) for i = 1, 2, an isometry from M1 to M2 is a map

f : M1 →M2 such that for arbitrary m,n ∈M1,

d1(m,n) = d2(f(m), f(n)).

Now we introduce the metrized Aumann algebras. Despite their name, the metrized

AAs are not directly equipped with a pseudometric structure, but with a concept of

metric diameter. Later we will prove that the metric diameter can indeed define a

pseudometric.

Definition 4.4 [Metrized Aumann algebra] A metrized Aumann algebra is a tuple

(A, | |), where A = (A,→,⊥, {Fr}r∈Q0
,≤) is an Aumann algebra and | | : A→ [0, 1]

is a metric diameter on A, which is a map satisfying, for arbitrary a, b ∈ A and

ultrafilter u, the following properties

(A1) |⊥| = 0;

9



Kozen, Mardare, and Panangaden

(A2) if a ≤ b, then |a| ≤ |b|;

(A3) if a ∧ b 6= ⊥, then |a ∨ b| ≤ |a|+ |b|;

(A4) inf{|a| | a ∈ u} = 0.

Definition 4.5 [Isometric Aumann Algebras] Given two metrizable Aumann Alge-

bras (Ai, | |i) for i = 1, 2, an isometry from A1 to A2 is a map f : A1 → A2 such

that for any a ∈ A1,

|a|1 = |f(a)|2.

We can now extend the duality results presented in the previous section to include

the metric structure.

Consider a metrizable MP (M, d), where M = (M,A, θ). As before, let A(M) be

the AA constructed from M. We extend this construction so that A(M) becomes a

metrized AA. For arbitrary a ∈ A, let

|a|d = sup{d(m,n) | m,n ∈ a},

under the assumption that sup∅ = 0.

Lemma 4.6 (A(M), | |d) is a metrized Aumann Algebra.

Proof. (A1) |⊥|d = 0 follows from the assumption that sup∅ = 0.

(A2) If c1 ⊆ c2, then sup{d(m,n) | m,n ∈ c1} ≤ sup{d(m,n) | m,n ∈ c2}.

(A3) Suppose that c1∩ c2 6= ∅. Let z ∈ c1∩ c2, x ∈ c1 and y ∈ c2. Then, the triangle

inequality for d guarantees that

d(x, y) ≤ d(x, z)+d(z, y) ≤ sup{d(x, z) | x, z ∈ c1}+sup{d(z, y) | z, y ∈ c2} = |c1|+|c2|.

Consequently, sup{d(x, y) | x ∈ c1, y ∈ c2} ≤ |c1|+ |c2| and similarly,

sup{d(y, x) | x ∈ c1, y ∈ c2} ≤ |c1|+ |c2|. Since

|c1 ∪ c2| = max{|c1|, |c2|, sup{d(x, y) | x ∈ c1, y ∈ c2}, sup{d(x, y) | x ∈ c2, y ∈ c1}},

|c1 ∪ c2| ≤ |c1|+ |c2|.

(A4) Using the notation of the previous duality theorem 3.6, we know that for any

ultrafilter u of A(M) and any clopen c ∈ A, we have that

α−1(u) ∈ c iff c ∈ u.

Then, inf{|c|d | c ∈ u} = inf{|c|d | α−1(u) ∈ c}.

Since α is a bijection, α−1(u) ∈ M and |c|d = sup{d(n, n′) | n, n′ ∈ c}, using (M)

we obtain

inf
c∈A,c3α−1(u)

sup{d(n, n′) | n, n′ ∈ c} = 0,

therefore inf{|c|d | c ∈ u} = 0.
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Consider a metrizable AA (A, | |) and, as before, let M(A) be the MP constructed

from A. We extend this construction so that M(A) will become a metrizable MP.

For arbitrary ultrafilters u, v of A, let

δ| |(u, v) = inf{|a| | a ∈ u ∩ v}.

Lemma 4.7 (M(A), δ| |) is a metrized MP.

Proof. First, we prove that δ| | is a pseudometric over the space of ultrafilters.

From (A4) we can simply infer that δ| |(u, u) = 0, while the symmetry of δ| | follows

from the definition.

We now prove the triangle inequality: let u, v, w be three arbitrary ultrafilters. Let

a ∈ u ∩ v, b ∈ u ∩ w and c ∈ w ∩ v. Obviously b ∪ c ∈ u ∩ v. Then,

inf
a∈u∩v

|a| ≤ |b ∪ c|.

Since b ∩ c 6= ∅, using (A3) we get |b ∪ c| ≤ |b|+ |c| which guarantees that for any

b ∈ u ∩ w and any c ∈ w ∩ v,

inf
a∈u∩v

|a| ≤ |b|+ |c|,

implying

inf
a∈u∩v

|a| ≤ inf
b∈u∩w

|b|+ inf
c∈w∩v

|c|.

