
Policy Gradient Methods in the Presence of Symmetries and
State Abstractions

Prakash Panangaden∗ prakash@cs.mcgill.ca
School of Computer Science, McGill University
and Mila – Quebec AI Institute
Montreal, QC, Canada

Sahand Rezaei-Shoshtari∗ srezaei@cim.mcgill.ca
School of Computer Science, McGill University
and Mila – Quebec AI Institute
Montreal, QC, Canada

Rosie Zhao∗ rosiezhao@g.harvard.edu
School of Engineering and Applied Sciences
Harvard University
Cambridge, MA, USA

David Meger dmeger@cim.mcgill.ca
School of Computer Science, McGill University
and Mila – Quebec AI Institute
Montreal, QC, Canada

Doina Precup dprecup@cs.mcgill.ca

School of Computer Science, McGill University

and Mila – Quebec AI Institute

and DeepMind

Montreal, QC, Canada

Abstract

Reinforcement learning (RL) on high-dimensional and complex problems relies on abstrac-
tion for improved efficiency and generalization. In this paper, we study abstraction in the
continuous-control setting, and extend the definition of Markov decision process (MDP)
homomorphisms to the setting of continuous state and action spaces. We derive a policy
gradient theorem on the abstract MDP for both stochastic and deterministic policies. Our
policy gradient results allow for leveraging approximate symmetries of the environment for
policy optimization. Based on these theorems, we propose a family of actor-critic algorithms
that are able to learn the policy and the MDP homomorphism map simultaneously, using
the lax bisimulation metric. Finally, we introduce a series of environments with continuous
symmetries to further demonstrate the ability of our algorithm for action abstraction in the
presence of such symmetries. We demonstrate the effectiveness of our method on our envi-
ronments, as well as on challenging visual control tasks from the DeepMind Control Suite.
Our method’s ability to utilize MDP homomorphisms for representation learning leads to
improved performance, and the visualizations of the latent space clearly demonstrate the
structure of the learned abstraction.

Keywords: reinforcement learning, policy optimization, abstraction, symmetry, repre-
sentation learning

∗. Equal contributions; alphabetically ordered.

©2023 Panangaden et al..

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

1. Introduction

Reinforcement learning on high-dimensional observations relies on representation learning
and abstraction for learning a simpler problem that can be solved efficiently (Li et al., 2006;
Abel et al., 2016). A major obstacle, however, is the coupling between states, actions,
and rewards, particularly in complex continuous control problems. Strategies have been
developed to find ways to reduce the state space by capturing behavioral equivalence between
individual states. One formalization of this for MDPs is bisimulation (Givan et al., 2003),
which was originally introduced for labelled transition systems in the early 1980’s (Milner,
1989b). Bisimulation defines an equivalence relation over the state space, which allows
one to quotient the state space by considering the equivalence classes under this relation.
Bisimulation and their associated bisimulation metrics (Ferns et al., 2004)— which are used
to approximate this equivalence relation — have previously been used for abstraction and
model minimization.

Alternatively, one could use the quotiented state space to define a new environment with
transition dynamics and rewards that preserve the structure of the original state space, and
define a function between the original and new MDP. Thus, closely related to bisimula-
tion are MDP homomorphisms (Ravindran, 2004; Ravindran and Barto, 2001, 2004), which
capture behavioral equivalence via maps between MDPs that have certain preservation prop-
erties. Similar to bisimulation, one can use MDP homomorphisms to exploit (approximate)
symmetries of an MDP for joint state-action abstraction.

MDP homomorphisms, developed in the context of discrete state and action spaces, are
structure-preserving maps between MDPs that preserve value functions. Typically, they
are used to map an MDP to an abstract MDP in a way such that no relevant information is
lost. Ravindran and Barto (2001) show that policies can be pulled back, or lifted, from the
abstract MDP to the original one while preserving optimality. Pulling back a policy in this
way is a tricky construction and explicitly uses the finiteness of the state and action spaces.
From the practical perspective, recent works have shown that using MDP homomorphisms
are effective in guiding the learning in discrete problems (van der Pol et al., 2020a,b; Biza
and Platt, 2019). Figure 1 shows schematics and key properties of MDP homomorphisms,
which we formally define in Section 3.

Our first contribution is that we extend MDP homomorphisms to the continuous setting.
This is crucial if we are to use these ideas for control of dynamical systems in physical spaces,
as in robotics. The mathematics involved is significantly deeper than in the finite case and in
some cases the finite case provides no guidance on how to proceed. We show that the value
functions and the optimal value function are preserved for both stochastic and deterministic
policies, as in the finite case. Lifting the policy from the abstract space to the original is
one crucial example where we have to do something completely different from Ravindran
and Barto (2001), where we appeal to using classical tools in functional analysis.

The next significant contribution is that we derive a version of the policy gradient theo-
rem (Sutton et al., 2000; Silver et al., 2014) that tightly integrates the MDP homomorphism
in the policy optimization process. In other words, one can use the policy gradient obtained
from the abstract MDP, referred to as the homomorphic policy gradient (HPG), to optimize
for the performance measure defined on the original MDP. We rigorously prove this result
for both deterministic and stochastic policies, and show that HPG can act as an additional

2

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

gradient estimator capable of utilizing approximate symmetries for improved sample effi-
ciency. As policy gradient methods remain a key family of RL algorithms, particularly for
continuous control problems (Kiran et al., 2021; Arulkumaran et al., 2017), our homomor-
phic policy gradient derivation can have significant outcome for policy gradient algorithms
in the presence of state abstraction.

Our third contribution is that we propose a deep actor-critic algorithm, referred to as
the deep homomorphic policy gradient (DHPG) algorithm based on our novel theoretical
results. DHPG is able to simultaneously optimize the policy, learn the homomorphism map,
and exploit the abstraction of MDP homomorphisms for policy optimization. We empiri-
cally show that state-action abstractions learned through MDP homomorphisms provide a
natural inductive bias for representation learning on challenging visual control problems,
resulting in performance and sample efficiency improvements over strong baselines.

Finally, we show how to collapse an MDP when there is a group of symmetries which
is also continuous. Thus, for example if a system is spherically symmetric the system is
invariant under the action of the rotation group SO(3) and this is certainly not a finite
group. Discrete symmetries can and do occur in continuous systems but in general one
will be dealing with continuous symmetries. Additionally, to demonstrate the ability of
DHPG in learning continuous symmetries, we have developed a series of environments with
continuous symmetries. In summary, our contributions can be listed as:

1. Defining continuous MDP homomorphisms on continuous state and action spaces, and
proving the existence of the lifted policy in the general case of stochastic policies.

2. Proving the value and optimal value equivalence of MDP homomorphisms for the
general case of stochastic policies.

3. Deriving the homomorphic policy gradient theorem for both stochastic and determin-
istic policies.

4. Developing a family of deep actor-critic algorithms that are able to learn the optimal
policy simultaneously with the MDP homomorphisms map. Our algorithm works for
both stochastic and deterministic policies through the use of a novel and computa-
tionally efficient policy lifting procedure.

Lifting

Actual MDP
Abstract MDP

(a) Components of an MDP homomorphism.

Equivariance of Transitions Invariance of Rewards

(b) Commutative diagrams for MDP homomorphisms.

Figure 1: Overview of an MDP homomorphism h = (f, gs). (a) Components of an MDP
homomorphism map, and the relation between the actual and abstract MDPs. (b) Com-
mutative diagrams for MDP homomorphisms demonstrating the equivariance of transitions
and the invariance of rewards. Diagram is adapted from Ravindran and Barto (2001).

3

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

5. Developing a series of novel RL environments with continuous symmetries that allow
for benchmarking the ability of agents in learning and leveraging continuous environ-
mental symmetries.

Notably, compared to the prior work of Rezaei-Shoshtari et al. (2022), our theoretical and
empirical contributions are not limited to deterministic policies and bijective action en-
coders. Instead, we prove the value equivalence property and the homomorphic policy
gradient theorem for the general case of stochastic policies and surjective action encoders,
and propose a computationally efficient way for lifting a general stochastic policy. Empir-
ically, we show that stochastic DHPG is superior to deterministic DHPG in environments
with continuous symmetries as it is capable of a more powerful action abstraction. Our code
for DHPG and the novel environments with continuous symmetries are publicly available1.

The paper is structured as follows: in Sections 2 and 3 we provide an overview of related
work and introduce relevant background, including finite MDP homomorphisms, bisimula-
tion, and policy gradient methods. In Section 4 we formally introduce continuous MDPs
and continuous MDP homomorphisms and prove key equivalence properties. In Section 5
we prove the stochastic and deterministic homomorphic policy gradient theorems and sub-
sequently introduce the DHPG algorithm in Section 6. Finally, we provide experimental
results of DHPG on continuous control tasks in Section 7.

2. Related Work

State Abstraction. Abstraction can be defined as a process that maps the original rep-
resentation to an abstract representation that is more compact and easier to work with (Li
et al., 2006). Probabilistic bisimulation, which we will refer to as just “bisimulation”(Larsen
and Skou, 1991b) is one notion of behavioral equivalence between systems. It was extended
to continuous state spaces by Blute et al. (1997b) and Desharnais et al. (2002) and ex-
tended to MDPs by Givan et al. (2003). Bisimulation metrics (Desharnais et al., 1999;
Ferns et al., 2005b, 2006, 2011) define a pseudometric to quantify the degree of behavioural
similarity. Recently, Zhang et al. (2020) defined a loss function for learning representations
via bisimilarity of latent states, and Kemertas and Aumentado-Armstrong (2021) have fur-
ther improved its robustness. Castro (2020) has proposed a method to approximate the
bisimulation metric for deterministic MDPs with continuous states but discrete actions.
van der Pol et al. (2020a) have defined a contrastive loss based on MDP homomorphisms
for learning an abstract MDP for planning, but their method is only applicable to finite
MDPs. Another approach is to directly embed the MDP homomorphic relation in the net-
work architecture (van der Pol et al., 2020b, 2021). Other recently proposed metrics (Le Lan
et al., 2021) seek to learn representations that preserve values (Grimm et al., 2020, 2021)
or policies (Agarwal et al., 2020), or via a sampling-based similarity metric (Castro et al.,
2021). Recently, Kemertas and Jepson (2022) have incorporated the bisimulation relation
within the approximate policy iteration. Finally, state abstractions can in principle help
improve transferring of policies (Abel et al., 2019; Castro and Precup, 2010; Soni and Singh,
2006; Sorg and Singh, 2009; Rajendran and Huber, 2009), or learning temporally extended
actions (Castro and Precup, 2011; Wolfe and Barto, 2006a,b; Sutton et al., 1999).

1. https://github.com/sahandrez/homomorphic policy gradient

4

https://github.com/sahandrez/homomorphic_policy_gradient

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

Action Abstraction. Action representations are often studied in the context of large
discrete action spaces (Sallans and Hinton, 2004) as a form of a look-up embedding that is
known a-priori (Dulac-Arnold et al., 2015), factored representations (Sharma et al., 2017),
or policy decomposition (Chandak et al., 2019). Action representations can also be learned
from expert demonstrations (Tennenholtz and Mannor, 2019). More related to our work is
dynamics-aware embeddings (Whitney et al., 2019) where a combined state-action embed-
ding for continuous control is learned. In contrast, we use the notion of homomorphisms
to learn the state-dependent action representations, while preserving values. Lastly, action
representations can be combined with temporal abstraction (Sutton et al., 1999) for discov-
ering temporally extended actions (Ravindran and Barto, 2003; Abel et al., 2020; Castro
and Precup, 2010, 2011).

State Representation Learning. Extant methods for learning the underlying state
space from raw observations often use latent models (Gelada et al., 2019; Hafner et al.,
2019a,b; Ha and Schmidhuber, 2018; Biza et al., 2021), auxiliary prediction tasks (Jader-
berg et al., 2016; Liu et al., 2019; Lyle et al., 2021), physics-inspired inductive biases (Jon-
schkowski and Brock, 2015; Cranmer et al., 2020; Greydanus et al., 2019), unsupervised
learning (Hjelm et al., 2018; Liu and Abbeel, 2021), or self-supervised learning (Anand
et al., 2019; Sinha et al., 2021; Hansen et al., 2020; Hansen and Wang, 2021; Fan et al.,
2021). From another point of view, representation learning can be effectively decoupled from
the RL problem (Eslami et al., 2018; Stooke et al., 2021). Symmetries of the environment
can also be used for representation learning (Mondal et al., 2022; Mahajan and Tulaband-
hula, 2017; Park et al., 2022; Wang et al., 2021; Higgins et al., 2018, 2021; Quessard et al.,
2020; Caselles-Dupré et al., 2019). In fact, MDP homomorphisms are specializations of such
approaches for RL. A key distinguishing factor of MDP homomorphisms is their ability to
take actions into account for representation learning in the same premises as Thomas et al.
(2017). Recently, simple image augmentation methods have shown significant improvements
in RL performance (Yarats et al., 2020; Lee et al., 2019). Since these approaches are in
general orthogonal to state abstractions, they can be combined together.

Equivariant Representation Learning. Using equivariance to leverage symmetries in
data has been a fruitful line of machine learning research, where enforcing equivariance
properties in the model architecture has led to state-of-the-art performance across several
data modalities and applications. These domains include segmentation and classification
tasks in computer vision (Cohen and Welling, 2016), medical imaging (Winkels and Cohen,
2019; Veeling et al., 2018), 3D model classification (Thomas et al., 2018; Chen et al., 2021),
quantum chemistry (Qiao et al., 2021; Satorras et al., 2021; Batzner et al., 2022), and protein
structure classification (Eismann et al., 2021; Ganea et al., 2021; Jumper et al., 2021).
Since the utility of translation equivariance was demonstrated for traditional CNNs (LeCun
et al., 1989, 1995), in recent years these convolutional layers have been generalized to be
equivariant to discrete groups— such as finite rotations, translations, and reflections (Cohen
and Welling, 2016)— and continuous groups— such as the rotation group SO(3) and the
Euclidean and special Euclidean groups E(3) and SE(3) (Cohen et al., 2018; Kondor et al.,
2018; Weiler et al., 2018; Cohen et al., 2019). The equivariance constraints imposed on
these architectures are very rigid, and previous work has shown that true equivariance is
difficult to achieve (Azulay and Weiss, 2018; Engstrom et al., 2017). Further, the groups

5

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

for these equivariant networks are typically fixed and known apriori; however, there has
been work which constructs the appropriate equivariant network for arbitrary matrix Lie
groups (Finzi et al., 2021) and presents algorithms to automatically discover symmetries
pertaining to Lie groups (Dehmamy et al., 2021).

3. Background

3.1 Markov Decision Processes

Reinforcement learning is based on an agent interacting with its environment and acquiring
rewards as it does so. It seeks to maximize the expected reward and learns to do this
through its interaction with the environment. Markov decision processes are the basic
model formalizing the interaction between an agent and its environment.

Definition 1 (MDP) A Markov decision process (MDP) is a tuple M = (S,A, τa,R, γ)
where S is a set of states, A is a set of actions, for each a ∈ A we have τa ∶ S → ∆(S)
where ∆(S) denotes the set of probability distributions over S, R ∶ S ×A→ R is the reward
function, and γ ∈ [0,1) is the discount factor.

Initially, we assume S and A to be finite; in Section 4, we will define MDPs on more general
state and action spaces. From a state s ∈ S, an agent acting according to policy π ∶ S →∆(A)
selects actions a ∼ π(⋅∣s) and transitions to s′ ∼ τa(⋅∣s), yielding reward r = R(s, a). The
objective is to maximize the expected return by learning an optimal policy:

π∗ = argmax
π

Eτ [
∞

∑
t=0

γtR(st, at)].

Here, note that we assume γ < 1 to ensure convergence of the return (although γ = 1 is
permitted for episodic tasks).

The value function V π(s) gives the expected return starting from state s and following
policy π. The action-value function Qπ(s, a) gives the expected return starting from state
s, taking action a and thereafter following π. The value function is the fixed point of the
Bellman operator T π ∶ RS×A → RS×A defined as:

T πV (s) ∶= E a∼π(⋅∣s)
s′∼τa(⋅∣s)

[r + γV (s′)].

Similarly the optimal value function V ∗ is the fixed point of the Bellman optimality operator
T ∗ ∶ RS×A → RS×A:

T ∗V (s) ∶=max
a
[Es′∼τa(⋅∣s)[r + γV (s

′)]] .

Analogous Bellman equations are defined for Qπ and Q∗ (Sutton and Barto, 2018).

