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Abstract

We analyze the transformation of the polarization of a photon propa-
gating along an arbitrary null geodesic in Kerr geometry. The motivation
comes from the problem of an observer trying to communicate quantum
information to another observer in Kerr spacetime by transmitting polar-
ized photons. It is essential that the observers understand the relationship
between their frames of reference and also know how the photon’s polar-
ization transforms as it travels through Kerr spacetime. Existing methods
to calculate the rotation of the photon polarization (Faraday rotation) de-
pend on choices of coordinate systems, are algebraically complex and yield
results only in the weak-field limit.

We give a compact expression for the parallel propagated frame along
the null geodesic using Killing-Yano theory, and thereby solve the problem
of parallel transport of the polarization vector in an intrinsic geometrically-
motivated fashion. The symmetries of Kerr geometry are utilized to obtain
a remarkably compact, closed-form expression for the geometrically in-
duced phase of the photon’s polarization. We show that this phase vanishes
on the equatorial plane and the axis of symmetry.
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 Introduction

In protocols for quantum communication [NC] most of the attention has
been focussed on quantum effects such as the problem of coping with noise
in the communication mechanism or preserving entanglement. It is typically
taken for granted that the participants in the protocol share a frame of refer-
ence. However, a closer analysis by Bartlett et al. [BRS, BRS] has revealed
the importance of sharing a frame. They have even quantified the degree to
which a partially shared frame constitutes shared information. The present
paper is motivated by these considerations, however, we do not address the
quantum information-theoretic issues which would involve a study of the evo-
lution of the quantum state.

Instead we isolate the classical geometric aspects and study them in Kerr ge-
ometry. Specifically, we study how two participants in a quantum communi-
cation protocol involving transmission of polarized photons — henceforth we
will call them observers — could share a frame in Kerr geometry and how the
polarization of a linearly polarized photon would transform as it travels from
one observer to the other. It is crucial that this transformation reflect what
would be seen by the observers. Furthermore, the quantity we report should be
intrinsic to the geometry of the spacetime and not correspond to some arbitrarily
chosen coordinate system or frame.

We have two observers called Alice and Bob. Alice sends a linearly polar-
ized photon to Bob; she has chosen the polarization vector to be at some angle
in with respect to some axes which she has chosen in the plane of polarization
of the photon, which is a -plane orthogonal to the direction of propagation
of the photon. Bob receives this photon which has travelled through the Kerr
spacetime to reach him. In order for Bob to measure the polarization of the
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photon and know what angle Alice intended to communicate to him, he needs
to know how their frames correspond and how the photon polarization has
been transformed by the background geometry.

In Minkowski geometry, the problem is straightforward. Since, the back-
ground geometry does not affect the polarization of the photon, one only needs
to solve the problem of sharing frames. For a pair of observers who start at the
same event with a known relation between their frames, one can Fermi-Walker
transport their frames to determine how their frames relate at the point where
photon transmission occurs.

At this level of generality the problem is intractable in the Kerr geometry
since the Fermi-Walker transport of vectors along general timelike curves in
Kerr geometry is still an open problem. Note that we are not interested in
obtaining reference frames per se. What is required for two observers to ex-
change quantum information using polarized photons is shared knowledge of
basis vectors in which the measurement is performed.

Thus, we seek an intrinsic, geometrically defined measurement basis along spe-
cific trajectories. We show how Kerr geometry allows for such a protocol; one
which simultaneously solves the problem of sharing frames and minimizes the
informational requirement on the observers.

The gravitationally induced rotation of the polarization vector in Kerr ge-
ometry has been investigated in the weak field limit by [Skr],[Ple],[God],
[FL], [ITT],[NZ],[Ser]. Extant methods rely on the existence of the
Walker-Penrose conserved quantity to solve the problem of parallel propagat-
ing the polarization vector along a null geodesic [Cha]. The estimates are
difficult to reconcile because they do not take into account the role of reference
frames. However, there is a virtual consensus that the acquired phase is zero
in Schwarzschild geometry.

More recently, Brodutch, Demarie and Terno [BDT] have chosen observers
equipped with an orthonormal frame, located at fixed values of (r, ϑ, ϕ) in
Boyer-Lindquist coordinates. They make a physically motivated choice of ba-
sis vectors for the plane of polarization by requiring that the acquired phase
be zero in the Schwarzschild limit. They find that the acquired phase on the
equatorial place is zero and argue that this is because motion on the equato-
rial plane in Kerr geometry is qualitatively similar to Schwarzschild spacetime.
Though their results only hold in the weal-field limit, their paper represents a
significant advance in the field.

