
Weighted automata are compact and actively learnable

Artem Kaznatcheeva,b, Prakash Panangadenc

aDepartment of Biology, University of Pennsylvania, Philadelphia, USA
bDepartment of Computer Science, University of Oxford, Oxford, UK
cSchool of Computer Science, McGill University, Montreal, Canada

Abstract

We show that weighted automata over the field of two elements can be exponentially more compact than non-deterministic finite
state automata. To show this, we combine ideas from automata theory and communication complexity. However, weighted automata
are also efficiently learnable in Angluin’s minimal adequate teacher model in a number of queries that is polynomial in the size of the
minimal weighted automaton. We include an algorithm for learning WAs over any field based on a linear algebraic generalization
of the Angluin-Schapire algorithm. Together, this produces a surprising result: weighted automata over fields are structured enough
that even though they can be very compact, they are still efficiently learnable.

1. Introduction

Weighted automata (WAs) are an enriched model of finite
state machines and define a natural representation of free monoids.
They have received a lot of interest in the the learning commu-
nity because they provide an interesting way to represent and
analyze sequence data, such as music [16] or text and speech
processing [15]. Mohri [14] provides a nice survey of algo-
rithms related to weighted automata.

In this paper, we aim to expand the theoretical results known
about the representational power and learnability of WAs. We
show that WAs over Z2 (WA2s) – which can be viewed as word
recognizers for regular languages in a natural way – can be ex-
ponentially more compact than non-deterministic finite state
automata (NFAs) and yet learnable in Angluin’s [1] queries
and counter-examples (or minimal adequate teacher) model in
a number of membership queries and counter-example queries
that is polynomial in the size of the minimal weighted automa-
ton.

With Theorem 16, we show that there exists a family of lan-
guages where the minimal WA2s are exponentially smaller than
the smallest NFAs. Unfortunately, in Theorem 23 we show that
there also exists an exponential separation in the other direc-
tion. This shows that one can sometimes, but not always, get a
significantly more compact representation by using WAs. How-
ever, the compactness result is still interesting because there are
efficient algorithms for minimizing WAs [5] whereas finding a
minimal NFA is PSPACE-complete [13].

This makes weighted automata compact yet – unlike NFAs [2,
8] – structured enough to be actively learnable in Angluin’s
minimal-adequate teacher model. In Section 4, we show how
to extend the Angluin-Schapire algorithm [1, 17] to weighted
automata over any field. As such, we show that although WAs
can be exponentially smaller than NFAs (and thus also DFAs),
they still have a structure that we can exploit for efficient learn-
ing. Since weighted automata correspond more closely to pop-

ular models like POMDPs and probabilistic automata [7], this
might open new avenues for learning algorithms of those repre-
sentations.

2. Formal background

2.1. Finite state automata

Definition 1. Given a fixed alphabet Σ and finite dimensional
vector space Fn, a weighted automaton A over F of size n is
given by:

M = 〈α, ω ∈ Fn, {Mσ ∈ Fn×n|σ ∈ Σ}〉 (1)

where α is the initial state, ω is a final measurement (or final
state), and for each σ ∈ Σ we have a corresponding transition
matrix Mσ. The function recognized by this automaton is given
by:

fM(σ1...σm) = αT Mσ1 . . . Mσmω (2)

When dealing with automata, it is useful to adapt a general
matrix representation of the function they recognize:

Definition 2. Given a function f : Σ∗ → F the Hankel matrix
H f : Σ∗ × Σ∗ → F of f is: H f (u, v) = f (uv).

We will also talk about the restricted Hankel matrix H f |n :
Σn × Σn → F of f to strings of length n.

The Hankel matrix allows us to come to grips with weighted
automata and their size:

Proposition 3 ([6, 10]). rankF(H f) ≤ n if and only if there
exists a weighted automaton A over F of size n such that fA = f .

If we are going to study weighted automata over Z2 (WA2)
and non-deterministic finite state automata (NFA) together then
it is best to express them in a common framework. To do this,
we will define a generic finite state automaton (Definition 4)
and then see how augmenting this model with different accep-
tance criteria can produce NFAs (Definition 8) or WA2s (Def-
inition 9), or restricting the kinds of transitions can produce
deterministic finite-state automata (DFA; Definition 11).