3.2 Policy Gradient Theorems

Reinforcement learning algorithms can be broadly divided into value-based and policy gra-
dient (PG) methods. While value-based methods select actions via a greedy maximization

6

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

step based on the learned action-values, policy gradient methods directly optimize a pa-
rameterized policy πθ based on the gradient of the performance measure J(θ), defined as:

J(θ) = Eπ[V π(s)], (1)

where the expectation is taken with respect to the policy, transitions, and the initial state
distribution of the actual MDP. Unlike value-based methods, policy gradient algorithms
inherit the strong, albeit local, convergence guarantees of the gradient descent and are
naturally extendable to continuous actions. The fundamental theorem underlying policy
gradient methods is the policy gradient theorem (Sutton et al., 2000):

Theorem 2 (Sutton et al. (2000)) Let πθ ∶ S → ∆(A) be a stochastic policy defined on
M. Then the gradient of the performance measure J(θ) w.r.t. θ is:

∇θJ(πθ) = ∫
s∈S

ρπθ(s)∫
a∈A
∇θπθ(da∣s)Qπθ(s, a)ds,

where ρπθ(s) = limt→∞ γ
tP (st = s∣s0, a0∶t ∼ πθ) is the discounted stationary distribution of

states under πθ.

In Theorem 2, ρπθ(s) is assumed to exist and to be independent of the initial state distri-
bution (ergodicity assumption). The significance of the policy gradient theorem is that the
effect of policy changes on the state distribution does not appear in its expression, allow-
ing for a sample-based estimate of the gradient (Williams, 1992). The deterministic policy
gradient (DPG) is derived for deterministic policies by Silver et al. (2014) as:

Theorem 3 (Silver et al. (2014)) Let πθ ∶ S → A be a deterministic policy defined on
M. Then the gradient of the performance measure J(θ) w.r.t. θ is:

∇θJ(πθ) = ∫
s∈S

ρπθ(s)∇θπθ(s)∇aQπθ(s, a)∣a=πθ(s)ds,

where ρπθ(s) = limt→∞ γ
tP (st = s∣s0, a0∶t ∼ πθ) is the discounted stationary distribution of

states under πθ.

Since DPG does not need to integrate over the action space, it is often more sample-efficient
than the stochastic policy gradient (Silver et al., 2014). However, noise needs to be manually
injected during exploration as the deterministic policy does not have any inherent means of
exploration. Finally, it is worth noting that due to the differentiation of the value function
with respect to a, DPG is only applicable to continuous actions.

3.3 Bisimulation and Bisimulation Metrics

Bisimulation is a fundamental equivalence relation on the state space which captures the
idea of behavioural similarity. It was introduced in the late 1970’s and early 1980’s by
Milner (1980, 1989a) and Park (1981) in a non-probabilistic context and then extended to
probabilistic systems by Larsen and Skou (1991a). The extension to continuous state spaces
was done by Blute et al. (1997a) and Desharnais et al. (2002). These models did not involve
rewards but it is a minor modification to add rewards as was done by Givan et al. (2003).
The bisimulation relation on an MDP is formally defined as:

7

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

Definition 4 (Bisimulation) A bisimulation relation on an MDP M = (S,A, τa,R, γ)
is an equivalence relation B on S such that if sBt holds then for any action a and any
equivalence class of C of B we have:

• R(s, a) = R(t, a) and
• τa(C ∣s) = τa(C ∣t).

If there exists such a relation between two states s and t we say that s and t are bisimilar
and write s ∼ t.

It is possible to define bisimulation as the greatest fixed point of a suitable operator on the
complete lattice of equivalence relations on S (Milner, 1989b). Bisimulation is not robust
to small perturbations in the system parameters. In a quantitative setting like MDPs we
need to use metrics which give a quantitative notion to similarity.

In order to define a “metric” which can be viewed as a quantitative version of bisim-
ulation, it is natural to think of a pseudometric with the property that its kernel is the
bisimulation equivalence relation. This is defined through a fixed-point construction. We
equip M, the space of 1-bounded pseudometrics on S, with the following metric:

∆(m1,m2) ∶= sup
x,y∈S

∣m1(x, y) −m2(x, y)∣.

Here, m1,m2 are elements of M, i.e. 1-bounded pseudometrics. We then define an operator
called TK ∶M→M as follows:

TK(m)(x, y) =max
a∈A
[∣R(x, a) −R(y, a)∣ + γW1(m)(τa(x), τa(y))].

Here τa(x) represents the probability distribution over the state space when the system
executes an a-transition starting from x and similarly for τa(y). The metric W1 on prob-
ability distributions is the well-known Kantorovich metric2 which depends on m. One can
readily show that the space M equipped with ∆ is a complete metric space and that the
function or operator TK is contractive with respect to the metric ∆. Thus, by the Banach
fixed-point theorem, it has a unique fixed point. This is the bismulation metric3.

3.4 Finite MDP Homomorphisms

Closely related to the concept of behavioural equivalence of states in MDPs are model min-
imization methods, which identify reductions in the original MDP to obtain an equivalent,
smaller MDP. This gave rise to the notion of MDP homomorphism, originally proposed
by Ravindran and Barto (2001). We will present the definitions and various results about
MDP homomorphisms assuming the state and action spaces are finite.

Definition 5 (MDP Homomorphism) An MDP homomorphism h between MDPsM=
(S,A, τa,R, γ) andM=(S,A, τa,R, γ) is a tuple of surjective maps h=(f, gs) where f ∶S→S
and gs ∶A→A for each s ∈ S such that:

1. R(s, a) = R(f(s), gs(a)) for every s ∈ S, a ∈ A;

2. More often called the “Wasserstein” metric for reasons that have no historical validity.
3. In Ferns et al. (2005a) a different fixed-point theorem based on lattice theory was used.

8

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

2. For every s, s′ ∈ S and a ∈ A,

τ gs(a)(f(s
′)∣f(s)) = ∑

s′′∈[s′]Bh ∣S

τa(s′′∣s), (2)

where Bh is the partition of S ×A induced by the equivalence relation of h, Bh ∣ S is
the projection of Bh onto S, and [s′]Bh∣S

is the partition of Bh ∣ S containing s′.

In other words, the probability of transitioning between f(s) and f(s′) in the image MDP
M under action gs(a) equals the probability of transitioning from s to the subset [s′]Bh∣S

in the original MDPM under action a. Figure 1b shows the commutative diagram of MDP
homomorphisms. A key property of MDP homomorphisms is the optimal value equivalence,
showing the optimal value function is preserved under this mapping.

Theorem 6 (Ravindran and Barto (2001)) Let h be an MDP homomorphism from
M = (S,A, τa,R, γ) toM = (S,A, τa,R, γ). Then for any (s, a) ∈ S ×A, we have:

Q∗(s, a) = Q∗(f(s), gs(a)).

The optimal policies of an MDP and its image under an MDP homomorphism are also
closely related. Given a policy on the image MDP, we can define a new, lifted policy on the
original MDP that has the “equivalent behaviour”.

Definition 7 (Lifted Policy) Let h be an MDP homomorphism from M =(S,A, τa,R, γ)
to M= (S,A, τa,R, γ), and let π ∶ S → ∆(A) be a policy on M. Then π lifted to M is a
policy π↑ ∶ S →∆(A) such that for any (s, a) ∈ S ×A, we have:

π↑(a∣s) = π(gs(a)∣f(s))∣g−1s ({gs(a)})∣
.

Note that for these results to hold, it suffices for the lifted policy to satisfy:

∑
a∈g−1s ({gs(a)})

π↑(a∣s) = π(gs(a)∣f(s)) ∀ s ∈ S (3)

but in order to make the lifted policy unique, Ravindran and Barto (2001) choose to uni-
formly spread the probability of taking gs(a) from f(s) across all actions a′ satisfying
gs(a) = gs(a′). We have the following result that the lifted policy of the optimal policy of
M is an optimal policy forM:

Theorem 8 (Ravindran and Barto (2001)) Let h be an MDP homomorphism from
M = (S,A, τa,R, γ) to M = (S,A, τa,R, γ), and let π∗ ∶ S → ∆(A) be an optimal policy
onM. Then the lifted policy π∗ ∶ S →∆(A) is an optimal policy forM.

Furthermore, Rezaei-Shoshtari et al. (2022) show that given this definition of a lifted policy,
we have a value equivalence result, showing that all value functions—not just the optimal
one— are preserved under the MDP homomorphism mapping.

Theorem 9 (Rezaei-Shoshtari et al. (2022)) Let h be an MDP homomorphism from
M = (S,A, τa,R, γ) to M = (S,A, τa,R, γ). Then for any (s, a) ∈ S ×A, abstract policy
π ∶ S →∆(A), and its lifted policy π↑ ∶ S →∆(A), we have:

Qπ
↑(s, a) = Qπ(f(s), gs(a)).

9

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

4. Continuous MDP Homomorphisms

Our introduction of MDP homomorphisms in the previous section was strictly applicable
where the state and action spaces were finite. In this section, we will formalize MDP homo-
morphisms for general continuous domains. First, we define continuous MDPs and state our
underlying assumptions, which require care regarding measurability and differentiability of
spaces.

Definition 10 (Continuous MDP) A continuous Markov decision process (MDP) is a
6-tuple:

M = (S,Σ,A,∀a ∈ A τa ∶ S ×Σ→ [0,1],R ∶ S ×A→ R, γ)

where S, the state space is assumed to be an appropriate topological space, Σ is a σ-algebra
on S4, A, the space of actions, is a locally compact metric space, usually taken to be a
subset of Rn, τa is the transition probability kernel for each possible action a, for each fixed
s, τa(⋅∣s) is a probability distribution on Σ while R is the reward function, and γ is the
discount factor. Furthermore, for all s ∈ S and B ∈ Σ the map a↦ τa(B∣s) is smooth.

The last assumption is required for differentiability with respect to actions a, which is
needed in Section 5 for deriving the homomorphic policy gradient theorem.

Probability theory on continuous spaces works well when the underlying space is assumed
to be Polish (see Appendix B for definitions) but we do not need the properties of Polish
spaces for our results. The assumption on the action space is needed for the proof that
policies can be lifted; it is possible that this could be proved with different assumptions but
locally compact metric spaces are general enough to cover any example we have seen.

Next we will define continuous MDP homomorphisms and establish results for both
optimal value equivalence and value equivalence.

Definition 11 (Continuous MDP Homomorphism) A continuous MDP homomorphism
is a map h = (f, gs) ∶M →M where f ∶ S → S and for every s ∈ S, gs ∶ A → A are measur-
able, surjective maps such that the following hold:

Invariance of reward: R(f(s), gs(a)) = R(s, a) ∀s ∈ S, a ∈ A (4)

Equivariance of transitions: τ gs(a)(B∣f(s)) = τa(f
−1(B)∣s) ∀ s ∈ S, a ∈ A,B ∈ Σ (5)

Note that if gs is the identity map, the second condition reduces to τa(B∣f(s))=τa(f−1(B)∣s)
which is simply the condition for preservation of transition probabilities as used in bisimu-
lation (Desharnais et al., 2002).

The condition on the rewards translates directly from the finite case. The equivariance
of transitions is defined using the σ-algebra defined on the image MDP; it states that the
measure τ gs(a)(⋅∣f(s)) is the pushforward measure of τa(⋅∣s) under the state mapping f . In
the results to follow, we will see the reason we require this condition.

4. Usually the Borel algebra.

10

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

4.1 Optimal Value Equivalence

In this continuous setting, we will show that optimal value equivalence still holds. The proof
is similar to Theorem 6, however, we utilize the change of variables formula (see Theorem
25 in Appendix B) to change the domain of integration in the continuous Bellman equation
instead of re-indexing the summation.

Theorem 12 (Optimal Value Equivalence) LetM = (S,Σ,A, τa,R, γ) be the image of
a continuous MDP homomorphism h = (f, gs) from M = (S,Σ,A, τa,R, γ). Then for any
(s, a) ∈ S ×A we have:

Q∗(s, a) = Q∗(f(s), gs(a)),
where Q∗,Q

∗
are the optimal action-value functions forM andM, respectively.

Proof We will first prove the following claim:

Claim 13 For m ≥ 1, define the sequence Qm ∶ S ×A→ R as:

Qm(s, a) = R(s, a) + γ ∫
s′∈S

τa(ds′∣s) sup
a′∈A

Qm−1(s′, a′)

and Q0(s, a) = R(s, a). Define the sequence Qm ∶ S × A → R analogously. Then for any
(s, a) ∈ S ×A we claim:

Qm(s, a) = Qm(f(s), gs(a)).

We will prove this claim by induction on m. The base case m = 0 follows from the reward
invariance property of continuous MDP homomorphisms:

Q0(s, a) = R(s, a) = R(f(s), gs(a)) = Q0(f(s), gs(a)).

For the inductive case, note that:

Qm(s, a) = R(s, a) + γ ∫
s′∈S

τa(ds′∣s) sup
a′∈A

Qm−1(s′, a′) (6)

= R(f(s), gs(a)) + γ ∫
s′∈S

τa(ds′∣s) sup
a′∈A

Qm−1(f(s′), gs′(a′)) (7)

= R(f(s), gs(a)) + γ ∫
s′∈S

τa(ds′∣s) sup
a′∈A

Qm−1(f(s′), a′) (8)

= R(f(s), gs(a)) + γ ∫
s′∈S

τ gs(a)(ds
′∣f(s)) sup

a′∈A

Qm−1(s′, a′) (9)

= Qm−1(f(s), gs(a)), (10)

where Equation 7 follows from the inductive hypothesis, Equation 8 follows from gs being
surjective, and Equation 9 follows from the change of variables formula; indeed, from Defi-
nition 11 we have the pushforward measure of τa(⋅∣s) with respect to f equals τ gs(a)(⋅∣f(s))
and here we are integrating a function from S → R defined as s′ ↦ supa′∈AQm−1(s′, a′).
This concludes the induction proof. Since limm→∞Qm(s, a) = Q∗(s, a), it follows that
Q∗(s, a) = Q∗(f(s), gs(a)).

11

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

4.2 Lifting Policies and Value Equivalence

Recall that in the finite setting, we had an exact equation defining lifted policies via an MDP
homomorphism. In the continuous case, finding a lifted policy that exists in general and
that also gives a value equivalence result is not trivial. We will use the following condition
to define a lifted policy for continuous MDP homomorphisms.

Definition 14 (Policy Lifting) Let M = (S,Σ,A, τa,R, γ) be the image of a continuous
MDP homomorphism h = (f, gs) from M = (S,Σ,A, τa,R, γ). Then for any policy π ∶ S →
∆(A) defined onM, a policy π↑ ∶ S →∆(A) onM is a lifted policy of π if:

π↑(g−1s (β)∣s) = π(β∣f(s)) (11)

for every Borel set β ⊆ A and s ∈ S. In other words, π(f(s), ⋅) is the pushforward measure
of π↑(s, ⋅) for all s ∈ S with respect to gs.

Note that Definition 14 does not define a measure, since we need to specify a value assigned
to π↑(s,B) for all Borel sets B in A, not just those arising as inverse images g−1s (β).
However, naively defining:

π↑(B∣s) = π(gs(B)∣f(s))

poses immediate issues because gs does not map Borel sets to Borel sets and B ⊊ g−1s (gs(B))
in general. In other words, we could only use this definition if gs is bijective and maps
measurable sets to measurable sets. However, as shown in the next result, such a measure
satisfying the condition in Definition 14 indeed exists in general, assuming A and A are
locally compact metric spaces. The proof uses results in functional analysis, specifically the
Hahn-Banach and Riesz Representation theorem. Notably, the bijection assumption of gs is
one of the limitations of the prior work of Rezaei-Shoshtari et al. (2022), which is removed
in our paper.

Proposition 15 Let M = (S,Σ,A, τa,R, γ) be the image of a continuous MDP homo-
morphism h = (f, gs) from M = (S,Σ,A, τa,R, γ), where A and A are locally compact
metric spaces. Then for any policy π ∶ S → ∆(A) defined on M, there exists a lifted policy
π↑ ∶ S →∆(A) in the sense of Definition 14.

Proof Define the functional p ∶ C0(A)→ R as:

p(ψ) =max
a∈A

ψ(a).

Clearly p(φ + ψ) ≤ p(φ) + p(ψ) and p(αψ) = αp(ψ) for every ψ,φ ∈ C0(A) and 0 < α < ∞.
Indeed, p is a semi-norm. Note that since gs is surjective, we can define the subspace
U ∶= {η ○ gs ∶ η ∈ C0(A)} ⊆ C0(A). Let ρ be the linear functional on U defined as

ρ(η ○ gs) = ∫
a′∈A

η(a′)π(da′∣f(s)).