We take a geometric approach. First, our choice of observers is motivated
by the intrinsic geometry of Kerr spacetime. We choose a class of observers
whose -velocities are symmetric linear combinations of the principal null di-
rections of the Weyl tensor. We show how this class of observers is uniquely
suited to analyze the behaviour of test particles near the horizon. Second, we
endow these observers with a symmetric frame by exploiting the existence of
the involutive isometry obtained by simultaneous time- and rotation-reversal
of the Kerr black hole. This greatly simplifies our expressions. Third, we use
the existence of the principal null directions and other special features of Kerr
geometry to fix the definition of the plane of polarization and of the basis vec-
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tors for the plane of polarization. This measurement protocol is allowed by
the specific symmetry structure of Kerr geometry. It is simply unavailable
in Minkowski spacetime where no direction is similarly privileged. Fourth,
we use Killing-Yano theory to construct a parallel propagated frame along the
null geodesic, thereby reducing the transport problem to one of raising and
lowering frame indices. This allows us to obtain a remarkably compact exact
expression for Faraday rotation everywhere in the zone of outer communica-
tion in Kerr spacetime.

We proceed as follows. Section  lays out the geometry and symmetries
of the Kerr solution, as well as describes the null geodesic equations. The con-
struction of the parallel-propagated frame is given in section . In section , we
set out our choice of observers and the measurement protocol. We then prove
that there is no Faraday rotation for photons confined to the equatorial plane
and the axis of symmetry. We show how this immediately implies the vanish-
ing of the acquired phase in Schwarzschild spacetime as well. Section  gives
the derivation of the closed form expression for the Faraday rotation. In sec-
tion , we discuss the plots of a few null geodesics (provided in the appendix)
and their associated Faraday rotation. We conclude with some remarks about
the physical significance of the results and some possible avenues for future
work.

 Kerr geometry

Our goal in this section is to recall some of the salient geometric properties of
the Kerr metric that will be used to calculate the Faraday rotation undergone
by the polarization vector of a photon. (Throughout this paper, a photon will
be thought of as a classical zero rest mass particle moving along an affinely
parametrized null geodesic.) We shall see that the remarkable symmetry and
separability properties of Kerr geometry make it possible to obtain an exact
expression for the Faraday rotation, which we will derive in Section  and will
subsequently interpret geometrically.

We begin by recalling that the Kerr metric is a two-parameter family of
solutions of the Einstein vacuum equations defined on the manifold M ≡ R ×
S and describing the outer geometry of a rotating black hole in equilibrium.
In Boyer-Lindquist coordinates (xi ) = (t, r, ϑ, ϕ) with −∞ < t < +∞, r+ < r <
+∞,  ≤ ϑ ≤ π,  ≤ ϕ < π, the Kerr metric takes the form

ds =
∆

Σ
(dt − a sin ϑdϕ) − Σ

∆
dr − Σdϑ − sin ϑ

Σ
(adt − (r + a) dϕ) ,

with
Σ(r, ϑ) = r + a cos ϑ, ∆(r) = r − Mr + a. (.)

The parameters M >  and a ≥  labeling the solutions within the Kerr family
correspond respectively to the mass and angular momentum per unit mass of
the black hole, as measured from infinity. We shall restrict our attention to the
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non-extreme case M > a ≥ , in which case the function ∆(r) has two distinct
zeros,

r± = M ±
√
M − a, (.)

with r+ corresponding to the lower limit of the range of the Boyer-Lindquist
coordinate r. It is well-known that the Kerr metric can be analytically contin-
ued across the hypersurfaces r = r+ and r = r− in such a way that these become
null hypersurfaces in the extendedmanifold, corresponding respectively to the
event and Cauchy horizons of the Kerr black hole geometry. We shall however
be interested in the region r > r+, which describes the space-time geometry
outside the event horizon of the Kerr black hole with parameters M and a.

The Weyl conformal curvature tensor of the Kerr solution is of Petrov type
D, meaning that the Weyl tensor admits a pair of repeated principal null di-
rections, each of which is defined up to multiplication by a non-zero scalar
function. These repeated principal null directions give rise to null congru-
ences which are geodesic and shear-free as a consequence of the Goldberg-
Sachs Theorem. We choose the scale factors in such a way that the principal
null directions are given by

ℓ = l i
�

�xi
=

√
Σ∆

(

(r + a)
�

�t
+
√
∆

�

�r
+ a

�

�ϕ

)

, (.)

and

n = ni
�

�xi
=

√
Σ∆

(

(r + a)
�

�t
−
√
∆

�

�r
+ a

�

�ϕ

)

. (.)

The vector fields (.) and (.) which forms part of the symmetric null frame
constructed by Debever et al. [DMT], and which will play an important in
the geometrical characterization of the class of observers that we shall consider
in our calculation of the Faraday rotation.

The Kerr metric enjoys remarkable symmetry properties which we will ex-
ploit systematically in our calculation of the Faraday rotation and which we
now summarize.