Definition 4. A finite state automaton (FSA) is a tuple A =

〈Q,Σ, δ : Q × Σ → 2Q, S ⊆ Q, F ⊆ Q〉 where Q is a finite set
of states, Σ is a finite alphabet, δ is the transition function, S is
a set of starting states, and F is a set of final states. The size |A|
of the automaton is the number of states |Q|.

Definition 5. The dynamics of an FSA A are defined by looking
at pathsA : Σ∗ → 2Q∗ where for p ∈ Q∗, w ∈ Σ∗, q, q′ ∈ Q, and
a ∈ Σ we have the recursive definition:

• pathsA(ε) = S ; and

• pqq′ ∈ pathsA(wa) if pq ∈ pathsA(w) and q′ ∈ δ(q, a).

We say that a path is accepting if it ends in F, or formally:
apathsA(w) ⊆ pathsA(w) where pq ∈ apathsA(w) if q ∈ F.

It will also be useful to have the following two refinements
of paths:

Definition 6. Given an FSA A and a state q ∈ Q we say that a
word w ∈ past(q) if pq ∈ paths(w) for some p ∈ Q∗.

In other words, past(q) is the set of all words that lead to q.
In a similar vein, we can define:

Definition 7. Given an FSA A and a state q ∈ Q we say that
w ∈ future(q) if ∃v ∈ past(q) p, r ∈ Q∗ s.t pqr ∈ apaths(vw).

In other words, future(q) is the set of all words that lead
from a reachable state q to a state in F.

Together, Definitions 4 and 5 specify a generic finite state
automaton and how it runs. What remains is how the automaton
produces its corresponding recognized language. This requires
giving an acceptance criterion or membership criterion for the
corresponding language. Given an FSA A, we can get the tra-
ditional language LNFA(A) recognized by a non-deterministic
finite automaton (NFA) as:

Definition 8. An FSA A is said to NFA-recognize a language
LNFA(A) if

w ∈ LNFA(A) ⇐⇒ |aparthsA(w)| ≥ 1. (3)

For shorthand – and consistency with traditional nomecla-
ture – we say that an NFA A recognizes language LA to means
that an FSA A NFA-recognizes a language L. The reason for the
unwieldy term “NFA-recognize” is because we want to provide
a similar definition for weighted automata over Z2:

Definition 9. An FSA A is said to WA2-recognize a language
LWA2(A) if

w ∈ LWA2(A) ⇐⇒ |apathsA(w)| = 1 mod 2. (4)

This allows us to give a machine view of the matrix- and
function-based Definition 1 of weighted automata:

Proposition 10. Given a weighted automaton M over Z2 of size
n computing the function fM:

M = 〈α, ω, {Mσ | σ ∈ Σ} (5)

Let:

Q = {1, ..., n} (6)
δ(q, σ) = {r | Mσ

q,r = 1} (7)

S = {r | αr = 1} (8)
F = {r | ωr = 1} (9)

then the FSA A = 〈Q,Σ, δ, S , F〉 WA2-recognized L if

w ∈ L ⇐⇒ f (w) = 1 (10)

This transition between linear algebraic and machine views of
weighted automata is standard [9], but we include a proof for
convenience:

Proof. Note that it doesn’t matter when we switch to mod 2:
the matrix multiplication in Definition 1 can be done over R
until we multiply by the final measurement vector. Since the
transition function δ(·, σ) is given by the matrix Mσ, we can just
use matrix multiplication. Multiplying α by transition matrices
against is the same thing as counting the number of paths from
S . Multiplication by ω adds up the paths that lead to final states
F and so computes |apaths(w)|. Finally taking the mod 2 that
we deferred completes our computation.

As with NFAs, Proposition 10 allows us to shorten the un-
wieldy language of “FSA A WA2-recognizes the language L”
by the shorter and more traditional “WA2 A recognizes the lan-
guage L“.

Note also that by the same argument as Proposition 10, we
could view the NFA from Definition 8 as a weighted automaton
that uses the boolean semiring (‘or’ for addition, and ‘and’ for
multiplication) instead of over a field as in Definition 1. In other
words, NFAs can also be thought of as weighted automata over
the boolean semiring. This is why when we discuss weighted
automata in this article, we focus only on WAs over fields (and
do not consider the more general setting of WAs over rings).