We have:
ρ(η ○ gs) ≤ π(f(s),A)max

a′∈A
η(a′) =max

a∈A
(η ○ gs)(a) = p(η ○ gs),

12

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

since π(⋅∣f(s)) is a probability measure and gs is surjective. By the Hahn-Banach theorem,
we can extend ρ to a linear functional ρ̂ on C0(A) where ρ̂(ψ) ≤ p(ψ) for every ψ ∈ C0(A).
It follows that if ψ ≤ 0 then ρ̂(ψ) ≤ 0, whence if ψ ≥ 0 then ρ̂(ψ) = −ρ̂(−ψ) ≥ 0. Since this
implies that ρ̂ is a positive linear functional and A is a locally compact metric space, by
the Riesz Representation theorem there is a unique Radon measure µ on A such that:

ρ̂(ψ) = ∫
a∈A

ψ(a)dµ(a).

It follows that for every η ∈ C0(A):

∫
a∈A

η(a′)π(da′∣f(s)) = ρ(η ○ gs) = ∫
a∈A
(η ○ gs)(a)dµ(a) = ∫

a′∈A
η(a′)dgs∗µ(da′),

where the first equality is by definition of ρ, the second equality follows from µ extending
ρ, and the last equality following by the change of variables formula. Thus π(⋅∣f(s)) is the
pushforward measure of µ with respect to gs. Setting π

↑(⋅∣s) = µ gives the result.

Recall that finding a lifted policy reduces to the following question: given a surjective
measurable function gs ∶ A → Ā and a probability measure π̄ on Ā, does there exist a
measure π↑ on A such that the resulting pushforward measure gs∗π

↑ = π̄? This is a result
that holds more generally for analytic subsets of Polish spaces, the original result proven in
Varadarajan (1963) (see Lemma 2.2).

Now that we have proven a lifted policy exists for continuous setting, we proceed to prove
a value equivalence result for continuous MDP homomorphisms. The proof is very similar
to optimal value equivalence, and in fact only requires one more application of change of
variables with respect to the lifted policy.

Theorem 16 (Value Equivalence) LetM = (S,Σ,A, τa,R, γ) be the image of a contin-
uous MDP homomorphism h = (f, gs) from M = (S,Σ,A, τa,R, γ), and let π↑ be a lifted
policy corresponding to π. Then for any (s, a) ∈ S ×A we have:

Qπ
↑(s, a) = Qπ(f(s), gs(a)),

where Qπ
↑(s, a) and Q

π(f(s), gs(a)) are the action-value functions for policies π↑ and π
respectively.

Proof Similarly as in Theorem 12, we define the sequence Qπ
↑

m ∶ S ×A→ R as:

Qπ
↑

m (s, a) = R(s, a) + γ ∫
s′∈S

τa(ds′∣s)∫
a′∈A

π↑(da′∣s′)Qπ↑m−1(s′, a′)

for m ≥ 1 and Qπ
↑

0 (s, a) = 0. Analogously define Q
π
m−1 ∶ S ×A → R. For the inductive case,

we can perform change of variables twice to change the domain of integration from S to S

13

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

and A to A respectively:

Qπ
↑

m (s, a) = R(s, a) + γ ∫
s′∈S

τa(ds′∣s)∫
a′∈A

π↑(da′∣s′)Qπ↑m−1(s′, a′) (12)

= R(f(s), gs(a)) + γ ∫
s′∈S

τa(ds′∣s)∫
a′∈A

π↑(da′∣s′)Qπm−1(f(s′), gs(a′)) (13)

= R(f(s), gs(a)) + γ ∫
s′∈S

τa(ds′∣s)∫
a∈A

π(da∣f(s′))Qπm−1(f(s′), a) (14)

= R(f(s), gs(a)) + γ ∫
s∈S

τ gs(a)(ds∣f(s))∫
a∈A

π(da∣s)Qπm−1(s, a) (15)

= Qπm−1(f(s), gs(a)). (16)

In a similar manner to Theorem 12, we conclude that Qπ
↑(s, a) = Qπ(f(s), gs(a)).

Theorem 16 posits that the value function of any policy on the reduced MDP equals the
value function of its corresponding lifted policy on the original MDP. Since this holds true
for any optimal policy, it follows from Theorem 12 that a lifted optimal policy is optimal
for the original MDP. Thus, we have recovered all desirable properties for continuous MDP
homomorphisms from the finite case.

5. Homomorphic Policy Gradient

In order to directly integrate the notion of MDP homomorphisms into policy gradients and
incorporate their state-action abstraction as an inductive bias for policy optimization, we
derive the homomorphic policy gradient (HPG) theorem. Notably, our results are derived
for continuous states and actions and hold for both stochastic and deterministic policies;
this is in contrast to the prior work of Rezaei-Shoshtari et al. (2022) in which the derivation
of the homomorphic policy gradient theorem is limited to deterministic policies.

In this section, we assume the policy is parameterized by differentiable functions (e.g.,
neural networks) and the MDP homomorphic image can be obtained through a parameter-
ized homomorphism map. Importantly, learning such parameterized MDP homomorphism
map is detailed in Section 6. Finally, following the prior works on policy gradient methods
(Sutton et al., 2000; Silver et al., 2014), we define the performance measure on the actual
MDP as described in equation (1) .

Since the derivation of the policy gradient theorem for stochastic and deterministic
policies are substantially different and require distinct steps and assumptions, in the re-
mainder of this section, we derive the homomorphic policy gradient theorem for stochastic
and deterministic policies independently from one another.

5.1 Stochastic HPG Theorem

The stochastic HPG theorem can be derived with the underlying assumptions of continuous
MDP homomorphisms, as in Definition 11, and the regularity conditions described in Ap-
pendix A. Notably, the only requirement on the MDP homomorphism map is that f ∶ S → S
and gs ∶ A → A are measurable, surjective maps adhering to the invariance of reward and
equivariance of transitions in Definition 11. This is in contrast to the deterministic HPG
theorem which poses further restrictions on gs.

14

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

Theorem 17 (Stochastic Homomorphic Policy Gradient) LetM = (S,Σ,A, τ ,R, γ)
be the image of a continuous MDP homomorphism h = (f, gs) from M = (S,Σ,A, τ,R, γ),
and let πθ ∶ S → ∆(A) be a stochastic policy defined on M. Then the gradient of the
performance measure J(θ) w.r.t. θ is:

∇θJ(θ) = ∫
s∈S

ρπθ(s)∫
a∈A

Q
πθ(s, a)∇θπθ(da∣s)ds,

where ρπθ(s) is the discounted state distribution ofM following the stochastic policy πθ(a∣s).
Proof The proof follows along the same lines of the stochastic policy gradient theorem

(Sutton et al., 2000). First, we derive a recursive expression for ∇θV π↑
θ(s) as:

∇θV π↑
θ(s) = ∇θ ∫

a∈A
π↑θ(da∣s)Q

π↑
θ(s, a)

= ∫
a∈A
[∇θπ↑θ(da∣s)Q

π↑
θ(s, a) + π↑θ(da∣s)∇θQ

π↑
θ(s, a)]

= ∫
a∈A
[∇θπ↑θ(da∣s)Q

π↑
θ(s, a) + π↑θ(da∣s)∇θ(R(s, a) + γ ∫

s′∈S
τa(ds′∣s)V π↑

θ(s′))]

= ∫
a∈A
∇θπ↑θ(da∣s)Q

π↑
θ(s, a) + γ ∫

a∈A
π↑θ(da∣s)∫

s′∈S
τa(ds′∣s)∇θV π↑

θ(s′)

= ∫
a∈A
∇θπ↑θ(da∣s)Q

πθ(f(s), gs(a)) + γ ∫
a∈A

π↑θ(da∣s)∫
s′∈S

τa(ds′∣s)∇θV πθ(f(s′))
(17)

= ∫
a∈A
∇θπ↑θ(da∣s)Q

πθ(f(s), gs(a)) + γ ∫
a∈A

π↑θ(da∣s)∫
s∈S

τ gs(a)(ds∣f(s))∇θV
πθ(s)
(18)

= ∫
a∈A
∇θπθ(da∣f(s))Q

πθ(f(s), a) + γ ∫
a∈A

πθ(da∣f(s))∫
s∈S

τa(ds∣f(s))∇θV πθ(s).

Here we apply value equivalence in equation (17), a change of variables from S to S over
τa(⋅∣s) and τ gs(a)(⋅∣f(s)) respectively in equation (18), and a change of variables from A to

A over the lifted policy and the policy over the abstract MDP respectively. Note that here,
some care may be necessary to rigorously verify the interchanging of the gradient over θ
and the integral over A; however, this is a necessary condition to prove any type of policy
gradient result on continuous domains, not specifically to the stochastic HPG theorem.

As in the proof of the stochastic policy gradient theorem, we can continue to roll out
the definition of ∇θV πθ(s) in the space of the abstract MDP M. Denoting πk(⋅∣f(s)) to be
the probability distribution over S taking k steps following π from state f(s), we have:

∇θV π↑
θ(s) =

∞

∑
k=0

γk ∫
s∈S

πkθ(ds∣f(s))∫
a∈A
∇θπθ(da∣f(s))Q

πθ(f(s), a).

Finally, we conclude that:

∇θJ(θ) = ∇θV π↑
θ(s)

= ∫
s∈S

∞

∑
k=0

γkπkθ(ds∣f(s))∫
a∈A
∇θπθ(da∣f(s))Q

πθ(f(s), a)

= ∫
s∈S

ρπθ(ds)∫
a∈A

Q
πθ(s, a)∇θπθ(da∣s),

15

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

as desired, where ρπ̄θ(s̄) is the discounted stationary distribution induced by the policy π̄θ.

5.2 Deterministic HPG Theorem

In contrast to stochastic HPG where the homomorphism map can be any measurable sur-
jective map, the deterministic case requires the action encoder gs ∶ A → A to be a local
diffeomorphism (see Appendix B for definitions). The important implication of this re-
quirement is that the action encoder gs needs to be locally bijective, hence the abstract
action space must have the same dimensionality as the actual action space. First, we show
the equivalence of policy gradients:

Theorem 18 (Equivalence of Deterministic Policy Gradients) Let
M = (S,Σ,A, τ ,R, γ) be the image of a continuous MDP homomorphism h = (f, gs) from
M = (S,Σ,A, τ,R, γ), and let π↑θ ∶ S → A be the lifted deterministic policy corresponding to

the abstract deterministic policy πθ ∶ S → A. Then for any (s, a) ∈ S ×A we have:

∇aQπ
↑

θ(s, a)∣
a=π↑

θ
(s)
∇θπ↑θ(s) = ∇aQ

πθ(s, a)∣
a=πθ(s)

∇θπθ(s).

Proof Assuming the conditions described in Appendix A, we first take the derivative of
the deterministic policy lifting relation w.r.t. the policy parameters θ using the chain rule:

(gs ○ π↑θ)(s) = (πθ ○ f)(s)
d(gs ○ π↑θ)θ(s) = d(πθ ○ f)θ(s)

d(gs)π↑
θ
(s) ○ d(π

↑

θ)θ(s) = d(πθ ○ f)θ(s)

∇ags(a)∣a=π↑
θ
(s)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¶
P

∇θπ↑θ(s) = ∇θπθ(f(s)), (19)

where ○ is the composition operator and the dimensions of the matrices are P ∈ R∣A∣×∣A∣,
∇θπ↑θ(s) ∈ R∣A∣×∣θ∣, and ∇θπθ(s) ∈ R∣A∣×∣θ∣. Second, we take the derivative of the value
equivalence theorem w.r.t. the actions a using the chain rule:

Qπ
↑

θ(s, a) = Qπθ(f(s), gs(a))

dQπ
↑

θ(s, a)a = dQ
πθ(f(s), gs(a))a

∇aQπ
↑

θ(s, a)∣
a=π↑

θ
(s)
= ∇aQ

πθ(f(s), a)∣
a=πθ(f(s))

∇ags(a)∣
a=g−1s (πθ(f(s)))

´¹¹¸¹¹¹¶
P

, (20)

where the dimensions of the matrices are ∇aQπ
↑

θ(s, a) ∈ R∣A∣, ∇aQ
πθ(s, a) ∈ R∣A∣, and simi-

larly as before P ∈ R∣A∣×∣A∣. As we assumed the gs to be a local diffeomorphism, the inverse
function theorem states that the matrix P is invertible, thus we right-multiply both sides
of equation (20) by P −1 and left-multiply the resulting equation by equation (19) to obtain

16

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

the desired result:

∇aQπ
↑

θ(s, a)∣
a=π↑

θ
(s)
P −1P∇θπ↑θ(s) = ∇aQ

πθ(f(s), a)∣
a=π(f(s))

∇θπθ(f(s))

∇aQπ
↑

θ(s, a)∣
a=π↑

θ
(s)
∇θπ↑θ(s) = ∇aQ

πθ(f(s), a)∣
a=πθ(f(s))

∇θπθ(f(s)).

Theorem 18 highlights that the gradient of the abstract MDP is equivalent to that of
the original, despite the underlying spaces being abstracted. This implies that performing
HPG on the abstract MDP is equivalent to performing DPG on the actual MDP, allowing
us to use them synergistically to update the same parameters θ, as shown in Figure 2.

While one can naively use Theorem 18 to substitute gradients of the standard DPG, the-
oretically this does not produce any useful results as the expectation remains estimated with
respect to the stationary state distribution of the actual MDP M under π↑θ(s). However,
using properties of continuous MDP homomorphisms, we can change the integration space
from S to S, and consequently estimate the policy gradient with respect to the stationary
distribution of the abstract MDPM under πθ(s):

Theorem 19 (Deterministic Homomorphic Policy Gradient) Let
M = (S,Σ,A, τ ,R, γ) be the image of a continuous MDP homomorphism h = (f, gs) from
M = (S,Σ,A, τ,R, γ), and let πθ ∶ S → A be a deterministic abstract policy defined on M.
Then the gradient of the performance measure J(θ), defined on the actual MDPM, w.r.t.
θ is:

∇θJ(θ) = ∫
s∈S

ρπθ(s)∇aQ
πθ(s, a)∣

a=πθ(s)
∇θπθ(s)ds,

where ρπθ(s) is the discounted state distribution of M following the deterministic policy
πθ(s).

Proof The proof follows along the same lines of the deterministic policy gradient theorem
(Silver et al., 2014), but with additional steps for changing the integration space from S to

S. First, we derive a recursive expression for ∇θV π↑
θ(s) as:

∇θV π↑
θ(s) = ∇θQπ

↑

θ(s, π↑θ(s))

= ∇θ[R(s, π↑θ(s)) + γ ∫
s′∈S

τπ↑
θ
(s)(ds

′∣s)V π↑
θ(s′)]

= ∇θπ↑θ(s)∇aR(s, a)∣a=π↑
θ
(s)

+ γ ∫
s′∈S
[τπ↑

θ
(s)(ds

′∣s)∇θV π↑
θ(s′) +∇θπ↑θ(s)∇aτa(ds

′∣s)∣
a=π↑

θ
(s)
V π↑

θ(s′)] (21)

= ∇θπ↑θ(s)∇a[R(s, a)+γ∫
s′∈S

τa(ds′∣s)V π↑
θ(s′)]∣

a=π↑
θ
(s)
+γ∫

s′∈S
τπ↑

θ
(s)(ds

′∣s)∇θV π↑
θ(s′)

= ∇θπ↑θ(s)∇aQ
π↑
θ(s, a)∣

a=π↑
θ
(s)
+ γ ∫

s′∈S
τπ↑

θ
(s)(ds

′∣s)∇θV πθ(f(s′)) (22)

= ∇θπ↑θ(s)∇aQ
π↑
θ(s, a)∣

a=π↑
θ
(s)
+ γ ∫

s′∈S
τ gs(π↑θ(s))

(ds′∣f(s))∇θV πθ(f(s′)) (23)

17

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

= ∇θπθ(f(s))∇aQ
πθ(f(s), a)∣

a=πθ(f(s))
+ γ ∫

s′∈S
τπθ(s)(ds

′∣s)∇θV πθ(s′) (24)

= ∇θπθ(f(s))∇aQ
πθ(f(s), a)∣

a=πθ(f(s))
+ γ ∫

s′∈S
p(s→ s′,1, πθ)∇θV πθ(s′)ds′.