First of all, the Kerr metric admits a two-parameter Abelian isometry group
that acts orthogonally transitively on time-like orbits, meaning that the orbits
of the group action are time-like -surfaces with the property that the distribu-
tion of -planes orthogonal to the orbits is integrable. The orthogonal transi-
tivity is manifest in the Boyer-Lindquist coordinates since the metric does not
admit cross terms mixing the differentials dr, dϑ with the differentials dt, dϕ.
In Boyer-Lindquist coordinates, the action of the continuous part of the isom-
etry group is generated by the flows of the pair of commuting Killing vector
fields �t and �ϕ , and thus given by

(t, r, ϑ, ϕ) 7→ (t + c, r, ϑ, ϕ + c), (.)

where c, c are arbitrary real constants. Furthermore, the isometry group of
the Kerr metric admits a discrete subgroup isomorphic to Z, whose action is
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not of the form (.). More precisely, we say following Carter’s terminology
that the isometry group is invertible, meaning that at every x ∈ M , there exists
a (,)-tensor Lx ∈ End(TxM), which acts as an involutive isometry of (TxM, gx)
and is such that if Ox denotes the orbit of the isometry group through x, then

Lx |(TxOx)⊥ = id(TxOx)⊥ , (.)

and for all Xx ∈ (TxOx)⊥
Lx(Xx) = −Xx. (.)

We remark that from a result of Carter [Car], it is known that if an isom-
etry group acts orthogonally transitively on non-null orbits then the action is
necessarily invertible. In Boyer-Lindquist coordinates, the involution is given
by

Lx = f∗|x (.)

where f is the isometry given by

(t, r, ϑ, ϕ) 7→ (−t, r, ϑ,−ϕ). (.)

We will commit an abuse of notation and denote both Lx = f∗|x and the dual
map f ∗|x by L. The involution L will play a key role in defining invariantly the
class of observers and frames for which the Faraday rotation will be computed.
We shall work in a Newman-Penrose null coframe

ϑ = nidx
i , ϑ = ℓidx

i , ϑ = −m̄idx
i , ϑ = −midx

i , (.)

in which the Kerr metric takes the form

ds = (ϑϑ − ϑϑ). (.)

Following the construction of Debever et al. [DMT], this coframe is chosen
such that

Lϑ = −ϑ, Lϑ = −ϑ, Lϑ = −ϑ, Lϑ = −ϑ (.)

Following Carter, we refer to this frame as the symmetric coframe. Note that
this last requirement eliminates the scaling freedom we would have otherwise
had in defining this null coframe. The corresponding orthonormal symmetric
coframe (ω, ω, ω, ω) is then defined by

ω =
√

(ϑ + ϑ), ω =

√

(ϑ − ϑ), ω = − √


(ϑ + ϑ), ω =

√

(ϑ − ϑ),

(.)

This result is not true if the orbits of the isometry group are null
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and given in Boyer-Lindquist coordinates by

ω =

√

∆

Σ
(dt − a sin ϑdϕ) , (.)

ω =

√

Σ

∆
dr, (.)

ω =
sin ϑ√

Σ
(adt − (r + a)dϕ) , (.)

ω =
√
Σ dϑ. (.)

Throughout this paper, we shall reserve lower case Latin indices {a, b, c, . . . } to
denotes components with respect to the orthonormal frame (.)-(.). We
shall denote the flat spacetime metric used to raise and lower these orthonor-
mal frame indices by η, where

ηab = ηab =





























−
−

−



























. (.)

It is well known that in addition to its two-parameter Abelian group of
isometries, the Kerr metric posesses further symmetries whose presence is
closely tied to the fact that all the known massless and massive wave equa-
tions are separable in Boyer-Lindquist coordinates and, where applicable, the
symmetric frame. The geometic object that generates all these additional sym-
metries is a rank two Killing-Yano tensor, that is, a (, ) skew-symmetric tensor
(fij ) satisfying the Killing-Yano equation

∇i fjk + ∇j fik = . (.)

In Boyer-Lindquist coordinates and in the symmetric orthonormal coframe,
any rank  Killing-Yano tensor is a constant multiple of

f := fijdx
i ∧ dxj = −a cosϑω ∧ ω + rω ∧ ω (.)

The role played by this Killing-Yano tensor in the separability properties of
the Kerr metric stems from the fact that it appears as a "square root" of the
quadratic first integral discovered by Carter in his proof of the separability
in Kerr geometry of the Hamilton-Jacobi equation for the geodesics and the
Klein-Gordon equation formassive scalar fields. More precisely, the symmetric
(,)-tensor (Kij ) defined by

Kij = fik f
k
j , (.)

satisfies the Killing equation

∇iKjk + ∇jKki + ∇kKij = , (.)
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and therefore gives rise to a quadratic first integral

κ = K ijpipj , (.)

for the geodesic flow in Kerr geometry, known as Carter’s constant. This quadratic
first integral exists in addition to the two linear first integrals arising from the
presence of the two commuting Killing vector fields �t and �ϕ and therefore re-
duces the integration of the geodesic flow to quadratures. For the purposes of
calculating the Faraday rotation of a photon, we shall be interested in affinely
parametrized null geodesics, for which the equations can be written in first-
order form as

ṙ = ±
√
R

Σ
, (.)

ϑ̇ = ±
√
Θ

Σ
, (.)

Σ∆ṫ = E
(

(r + a) − ∆a sin ϑ
)

− MraΦ, (.)

Σ∆ϕ̇ = MraE + (Σ − Mr)Φ/ sin ϑ. (.)