Finally, let us make the familiar definition of deterministic
finite state automata by putting restrictions on δ and S :

2

Definition 11. An FSA A is a deterministic finite automaton
(DFA) if it respects the restriction of a single start state (|S | = 1)
and deterministic transitions:

∀q ∈ Q, a ∈ Σ |δ(q, a)| = 1; (11)

The DFA A is said to recognize a language LA if

w ∈ LA ⊆ Σ∗ ⇐⇒ |apaths(w)| = 1. (12)

Note that the DFA restrictions of a single start state and
determinism (Equation 11) imply that given a DFA A, any word
w defines only one path (i.e., ∀w ∈ Σ∗ |pathsA(w)| = 1) and this
path is either accepting or not. This means that a DFA is also
an NFA, and WA2.

2.2. Tools from communication complexity
It will be useful to observe a link between the Hankel matrix

and a concept from communication complexity:

Definition 12. The 1-monochromatic rectangle covering of a
function f : {0, 1}n × {0, 1}n → {0, 1} is the smallest number
χ1(f) of pairs of sets (called rectangles) Ai, Bi ⊆ {0, 1}n for 1 ≤
i ≤ χ1(f) such that:

1. for every (x, y) ∈ Ai × Bi we have f (x, y) = 1 (i.e., Ai × Bi

is 1-monochromatic), and
2. for every (x, y) ∈ f −1(1) we have at least one index i ∈
{1, ..., χ1(f)} such that (x, y) ∈ Ai × Bi.

Based on formalizing the argument in Hromkovič and Schnit-
ger [11] that views NFAs as a non-deterministic one-way com-
munication protocol where the message sent by the first com-
puter to the second corresponds to the state of the NFA, we can
show that the 1-monochromatic rectangle covering (which is
a kind of non-deterministic one-way communication protocol)
lower bounds the size of NFAs:

Proposition 13. |NFA(f)| ≥ χ1(H f |n) for any n ∈ N.

Proof. Let A be a minimal NFA recognizing f . For each state
q ∈ Q define Aq = past(q) and Bq = future(q), by the defini-
tion of future(q) for any u ∈ Aq and v ∈ Bq we have f (uv) =

1. Therefore, the {Aq, Bq}q∈Q are 1-monochromatic rectangles.
Now, consider any uv ∈ f −1(1), say that q ∈ Qu if ∃p ∈ Q∗

such that pq ∈ paths(u). Since f (uv) = 1, there must be at
least one q ∈ Qu such that v ∈ future(q) = Bq. Therefore, the
{Aq, Bq}q∈Q are a cover of the whole Hankel matrix, and hence
any restricted submatrix is also covered.

Another useful tool for proving lower bounds in communi-
cation complexity is:

Definition 14. The discrepancy of a function f : {0, 1}n ×
{0, 1}n → {0, 1} is:

disc(f) = max
A,B⊆{0,1}n

1
22n

∣∣∣∣∣∣ ∑
x∈A,y∈B

(−1) f (x,y)

∣∣∣∣∣∣ (13)

Definitions 12 and 14 relate nicely to each other by an ex-
tension of Lemma 13.13 from Arora and Barak [3]:

Lemma 15. χ1(f) ≥ | f −1(1)|
22ndisc(f)

Proof. Since all the ones in our function can be covered by
χ1(f) squares, and a total of | f −1(1)| ones need to be covered,
there must be at least one monochromatic rectangle A × B that
covers the average number of ones or more. This means that
|A||B| ≥ | f −1(1)|/χ1(f). Now, since the discrepancy is a max
over rectangles, we can pick A × B to lower bound it:

disc(f) ≥
1

22n |
∑

x∈A,y∈B

(−1) f (x,y)| (14)

≥
1

22n |
∑

x∈A,y∈B

−1| (15)

≥
|A||B|
22n (16)

≥
| f −1(1)|
22nχ1(f)

(17)

where the second line follows from the first because the rect-
angle is 1-monochromatic. The last line can be rearranged to
complete the proof.

3. Size of NFAs and WA2s

We are interested in the following question: given a regular
language L, what is the size of the smallest automaton A with
LA = L? In particular, we will define |NFA(L)| to be the largest
integer such that for any NFA A, if LA = L then |A| ≥ |NFA(L)|
and similarly for |DFA(L)|, and |WA2(L)|.