Where p(s → s′, t, πθ) is the probability of going from s to s′ under the policy πθ(s) in t
time steps. In equation (21) we were able to apply the Leibniz integral rule to exchange the
order of derivative and integration because of the regularity conditions on the continuity
of the functions. In equation (22) we used the value equivalence property, and in equation
(23) we used the change of variables formula based on the pushforward measure of τa(⋅∣s)
with respect to f . Finally, in equation (24) we used the equivalence of policy gradients from
Theorem 18. By recursively rolling out the formula above, we obtain:

∇θV π↑
θ(s) = ∇θπθ(f(s))∇aQ

πθ(f(s), a)∣
a=πθ(f(s))

+ γ ∫
s′∈S

p(s→ s′,1, πθ)∇θπθ(f(s′))∇aQ
πθ(f(s′), a)∣

a=πθ(f(s′))
ds′

+ γ2∫
s′∈S

p(s→ s′,1, πθ)∫
s′′∈S

p(s′ → s′′,1, πθ)∇θV π↑
θ(f(s′′))ds′′ds′

= ∇θπθ(f(s))∇aQ
πθ(f(s), a)∣

a=πθ(f(s))

+ γ ∫
s′∈S

p(s→ s′,1, πθ)∇θπθ(f(s′))∇aQ
πθ(f(s′), a)∣

a=πθ(f(s′))
ds′

+ γ2∫
s′′∈S

p(s→ s′′,2, πθ)∇θV πθ(f(s′′))ds′′ (25)

⋮

= ∫
s′∈S

∞

∑
t=0

γtp(s→ s′, t, πθ)∇θπθ(f(s))∇aQ
πθ(f(s), a)∣

a=πθ(f(s))
ds′. (26)

Where in equation (25) we exchanged the order of integration using the Fubini’s theorem
that requires the boundedness of ∥∇θV πθ(s)∥ as described in the regularity conditions.

Finally, we take the expectation of ∇θV π↑
θ(s) over the initial state distribution:

∇θJ(θ) = ∇θ ∫
s∈S

p1(s)V π↑
θ(s)ds

= ∫
s∈S

p1(s)∇θV π↑
θ(s)ds

= ∫
s∈S

p1(s)∫
s′∈S

∞

∑
t=0

γtp(s→ s′, t, πθ)∇θπθ(f(s))∇aQ
πθ(f(s), a)∣

a=πθ(f(s))
ds′ds

= ∫
s∈S

p1(s)∫
s′∈S

∞

∑
t=0

γtp(s→ s′, t, πθ)∇θπθ(f(s))∇aQ
πθ(f(s), a)∣

a=πθ(f(s))
ds′ds

(27)

= ∫
s∈S

ρπθ(s)∇θπθ(s)∇aQ
πθ(s, a)∣

a=πθ(s)
ds. (28)

Where ρπθ(s) is the discounted stationary distribution induced by the policy πθ. In equa-
tion (27) we used the change of variable formula. Similar to the steps before, we have used

18

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

the Leibniz integral rule to exchange the order of integration and derivative, used Fubini’s
theorem to exchange the order of integration.

5.3 Comparing the Stochastic and Deterministic HPG Theorems

The significance of the homomorphic policy gradients (Theorems 17 and 19), which form
the basis of our proposed homomorphic actor-critic algorithms, is twofold. First, we can
get another estimate for the policy gradient based on the approximate MDP homomorphic
image in addition to the standard policy gradient estimator. Although the two policy gra-
dient estimates are not statistically independent from one another as they are tied through
the homomorphism map, HPG will potentially have less variance at the expense of some
bias due to the approximation of the MDP homomorphism.

Second, since the minimal image of an MDP is the MDP homomorphic image (Ravindran

and Barto, 2001), the abstract critic Q
πθ

is trained on a simplified problem. In other

words, each abstract state-action pair (s, a) used to train Q
πθ

represents all (s, a) pairs that
are equivalent under the MDP homomorphism relation, thus improving sample efficiency.
However, the amount of complexity reduction is dependent on the approximate symmetries
of the environment, as also supported by our empirical results.

Figure 2 shows the schematics of the homomorphic policy gradient theorem and its
tangential use alongside the standard PG theorem. To conclude this section, we provide a
conceptual comparison between the stochastic and deterministic HPG variants, following
up with an empirical comparison in Section 7.

Dimensionality Reduction in the Action Space. A key aspect of MDP homomor-
phisms is the notion of “collapse”: the state map f and state-dependent action maps gs
are specifically surjective. For instance, continuous symmetries of a physical system with
respect to an action corresponds to an invariance of a quantity, and effectively allows for
reduction in the dimensionality of the action space (Noether, 1971; Bluman and Kumei,
2013). In the context of RL agents, the ability to identify and leverage continuous symme-
tries of the environment results in the dimensionality reduction of the action space which
in turn significantly simplifies the learning problem. However, such action reductions do
not meet the conditions of the deterministic HPG theorem, as it requires the action map gs
to be a local diffeomorphism. Thus, the underlying assumptions do not account for strict
collapses. In contrast, the stochastic HPG does not impose any additional structure on gs,
which consequently allows for effective dimensionality reduction of the action space, without
risking the optimality of the policy.

Maximum Entropy RL. Having the result for stochastic policies give theoretical guar-
antees when integrating MDP homomorphisms in a wider variety of algorithms. For in-
stance, the maximum entropy RL framework generalizes the expected return formulation
to encompass the entropy of the policy, resulting in improvements in robustness and explo-
ration (Ziebart et al., 2008; Ziebart, 2010; Haarnoja et al., 2018). Of course, such methods
are only applicable to stochastic policies. Thus, in contrast to the deterministic HPG,
stochastic HPG is capable of benefiting from the addition of the policy’s entropy. Im-
portantly, the entropy of the pushforward measure is at most the entropy of the original

19

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

Policy Lifting

Value Equivalent

H
om

om
or

ph
ic

 P
ol

ic
y

G
ra

di
en

t

 P
ol

ic
y

G
ra

di
en

t

Actual Policy Abstract Policy

Figure 2: Schematics of HPG. The actual MDPM is used to train Qπ
↑

and update π↑ with

the standard PG theorem, while the abstract MDP M is used to train Q
π
and update π

with the homomorphic PG theorem. M is the MDP homomorphic image of M obtained
by learning the homomorphism map h=(f, gs). The policies π↑ and π are coupled together
through the lifting procedure.

measure (this is a consequence of the conditional Jensen’s inequality— see Smorodinsky
(2006)); hence seeking maximal entropy policies in the abstract MDP correspond to high-
entropy policies in the original space as well.

Sample Efficiency. The sample efficiency of deterministic and stochastic PG methods
varies significantly depending on the choice of the algorithm, network architecture, explo-
ration strategy, and implementation (Henderson et al., 2018); nevertheless, it is generally
observed that deterministic PG methods are more sample efficient (Lillicrap et al., 2015;
Fujimoto et al., 2018; Barth-Maron et al., 2018). One hypothesis is that since determinis-
tic PG integrates only over the state space, in contrast to stochastic PG which integrates
over both state and action spaces, the policy gradient estimation is more sample efficient,
particularly in high-dimensional action spaces (Silver et al., 2014). The same reasoning is
applicable to HPG variants. We have carried out a thorough empirical study on a variety
of environments in Section 7 to further study the characteristics of the two HPG variants.

6. Homomorphic Actor-Critic Algorithms

In this section, we outline a practical deep reinforcement learning algorithm based on the
stochastic and deterministic HPG theorems, referred to as the Deep Homomorphic Policy
Gradient (DHPG) algorithms. While the overall structure of the algorithm and learning
the MDP homomorphisms map are similar in both cases of stochastic and deterministic
policies, the policy lifting procedure requires additional intricate steps in the stochastic
case. Algorithm 1 describes the pseudo-code of DHPG algorithms.

Denoting pixel observations as ot, the underlying states as st, and the abstract states
as st, the main components of the DHPG algorithm are: the MDP homomorphism map
hϕ,η =(fϕ(st), gη(st, at)), pixel encoder Eµ(ot), actual critic Qψ(st, at) and policy π↑θ(at∣st),
abstract critic Qψ(st, at) and policy πθ(at∣st), reward predictor Rρ(st), and probabilistic

transition dynamics τν(st+1∣st, at) which outputs a Gaussian distribution. Finally, we lever-

20

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

age target critic networks Qψ′ and Qψ′ for a more stable training and use a vanilla replay

buffer (Mnih et al., 2013; Lillicrap et al., 2015).

Policy Lifting Procedure. In general, the lifted policy needs to satisfy the relation
π↑(g−1s (β)∣s) = π(β∣f(s)) for every Borel set β ⊆ A and s ∈ S. As discussed in Section
4.2, Proposition 15 proves the existence of the lifted policy π↑ from an abstract policy π,
however, it does not provide an explicit method for construction of the lifted policy.

If the abstract policy is deterministic, the lifted policy can be simply obtained by choos-
ing one representative for the preimage g−1s (π(f(s))). If we select gs to be a bijection, as was
assumed in Section 5.2, the lifted policy can be uniquely defined as π↑(s) = g−1s (π(f(s))).
This allows for parameterizing the two policies using the same network. In practice, we
parameterize the actual policy π↑θ and obtain the abstract policy as πθ(f(s))=gs(π↑θ(s)).

The solution is not as straightforward for stochastic abstract policies; while Bayesian
approaches for constructing solutions to stochastic inverse problems exist (Butler et al.,
2018), we choose a sampling-based method to derive a loss function as an approximation
of the policy lifting procedure (Kaipio and Somersalo, 2006). Using the change of variable
formula of the pushforward measure, we can show that the conditional expectations of
abstract actions under the two policies are equal:

Eπ↑[gs(a)∣s] = ∫
a∈A

gs(a)π↑(da∣s) = ∫
a∈A

a π(da∣s) = Eπ[a∣f(s)].

A similar result holds for all finite moments; in particular, the conditional variance of
abstract actions under the two policies are equal— that is:

Varπ↑[gs(a)∣s] = Varπ[a∣f(s)].

Therefore, we can derive a policy lifting loss as a measure of the consistency of the two
policies with respect to the MDP homomorphism map and the lifting procedure. Assuming
the policies π↑θ and πθ are parameterized by independent neural networks, the loss function is
obtained by matching the conditional expectation and standard deviation (SD) of abstract
actions conditioned on observations sampled from the replay buffer:

Llift.(θ, θ) = (Eπ↑
θ
[gs(a)∣s] −Eπ

θ
[a∣f(s)])2 + (SDπ↑

θ
[gs(a)∣s] − SDπ

θ
[a∣f(s)])2. (29)

As discussed, the policy lifting loss in Equation (29) is not required for deterministic DHPG.

Training the Critic. Actual and abstract critics are trained using n-step TD error for
a faster reward propagation (Barth-Maron et al., 2018). The loss function for each critic is
therefore defined as the expectation of the n-step Bellman error estimated over transitions
samples from the replay buffer B:

Lactual critic(ψ) = E(s,a,s′,r)∼B[(R
(n)
t + γnQψ′(st+n, at+n) −Qψ(st, at))

2] (30)

Labstract critic(ψ,ϕ, η) = E(s,a,s′,r)∼B[(R
(n)
t + γnQψ′(st+n, at+n) −Qψ(st, at))

2], (31)

where st = fϕ(st) and at = gη(st, at) are computed using the learned MDP homomorphism,

ψ′ and ψ′ denote parameters of target networks, and R
(n)
t =∑n−1i=0 γ

irt+i is the n-step return.

21

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

Training the Actor. For stochastic policies, we train the actual policy using the standard
PG theorem (Sutton et al., 2000), and train the abstract policy via the stochastic HPG
(Theorem 17). While we can employ any stochastic actor-critic algorithm for training the
actual policy, we use SAC (Haarnoja et al., 2018) to further demonstrate the applicability
of our method to the maximum entropy RL framework. Notably, as discussed in Section
5.3, the entropy regularizer term needs to be accounted for only during the actual policy
update.

In the case of deterministic policies, the actual policy is trained using the deterministic
PG (Silver et al., 2014) and the abstract policy is updated using the deterministic HPG
(Theorem 19). Notably, since in this case the actual and abstract policies share the same set
of parameters (θ = θ), both policy updates are applied to the same set of policy parameters.

Learning the continuous MDP Homomorphism Map. We learn the continuous
MDP homomorphism map using the lax bisimulation metric (Taylor et al., 2008), simi-
larly to the prior work on continuous MDP homomorphisms (Rezaei-Shoshtari et al., 2022).
We use the lax bisimulation metric (Taylor et al., 2008), Equation (32), to propose a loss

Algorithm 1 Deep Homomorphic Policy Gradient (DHPG)

1: Initialize target networks ψ′ ← ψ, ψ′ ← ψ.
2: for t = 0 to T do
3: Encode observation: st = Eµ(ot)
4: Select and execute action:
5: if stochastic policy then
6: at ∼ π↑θ(⋅∣st)
7: else
8: at = π↑θ(st) + ϵ, where ϵ ∼ N(0, σ)
9: end if

10: Store transition in the replay buffer: B ← B ∪ (st, at, st+1, rt)
11: Sample a mini-batch: Bi ∼ B
12: Permute the mini-batch: Bj = permute(Bi)
13: Train hϕ,η,Eµ, τν ,Rρ: Llax +Lh ▷ Eqns. 33-34
14: Train critics Qψ,Qψ: Lactual +Labstract ▷ Eqns. 30-31
15: if stochastic policy then
16: # Lifted and abstract policies are respectively parameterized by θ and θ
17: Train π↑θ using PG + MaxEnt ▷ SAC (Haarnoja et al., 2018)
18: Train πθ using stochastic HPG ▷ Theorem 17

19: Update policies π↑θ and πθ with the policy lifting loss: Llift. ▷ Eqn. 29
20: else
21: # Lifted and abstract policies share the same parameters θ
22: Train π↑θ using DPG ▷ TD3 (Fujimoto et al., 2018)
23: Train πθ using deterministic HPG ▷ Theorem 19
24: end if
25: Update target networks: ψ′ ← αψ + (1 − α)ψ′, ψ′ ← αψ + (1 − α)ψ′
26: end for

22

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

0.0 0.2 0.4 0.6 0.8 1.0
Number of Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8
IQ

M
 N

or
m

al
ize

d
Sc

or
e

Det. DHPG
Stoch. DHPG
DrQ-v2
DBC
DeepMDP
SAC-AE

(a) Sample efficiency.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

Stoch. DHPG
Det. DHPG
DBC
DeepMDP
DrQ-v2
SAC-AE

(b) Performance profiles.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Pendulum Swingup w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

(c) Learning curves.

Figure 3: Results of DM Control tasks with pixel observations obtained on 10 seeds. RLiable
metrics are aggregated over 14 tasks. All methods are with image augmentation. (a)
RLiable IQM scores as a function of number of steps for comparing sample efficiency, (b)
RLiable performance profiles at 500k steps, (c) learning curves on the pendulum swingup
task. Full results are in Appendix C.1. Shaded regions represent 95% confidence intervals.

function that encodes lax bisimilar states closer together in the abstract space. The lax
bisimulation metric is applicable to continuous actions and as a (pseudo-)metric, it can nat-
urally represent approximate MDP homomorphisms. The lax bisimulation metric between
two state-action pairs (si, ai) and (sj , aj) is defined as:

dlax((si, ai), (sj , aj)) = cr ∣R(si, ai) −R(sj , aj)∣ + ctW1(τ(⋅∣si, ai), τ(⋅∣sj , aj)), (32)

where the first term measures the distance between the reward terms and W1 is the Kan-
torovich metric measuring the distance between transition probabilities. Following the
same intuition as prior works on using bisimulations for representation learning (Zhang
et al., 2020), we define our proposed lax bisimulation loss over pairs of transition tuples
sampled from the replay buffer. We permute samples to compute their pairwise distance in
the abstract space and their pairwise lax bisimilarity distance. Consequently, we minimize
the distance between these two terms:

Llax(ϕ, η) = EB[∥fϕ(si)−fϕ(sj)∥1−∥ri−rj∥1−αW2(τν(⋅∣fϕ(si), gη(si, ai)), τν(⋅∣fϕ(sj), gη(sj , aj)))]
2

(33)

Here, the expectation is taken over two samples (si, ai, s′i, ri), (sj , aj , s′j , rj) ∼ B from the
replay buffer.

Similarly to Zhang et al. (2020), we replaced the Kantorovich (W1) metric with the W2

metric as there is an explicit formula for it for Gaussian distributions. Finally, we apply
the conditions of a continuous MDP homomorphism map from Definition 11 via the loss
function of:

Lh(ϕ, η, ν, ρ) = E(si,ai,s′i,ri)∼B[(fϕ(s
′
i) − s′i)

2 + (ri−Rρ(fϕ(si)))
2], (34)

where s′i∼τν(⋅∣fϕ(si), gη(si, ai)). The final loss function is obtained as Llax(ϕ, η)+Lh(ϕ, η, ρ, ν).