In these equations, the dot denotes the derivative with respect to an affine
parameter s, the constant E is the conserved momentum pt corresponding to
the energy of zero rest-mass particle moving along the null geodesic, Φ is the
conserved angular momentum −pϕ along the axis of symmetry of the Kerr
black hole, κ is Carter’s fourth integral of motion given by (.), and

R(r) := P
 − ∆κ, (.)

Θ (ϑ) := κ −D, (.)

where

P(r) := E(r + a) − aΦ, (.)

D(ϑ) := a sin ϑE − Φ/ sin ϑ. (.)

 Parallel-propagated frame along null geodesics

By definition, the polarization -vector ̥ of a photon is a vector field along an
affinely parametrized null geodesic γ with tangent vector K , that is both par-
allel propagated along γ and orthogonal to K . That is,

K i∇i̥j = Ka∇ḁb =  (.)

K i
̥
jgij = Ka

̥
bηab =  (.)

In order to solve this transport problem we construct a frame that is parallel-
propagated along an arbitrary null geodesic in Kerr geometry. We shall see
that, just as in Marck’s original construction [Mar], the Killing-Yano tensor
(e̊fKYE) will play a key role.
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We first recall that the two commuting Killing vectors admitted by the
Kerr metric can be recovered from the Killing-Yano tensor (.) using the
Hodge duality operator. Indeed, it follows from the defining equation (.)
for Killing-Yano tensors that the vector fields W and Z , defined by

W i =



∇jhji , Z i = −K i

jξ
j , (.)

where (hij ) denotes the Hodge dual of (fij ), are Killing vector fields. Explicitly,
with the Killing-Yano tensor (fij ) given by (.), the Hodge dual (hij ) is given
by

h = hijdx
i ∧ dxj = rωo ∧ ω + a cosϑω ∧ ω, (.)

and we have
W i = � i

t , Z i = �
i

ϕ . (.)

A parallel-propagated frame along the null geodesics of the Kerr metric is now
constucted as follows. We follow the construction of Kubiznak et al. [KFKC].
The relevant result is:

Lemma .. Let γ be an affinely parametrized null geodesic with tangent vector K .
Let X be a vector field that is both parallel propagated along γ

K i∇iX j = , (.)

and orthogonal to K ,
gijK

iX j = . (.)

Then, the vector field Y defined along γ by

Y i = X jh i
j + βXK

i , (.)

where
d

ds
βX = gklX

kW l , (.)

and d
ds denotes differentiation with respect to an affine parameter s along γ , and W

is as defined by (.), is parallel propagated along γ .

We now consider an affinely parametrized arbitrary null geodesic γ in the
Kerr metric and construct a parallel-propagated frame along γ by repeated
application of Lemma .. From now on, we will work exclusively in Carter’s
symmetric frame, defined as the orthonormal frame dual to the symmetric or-
thonormal coframe given by (.)-(.). Vector fields will thus be identified
with their components in the symmetric frame and will be represented as four-
component row vectors.

Given an affinely parametrized null geodesic γ , the tangent vector K = γ̇ is
given by

K =
√
Σ

(

P√
∆
,

√
R√
∆
,D,
√
Θ

)

. (.)
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Likewise, the Killing vector field W = �t is given by

W =
√
Σ

(
√
∆, , a sinϑ, ) . (.)

Since K is both parallel propagated along γ and null, we may apply Lemma
. to obtain a vector field Y that is parallel propagated along γ . We have

d

ds
βK = ηabK

aW b = E, (.)

so that βK = Es where s is the affine parameter of the null geodesic. We then
immediately obtain using (.) that the vector field Y defined in the symmetric
frame by

Y =
√
κΣ

(

EsP − r√R√
∆

,
Es
√
R − rP√
∆

, EsD + a cosϑ
√
Θ, Es

√
Θ − a cosϑD

)

,

(.)
is parallel-propagated along γ . We now apply Lemma . to the vector field
Y and obtain an additional vector field X that is parallel-propagated along γ .
We have

d

ds
βY = ηabY

aW b =
Es − r ṙ − a cos ϑ sin ϑϑ̇√

κ
, (.)

where the dot denotes differentiation with respect to the affine parameter s,
whence

βY =
Es − r + a cos ϑ


√
κ

. (.)

We conclude then that

X :=


κ
√
Σ

(

Pβ+ − rEs
√
R√

∆
,

√
Rβ+ − rEsP√

∆
,Dβ−+a cosϑEs

√
Θ,
√
Θβ−−a cosϑEsD

)

,

(.)
where

β± := Es ± Σ, (.)

is parallel propagated along γ .
Note that ηabX

aKb =  so that X and K are not orthogonal. We are thus
cannot apply Lemma . to construct a fourth vector field that is parallel-
propagated along γ . However, we can use the Killing-Yano tensor (fab) di-
rectly to obtain another vector that is parallel propagated along the affinely
parametrized null geodesic γ with tangent vector K . Indeed, it follows imme-
diately from the Killing-Yano equation (.) that the vector field Z defined
by

Za = f a
bK

b , (.)

is parallel-propagated along γ . We are of course free to scale Z by any constant,
and we will choose this constant to be equal √

κ
so as to simplify the orthog-

onality relations between the vector fields comprising the parallel-propagated
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frame. Applying (.) and scaling Z as above, we obtain

Z =
√
κΣ

(

a cosϑ
√
R√

∆
,
a cosϑP√

∆
, r
√
Θ,−rD

)

(.)