Hence,

δ| |(u, v) ≤ δ| |(u,w) + δ| |(w, v)

which proves that δ| | is a pseudometric.

It remains to verify (M). Since from theorem 3.6 we know that a ∈ u iff u ∈ β(a),

(M) follows directly from (A4).

Finally, we extend the representation theorem 3.6 to include the metric structure.

Essentially, we show that the isomorphisms α and β of the duality theorem are

isometries.

Theorem 4.8 (The metric duality theorem) (i) Any metrizable countable

Aumann algebra (A, | |) is isomorphic to (A(M(A)), | |δ| |) via the map

β : A → A(M(A)) defined by

β(a) = {u ∈ supp(M(A)) | a ∈ u} = LaM.

Moreover, β is an isometry of metrizable Aumann algebras, i.e., for arbitrary

a ∈ A,

|a| = |β(a)|δ| | .

(ii) Any metrizable Stone Markov process (M, d), where M = (M,A, θ) is homeo-

morphic to (M(A(M)), δ| |d) via the map α :M→M(A(M)) defined by

α(m) = {A ∈ A | m ∈ A}.

11
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Moreover, α is an isometry of MPs, i.e., for arbitrary m,n ∈M ,

d(m,n) = δ| |d(α(m), α(n)).

Proof. We only need to prove the two isometries.

(i). The isometry of AAs. We need to prove that |a| = |β(a)|δ| | .

Observe that

|β(a)|δ| | = sup
u,v∈β(a)

δ| |(u, v) = sup
u,v∈β(a)

inf
a′∈u∩v

|a′|.

Since β(a) is the set of all ultrafilters containing a, a′ quantifies over all elements

that belong to the intersection of all ultrafilters containing a. But this intersection

is nothing else but the principal filter ↑ a of a. Hence, the previous equality became

|β(a)|δ| | = inf
a′∈↑a

|a′|.

Now the monotonicity stated by (A2) guarantees that

inf
a′∈↑a

|a′| = |a|.

(ii). The isometries of MPs. We need to prove that d(m,n) = δ| |d(α(m), α(n)).

From Lemma 4.2(ii) we know that

d(m,n) = inf
c∈A,c3m,n

|c|d.

From Theorem 3.6 we also know that

m,n ∈ c iff c ∈ α(m) ∩ α(n).

Consequently,

d(m,n) = inf{|c|d | c ∈ α(m) ∩ α(n)} = δ| |d(α(m), α(n)).

We have claimed earlier that the metric diameter on an Aumann algebra induces a

pseudometric. We now demonstrate this.

Let (A, | |) be a metrized AA. For arbitrary a, b ∈ A and ε > 0, let

Bε(b) =
⋃
{β(b′) | b′ ∈ A, |b′| ≤ ε, b ∧ b′ 6= ⊥}.

Intuitively, Bε(b) is a ball that contains all ultrafilters that are at distance at most

ε from some ultrafilter containing b. This definition allows us to define a natural

distance on A by

d| |(a, b) = inf{ε > 0 | Bε(b) ⊇ β(a) and Bε(a) ⊇ β(b)}.

12
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Intuitively, if in the light of the duality we think of the elements of A as sets of

ultrafilters, then the previous distance is just the Hausdorff pseudometric of the

distance between ultrafilters.

To prove that the previous construction is not void, we show in the next lemma that

for any non-zero element a ∈ A the ball Bε(a) is not empty for any ε.

Lemma 4.9 If a 6= ⊥, then for any ε > 0 there exists a′ 6= ⊥ such that a ∧ a′ 6= ⊥
and |a′| ≤ ε.

Proof. Since a 6= ⊥, there exists an ultrafilter u such that a ∈ u. For any other

a′ ∈ u, a ∩ a′ ∈ u, hence a ∩ a′ 6= ⊥. Moreover, using (A4) there exists a′ ∈ u such

that |a′| ≤ ε.

Now we prove that d| | is indeed a pseudometric: it is the Hausdorff pseudometric of

the pseudometric δ| | on ultrafilters.

Lemma 4.10 The function d| | previously defined on the support set of a metrizable

Aumann Algebra is a pseudometric. Moreover,

d| |(a, b) = max{ sup
u∈β(a)

inf
v∈β(b)

δ| |(u, v), sup
u∈β(a)

inf
v∈β(b)

δ| |(v, u)}.

We omit the proof, which is not completely trivial, from this abstract.