7. Experiments

In our experiments, we aim to answer the following key questions:

23

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

5

0

5

Trajectory of Real States

Position x Angle Velocity x Angular velocity

0 25 50 75 100 125 150 175 200
Time Step

1.0

0.5

0.0

0.5
Trajectory of Latent States of DHPG

Latent state 1 Latent state 2 Latent state 3 Latent state 4

(a) State trajectories over time.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Sparse

DHPG (Latent dim: 4)
DBC (Latent dim: 4)

DeepMDP (Latent dim: 4)
SAC-AE (Latent dim: 4)

(b) Learning curves.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

600

700

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup

DHPG (Latent dim: 4)
DBC (Latent dim: 4)

DeepMDP (Latent dim: 4)
SAC-AE (Latent dim: 4)

(c) Learning curves.

Figure 4: Effectiveness of DHPG in recovering the minimal MDP from pixels. All methods
are limited to a 4-dimensional latent space which is equal to the dimensions of the real state
space of cartpole. (a) Trajectories of real states obtained from Mujoco and trajectories of
latent states of DHPG. (b, c) Learning curves averaged on 10 seeds.

1. Does the homomorphic policy gradient improve policy optimization?
2. What are the qualitative properties of the learned representations and the abstract

MDP?
3. Can DHPG learn and recover the minimal MDP image from raw pixel observations?

We evaluate DHPG on continuous control tasks from DM Control on pixel observations.
Importantly, to reliably evaluate our algorithm against the baselines and to correctly capture
the distribution of results, we follow the best practices proposed by Agarwal et al. (2021)
and report the interquartile mean (IQM) and performance profiles aggregated on all tasks
over 10 random seeds. While our baseline results are obtained using the official code,
when possible5, some of the results may differ from the originally reported ones due to the
difference in the seed numbers and our goal to present a faithful representation of the true
performance distribution (Agarwal et al., 2021).

7.1 DeepMind Control Suite

We compare the effectiveness of DHPG on pixel observations against DBC (Zhang et al.,
2020), DeepMDP (Gelada et al., 2019), SAC-AE (Yarats et al., 2021b), and state-of-the-
art performing DrQ-v2 (Yarats et al., 2021a). All methods use n-step returns, share the
same hyperparameters in Appendix D.1 and all hyperparameters are adapted from DrQ-v2
without any further tuning. We acknowledge that since DrQ-v2 is based upon DDPG, the
hyperparameters we used may be more advantageous to det erministic DHPG in comparison
with stochastic DHPG. Importantly, for a fair comparison with DrQ-v2 which uses image
augmentation, we present two variations of DHPG and other baselines, with and without
image augmentation.

5. We use the official implementations of DrQv2, DBC, and SAC-AE, while we re-implement DeepMDP
due to the unavailability of the official code. See Appendix D.2 for full details.

24

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

(a) Actual optimal policy. (b) Abstract optimal policy.

Figure 5: Contours of actual and abstract optimal actions over the state space of the
pendulum-swingup task. Colors represent action values, and states are s = (θ, θ̇). (a)
Actual optimal policy; contours of optimal actions a∗=π↑∗(s). (b) Abstract optimal policy;
contours of abstract optimal actions a∗=gs(a∗)=π∗(s). The relation gs1(a1)=gs2(a2) holds
for equivalent state-action pairs, and the abstract optimal policy is symmetric.

DHPG outperforms or matches other algorithms on pixel observations, demon-
strating its effectiveness in representation learning. Results with image augmenta-
tion are presented in Figure 3 and full results are in Appendix C.1. Aggregated over 14 tasks,
deterministic DHPG outperforms state-of-the-art DrQ-v2 and stochastic DHPG is as perfor-
mant. Although these yield slight performance gains overall, the comparison in performance
between DHPG and DrQ-v2 is highly task-dependent (see Figure 12 in Appendix C.1). For
complex tasks such as Walker Run or Cheetah Run, DHPG obtains equal or slightly worse
performance compared to DrQ-v2; however, on domains with clear symmetries—and hence
easily learnable MDP homomorphism maps— DHPG outperforms DrQ-v2. In particular,
DHPG without image augmentation outperforms DrQ-v2 on domains such as Cartpole and
Pendulum, demonstrating its capability of representation learning.

Deterministic DHPG and stochastic DHPG have approximately similar sample
efficiency, with deterministic DHPG being slightly better. As discussed in Section
5.3, deterministic policy gradient in theory is more sample efficient than the stochastic
policy gradient, since it does not need to integrate over the action space (Silver et al.,
2014). Additionally, due to the complications of lifting a stochastic policy, stochastic DHPG
has more components which can negatively impact the learning performance. As a result,
deterministic DHPG is slightly more sample efficient than stochastic DHPG.

DHPG can learn and recover a low-dimensional MDP image. A key strength
of MDP homomorphisms is their ability to represent the minimal MDP image (Ravindran
and Barto, 2001), which is particularly important when learning from pixel observations.
To demonstrate this ability, we have limited the latent space dimensions to the dimension
of the real system and compared DHPG (without image augmentation) with baselines in
Figure 4. While other methods are not able to learn the tasks, DHPG can successfully learn
the policy and the minimal low-dimensional latent space. Surprisingly, trajectories of the
latent states resemble that of the real states as shown in Figure 4a.

25

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

The learned mapping h=(f, gs) demonstrates properties of an MDP homomor-
phism. We use the pendulum swingup task to visualize its learned MDP homomorphism,
as its symmetries are perfectly intelligible. Two state-action pairs (s1 = (θ1, θ̇1), a1) and
(s2 = (θ2, θ̇2), a2) are equivalent if a1 = −a2, θ1 = −θ2, and θ̇1 = −θ̇2. Therefore, the learned
action representations are expected to reflect this by setting gs1(a1) = gs2(a2). Figure 5a
shows contours of optimal actions over S, while Figure 5b shows action representations
a=gs(a) of optimal actions over S. Clearly, abstract actions adhere to the aforementioned
relation for equivalent state-action pairs, indicating gs(a) is in fact representing the action
encoder of an MDP homomorphism mapping.

The abstract MDP demonstrates properties of an MDP homomorphic image.
To qualitatively demonstrate the significance of learning joint state-action representations,
Figure 6 shows visualizations of latent states for quadruped-walk, a task with symmetries
around movements of its four legs. Interestingly, while the latent space of DHPG (Figure
6a) shows distinct states for each leg, abstract state encoder fϕ has mapped corresponding
legs (e.g., left forward leg and right backward leg) to the same abstract latent state (Figure
6b) as they are some homomorphic image of one another. Clearly, DBC and DrQ-v2 are
not able to achieve this.

The learned representations and the MDP homomorphism map transfer to new
tasks within the same domain. Importantly, one consideration with representation
learning methods relying on rewards is the transferability of the learned representations to
a new reward setting within the same domain. To ensure that our method does not hinder
such transfer, we have carried out experiments in which the actor, critics, and the learned
MDP homomorphism map are transferred to another task from the same domain. Results,
given in Appendix C.3 show that our method has not compromised transfer abilities.

Additional Experiments. We study the value equivalence property as a measure for
the quality of the learned MDP homomorphisms in Appendix C.2, and we present ablation
studies on DHPG variants, and the impact of n-step return on our method in Appendices

(a) DHPG latent states. (b) DHPG abstract states. (c) DBC latent states. (d) DrQ-v2 latent states.

Figure 6: PCA projection of learned representations for quadruped-walk with pixel obser-
vations. (a) Latent states s =Eµ(o), (b) abstract latent states s = fϕ(Eµ(o)) for DHPG,
(c) latent states s=Eµ(o) for DBC, and (d) DrQ-v2. Color of each point denotes its value
learned by Q(s, a) or Q(s, a). Points are also projected onto each main plane. The ho-
momorphism map of DHPG has mapped the latent states of corresponding legs (e.g., left
forward leg and right backward leg) (a) on to the same abstract latent states (b), indicating
a clear structure in S.

26

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

Box Cylinder Ellipsoid

(a) Rotate Suite.

x1.0
0.5

0.0
0.5

y
1.0

0.5
0.0

0.5
1.0

0.2

0.4

0.6

0.8

1.0

(b) 3D mountain car.

Figure 7: Novel environments with symmetries. (a) Rotate Suite is a series of visual control
tasks with the goal of rotating a 3D object along its axes to achieve a goal orientation.
Symmetries of the environment are declared by symmetries of the object. (b) 3D mountain
car has a continuous translational symmetry along the y-axis, shown as a dotted black line.
The orange point represents the car and the green line represents the goal position.

C.4 and C.5, respectively. Finally, we compare the computation time of our method against
the baselines in Appendix C.6.

7.2 Environments with Continuous Symmetries

As discussed in Section 5.3, the key difference between the deterministic and stochastic HPG
theorems is that the former requires a bijective action encoder, whereas the latter does not
impose any structure on it. The implication of such requirement is that deterministic DHPG
is not capable of abstracting actions beyond relabling them. While relabling actions is
sufficient for discrete symmetries, environments with continuous symmetries can in principle
have their action dimensions reduced. To showcase the superiority of stochastic DHPG
in action abstraction, we carry out experiments on a suite of novel environments with
continuous symmetries. These environments are publicly available6.

• Rotate Suite is a series of visual control tasks developed based on the DeepMind
Control Suite. The goal in each environment is to rotate a 3D object along its axes to
achieve a goal orientation. Symmetries of the environment are declared by symmetries
of the object. Thus, the box rotation has discrete symmetries, while cylinder and
ellipsoid rotation have continuous rotational symmetries. Figure 7a shows examples
of these interactive environments.

• 3D Mountain Car is an extension of the 2D mountain car problem (Moore, 1990) in
which the mountain curve is extended along the y-axis, creating a mountain surface.
The agent has a 2D action on the mountain surface, in contrast to the 1D action
space of the 2D mountain car. As a result of this extension, the problem has a
continuous translational symmetry along the y-axis and the action along side this
axis is redundant. Figure 7b shows the surface of the 3D mountain car.

Stochastic DHPG outperforms deterministic DHPG in the environments with
continuous symmetries. Results are presented in Figures 8 and 9. Notably, stochastic
DHPG outperforms other baselines, as well as deterministic DHPG on environments with

6. https://github.com/sahandrez/rotate suite

27

https://github.com/sahandrez/rotate_suite

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

2200

2000

1800

1600

1400

1200

A
ve

ra
ge

 R
et

ur
n

Rotate Box w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

2100

2050

2000

1950

1900

1850

1800

1750

1700

A
ve

ra
ge

 R
et

ur
n

Rotate Cylinder w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

2200

2000

1800

1600

1400

1200

1000

A
ve

ra
ge

 R
et

ur
n

Rotate Ellipsoid w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

Figure 8: Learning curves for Rotate Suite environments obtained on 10 seeds. (a) Box
rotation. (b) Cylinder rotation. (c) Ellipsoid rotation. Shaded regions represent 95%
confidence intervals. Stochastic DHPG outperforms deterministic DHPG on environments
with continuous symmetries (cylinder and ellipsoid rotation).

continuous symmetries. This is due to the fact that in theory, stochastic DHPG does not
impose any structures on the action encoder and is therefore able to achieve higher levels
of action abstraction, compared to deterministic DHPG.

DHPG is able to learn a structured latent space that adheres to the properties
of a 3D rotation. Visualizations of latent state trajectories in the cylinder rotation
task are presented in Figure 10. Each trajectory, color-coded by the action dimension, is
collected by applying a constant rotation around one of the main axes (pitch, roll, and
yaw). Interestingly, the latent trajectories of DHPG are fully disentangled and resemble 3D
rotations in the latent space. However, none of the other baselines exhibits such structure
in their latent representation.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

20

0

20

40

60

A
ve

ra
ge

 R
et

ur
n

3D Mountain Car

Det. DHPG
Det. DHPG+true (f, gs)
Det. DHPG+act.collapse

Stoch. DHPG
Stoch. DHPG+true (f, gs)
Stoch. DHPG+act. collapse

DDPG
TD3
SAC

Figure 9: Learning curves for the 3D mountain car environment obtained on 50 seeds.
Shaded regions represent 95% confidence intervals. Stochastic DHPG outperforms de-
terministic DHPG due to the continuous translational symmetry of the environment.
DHPG+true (f, gs) uses the ground truth homomorphism map, and DHPG+act. collapse
removes has 1D abstract action space, as opposed to the original 2D action space.

28

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

(a) Stoch. DHPG. (b) Det. DHPG. (c) DrQ-v2. (d) DBC. (e) DeepMDP.

Figure 10: Visualization of latent state trajectories in the cylinder rotation task, color-
coded by the action dimension. Action dimensions respectively correspond to pitch, roll,
and yaw and each trajectory is collected by applying a constant rotation around a specific
axis. Latent states are projected into a 3D space using PCA.

8. Conclusion

In this paper, we developed the novel theory of continuous MDP homomorphisms using
measure theory, and we rigorously proved their value and optimal value equivalence prop-
erties. We derived the homomorphic policy gradient for both stochastic and deterministic
policies, in order to directly use a joint state-action abstraction for policy optimization.
Importantly, we rigorously proved that applying our homomorphic policy gradient on the
abstract MDP is equivalent to applying the standard policy gradient on the actual MDP.
Based on our novel theoretical results, we developed a family of deep actor-critic algorithms,
with either stochastic or deterministic policies, that can simultaneously learn the policy and
the MDP homomorphism map using the lax bisimulation metric. Our algorithm, referred
to as Deep Homomorphic Policy Gradient (DHPG) improves upon strong baselines in chal-
lenging visual control problems. The visualization of the latent space demonstrates the
strong potential of MDP homomorphisms in learning structured representations that can
preserve value functions. Finally, we introduced a series of environments with continuous
symmetries to further demonstrate the ability of our algorithm for action abstraction in the
presence of continuous symmetries.

We believe that our work will open-up future possibilities for the application of MDP ho-
momorphisms in challenging continuous control problems by enabling other RL algorithms
to benefit from the abstraction power of MDP homomorphisms and the homomorphic policy
gradient theorems.

Acknowledgments and Disclosure of Funding

SRS is supported by an NSERC CGS-D scholarship. RZ was supported by an NSERC
CGS-M scholarship at the time this work was completed. PP is supported by a research
grant from NSERC. The computing resources for this research were provided by Calcul
Quebec and the Digital Research Alliance of Canada.

29

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

References

David Abel, David Hershkowitz, and Michael Littman. Near optimal behavior via ap-
proximate state abstraction. In International Conference on Machine Learning, pages
2915–2923. PMLR, 2016.

David Abel, Dilip Arumugam, Kavosh Asadi, Yuu Jinnai, Michael L Littman, and Law-
son LS Wong. State abstraction as compression in apprenticeship learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pages 3134–3142, 2019.

David Abel, Nate Umbanhowar, Khimya Khetarpal, Dilip Arumugam, Doina Precup, and
Michael Littman. Value preserving state-action abstractions. In International Conference
on Artificial Intelligence and Statistics, pages 1639–1650. PMLR, 2020.

Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Con-
trastive behavioral similarity embeddings for generalization in reinforcement learning. In
International Conference on Learning Representations, 2020.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc
Bellemare. Deep reinforcement learning at the edge of the statistical precipice. Advances
in Neural Information Processing Systems, 34, 2021.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and
R Devon Hjelm. Unsupervised state representation learning in Atari. Advances in Neural
Information Processing Systems, 32:8769–8782, 2019.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath.
Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):
26–38, 2017.

Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so poorly
to small image transformations? arXiv preprint arXiv:1805.12177, 2018.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan,
Dhruva Tb, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distribu-
tional deterministic policy gradients. arXiv preprint arXiv:1804.08617, 2018.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai
Kornbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph
neural networks for data-efficient and accurate interatomic potentials. Nature communi-
cations, 13(1):1–11, 2022.

O Biza, R Platt, JW van de Meent, and L Wong. Learning discrete state abstractions with
deep variational inference. Advances in Approximate Bayesian Inference, 2021.

Ondrej Biza and Robert Platt. Online abstraction with mdp homomorphisms for deep
learning. In Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems, 2019.

30

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

George W Bluman and Sukeyuki Kumei. Symmetries and differential equations, volume 81.
Springer Science & Business Media, 2013.

R. Blute, J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled Markov
processes. In Proceedings of the Twelfth IEEE Symposium On Logic In Computer Science,
Warsaw, Poland., 1997a.

Richard Blute, Josée Desharnais, Abbas Edalat, and Prakash Panangaden. Bisimulation for
labelled markov processes. In Proceedings of Twelfth Annual IEEE Symposium on Logic
in Computer Science, pages 149–158. IEEE, 1997b.

Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1.
Springer, 2007.

T Butler, J Jakeman, and TimWildey. Combining push-forward measures and bayes’ rule to
construct consistent solutions to stochastic inverse problems. SIAM Journal on Scientific
Computing, 40(2):A984–A1011, 2018.