We thus have a frame K, X, Y , Z that is parallel propagated along the affinely
parametrized null geodesic γ with tangent vector K . The matrix of scalar prod-
ucts for the elements of this frame is given by






























−
−



























, (.)

The polarization vector ̥ is orthogonal to K . Since K is null and parallel prop-
agated along itself, F is only determined modulo K . That is, if ̥ satisfies (.)
and (.), then so does

̥
′ = ̥ + gK (.)

where g : M −→ R is a smooth function on the manifold.

Definition . (-Plane of Polarization along γ). We choose initial conditions
such that ̥ ∈ span{Y, Z} at the initial point. Then, ̥γ(s) ∈ span{Yγ(s), Zγ(s)} for
all s, since ̥ has constant components in {K, X, Y , Z}. This defines the -plane
of polarization Pγ(s) ⊂ K⊥ at each event γ(s) ∈ M .

Remark .. The freedom (.) always exists in fixing the -plane of polar-
ization. We use a geometric criterion in the form of the parallel propagated
frame obtained from the Killing-Yano tensor to fix the Pγ .

In order to simplify the computation we obtain an orthonormal frame that
is parallel propagated along the null geodesic (L(), L(), L(), L()) by a constant
coefficient transformation of {K, X, Y , Z} as follows.

L() :=
√

(K + X), L() :=

√

(K − X), L() := Y, L() := Z. (.)

We note here the explicit expressions for the elements of frame L(a) with re-
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spect to the symmetric frame.

L() =


κ
√
Σ

[

P(κ + β+) − Es
√
R√

∆
,

√
R(κ + β+) − EsP√

∆
,

D(κ + β−) + a cosϑEs
√
Θ,
√
Θ (κ + β−) − a cosϑEsD

]

L() =


κ
√
Σ

[

P(κ − β+) + Es
√
R√

∆
,

√
R(κ − β+) + EsP√

∆
,

D(κ − β−) − a cosϑEs
√
Θ,
√
Θ (κ − β−) + a cosϑEsD

]

L() =
√
κΣ

[

EsP − r√R√
∆

,
Es
√
R − rP√
∆

, EsD + a cosϑ
√
Θ, Es

√
Θ − a cosϑD

]

,

L() =
√
κΣ

[

a cosϑ
√
R√

∆
,
a cosϑP√

∆
, r
√
Θ,−rD

]

. (.)

 Defining and measuring Faraday rotation

In order to define the Faraday rotation we need to pin down the class of ob-
servers who are involved in the communication protocol and specify the frames
with respect to which they are measuring the polarization. We have already
seen that Carter’s symmetric frame frame is closely tied to intrinsic geomet-
ric properties. This makes it an ideal candidate for formulating the Faraday
rotation in a geometrically meaningful fashion.

In the definition of Carter’s null frame, which is dual to the co-frame de-
fined in (.)-(.), the arbitrary scaling of the vectors ℓ and n has been fixed
by the action of the involution. Thus one has a natural time-like vector field U
namely

U =
√

(ℓ + n) =

√
Σ∆

(

(r + a)
�

�t
+ a

�

�ϕ

)

, (.)

where ℓ and n are given by (.) and (.). This identifies a family of observers
whose -velocities are a symmetric linear combination of the principal null
directions ℓ and n. We call them Carter observers. We choose to work with
Carter observers because it follows from the discussion of Section  that they
are defined geometrically in terms of the principal null directions of the Weyl
tensor and the involution L. They exist everywhere outside the event horizon
including the region between the event horizon and the stationary limit surface
r = rs where the Killing vector field �t becomes null. Their coordinate angular
velocity is a/(r + a), which is exactly the coordinate angular velocity of the
event horizon with r = r+. Therefore, this class of observers is uniquely suited
to analyze the behaviour of test particles near the horizon.

Having chosen the observers, we need to specify the frames that they use.
A natural physically motivated choice would be to require that the observers’
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frames be Fermi-Walker transported along their worldlines. However, the op-
erative frame in the measurement protocol that we specify presently is not the
orthonormal frame of the observers. Rather, given the observers’ -velocity U ,
what matters in the calculation of Faraday rotation is the choice of basis vec-
tors that span the -plane of polarization in the spacelike three dimensional
vector space U⊥ ⊂ TxM . As will become transparent shortly, the choice of the
three spacelike vectors does not affect the measured rotation of the polarization
vector.

We choose the observers’ frames to be dual to the symmetric coframe de-
fined in equations (.)-(.). Since the symmetric frame is so well adapted
to the geometry of Kerr spacetime, this choice greatly simplifies the computa-
tion and allows us to obtain a compact, closed form expression for the geomet-
rically induced Faraday rotation of the polarization vector.