4.1 Metric Duality in Categorical Form

We present the previous results in a more categorical format. The categories of

metrized Aumann algebras (MAA) and metrized Markov processes (MMP) are

defined as follows.

The objects of MAA are metrized AAs and their morphisms are expansive morphisms

of AAs, i.e., morphisms f : A1 → A2 of AAs such that for any a ∈ A1,

|a|1 ≤ |f(a)|2.

The objects of MMP are metrized MPs and their morphisms are non-expansive

morphisms of MPs, i.e., morphisms f : M1 → M2 of SMPs such that for any

m,n ∈M1,

d1(m,n) ≥ d2(f(m), f(n)).

We define contravariant functors A : MMP→MAAop and M : MAA→MMPop.

The functor A on an object M produces the Aumann algebra A(M) defined in

Theorem 3.5. On arrows f :M→N we define A(f) = f−1 : A(N )→ A(M). We

have previously proved that this is an Aumann algebra homomorphism. To see that

it is also expansive, consider a morphism f :M→N such that for any m,n ∈M,

dM(m,n) ≥ dN (f(m), f(n)).

13
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Observe that for arbitrary a ∈ A(N ),

|a|A(N ) = |a|dN and |f−1(a)|A(M) = |f−1(a)|dM

and in this context the previous inequality guarantees that

|a|A(N ) ≤ |f−1(a)|A(M).

The functor M : MAA→MMPop on an object A gives the Stone–Markov process

M(A) defined in Theorem 3.4. On morphisms h : A → B, it maps ultrafilters to

ultrafilters by M(h) = h−1 : M(B)→M(A); that is,

M(h)(u) = h−1(u) = {A ∈ AN | h(A) ∈ u}.

Another way to view M(h) is by composition, recalling that an ultrafilter can be

identified with a homomorphism u : A → 2 by u = {a | u(a) = 1}. In this view,

M(h)(u) = u ◦ h,

where ◦ denotes function composition.

We have proven in our previous paper [15] that this is a morphism of SMPs.

That it is also non-expansive can be demonstrated as follows.

Let h : A → B be a morphism such that for arbitrary a ∈ A,

|a|A ≤ |f(a)|B.

Using the previous results it is not difficult to verify that for arbitrary ultrafilters

u, v of B,

δ| |B(u, v) ≥ δ| |A(h−1(u), h−1(v)).

And since

δ| |B(u, v) = δM(B)(u, v) and δ| |A(h−1(u), h−1(v)) = δM(A)(h
−1(u), h−1(v)),

We obtain that M(h) is non-expansive.

Theorem 4.11 The functors M and A define a dual equivalence of categories.

MMP MAAop

A

M

5 Conclusions

We have extended the duality theory of [15] to a quantitative setting. It is important

to note that the conditions we have imposed on the pseudometric relate the topology

of the Markov process to the pseudometric topology. This can be seen from the

14
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fact that the pseudometric topology is refined by the Stone topology. We have

defined our Stone Markov processes to be Hausdorff spaces, which was necessary for

the duality theory. In effect, this means that the clopens separate points; in other

words, one cannot have two states that satisfy exactly the same formulas. In view of

the logical characterization of bisimulation, this implies that no two distinct states

are bisimilar; that is, the process is already minimal with respect to bisimulation.

If we look at a broader class of Markov processes, then we would have possibly

nontrivial bisimulations on the space. The Stone Markov processes would be a

reflective subcategory with the reflector sending each Markov process to a version

of the process with all the bisimulation equivalence classes collapsed to point; this

would be a Stone Markov process. How does the topology on a Stone Markov process

“know” about the transition structure? Note that the base of clopens is required

to be closed under the Fr operations, which are defined in terms of the transition

function.

The only work of which we are aware similar to this is a paper by Banaschewski and

Pultr [2] called “A Stone duality for metric spaces.” They are not working with

Markov processes, so there is nothing like the Aumann algebra structure there. They

gave us the idea of using a metric diameter, but their axiomatization is different and

the proofs that we developed do not resemble theirs.

The main impact of this work is to put quantitative reasoning about Markov processes

on a firmer footing. It has been over a decade since metric analogues of bisimulation

were developed, but they have not had the impact that they might have had. One

reason is that with ordinary logical reasoning, one has a clear understanding of

what completeness means, thus users of these logics have a good understanding

of the power of the principles they are using. What does completeness mean for

metric reasoning and approximate reasoning in general? The standard Stone-type

duality theorem captures the concept of completeness; it is our hope that the

present work will pave the way towards a similar understanding of approximate

reasoning principles. There is much to be done, however. In a previous paper [17]

we began investigating the relationship between the logic and metrics on Markov

processes. The results of the present paper could perhaps strengthen and deepen

these preliminary results.
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