Hugo Caselles-Dupré, Michael Garcia Ortiz, and David Filliat. Symmetry-based disentan-
gled representation learning requires interaction with environments. Advances in Neural
Information Processing Systems, 32:4606–4615, 2019.

Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic
markov decision processes. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 10069–10076, 2020.

Pablo Samuel Castro and Doina Precup. Using bisimulation for policy transfer in MDPs.
In Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

Pablo Samuel Castro and Doina Precup. Automatic construction of temporally extended
actions for MDPs using bisimulation metrics. In European Workshop on Reinforcement
Learning, pages 140–152. Springer, 2011.

Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. Mico: Im-
proved representations via sampling-based state similarity for Markov decision processes.
Advances in Neural Information Processing Systems, 34, 2021.

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip Thomas.
Learning action representations for reinforcement learning. In International Conference
on Machine Learning, pages 941–950. PMLR, 2019.

Haiwei Chen, Shichen Liu, Weikai Chen, Hao Li, and Randall Hill. Equivariant point
network for 3d point cloud analysis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14514–14523, 2021.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International
conference on machine learning, pages 2990–2999. PMLR, 2016.

Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant
convolutional networks and the icosahedral cnn. In International conference on Machine
learning, pages 1321–1330. PMLR, 2019.

31

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. In Interna-
tional Conference on Learning Representations, 2018.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley
Ho. Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

Nima Dehmamy, Robin Walters, Yanchen Liu, Dashun Wang, and Rose Yu. Automatic
symmetry discovery with lie algebra convolutional network. Advances in Neural Infor-
mation Processing Systems, 34:2503–2515, 2021.

J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labeled Markov
systems. In Proceedings of CONCUR99, number 1664 in Lecture Notes in Computer
Science. Springer-Verlag, 1999.

J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labeled Markov processes.
Information and Computation, 179(2):163–193, Dec 2002.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lil-
licrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben
Coppin. Deep reinforcement learning in large discrete action spaces. arXiv preprint
arXiv:1512.07679, 2015.

Stephan Eismann, Raphael JL Townshend, Nathaniel Thomas, Milind Jagota, Bowen Jing,
and Ron O Dror. Hierarchical, rotation-equivariant neural networks to select structural
models of protein complexes. Proteins: Structure, Function, and Bioinformatics, 89(5):
493–501, 2021.

Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry.
A rotation and a translation suffice: Fooling cnns with simple transformations. 2017.

SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S Morcos, Marta
Garnelo, Avraham Ruderman, Andrei A Rusu, Ivo Danihelka, Karol Gregor, et al. Neural
scene representation and rendering. Science, 360(6394):1204–1210, 2018.

Linxi Fan, Guanzhi Wang, De-An Huang, Zhiding Yu, Li Fei-Fei, Yuke Zhu, and Animashree
Anandkumar. Secant: Self-expert cloning for zero-shot generalization of visual policies.
In International Conference on Machine Learning, pages 3088–3099. PMLR, 2021.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov decision
precesses. In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence,
pages 162–169, July 2004.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for Markov decision pro-
cesses with infinite state spaces. In Proceedings of the 21st Conference on Uncertainty in
Artificial Intelligence, pages 201–208, July 2005a.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for Markov decision processes
with infinite state spaces. In Proceedings of the Twenty-First Conference on Uncertainty
in Artificial Intelligence, pages 201–208, 2005b.

32

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

Norm Ferns, Pablo Samuel Castro, Doina Precup, and Prakash Panangaden. Methods for
computing state similarity in Markov decision processes. In Proceedings of the Twenty-
Second Conference on Uncertainty in Artificial Intelligence, pages 174–181, 2006.

Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous
Markov decision processes. SIAM Journal on Computing, 40(6):1662–1714, 2011.

Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing
equivariant multilayer perceptrons for arbitrary matrix groups. In International Confer-
ence on Machine Learning, pages 3318–3328. PMLR, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International conference on machine learning, pages 1587–1596.
PMLR, 2018.

Octavian-Eugen Ganea, Xinyuan Huang, Charlotte Bunne, Yatao Bian, Regina Barzilay,
Tommi S Jaakkola, and Andreas Krause. Independent se (3)-equivariant models for end-
to-end rigid protein docking. In International Conference on Learning Representations,
2021.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare.
Deepmdp: Learning continuous latent space models for representation learning. In Inter-
national Conference on Machine Learning, pages 2170–2179. PMLR, 2019.

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model mini-
mization in Markov decision processes. Artificial Intelligence, 147(1-2):163–223, 2003.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks.
Advances in neural information processing systems, 32, 2019.

Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The value equiva-
lence principle for model-based reinforcement learning. Advances in Neural Information
Processing Systems, 33:5541–5552, 2020.

Christopher Grimm, André Barreto, Greg Farquhar, David Silver, and Satinder Singh.
Proper value equivalence. Advances in Neural Information Processing Systems, 34:7773–
7786, 2021.

David Ha and Jürgen Schmidhuber. World models. arXiv e-prints, pages arXiv–1803, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Inter-
national conference on machine learning, pages 1861–1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to con-
trol: Learning behaviors by latent imagination. In International Conference on Learning
Representations, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. In International
Conference on Machine Learning, pages 2555–2565. PMLR, 2019b.

33

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

Nicklas Hansen and Xiaolong Wang. Generalization in reinforcement learning by soft data
augmentation. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 13611–13617. IEEE, 2021.

Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A Efros,
Lerrel Pinto, and Xiaolong Wang. Self-supervised policy adaptation during deployment.
In International Conference on Learning Representations, 2020.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI conference
on artificial intelligence, volume 32, 2018.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo
Rezende, and Alexander Lerchner. Towards a definition of disentangled representations.
arXiv preprint arXiv:1812.02230, 2018.

Irina Higgins, Peter Wirnsberger, Andrew Jaegle, and Aleksandar Botev. Symetric: Mea-
suring the quality of learnt hamiltonian dynamics inferred from vision. Advances in Neural
Information Processing Systems, 34, 2021.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual informa-
tion estimation and maximization. In International Conference on Learning Representa-
tions, 2018.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxil-
iary tasks. arXiv preprint arXiv:1611.05397, 2016.

Rico Jonschkowski and Oliver Brock. Learning state representations with robotic priors.
Autonomous Robots, 39(3):407–428, 2015.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589,
2021.

Jari Kaipio and Erkki Somersalo. Statistical and computational inverse problems, volume
160. Springer Science & Business Media, 2006.

Mete Kemertas and Tristan Aumentado-Armstrong. Towards robust bisimulation metric
learning. Advances in Neural Information Processing Systems, 34, 2021.

Mete Kemertas and Allan Douglas Jepson. Approximate policy iteration with bisimulation
metrics. Transactions on Machine Learning Research, 2022.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A
survey. IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

34

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

Risi Kondor, Zhen Lin, and Shubhendu Trivedi. Clebsch–gordan nets: a fully fourier space
spherical convolutional neural network. Advances in Neural Information Processing Sys-
tems, 31, 2018.

Serge Lang. Differential and Riemannian manifolds, volume 160. Springer Science & Busi-
ness Media, 2012.

K. G. Larsen and A. Skou. Bisimulation through probablistic testing. Information and
Computation, 94:1–28, 1991a.

Kim G Larsen and Arne Skou. Bisimulation through probabilistic testing. Information and
computation, 94(1):1–28, 1991b.

Charline Le Lan, Marc G Bellemare, and Pablo Samuel Castro. Metrics and continuity in
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 8261–8269, 2021.

Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne
Hubbard, and Lawrence Jackel. Handwritten digit recognition with a back-propagation
network. Advances in neural information processing systems, 2, 1989.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A
simple technique for generalization in deep reinforcement learning. arXiv preprint
arXiv:1910.05396, 2019.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state
abstraction for MDPs. ISAIM, 4:5, 2006.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In International
Conference on Machine Learning, pages 6736–6747. PMLR, 2021.

Shikun Liu, Andrew Davison, and Edward Johns. Self-supervised generalisation with meta
auxiliary learning. Advances in Neural Information Processing Systems, 32, 2019.

Clare Lyle, Mark Rowland, Georg Ostrovski, and Will Dabney. On the effect of auxiliary
tasks on representation dynamics. In International Conference on Artificial Intelligence
and Statistics, pages 1–9. PMLR, 2021.

Anuj Mahajan and Theja Tulabandhula. Symmetry learning for function approximation in
reinforcement learning. arXiv preprint arXiv:1706.02999, 2017.

R. Milner. A Calculus for Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer-Verlag, 1980.

35

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

Robin Milner. Communication and Concurrency. Prentice-Hall, 1989a.

Robin Milner. Communication and concurrency, volume 84. Prentice hall Englewood Cliffs,
1989b.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

Arnab Kumar Mondal, Vineet Jain, Kaleem Siddiqi, and Siamak Ravanbakhsh. Eqr: Equiv-
ariant representations for data-efficient reinforcement learning. In International Confer-
ence on Machine Learning, pages 15908–15926. PMLR, 2022.

Andrew William Moore. Efficient memory-based learning for robot control. Technical
report, University of Cambridge, Computer Laboratory, 1990.

Emmy Noether. Invariant variation problems. Transport theory and statistical physics, 1
(3):186–207, 1971. English translation of the original German paper published in 1918.

David Park. Title unknown. Slides for Bad Honnef Workshop on Semantics of Concurrency,
1981.

Jung Yeon Park, Ondrej Biza, Linfeng Zhao, Jan Willem van de Meent, and Robin Wal-
ters. Learning symmetric embeddings for equivariant world models. arXiv preprint
arXiv:2204.11371, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Advances in neural information
processing systems, 32:8026–8037, 2019.

Zhuoran Qiao, Anders S Christensen, MatthewWelborn, Frederick RManby, Anima Anand-
kumar, and Thomas F Miller III. Unite: Unitary n-body tensor equivariant network with
applications to quantum chemistry. arXiv preprint arXiv:2105.14655, 2021.

Robin Quessard, Thomas D Barrett, and William R Clements. Learning group struc-
ture and disentangled representations of dynamical environments. arXiv preprint
arXiv:2002.06991, 2020.

Srividhya Rajendran and Manfred Huber. Learning to generalize and reuse skills using
approximate partial policy homomorphisms. In 2009 IEEE International Conference on
Systems, Man and Cybernetics, pages 2239–2244. IEEE, 2009.

Balaraman Ravindran. An algebraic approach to abstraction in reinforcement learning.
University of Massachusetts Amherst, 2004.

Balaraman Ravindran and Andrew G Barto. Symmetries and model minimization in markov
decision processes, 2001.

36

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

Balaraman Ravindran and Andrew G Barto. Relativized options: Choosing the right trans-
formation. In Proceedings of the 20th International Conference on Machine Learning
(ICML-03), pages 608–615, 2003.

Balaraman Ravindran and Andrew G Barto. Approximate homomorphisms: A framework
for non-exact minimization in Markov Decision Processes, 2004.

Sahand Rezaei-Shoshtari, Rosie Zhao, Prakash Panangaden, David Meger, and Doina Pre-
cup. Continuous mdp homomorphisms and homomorphic policy gradient. In Advances
in Neural Information Processing Systems, 2022.

Brian Sallans and Geoffrey E Hinton. Reinforcement learning with factored states and
actions. The Journal of Machine Learning Research, 5:1063–1088, 2004.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph
neural networks. In International conference on machine learning, pages 9323–9332.
PMLR, 2021.

Sahil Sharma, Aravind Suresh, Rahul Ramesh, and Balaraman Ravindran. Learning to
factor policies and action-value functions: Factored action space representations for deep
reinforcement learning. arXiv preprint arXiv:1705.07269, 2017.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Ried-
miller. Deterministic policy gradient algorithms. In International conference on machine
learning, pages 387–395. PMLR, 2014.

Samarth Sinha, Ajay Mandlekar, and Animesh Garg. S4rl: Surprisingly simple self-
supervision for offline reinforcement learning in robotics. In 5th Annual Conference on
Robot Learning, 2021.

Meir Smorodinsky. Ergodic theory entropy, volume 214. Springer, 2006.

Vishal Soni and Satinder Singh. Using homomorphisms to transfer options across contin-
uous reinforcement learning domains. In Proceedings of the 21st national conference on
Artificial intelligence-Volume 1, pages 494–499, 2006.

Jonathan Sorg and Satinder Singh. Transfer via soft homomorphisms. In Proceedings of The
8th International Conference on Autonomous Agents and Multiagent Systems-Volume 2,
pages 741–748, 2009.

Michael Spivak. Calculus on manifolds: a modern approach to classical theorems of advanced
calculus. CRC press, 2018.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation
learning from reinforcement learning. In International Conference on Machine Learning,
pages 9870–9879. PMLR, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

37

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112
(1-2):181–211, 1999.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Advances
in neural information processing systems, pages 1057–1063, 2000.

Jonathan Taylor, Doina Precup, and Prakash Panagaden. Bounding performance loss in
approximate mdp homomorphisms. Advances in Neural Information Processing Systems,
21, 2008.

Guy Tennenholtz and Shie Mannor. The natural language of actions. In International
Conference on Machine Learning, pages 6196–6205. PMLR, 2019.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and
Patrick Riley. Tensor field networks: Rotation-and translation-equivariant neural net-
works for 3d point clouds. arXiv preprint arXiv:1802.08219, 2018.

Valentin Thomas, Jules Pondard, Emmanuel Bengio, Marc Sarfati, Philippe Beaudoin,
Marie-Jean Meurs, Joelle Pineau, Doina Precup, and Yoshua Bengio. Independently
controllable factors. arXiv preprint arXiv:1708.01289, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5026–5033. IEEE, 2012.

Elise van der Pol, Thomas Kipf, Frans A Oliehoek, and Max Welling. Plannable approx-
imations to mdp homomorphisms: Equivariance under actions. In Proceedings of the
19th International Conference on Autonomous Agents and MultiAgent Systems, pages
1431–1439, 2020a.

Elise van der Pol, Daniel Worrall, Herke van Hoof, Frans Oliehoek, and Max Welling. Mdp
homomorphic networks: Group symmetries in reinforcement learning. Advances in Neural
Information Processing Systems, 33, 2020b.

Elise van der Pol, Herke van Hoof, Frans A Oliehoek, and Max Welling. Multi-agent mdp
homomorphic networks. In International Conference on Learning Representations, 2021.

Veeravalli S Varadarajan. Groups of automorphisms of borel spaces. Transactions of the
American Mathematical Society, 109(2):191–220, 1963.

Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation
equivariant cnns for digital pathology. In International Conference on Medical image
computing and computer-assisted intervention, pages 210–218. Springer, 2018.

Dian Wang, Robin Walters, and Robert Platt. So(2)-equivariant reinforcement learning. In
International Conference on Learning Representations, 2021.

38

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S Cohen. 3d
steerable cnns: Learning rotationally equivariant features in volumetric data. Advances
in Neural Information Processing Systems, 31, 2018.

William Whitney, Rajat Agarwal, Kyunghyun Cho, and Abhinav Gupta. Dynamics-aware
embeddings. In International Conference on Learning Representations, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3):229–256, 1992.

Marysia Winkels and Taco S Cohen. Pulmonary nodule detection in ct scans with equiv-
ariant cnns. Medical image analysis, 55:15–26, 2019.

Alicia P Wolfe and Andrew G Barto. Decision tree methods for finding reusable mdp
homomorphisms. In PROCEEDINGS OF THE NATIONAL CONFERENCE ON AR-
TIFICIAL INTELLIGENCE, volume 21, page 530. Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, 2006a.

Alicia Peregrin Wolfe and Andrew G Barto. Defining object types and options using mdp
homomorphisms. In Proceedings of the ICML-06 Workshop on Structural Knowledge
Transfer for Machine Learning. Citeseer, 2006b.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels. In International Conference on Learning
Representations, 2020.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continu-
ous control: Improved data-augmented reinforcement learning. In International Confer-
ence on Learning Representations, 2021a.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus.
Improving sample efficiency in model-free reinforcement learning from images. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 35, pages 10674–10681,
2021b.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine.
Learning invariant representations for reinforcement learning without reconstruction. In
International Conference on Learning Representations, 2020.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum
causal entropy. Carnegie Mellon University, 2010.

Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In Proceedings of the 23rd national conference on Artificial
intelligence-Volume 3, pages 1433–1438, 2008.