3.1. WA2s can be exponentially smaller than NFAs
The gap between |NFA(L)| and |WA2(L)| can be exponen-

tially large. Technically, this means that:

Theorem 16. There exists a family of regular languages {Ln}

such that |NFA(Ln)| ∈ 2Ω(|WA2(Ln)|)

To find our separating family of languages, we will look at
the inner-product function:

Definition 17. The n-bit inner product is a function∧⊗n : {0, 1}n×
{0, 1}n → {0, 1} acting on two bit strings x = x1..xn ∈ {0, 1}n and
y = y1...yn ∈ {0, 1}n as x ∧⊗n y =

∑n
i=1 x1 · y1 mod 2

Sometimes, when the size of x and y is obvious, we will
omit the ⊗n. Note that the number of zeros and ones in ∧ is
well balanced.

Proposition 18. |(∧⊗n)−1(1)| = 2n−1(2n − 1)

Proof. Let D = {(x, y)|∃i ∈ [n] s.t xi = yi} be the set of pairs
of strings that overlap in at least one place. Now, consider a
function h defined on D that given (x, y) take the smallest index
of overlap i (i.e. for all j < i, x j , y j) and sends xi → x̄i and
yi → ȳi this function is a bijection on D. However, note that if

3

sstart

m1 m2 · · · mn

f

1

0,1

0,1 0,1 0,1
1

0,1

Figure 1: A picture of the weighted automaton used to prove Theorem 16.

∧⊗n(x, y) = b then ∧⊗nh(x, y) = b̄. Thus, ∧ has the same number
of zeros and ones in D.

The only pairs missing from D are the ones of the form
(x, x̄) and there are 2n such strings, so |D| = 22n − 2n. Finally,
note that x ∧⊗n x̄ = 0 thus |(∧⊗n)−1(1)| = |D|/2.

Lemma 19. χ1(∧⊗n) ≥ 2n/2−2

Proof. Example 13.16 in [3] shows that disc(∧⊗n) ≤ 2−n/2 which
combined with Lemma 15 and Proposition 18 gives us χ1(∧⊗n) ≥
2n−1(2n−1)2n/2

22n ≥ 2n/2−2.

The inner-product allows us to define a special class of lan-
guage families with an important property:

Definition 20. A language family {Ln} is called an inner-product
kernel family if:

∀n ∀x, y ∈ {0, 1}n Ln(xy) = x ∧⊗n y (18)

Note that the above definition places no restriction on how
Ln behaves on words of length other than 2n, so there are many
inner-product kernel families based on the many ways languages
can behave outside the kernels.

Proposition 21. If {Ln} is an inner-product kernel family then
|NFA(Ln)| ≥ 2n/2−2

Proof. We use the communication complexity techniques from
Proposition 13. We can use any finite submatrix of HL to lower-
bound |NFA(L)|. In particular, if for Ln we look at the subma-
trix of HL with rows and columns indexed by strings of length
n then this submatrix is the same as the matrix for ∧⊗n. Thus,
|NFA(Ln)| ≥ χ1(∧⊗n) ≥ 2n/2−2 where the first inequality is an
application of the Proposition 13 lowerbound technique and the
second inequality is from Lemma 19.

We finish the proof of Theorem 16 by noticing that the fam-
ily of weighted automata in Figure 1 recognize languages in an
inner-product kernel family but only have n + 2 states. More
formally:

Proposition 22. Let WAprod
n be the weighted automaton in Fig-

ure 1. Given any x, y ∈ {0, 1}n:

xy ∈ LWAprod
n
⇐⇒

n∑
i=1

xiyi mod 2 = 1. (19)

s

start

l1

l2

...

ln

r1

r2

...

rnf

0
1

0,1
0,1

0,1

0,1

1

0,1

0,1

0,1

0

0,1

Figure 2: A picture of the NFA used in the proof of Theorem 23

Proof. Any accepting path in WAprod
n must have the form p ∈

s∗m1m2...mn f ∗. A path p is caused by transitions corresponding
to a word of the pattern:

{0, 1}∗1{0, 1}n−11{0, 1}∗ (20)

i.e., by a word that has two 1s that are exactly n letters apart.
Now, let us count the number of accepting paths for any

xy. The word xy matches the pattern in Equation 20 for each
1 ≤ i ≤ n such that xi = yi = 1 and for no other: i.e., only
for the partition {0, 1}i−11{0, 1}n−11{0, 1}n−i. Each of these parti-
tions of xy corresponds to a unique path, so the total number of
accepting paths is

∑n
i=1 xiyi and Equation 19 follows from the

acceptance criteria of WAs in Definition 9.