We decompose the tangent space TxM at any event x along the worldline
of the observer U into an orthogonal direct sum of spacelike and timelike vec-
tor spaces in accordance with the observer’s decomposition of spacetime by
projecting vectors onto the observer’s frame at event x. That is,

TxM = U ⊕ Σ, (.)

where U is the span of the Carter observer’s -velocity U , and Σ := U⊥. In
what follows we shall supress the label x for the event with the understanding
that this + decomposition is only valid at a given event. The observer’s frame
defines a projection map π : TxM −→ Σ,

π(X) :=
⇀
X :=



















X

X

X



















. (.)

Given the direction -vector of the photon π(K) =
⇀
K , consider the -plane

⇀
K
⊥

passing through the origin and orthogonal to it. Given a pair of orthonormal

basis vectors for this -plane, {
⇀
b ,

⇀
b }, we can write a general polarization

-vector as
⇀
̥ = c

⇀
b  + c

⇀
b . (.)

It is crucial this choice of basis vectors not be made arbitrarily. We choose basis
vectors on intrinsic geometric criteria, which are independent of coordinate
descriptions. First, we project the principal null direction ℓ onto Σ and obtain

the corresponding -vector π(ℓ) :=
⇀
ℓ using the prescription .. Then, we set

the basis vectors in the plane of polarization to be

⇀
b  :=

⇀
ℓ ×

⇀
K

‖
⇀
ℓ ×

⇀
K‖

, (.)

⇀
b  :=

⇀
K ×

⇀
b 

‖
⇀
K ×

⇀
b ‖

. (.)
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We are finally ready to spell out the communication protocol. Let Alice and
Bob be two Carter observers in the Kerr exterior. In order to communicate with
Bob, Alice sends a polarized photon along a null geodesic γ(s) that intersects
with Bob’s worldline. Alice polarizes the photon in the basis (.)-(.) at the

event xA, which we denote here by
⇀
̥ in. When Bob sees the photon he also

measures its polarization by projecting it onto the basis (.)-(.) at the event

xB to obtain
⇀
̥ out. Note that since these bases are defined intrinsically they can

agree in advance on the choice of these bases and set them up locally without
further communication once they have embarked on their orbits.

The geometrically induced Faraday rotation of the polarization vector of a
photon as it transverses the Kerr exterior from Alice and Bob is then given by
the angle χ such that

⇀
̥ out :=

[

cosχ − sin χ
sin χ cosχ

]

⇀
̥ in (.)

Remark .. Using the intrinsic geometry of Kerr to solve the problem of
choosing a set of basis vectors for the plane of polarization as specified in this
section simultaneously solves the problem of sharing frames and minimizes
the informational requirement on the observers. Note that such a strategy
is simply unavailable in Minkowski spacetime where no direction is similarly
privileged: there is too much symmetry. In our case, Kerr geometry exhibits
just enough symmetry to allow for the possibility of the present protocol with
its minimal communication requirements.

We are now in a position to prove the following proposition.

Proposition .. Consider observers confined to the equatorial plane. There is no
Faraday rotation for photons confined to the equatorial plane of Kerr geometry. It
follows that π(V ) = b

Proof. Consider the vector field V := −r �ϑ . This is unit norm vector field
which is orthogonal to the equatorial plane when restricted to it. We will by
an abuse of notation use V to denoted V |Eq. An easy calculation shows that

π(V ) =
⇀
b . Using the expressions for the Christoffel symbols given in the

appendix, we obtain
∇KV =  (.)

by (??) and (.), it follows that ̥aV bηab = , which together with π(V ) =
⇀
b 

implies
⇀
̥ ·

⇀
b  = constant (.)

Corollary .. There is no Faraday rotation in the Schwarzschild geometry.

Of course, in Minkowski space one can use alternative protocols.
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Proof. Since the Schwarzschild geometry is spherically symmetric, geodesics
are confined to planes through the origin [Cha]. Therefore, the exact same
argument as we used for the equatorial plane in Kerr can be used here. Any
plane through the original can be viewed as the equatorial plane of a degener-
ate Kerr solution with a = .

Proposition .. There is no Faraday rotation for orbits confined to the axis of
symmetry of Kerr geometry.

Proof. The unit vector
√
∆√
Σ
�r plays the same role as V in Proposition .. The

proof follows the same argument as Proposition . and is therefore omitted.

Remark .. We conjecture that the vaninishing of the Faraday rotation char-
acterizes all totally geodesic submanifolds of Kerr geometry.

Remark .. The validity of propositions (.) and (.) is independent of our
measurement protocol provided

 Exact, closed form expression for the Faraday ro-

tation in Kerr geometry

The direction -vector corresponding to the principal null direction ℓ in the
symmetric frame is given in Σ by

⇀
ℓ =











































, (.)

and direction -vector for an arbitrary photon in Σ is given by

⇀
K =



P



















√
R√
∆D√
∆Θ



















. (.)

Now, using .-., we obtain the following basis for the plane of polarization:

⇀
b  =

√
κ





















−√Θ
D



















, (.)