39

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

A. Assumptions and Conditions

The derivation of our homomorphic policy gradient theorem is for continuous state and
action spaces. Therefore, we have assumed the following regularity conditions on the actual
MDP M and its MDP homomorphic image M under the MDP homomorphism map h.
The conditions are largely based on the regularity conditions of the deterministic policy
gradient theorem (Silver et al., 2014):

Regularity conditions 1: τa(s′∣s), ∇aτa(s′∣s), τa(s′∣s), ∇aτa(s′∣s), R(s, a),∇aR(s, a),
R(s, a),∇aR(s, a), π↑θ(s),∇θπ

↑

θ(s), πθ(s), ∇θπθ(s), p1(s), and p1(s) are continuous with
respect to all parameters and variables s, s, a, a, s′, and s′.

Regularity conditions 2: There exists a b and L such that sups p1(s)< b, sups p1(s) <
b, supa,s,s′ τa(s′∣s) < b, supa,s,s′ τa(s′∣s) < b, supa,sR(s, a) < b, supa,sR(s, a) < b,
supa,s,s′ ∥∇aτa(s′∣s)∥ < L, supa,s,s′ ∥∇aτa(s′∣s)∥ < L, sups,a ∥∇aR(s, a)∥ < L ,

sups,a ∥∇aR(s, a)∥ < L.

Regularity conditions 3: The action mapping gs(a) is a local diffeomorphism (Defini-
tion 30). Hence it is continuous with respect to a and locally bijective with respect to a.
Additionally, ∇ags(a) is continuous with respect to the parameter a, and there exists a L
such that sups,a ∥∇ags(a)∥ < L.

B. Mathematical tools

Various mathematical concepts from measure theory and differential geometry are briefly
presented in this section. We only explicitly introduce concepts which are directly mentioned
or relevant to the proofs presented in Sections 4 and 5; for a more comprehensive overview,
we direct the reader to textbooks such as Bogachev and Ruas (2007); Lang (2012); Spivak
(2018).

B.1 Metric spaces and topology

A set equipped with a metric is called a metric space and is usually written as a pair,
typically (X,d). Given a metric one can define standard notions from basic analysis: con-
vergent sequence, limit of a sequence, Cauchy sequence and continuous function. If every
Cauchy sequence converges we say the metric space is complete. Limits of convergent se-
quences are unique in proper metric spaces but not in pseudometric spaces. A function
f ∶ (X,d)→ (Y, d′) between metric spaces is said to be nonexpansive if:

∀x,x′ ∈X,d′(f(x), f(x′)) ≤ d(x,x′).

A function is said to be contractive if there is some number c ∈ (0,1) such that:

∀x,x′ ∈X,d′(f(x), f(x′)) < c ⋅ d(x,x′).

The fundamental theorem about metric spaces, called the Banach fixed-point theorem, states
the following:

Theorem 20 If f is a contractive function from a complete metric space X to itself then
there is a unique fixed point for f , i.e. a unique point x0 ∈X such that f(x0) = x0.

40

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

We assume that the readers are familiar with basic concepts of topology: open and
closed sets, base and subbase, convergence of sequences and continuity of functions.

A topological space is completely metrizable if it can be equipped with a metric which
generates its topology and the resulting metric space is complete. A topological space is
separable if it contains a countable, dense subset— that is, every nonempty subset in the
topological space contains at least one element of this subset. A Polish space is a topological
space that is separable and completely metrizable. Polish spaces have “desirable properties”
and are used primarily in areas of descriptive set theory and measure theory.

Another fundamental concept of topological spaces is compactness. An open cover of a
topological space X is a family of open subsets whose union includes all of X. A subcover
of a cover is a subcollection of the open sets in the cover that also covers X. A topological
space is said to be compact if every open cover has a finite subcover. In metric spaces, the
compact sets are exactly the closed and bounded sets. A space is said to be locally compact
if every point is contained in an open set that is contained in a compact set.

B.2 Measure theory

Measure theory attempts to generalize notions of length, area and volume or mass to more
complicated subsets than the simple ones that one first encounters in geometry. In common
situations, like the real line, it is not possible to define a measure on all subsets in such a
way that one’s normal intuitions of length survive. In the real line there is no measure that
is defined on all subsets and which assigns to all intervals its length. One needs, therefore,
to choose well behaved families of subsets on which one can define measures.

Definition 21 (σ-algebra) Given a set X, a σ-algebra on X is a family Σ of subsets of
X such that 1) X ∈ Σ, 2) A ∈ Σ implies Ac ∈ Σ (closure under complements), and 3) if
(Ai)i∈N satisfies Ai ∈ Σ for all i ∈ N, then ∪i∈NAi ∈ Σ (closure under countable union). The
tuple (X,Σ) is a measurable space.

A set equipped with a σ-algebra is called a measurable space. The σ-algebra of a space
specifies the sets for which a measure can be defined; in probability theory—and in our use
case—a σ-algebra represents a collection of events which can be assigned probabilities.

Given any family of subsets there is a smallest σ-algebra that includes the given family:
this is called the σ-algebra generated by the family. In metric spaces the σ-algebra generated
by the open sets is called the Borel σ-algebra.

Given a σ-algebra one can define a measure.

Definition 22 A (probability) measure µ on a σ-algebra Σ defined on X is a function
µ ∶ Σ→ [0,∞] (µ ∶ Σ→ [0,1]) satisfying:

• µ(∅) = 0

• If {Ai}i∈N is a countable family of pairwise disjoint subsets in Σ, then µ(∪iAi) =
∑i∈N µ(Ai).

For a probability measure we require µ(X) = 1.

The functions that play a key role are called measurable functions.

41

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

Definition 23 A measurable function or map between two measurable spaces (XΣ) and
(Y,Λ) is a function f ∶X → Y such that for any B ∈ Λ, f−1(B) ∈ Σ.

We can define measures on the image of a measurable function based on a measure
in the preimage. This yields the definition of the pushforward measure and the change
of variables formula which is crucial for our proofs in switching the domain of integration
across a measurable function.

Definition 24 (Pushforward measure) Let (X1,Σ1) and (X2,Σ2) be two measurable
spaces, f ∶ X1 → X2 a measurable map and µ ∶ Σ1 → [0,∞] a measure on X1. Then the
pushforward measure of µ with respect to f , denoted f∗(µ) ∶ Σ2 → [0,∞] is defined as:

(f∗(µ))(B) = µ(f−1(B)) ∀ B ∈ Σ2.

Theorem 25 (Change of variables) A measurable function g on X2 is integrable with
respect to f∗(µ) if and only if the function g ○ f is integrable with respect to µ, in which
case the integrals are equal:

∫
X2

gd(f∗(µ)) = ∫
X1

g ○ fdµ.

B.3 Manifolds

Differential manifolds formalize doing differential calculus on curved surfaces. Unlike vector
spaces, we cannot define addition of points in an arbitrary topological space; we need
additional structure. Hence the strategy is to define “patches” of the topological space
that “look like” patches of a vector space and then glue them together. This motivates
the definition of a differential or smooth manifold. The word “smooth” is a synonym for
infinitely differentiable or C∞.

Definition 26 An n-dimensional smooth (or differential) manifold is a topological
space M7 equipped with a family of pairs, called charts, {(Ui, ϕi)∣i ∈ A} where:

• Each Ui is an open subset of M ,

• each ϕi ∶ Ui →Rn is a homeomorphism between Ui and the image Vi ∶= ϕi(Ui),

• the {Ui} form an open cover of M .

In addition, the following compatibility condition must be satisfied:
if Ui ∩Uj /= ∅ then the map

ϕj ○ ϕ−1i ∣
ϕi(Ui∩Uj)

∶ ϕi(Ui ∩Uj)→ ϕj(Ui ∩Uj)

is infinitely differentiable, written as C∞. A collection of compatible charts is called an
atlas.

7. Assumed to be paracompact and Hausdorff.

42

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

ℳ
𝒰i

𝒰j

ϕi

ϕj

ϕj ∘ ϕ−1
i

ϕi(𝒰i) = 𝒱i

ϕj(𝒰j) = 𝒱j

ϕi(𝒰i ∩ 𝒰j)
ϕj(𝒰i ∩ 𝒰j)

Figure 11: The compatibility condition on charts.

Note that the very last condition refers to a map between an open set in Rn and another
open set in Rn; hence its meaning is clear since Rn is a vector space. The picture in Fig. 11
illustrates the meaning of this condition. Now everything can be defined in terms of charts.

Definition 27 A smooth function f ∶M → R is a function such that for any chart (U,ϕ)
the map f ○ ϕ−1 ∶Rn →R8 is smooth.

A smooth map between manifolds M and M ′ can be defined similarly.

Definition 28 A smooth map f ∶M →M ′ is a function such that for any chart (U,ϕ) of
M and (U ′, ϕ′) of M ′ the map ϕ′ ○ ψ ○ ϕ−1 ∶Rn →Rn′ is smooth.

Smooth maps and smooth functions are automatically continuous.

Differential manifolds come with a notion of isomorphism called a diffeomorphism.

Definition 29 A smooth map between two manifolds is called a diffeomorphism if it is a
bijection and the inverse map is also smooth.

Definition 30 (Local diffeomorphism) Let M and N be differentiable manifolds. A
function f ∶M → N is a local diffeomorphism, if for each point x ∈M there exists an open
set U containing x such that f(U) is open in N and f ∣U ∶ U → f(U) is a diffeomorphism.

Once the structure of a smooth manifold is in place one can define the notion of derivative
operator. The tangent to a curve can also be defined in terms of differentiation. A tangent
vector t at a point x should be thought of as a directional derivative. Standard results from
multivariable calculus can be invoked to show that the set of tangent vectors at a point
form an n-dimensional vector space. One writes Tx for this vector space, which is called the
tangent space at x.

The cleanest way to axiomatize the concept of tangent vector at a point x is as follows.
Let F be the set of smooth real-valued functions defined on M .

8. Actually this is only defined on ϕ(U) not all of Rn but it would clutter the notation too much to
constantly put in the correct restrictions.

43

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

Definition 31 Given a point x of M we define a tangent vector at x to be a map
t ∶ F →R such that, ∀a, b ∈R and ∀f, g ∈ F :

1. t(af + bg) = at(f) + bt(g),

2. t(fg) = f(x)t(g) + g(x)t(f).

It follows immediately that if f is a constant function then t(f) = 0. Note how the second
condition makes specific reference to the point x.

A smooth map ψ ∶M → N induces a map between tangent spaces at the corresponding
points. The differential of the map ψ at x is the linear map dψ ∶ TxM → Tψ(x)N defined
as follows. Let g be a smooth function on a neighbourhood of ψ(x) and let t be a tangent
vector at x. We have to define a tangent vector at ψ(x) so it should be able to act on g.
We define

dψ(t)(g) ∶= t(g ○ ψ).

The following theorems are fundamental and used in the proofs of the policy gradient
theorems.

Theorem 32 (Inverse function theorem for manifolds) If f ∶ M → N is a smooth
map whose differential dfx ∶ TxM → Tf(x)N is an isomorphism at a point x ∈M . Then f is
a local diffeomorphism at x.

Theorem 33 (Chain rule for manifolds) If f ∶M → N and g ∶ N → O are smooth maps
of manifolds, then:

d(g ○ f)x = dgf(x) ○ dfx.

44

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

C. Full Results

As discussed in Section 7, we evaluate DHPG on continuous control tasks from DM Control
on pixel observations, as well as custom designed environments. Importantly, to reliably
evaluate our algorithm against the baselines and to correctly capture the distribution of
results, we follow the best practices proposed by Agarwal et al. (2021) and report the
interquartile mean (IQM) and performance profiles aggregated on all tasks over 10 random
seeds. While our baseline results are obtained using the official code, when possible, some
of the results may differ from the originally reported ones due to the difference in the
seed numbers and our goal to present a faithful representation of the true performance
distribution (Agarwal et al., 2021).

We use the official implementations of DrQv2, DBC, and SAC-AE, while we re-implement
DeepMDP due to the unavailability of the official code; See Appendix D.2 for more details
on the baselines.

C.1 DeepMind Control Suite

Figures 12-13 show full results obtained on 16 DeepMind Control Suite tasks with pixel
observations to supplement the results of Section 7.1. Domains that require excessive explo-
ration and large number of time steps (e.g., acrobat, swimmer, and humanoid) and domains
with visually small targets (e.g., reacher hard and finger turn hard) are not included in this
benchmark.

Figures 14-15 and 16-17 respectively show performance profiles and aggregate metrics
(Agarwal et al., 2021) on 14 tasks; hopper hop and walker run are removed from RLiable
evaluation as none of the algorithms have acquired reasonable performance within 1 million
time-steps.

In Figures 12, 14, and 16 all methods are with image augmentation, while in Figures
13, 15, and 17 all methods are without image augmentation.

45

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup Sparse w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Sparse w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

A
ve

ra
ge

 R
et

ur
n

Cheetah Run w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cup Catch w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Finger Spin w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Finger Turn Easy w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Hopper Stand w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

50

0

50

100

150

A
ve

ra
ge

 R
et

ur
n

Hopper Hop w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Pendulum Swingup w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Quadruped Run w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

A
ve

ra
ge

 R
et

ur
n

Reacher Easy w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Stand w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Walk w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

0

100

200

300

400

500

A
ve

ra
ge

 R
et

ur
n

Walker Run w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

Figure 12: Learning curves for 16 DM control tasks with pixel observations. All methods
are with image augmentation. Mean performance is obtained over 10 seeds and shaded
regions represent 95% confidence intervals. Plots are smoothed uniformly for visual clarity.

46

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup Sparse w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Sparse w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Cheetah Run w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

0

100

200

300

400

500

A
ve

ra
ge

 R
et

ur
n

Cup Catch w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

0

100

200

300

400

500

600

A
ve

ra
ge

 R
et

ur
n

Finger Spin w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

50

0

50

100

150

200

250

A
ve

ra
ge

 R
et

ur
n

Finger Turn Easy w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

0

100

200

300

A
ve

ra
ge

 R
et

ur
n

Hopper Stand w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

60

40

20

0

20

40

60

A
ve

ra
ge

 R
et

ur
n

Hopper Hop w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Pendulum Swingup w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

0

100

200

300

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

50

0

50

100

150

200

250

A
ve

ra
ge

 R
et

ur
n

Quadruped Run w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

0

100

200

A
ve

ra
ge

 R
et

ur
n

Reacher Easy w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

A
ve

ra
ge

 R
et

ur
n

Walker Stand w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Walker Walk w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

150

100

50

0

50

100

150

A
ve

ra
ge

 R
et

ur
n

Walker Run w/o Aug.

Det. DHPG
Stoch. DHPG

DBC
DeepMDP

SAC­AE

Figure 13: Learning curves for 16 DM control tasks with pixel observations. All methods
are without image augmentation. Mean performance is obtained over 10 seeds and shaded
regions represent 95% confidence intervals. Plots are smoothed uniformly for visual clarity.

47

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n
of

 ru
ns

 w
ith

 sc
or

e
>

Stoch. DHPG
Det. DHPG
DBC
DeepMDP
DrQ-v2
SAC-AE

(a) 500k step benchmark.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

Stoch. DHPG
Det. DHPG
DBC
DeepMDP
DrQ-v2
SAC-AE

(b) 1m step benchmark.

Figure 14: Performance profiles for pixel observations based on 14 tasks over 10 seeds, at
500k steps (a), and at 1m steps (b). All methods are with image augmentation. Shaded
regions represent 95% confidence intervals.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

Stoch. DHPG
Det. DHPG
DBC
DeepMDP
SAC-AE

(a) 500k step benchmark.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

Stoch. DHPG
Det. DHPG
DBC
DeepMDP
SAC-AE

(b) 1m step benchmark.

Figure 15: Performance profiles for pixel observations based on 14 tasks over 10 seeds,
at 500k steps (a), and at 1m steps (b). All methods are without image augmentation.
Shaded regions represent 95% confidence intervals.

48

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

0.30 0.45 0.60 0.75
Det. DHPG

Stoch. DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
Median

0.30 0.45 0.60

IQM

0.4 0.5 0.6

Mean

0.4 0.5 0.6

Optimality Gap

Normalized Score

(a) 500k step benchmark.

0.30 0.45 0.60 0.75
Det. DHPG

Stoch. DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
Median

0.30 0.45 0.60 0.75

IQM

0.45 0.60 0.75

Mean

0.30 0.45 0.60

Optimality Gap

Normalized Score

(b) 1m step benchmark.

Figure 16: Aggregate metrics for pixel observations with 95% confidence intervals based on
14 tasks over 10 seeds, at 500k steps (a), and at 1m steps (b). All methods are with image
augmentation.

0.15 0.20 0.25 0.30
Det. DHPG

Stoch. DHPG
DBC

DeepMDP
SAC-AE

Median

0.12 0.18 0.24 0.30

IQM

0.16 0.24 0.32

Mean

0.64 0.72 0.80 0.88

Optimality Gap

Normalized Score

(a) 500k step benchmark.