3.2. NFAs can be exponentially smaller than WA2s
Unfortunately, there are also cases where the opposite hap-

pens and we do not have a small WA2 while a small NFA exists:

Theorem 23. There exists a family of regular languages {Ln}

such that |WA2(Ln)| ∈ 2Ω(|NFA(Ln)|)

Proof. For this, consider a language family where for u, v ∈
{0, 1}n uv ∈ Ln if and only if u , v. If we look at the Hankel
matrix of Ln restricted to columns and rows of length n then it is
a matrix of all ones except with zeros on the diagonal. Clearly,
this matrix has full rank, so by Theorem 3 |WA2(Ln)| ≥ 2n.

On the other hand, an NFA of size 2(n + 1) is given that
recognizes a language consistent with Ln in Figure 2. Notice
that any accepting path in this NFA can only have been caused
by a word of the pattern {0, 1}∗0{0, 1}n−11{0, 1}∗ (left branch) or
{0, 1}∗1{0, 1}n−10{0, 1}∗ (right branch). When we restrict this to
words xy with x, y ∈ {0, 1}n, we see that one of the patterns is
realized only if there is some 1 ≤ i ≤ n such that xi , yi.

4. Efficient active learning algorithm for weighted automata

Deterministic finite state automata (DFAs) are not passive
learnable: i.e., DFAs are known to be difficult to PAC-learn

4

(s, [f (ε)])start (σ, [f (σ)
f (ε)])

Figure 3: Initial weighted automaton. There is a single state that is initial
and outputs its weight times f (ε). There is a self-loop for each letter σ ∈ Σ∗

weighted by f (σ)
f (ε) . Note that we are using the WLOG assumption that f (ε) , 0.

from randomly drawn labeled examples in any representation [12].
However, we can instead consider a model with active learning
that instead of random labeled examples has the following two
types of queries:

1. for any string x ∈ Σ∗ we can do a membership query to
get f (x). This is the active learning component, since the
algorithm generates the query to ask, and

2. given a candidate weighted automaton A, we can ask if it
is correct with a counter-example query. If A computes f
(i.e. fA = f) then the teacher will say “CORRECT”, oth-
erwise the teacher will return a counter-example z such
that fA(z) , f (z). If a teacher is unavailable then this
can alternatively be replaced by random sampling if we
want a PAC-like model, and would correspond to the non-
active part of learning.

This is Angluin’s queries and counter-examples or ‘minimal ad-
equate teacher’ (MAT) model [1]. Angluin [1] famously showed
that – in the MAT model – regular languages are efficiently
learnable in the size of their minimal DFA representation. Later,
Schapire [17] improved the efficiency of Angluin’s algorithm
for learning DFAs. In this section, we show how to adapt the
Angluin-Schapire algorithm from learning DFAs to learning
WAs over any field F.

For the rest of the section, suppose we are trying to learn
an unknown function f : Σ∗ → F with Hankel matrix H :
Σ∗ × Σ∗ → F.

4.1. Initialization

At all times, our algorithm will keep track of two finite sets
S , E ⊆ Σ∗ of equal size (|S | = |E|). S will be prefix closed and
we will call its elements states.

For convenience, we will define a function F : S → FE .
If we view F as a matrix, then it is a restriction of H to S and
E, i.e. F = H(S , E) or more explicitly for s ∈ S and e ∈ E,
F(s, e) = f (se). Our algorithm will ensure that F is full rank,
i.e. rankF(F) = |S |.

We will start with S = E = {ε} and without loss of general-
ity assume that f (ε) , 0 (if it is equal zero then just replace f
by f + 1, learn that, and then subtract 1 from each value in the
final/measurement state). See Figure 3 for the initial automa-
ton. This initialization requires one membership query to learn
f (ε).