⇀
b  =

√
κP



















−κ√∆
D
√
R√

RΘ



















. (.)

We may choose the affine parameter s so that s =  at the event xA where the
null geodesic intersects Alice’s worldline and s =  at the event xB where the
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null geodesic intersects Bob’s worldline. The basis vectors Y and Z of the plane
of polarizationPγ in TM can now be projected onto the -plane of polarization
in Σ, in the basis (.)-(.):

⇀
y =

















π (Y ) ·
⇀
b 

π (Y ) ·
⇀
b 

















=
√
Σ

[

−a cosϑ
r

]

, (.)

⇀
z =

















π (Z) ·
⇀
b 

π (Z) ·
⇀
b 

















==
√
Σ

[

−r
−a cosϑ

]

. (.)

Note that terms with s do not survive. All the dynamic information is con-
tained in the behaivour of r and ϑ. Note that the polarization vector has con-
stant components in (.) and (.). At event xA = γ(s = ), let Alice choose

⇀
̥ in =

[

c
c

]

= c
⇀
b  + c

⇀
b . (.)

That is,

⇀
̥ in =

√
Σ

(

(rc − ca cosϑ)
⇀
y − (cr + ca cosϑ)

⇀
z
)

. (.)

The components of ̥, which stay constant with respect to the parallel propa-
gated frame L(a) given by (.), are therefore

̥
(a) = − √

Σ































ca cosϑ − cr
cr + ca cosϑ



























. (.)

At xB = γ(s = ), Bob measures
⇀
̥ in the basis {

⇀
b ,

⇀
b }, to obtain

⇀
̥ out which is

given by (we supress the subscript for s=):

⇀
̥out =

√
Σ

(

(rc − ca cosϑ)
⇀
y − (cr + ca cosϑ)

⇀
z
)

(.)

=
√
ΣΣ

[

c (rr + a cosϑ cos ϑ) − c (ra cosϑ − ra cosϑ)
c (ra cosϑ − ra cosϑ) + c (rr + a cos ϑ cosϑ)

]

=
√
ΣΣ

[

(rr + a cosϑ cos ϑ) − (ra cosϑ − ra cosϑ)
(ra cosϑ − ra cosϑ) (rr + a cos ϑ cos ϑ)

]

⇀
̥ in.

That is, the rotation matrix is given by

[

cosχ − sin χ
sin χ cosχ

]

=
√
ΣΣ

[

(rr + a cos ϑ cos ϑ) − (ra cosϑ − ra cosϑ)
(ra cosϑ − ra cosϑ) (rr + a cosϑ cos ϑ)

]

,

(.)
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which implies

tan χ(s) =
a (r(s) cosϑ − r cos ϑ(s))
r(s)r + a cos ϑ cosϑ(s)

. (.)

The radical simplicity of . stems from our geometricallymotivated choice
of observers, frames, polarization plane and measurement basis. Exploiting
the existence of the Killing-Yano tensor in Kerr geometry, we were able to ob-
tain a parallel propagated frame, thereby transforming the problem of parallel
transport of the polarization vector into one of raising and lowering frame in-
dices. The fact that the parallel-propagated frame provides two vector fields
that form a natural basis for the plane of polarization in TxM at each point
x ∈ γ(s) reduces the calculation of Faraday rotation to an elementary compu-
tation.

Choosing a specific class of observers in order to make it easy to compute
the result does not limit the applicability of the technique to just those ob-
servers. Recall that observers with -velocities different from U given by (.)
are related to U by a local Lorentz transformation as a consequence of the ex-
istence of normal coordinates in which all the Christoffel symbols vanish at a
given event. Since the components in the parallel propagated frame have to
stay constant, in order to determine the Faraday rotation measured by another
choice of observers, we must apply local Lorentz transformations only at the
two events xA and xB in order to relate the frames of the arbitrary observers to
the frames of the Carter observers going through the same spacetime events.
This is a local transformation, quite distinct from the geometric effect of the
Kerr black hole which is a global phenomenon. The analogous question in
Minkowski geometry is the study of Wigner rotation which has been exten-
sively analyzed in the massless case [AM, GBA, TU].

In each of the  tables in Appendix B, the first figure (a) shows the orbital
behaviour of the null geodesic with (r(s), ϕ(s)) as polar coordinates, the second
figure (b) depicts the same orbits in three dimensions with spherical coordi-
nates (r(s), ϑ(s), ϕ(s)), and the last figure (c) depicts the Faraday rotation as a
function of the affine parameter s.

Tables  and  show co-rotating orbits since Φ > , while Table  shows a
counter-rotating orbit (Φ < ). The apparent axial symmetry of the Faraday
rotation in Tables  and  is an artifact of our choice of initial data, and not
due to their co- and counter-rotating character. In the first two orbits χ̇() < ,
while for the third one χ̇() > . The sign of χ̇() is determined by the term on
the left hand side of equation . evaluated at s = .