0.16 0.24 0.32
Det. DHPG

Stoch. DHPG
DBC

DeepMDP
SAC-AE

Median

0.2 0.3 0.4

IQM

0.2 0.3 0.4

Mean

0.6 0.7 0.8

Optimality Gap

Normalized Score

(b) 1m step benchmark.

Figure 17: Aggregate metrics for pixel observations with 95% confidence intervals based on
14 tasks over 10 seeds, at 500k steps (a), and at 1m steps (b). All methods are without
image augmentation.

49

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

C.2 Value Equivalence Property in Practice

We can use the value equivalence between the critics of the actual and abstract MDPs as
a measure for the quality of learned MDP homomorphisms, since the two critics are not
directly trained to minimize this distance, instead they have equivalent values through the
learned MDP homomorphism map. Figure 18 shows the normalized mean absolute error of
∣Q(s, a)−Q(s, a)∣ during training, indicating the property is holding in practice. Expectedly,
for lower-dimensional tasks with easily learnable homomorphism maps (e.g., cartpole) the
error is reduced earlier than more complicated tasks (e.g., quadruped). But importantly,
in all cases the error decreases over time and is at a reasonable range towards the end of
the training, meaning the continuous MDP homomorphisms is adhering to conditions of
Definition 11.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

V
al

ue
 E

rr
or

 |Q
(s

,a
)

Q
(s

,a
)|

Det. DHPG

Cartpole Balance Sparse
Cartpole Swingup

Pendulum Swingup
Hopper Stand

Quadruped Walk
Finger Spin

(a) Value equivalence for deterministic DHPG.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

V
al

ue
 E

rr
or

 |Q
(s

,a
)

Q
(s

,a
)|

Stoch. DHPG

Cartpole Balance Sparse
Cartpole Swingup

Pendulum Swingup
Hopper Stand

Quadruped Walk
Finger Spin

(b) Value equivalence for stochastic DHPG.

Figure 18: Normalized mean absolute error ∣Q(s, a) −Q(s, a)∣ as a measure for the value
equivalence property during training of different tasks from pixel observations. The error
is measured on samples from the replay buffer and is normalized by the range of the value
function. The error is averaged over 10 seeds and shaded regions represent 95% confidence
intervals.

50

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

C.3 Transfer Learning Experiments

As discussed in Section 7, the purpose of transfer experiments is to ensure that using MDP
homomorphisms does not compromise transfer abilities. We select the deterministic DHPG
for these experiments. Figure 19 shows learning curves for a series of transfer scenarios in
which the critic, actor, and representations are transferred to a new task within the same
domain. DHPG matches the same transfer abilities of other methods.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Cartpole Swingup

Det. DHPG w/ Aug.
Det. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

(a) Cartpole.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

0

100

200

300

400

500

600

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk Quadruped Run

Det. DHPG w/ Aug.
Det. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

(b) Quadruped.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Stand Walker Walk

Det. DHPG w/ Aug.
Det. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

(c) Walker.

Figure 19: Learning curves for transfer experiments with pixel observations. At 500k time
step mark, all components are transferred to a new task on the same domain. Mean per-
formance is obtained over 10 seeds and shaded regions represent 95% confidence intervals.
Plots are smoothed uniformly for visual clarity.

C.4 Ablation Study on the Combination of HPG with the Standard Policy
Gradient

We carry out an ablation study on the combination of HPG with the standard policy
gradient for actor updates. Since the deterministic DHPG algorithm is generally simpler as
the lifted policy can be analytically obtained, we evaluate the performance of four variants
of the deterministic DHPG (all variants use image augmentation):

1. DHPG: Gradients of HPG and DPG are added together and a single actor update is
done based on the sum of gradients. This is the deterministic DHPG algorithm that
is used throughout the paper.

2. DHPG with independent DPG update: Gradients of HPG and DPG are inde-
pendently used to update the actor.

3. DHPG without DPG update: Only HPG is used to update the actor.
4. DHPG with single critic: A single critic network is trained for learning values of

both the actual and abstract MDP. Consequently, HPG and DPG are used to update
the actor.

Figure 21 shows learning curves obtained on 16 DeepMind Control Suite tasks with pixel
observations, and Figure 20 shows RLiable (Agarwal et al., 2021) evaluation metrics. In
general, summing the gradients of HPG and DPG (variant 1) results in lower variance of
gradient estimates compared to independent HPG and DPG updates (variant 2). Inter-
estingly, the variant of DHPG without DPG (variant 3) performs reasonably well or even
outperforms other variants in simple tasks where learning MDP homomorphisms is easy
(e.g., cartpole and pendulum), indicating the effectiveness of our method in using only

51

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

the abstract MDP to update the policy of the actual MDP. However, in the case of more
complicated tasks (e.g., walker), DPG is required to additionally use the actual MDP for
policy optimization. Finally, using a single critic for both the actual and abstract MDPs
(variant 4) can improve sample efficiency in symmetrical MDPs, but may result in per-
formance drops in non-symmetrical MDPs due to the large error bound between the two
MDPs, ∥Qπ↑(s, a)−Qπ(s, a)∥ (Taylor et al., 2008).

0.45 0.60 0.75
Det. DHPG

Det. DHPG+ind. DPG update
Det. DHPG w/o DPG update

Det. DHPG single critic
Median

0.48 0.56 0.64 0.72

IQM

0.50 0.55 0.60 0.65

Mean

0.35 0.40 0.45 0.50

Optimality Gap

Normalized Score

(a) Aggregate metrics at 500k.

0.0 0.2 0.4 0.6 0.8 1.0
Number of Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

IQ
M

 N
or

m
al

ize
d

Sc
or

e

Det. DHPG
Det. DHPG+ind. DPG update
Det. DHPG w/o DPG update
Det. DHPG single critic

(b) Sample efficiency.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

Det. DHPG w/o DPG update
Det. DHPG
Det. DHPG+ind. DPG update
Det. DHPG single critic

(c) Performance profiles at 250k.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

Det. DHPG w/o DPG update
Det. DHPG
Det. DHPG+ind. DPG update
Det. DHPG single critic

(d) Performance profiles at 500k.

Figure 20: Ablation study on the combination of HPG and DPG. RLiable evaluation metrics
for pixel observations averaged on 14 tasks over 10 seeds. Aggregate metrics at 500k steps
(a), IQM scores as a function of number of steps for comparing sample efficiency (b),
performance profiles at 250k steps (c), performance profiles at 500k steps (d). Shaded
regions represent 95% confidence intervals.

52

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup Sparse w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Sparse w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Cheetah Run w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cup Catch w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Finger Spin w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

A
ve

ra
ge

 R
et

ur
n

Finger Turn Easy w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Hopper Stand w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

50

25

0

25

50

75

100

125

A
ve

ra
ge

 R
et

ur
n

Hopper Hop w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Pendulum Swingup w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Quadruped Run w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

A
ve

ra
ge

 R
et

ur
n

Reacher Easy w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Stand w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Walker Walk w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

50

0

50

100

150

200

250

A
ve

ra
ge

 R
et

ur
n

Walker Run w/ Aug.

Det. DHPG
Det. DHPG+ind. DPG update

Det. DHPG w/o DPG update
Det. DHPG single critic

Figure 21: Ablation study on the combination of HPG and DPG. Learning curves for 16
DM control tasks with pixel observations. Mean performance is obtained over 10 seeds and
shaded regions represent 95% confidence intervals. Plots are smoothed uniformly for visual
clarity.

53

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

C.5 Ablation Study on n-step Return

We carry out an ablation study on the choice of n-step return for DHPG. Similarly to
the ablation study in Appendix C.4, we select the deterministic DHPG since it is gener-
ally simpler and its lifted policy can be analytically obtained. Figure 22 shows RLiable
(Agarwal et al., 2021) evaluation metrics for DHPG with 1-step and 3-step returns for pixel
observations. We show the impact of n-step return on DHPG with and without image
augmentation. Overall, n-step return appears to improve the early stages of training. In
the case of DHPG without image augmentation, the final performance of 1-step return is
better than 3-step return, perhaps indicating that using n-step return can render learning
MDP homomorphisms more difficult.

0.30 0.45 0.60
DHPG+ind. DPG update+Aug. (3-step return)
DHPG+ind. DPG update+Aug. (1-step return)

DHPG+ind. DPG update (3-step return)
DHPG+ind. DPG update (1-step return)

Median

0.30 0.45 0.60

IQM

0.4 0.5 0.6

Mean

0.4 0.5 0.6 0.7

Optimality Gap

Normalized Score

(a) Aggregate metrics at 500k steps.

0.0 0.2 0.4 0.6 0.8 1.0
Number of Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

IQ
M

 N
or

m
al

ize
d

Sc
or

e

DHPG+ind. DPG update+Aug. (3-step return)
DHPG+ind. DPG update+Aug. (1-step return)
DHPG+ind. DPG update (3-step return)
DHPG+ind. DPG update (1-step return)

(b) Sample efficiency.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

DHPG+ind. DPG update+Aug. (3-step return)
DHPG+ind. DPG update (3-step return)
DHPG+ind. DPG update+Aug. (1-step return)
DHPG+ind. DPG update (1-step return)

(c) Performance profiles at 250k.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

DHPG+ind. DPG update+Aug. (3-step return)
DHPG+ind. DPG update (3-step return)
DHPG+ind. DPG update+Aug. (1-step return)
DHPG+ind. DPG update (1-step return)

(d) Performance profiles at 500k.

Figure 22: Ablation study on n-step return. RLiable evaluation metrics for pixel observa-
tions averaged on 12 tasks over 10 seeds. Aggregate metrics at 1m steps (a), IQM scores as
a function of number of steps for comparing sample efficiency (b), performance profiles at
250k steps (c), and performance profiles at 500k steps (d). Shaded regions represent 95%
confidence intervals.

54

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

C.6 Comparison of Computation Time

Figure 23 compares the computation cost of our method against the baselines. The hori-
zontal axis represents wall clock time in hours. Since our method does not require image
reconstruction, it is more computationally efficient than SAC-AE and DeepMDP. However,
the bisimulation computation, the HPG update, and the policy lifting loss (in the case of
stochastic DHPG) increase the computation costs of our method in comparison to DrQ-v2.

0 1 2 3 4 5
Wall Clock Time (hour)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup Sparse w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0 1 2 3 4 5
Wall Clock Time (hour)

0

200

400

600

800
A

ve
ra

ge
 R

et
ur

n

Cartpole Swingup w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0 1 2 3 4 5
Wall Clock Time (hour)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Sparse w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0 1 2 3 4 5
Wall Clock Time (hour)

0

200

400

600

A
ve

ra
ge

 R
et

ur
n

Cheetah Run w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0 1 2 3 4 5
Wall Clock Time (hour)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cup Catch w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0 1 2 3 4 5
Wall Clock Time (hour)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Finger Spin w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0 1 2 3 4 5
Wall Clock Time (hour)

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Finger Turn Easy w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0 1 2 3 4 5
Wall Clock Time (hour)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Hopper Stand w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0 1 2 3 4 5
Wall Clock Time (hour)

50

0

50

100

150

A
ve

ra
ge

 R
et

ur
n

Hopper Hop w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0 1 2 3 4 5
Wall Clock Time (hour)

200

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Pendulum Swingup w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0 1 2 3 4 5 6
Wall Clock Time (hour)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0 1 2 3 4 5 6
Wall Clock Time (hour)

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Quadruped Run w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0 1 2 3 4 5
Wall Clock Time (hour)

0

200

400

600

A
ve

ra
ge

 R
et

ur
n

Reacher Easy w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0 2 4 6 8
Wall Clock Time (hour)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Stand w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0 2 4 6 8
Wall Clock Time (hour)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Walk w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

0 2 4 6 8
Wall Clock Time (hour)

100

0

100

200

300

400

500

A
ve

ra
ge

 R
et

ur
n

Walker Run w/ Aug.

Det. DHPG
Stoch. DHPG

DrQ­v2
DBC

DeepMDP
SAC­AE

Figure 23: Learning curves for 16 DM control tasks with pixel observations. The horizontal
axis is the wall clock time in hours. All methods are with image augmentation. Mean
performance is obtained over 10 seeds and shaded regions represent 95% confidence intervals.
Plots are smoothed uniformly for visual clarity.

55

Panangaden∗, Rezaei-Shoshtari∗, Zhao∗, Meger, Precup

D. Implementation Details

D.1 Hyperparameters

Algorithm 1 in Section 6 presents the pseudo-code of stochastic and deterministic DHPG
algorithms for pixel observations.

In the image augmentation version of DHPG, as well as all the baselines, we use image
augmentation of DrQ (Yarats et al., 2020) that simply applies random shifts to pixel obser-
vations. First, 84 × 84 images are padded by 4 pixels (by repeating boundary pixels), and
then a random 84 × 84 crop is selected, rendering the original image shifted by ±4 pixels.
Similarly to Yarats et al. (2021a), we also apply bilinear interpolation on top of the shifted
image by replacing each pixel value with the average of four nearest pixel values. Our code
is publicly available at https://github.com/sahandrez/homomorphic policy gradient.

We implemented our method in PyTorch (Paszke et al., 2019) and results were obtained
using Python v3.8.10, PyTorch v1.10.0, CUDA 11.4, and Mujoco 2.1.1 (Todorov et al., 2012)
on A100 GPUs on a cloud computing service. Table 1 present the hyperparameters used in
our experiments. The hyperparameters are all adapted from DrQ-v2 (Yarats et al., 2021a)
without any further hyperparameter tuning. We have kept the same set of hyperparameters
across all algorithms and tasks, except for the walker domain which similarly to DrQ-v2
(Yarats et al., 2021a), we used n-step return of n = 1 and mini-batch size of 512.

The core RL components (actor and critic networks), as well as the components of DHPG
(state and action encoders, transition and reward models) are all MLP networks with the
ReLU activation function and one hidden layer with dimension of 256. The image encoder
is based on the architecture of DrQ-v2 which is itself based on SAC-AE (Yarats et al.,

Table 1: Hyperparameters used in our experiments.

Hyperparameter Setting

Learning rate 1e−4
Optimizer Adam

n-step return 3
Mini-batch size 256

Actor update frequency d 2
Target networks update frequency 2
Target networks soft-update τ 0.01

Target policy smoothing stddev. clip c 0.3
Feature dim. 50
Action repeat 2
Frame stack 3
Hidden dim. 256

Replay buffer capacity 106

Discount γ 0.99
Seed frames 4000

Exploration steps 2000
Exploration stddev. schedule linear(1.0,0.1,1e6)

56

https://github.com/sahandrez/homomorphic_policy_gradient

Policy Gradient Methods in the Presence of Symmetries and State Abstractions

2021b) and consists of four convolutional layers of 32 × 3 × 3 with ReLU as their activation
functions, followed by a one-layer fully-connected neural network with layer normalization
(Ba et al., 2016) and tanh activation function. The stride of the convolutional layers are 1,
except for the first layer which has stride 2. The image decoder of the baseline models with
image reconstruction is based on SAC-AE (Yarats et al., 2021b) and has a single-layer fully
connected neural network followed by four transpose convolutional layers of 32×32×3 with
ReLU activation function. The stride of the transpose convolutional layers are 1, except for
the last layer which has stride 2.

D.2 Baseline Implementations

All of the baselines are submitted in the supplemental material. We use the official imple-
mentations of DBC and SAC-AE. DeepMDP does not have a publicly available code, and
we use the implementation available in the official DBC code-base. As discussed in Section
7, we have run two versions of the baselines, with and without image augmentation. The
image augmented variants, use the same image augmentation method of DrQ-v2 described
in Appendix D.1.

57

	Introduction
	Related Work
	Background
	Markov Decision Processes
	Policy Gradient Theorems
	Bisimulation and Bisimulation Metrics
	Finite MDP Homomorphisms

	Continuous MDP Homomorphisms
	Optimal Value Equivalence
	Lifting Policies and Value Equivalence

	Homomorphic Policy Gradient
	Stochastic HPG Theorem
	Deterministic HPG Theorem
	Comparing the Stochastic and Deterministic HPG Theorems

	Homomorphic Actor-Critic Algorithms
	Experiments
	DeepMind Control Suite
	Environments with Continuous Symmetries

	Conclusion
	Assumptions and Conditions
	Mathematical tools
	Metric spaces and topology
	Measure theory
	Manifolds

	Full Results
	DeepMind Control Suite
	Value Equivalence Property in Practice
	Transfer Learning Experiments
	Ablation Study on the Combination of HPG with the Standard Policy Gradient
	Ablation Study on n-step Return
	Comparison of Computation Time

	Implementation Details
	Hyperparameters
	Baseline Implementations