4.2. Automaton corresponding to matrix F

For each σ ∈ Σ, consider Fσ : S → FE where Fσ(s, e) =

f (sσe). Since F has full rank, we know that its columns form

a basis for FE . Thus, every other vector Fσ(s) ∈ FE can be
expressed as some linear combination of the F(s′) for s′ ∈ S .
Define Tσ : S × S → F as the matrix that stores the coefficients
of these linear combinations: i.e., define Tσ such that for every
s ∈ S we have Fσ(s) =

∑
s′∈S Tσ

s,s′F(s′).
This allows us to define the corresponding weighted au-

tomaton over F (see Definition 1) on state space FS . Let the
weighted automaton T have...

• initial state α such that α(ε) = 1 and α(s) = 0 if s , ε,

• final/measurement state ω = F(·, ε) (i.e., the row of F
corresponding to ε ∈ E, and

• transition matrices Tσ.

4.3. Learning from counter-example query
Now, suppose we tried this automaton T and our teacher

returned a counter-example z. We will use this counter-example
to find strings to extend S and E and thus increase the rank of
our matrix F. Now for each 1 ≤ i ≤ |z|+1 consider the partitions
z = z<iσiz>i. For each z<i define Zi : S → F to be the state of
our candidate automaton when we run it on z<i:

Zi = αT T z1 T z2 . . . T zi−1 . (21)

Let fi =
∑

s∈S Zi(s) f (sσiz>i). From our definition, we know
that f1 = f (z) , fT (z) = f|z|+1, thus as we increase i there must
be some point k where fk , fk+1. Find this point by using bi-
nary search on i. This requires at most |S |dlog(|z|)e membership
queries to f .

Let us write out fk+1:

fk+1 =
∑
s′∈S

Zk+1(s′) f (s′z>k) (22)

=
∑

s,s′∈S

Tσk
s,s′Zk(s) f (s′z>k) (23)

Now, proceed by contradiction: if ∀s ∈ S we have f (sσkz>k) =∑
s′∈S Tσk (s, s′) f (s′z>k) then

fk =
∑
s∈S

Zk(s) f (sσkz>k) (24)

=
∑
s∈S

Zk(s)
∑
s′∈S

Tσk
s,s′ f (s′yk) = fk+1 (25)

where the last equality follows from Equation 23 and contra-
dicts fk , fk+1. Thus, there must be some s∗ ∈ S such that
f (s∗σkz>k) ,

∑
s′∈S Tσk

s∗,s′ f (s′z>k).
Now, consider an sσ ∈ S then

F(sσ) = Fσ(s) =
∑

s′
Tσ

s,s′F(s′) (26)

but since the F(s) are linearly independent, we must have that
Tσ

s,sσ = 1 and for s′ , sσ we must have Tσ
s,s′ = 0. Plugging this

into our contradiction assumption, we see that for sσk ∈ S we
have

∑
s′∈S Tσk

s,s′ f (s′z>k) = f (sσkz>k). Therefore, our s∗σk < S .
Now, we can add s∗σk to S and z>k to E to get a new linearly in-
dependent row and column and increase the rank of our matrix
by 1.

5

4.4. Termination

Since our candidate automaton agrees with f on every value
in F, it must be that the real weighted automaton correspond-
ing to f must have more states than rank(F). At every counter-
example query, we increase our rank by one, so if our world
f is represented by a minimum weighted automaton with n
states then after n − 1 counter-example queries we must have
rank(F) = rank(H f). Since our automata agrees with f on
every value in F, the nth counter-example query gets it “COR-
RECT”. If m is the length of the longest-counterexample then
the total number of membership queries is less than 1+

(
n
2

)
dlog me.

5. Discussion and Conclusion

As far as we know, this is the first time it has been show that
weighted automata (WAs) can be exponentially smaller than
NFAs. Together with the learning algorithm, this produces a
somewhat surprising result: weighted automata are structured
enough that even though they are compact, they are still effi-
ciently learnable. This also means that some languages where
the minimal DFAs and NFAs are exponentially bigger than the
minimal WAs can be learned much faster using the WA repre-
sentation.

This is not the case for NFAs. Although several algorithms
have been developed for learning NFAs in the minimum ade-
quate teacher model [18, 4], the results for NFAs differ from
the case of WAs in two fundamental ways:

1. The algorithms for learning NFAs are not guaranteed to
return a minimal NFA that recognizes the language. In
fact, they return a special kind of NFAs called residual
finite state automata (RFSAs) [8, 4]. These RFSAs are
always the same size or larger than NFAs and in some
cases are exponentially larger than the minimal NFA that
recognizes a language [8].