The set of figures in Table  corresponds to an interesting null orbit. A
segment of this orbit lies inside the ergosphere (the dotted line in figure (a)),
which, somewhat surprisingly, does not seem to have a qualitative effect on the
Faraday rotation. Photons on this orbit circumnavigate the black hole before
escaping to infinity. That is, the acquired azimuthal angle ∆ϕ is greater than
π. This is possibly why χ has three critical points for this orbit, which is
what we have observed in the limited number of counter-rotating orbits we
have computed so far. However, this conjecture cannot be resolved without a
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classification of the critical points of χ, which are implicity given by

r√
R

+
cot ϑ√

Θ
=  (.)

where R andΘ are given by (.) and (.) respectively. This is a trancenden-
tal equation with two elliptic functions with different periods. We are unaware
of any methods to obtain explicit solutions.

Finally, we note that the measured Faraday rotation χ is invariant under
the involution L given by (.).

The investigations of the present paper suggest a number of avenues of fur-
ther investigation. First, and perhaps the most pressing, is to study quantum
evolution in Kerr geometry and understand how the density matrices describ-
ing states evolve as quantum systems are exchanged between observers. Here
one is interested in the evolution of wave packets, and not just in the purely
geometric problem of propagating polarization vectors along a null geodesic.
Recent progress in the Cauchy problem for the Dirac equation in Kerr geom-
etry [FKSY, FKSY, FKSY] make it possible to study this problem rig-
orously for Dirac particles. The analogous problem for vector particles would
require new advances in our understanding of the Maxwell equations in Kerr
geometry.

In quantum information theory a central concern is coping with noise. In
order to understand the effect of noise it would be interesting to investigate the
sensitivity of our results to perturbations of the initial data.

Finally, there are many more phenomena to investigate in quantum infor-
mation theory. In particular one is interested in seeing how the resources like
shared entanglement are affected by spacetime geometry. This has been ex-
plored in the various situations but not in the Kerr geometry [TU, AM,
AFSMT, GA, GBA].
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A Christoffel symbols

The Christoffel symbols are defined by

Γ i
jk =




g il(glj,k + glk,j − gjk,l ) (A.)
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In Boyer-Lindquist coordinates, the nonzero ones are:

Γ t
rt =M(r + a)(r − a cos ϑ)/Σ∆

Γ t
ϑt = − Mra cosϑ sin ϑ/Σ

Γ t
rϕ =aM sin ϑ(a cos ϑ − ra cos ϑ − ra − r)/Σ∆

Γ t
ϑϕ =Mra sin ϑ cos ϑ/Σ

Γ r
tt =M(r − a cos ϑ)∆/Σ

Γ r
ϕt = − aM sin ϑ(r − a cos ϑ)∆/Σ

Γ r
rr = (ra sin ϑ −M(r − a cos ϑ)) /Σ∆

Γ r
ϑr = − a cosϑ sin ϑ/Σ

Γ r
ϑϑ = − r∆/Σ

Γ r
ϕϕ =∆ sin ϑ (Ma sin ϑ(r − a cos ϑ) − rΣ) /Σ

Γϑ
tt = − Mra sin ϑ cos ϑ/Σ

Γϑ
ϕt =Mra sinϑ cos ϑ(r + a)/Σ

Γϑ
rr =a

 sin ϑ cosϑ/Σ∆

Γϑ
rϑ =r/Σ

Γϑ
ϑϑ = − a sin ϑ cos ϑ/Σ

Γϑ
ϕϕ = − cos ϑ sin ϑ(Σ∆ + Mr(r + a + r))/Σ

Γ
ϕ
rt =Ma(r − a cos ϑ)/Σ∆

Γ
ϕ
ϑt = − Mra cotϑ/Σ

Γ
ϕ
rϕ = ((r −M)Σ −M(r + a)(r − a cos ϑ)) /Σ∆

Γ
ϕ
ϑϕ =cot ϑ + Mra cos ϑ sin ϑ/Σ

B Plots
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Table : A co-rotating orbit with Φ = , κ =  and initial data r() = , ϑ() =
., and ϕ() = .

(a) The orbit in polar coordinates (x = r cosϕ, y = r sinϕ).

(b) The orbit in D spherical coordinates (x = r cosϕ sin ϑ, y = r sinϕ sin ϑ, z = r cosϑ).
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(c) The Faraday rotation angle as a function of the affine parameter s
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Table : A co-rotating orbit with Φ = ., κ = . and initial data r() =
, ϑ() = ., and ϕ() = .

(a) The orbit in polar coordinates (x = r cosϕ, y = r sinϕ).

(b) The orbit in D spherical coordinates (x = r cosϕ sin ϑ, y = r sinϕ sin ϑ, z = r cosϑ).
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(c) The Faraday rotation angle as a function of the affine parameter s
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Table : A counter-rotating orbit with Φ = −, κ =  and initial data r() =
, ϑ() = ., and ϕ() = .

(a) The orbit in polar coordinates (x = r cosϕ, y = r sinϕ).

(b) The orbit in D spherical coordinates (x = r cosϕ sin ϑ, y = r sinϕ sin ϑ, z = r cosϑ).
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(c) The Faraday rotation angle as a function of the affine parameter s
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