2. The number of queries required for learning these RF-
SAs is not polynomial in the size of the minimal NFA
nor the minimal RFSA, but only polynomial in the size
of the minimal DFA. So although RFSAs can be expo-
nentially more compact that DFAs, this does not neces-
sarily provide a speed-up for learning those RFSAs. In
fact, there are hardness results suggesting that one can-
not learn NFAs or RFSAs in a number of queries that
is polynomial in the size of smallest NFA recognized the
language [2] nor polynomial in the size of smallest RFSA
recognizing the language [8].

In contrast, we show that a minimal WA can be learned in a
number of queries that is polynomial in the size of the minimal
WA corresponding to that unknown function. Since WAs are al-
ways smaller than DFAs and sometimes exponentially smaller,
that means that learning WA2s replaces the standard Angluin-
Schapire algorithm [1, 17] for learning regular languages. In
the cases where WAs are the same size as DFAs, we can achieve
the same performance, and in the cases in which WAs are more
compact, we provide an exponential savings in terms of queries
used.

Acknowledgements

We are indebted to helpful discussion with Borja Balle and
Doina Precup. The paper also benefited from the feedback
of several anonymous reviewers. The work began when AK
was at the School of Computer Science, McGill University and
completed thanks to the generous support of a James S. Mc-
Donnell Foundation Postdoctoral Fellowship for Understanding
Dynamic & Multi-scale Systems.

References

[1] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and computation, 75(2):87–106, 1987.

[2] Dana Angluin and Michael Kharitonov. When won’t membership queries
help? Journal of Computer and System Sciences, 50(2):336–355, 1995.

[3] Sanjeev Arora and Boaz Barak. Computational complexity: a modern
approach, volume 1. Cambridge University Press Cambridge, 2009.

[4] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker.
Angluin-style learning of nfa. In IJCAI, volume 9, pages 1004–1009,
2009.

[5] Filippo Bonchi, Marcello Bonsangue, Helle Hvid Hansen, Prakash
Panangaden, Jan Rutten, and Alexandra Silva. Algebra-coalgebra duality
in Brzozowski’s minimization algorithm. ACM Transactions of Compu-
tational Logic, 2013.

[6] J.W. Carlyle and A. Paz. Realizations by stochastic finite automata. J.
Comput. Syst. Sci., 5:26–40, 1971.

[7] Alexander Clark and Franck Thollard. PAC-learnability of probabilis-
tic deterministic finite state automata. Journal of Machine Learning Re-
search, 5:473–497, 2004.

[8] François Denis, Aurélien Lemay, and Alain Terlutte. Learning regular
languages using RFSAs. Theoretical Computer Science, 313(2):267–294,
2004.

[9] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata.
Springer, 2009.

[10] M. Fliess. Matrices de Hankel. Journal de Mathematiques Pures et Ap-
pliquees, 53:187–222, 1974.

[11] Juraj Hromkovič and Georg Schnitger. On the hardness of determining
small NFAs and of proving lower bounds on their sizes. In Developments
in Language Theory, pages 34–55. Springer, 2008.

[12] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning
boolean formulae and finite automata. Journal of the ACM (JACM), 41
(1):67–95, 1994.

[13] Albert Meyer and Larry Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In Proceedings of
the 13th Annual IEEE Symposium on Switching and Automata Theory,
pages 125–129, 1972.

[14] Mehryar Mohri. Weighted automata algorithms. In Handbook of
Weighted Automata, pages 213–254. Springer, 2009.

[15] Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Speech
recognition with weighted finite-state transducers. In Handbook on
Speech Processing and Speech Communication, Part E: Speech recog-
nition. Springer, 2008.

[16] Mehryar Mohri, Pedro Moreno, and Eugene Weinstein. Efficient and ro-
bust music identification with weighted finite-state transducers. IEEE
Transactions on Audio, Speech, and Language Processing, 18(1):197–
207, 2009.

[17] Robert E Schapire. The design and analysis of efficient learning algo-
rithms. Technical report, DTIC Document, 1991.

[18] Takashi Yokomori. Learning non-deterministic finite automata from
queries and counterexamples. Machine Intelligence, 13:169–189, 1994.

6

