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Abstract

We explore equivalence relations between states in
Markov Decision Processes and Partially Observ-
able Markov Decision Processes. We focus on two
different equivalence notions: bisimulation (Givan
et al, 2003) and a notion of trace equivalence, un-
der which states are considered equivalent roughly
if they generate the same conditional probability
distributions over observation sequences (where the
conditioning is on action sequences). We show that
the relationship between these two equivalence no-
tions changes depending on the amount and nature
of the partial observability. We also present an al-
ternate characterization of bisimulation based on
trajectory equivalence.

Introduction

generated several pieces of follow-up work and extensions
(e.g. Dean & Givap997, Ferns et al[2004, Taylor et
al.[2009). Comparatively little work has focused on bisimu-
lation for POMDPs, except for a basic definition of a bisimu-
lation notion for POMDP statelfineau, 2004 (though the
terminology of “bisimulation” is not used there). To our
knowledge, trace equivalence has not really been explored i
either MDPs or POMDPs. However, using traces holds the
potential of offering a more efficient and natural way of com-
puting and approximating state equivalence through sagpli
methods (rather than the global, model-based process used
typically to compute bisimulation).

In this paper we investigate the relationship between bisim
ulation and trajectory equivalence, focusing on partialby
servable systems. We show that these two notions are not
equivalent in MDPs, but they can be equivalent in POMDPs.
We also present a different characterization of bisimarati
based on trajectory equivalence. This could potentiakydyi
new algorithms for computing or approximating bisimula-

fields of science and engineering. In order to understand the°":

behavior of existing models, or to provide compact model

The paper is organized as follows. In Sec. 2, we present

notions of equivalence between states in such systems afa® definitions and theoretical analysis of the relatiomshi

necessary. Equivalence relations have to be defined in su

a way that important properties are preserved, e.g.lotg

term behaviomof equivalent states should be the same. How

%tween bisimulation and trajectory equivalence in MDPs.

e analysis reveals the surprising fact that trajectoniveqg

lence makes unnecessary distinctions in MDPs. In Sec. 3 we

ever, there are different ways in which “long-term behavior Present a weaker version of trajectory equivalence thas doe
could be defined, leading to different equivalence notions©t Suffer from this problem. In Sec. 4, we consider these
In this paper, we focus on two equivalence relations whicHeduivalence relations in the context of POMDPs, under two
have been explored in depth in the process algebra literaturf@sonable definitions of bisimulation. Finally, in Secws,
bisimulation[Milner, 1980 Larsen and Skou, 19%ind trace discuss our findings and present ideas for future work.
equivalencdHoare, 198D Roughly speaking, two states are

bisimilar if they have the same immediate behavior, and thel2  Fully Observable States

transition with the same probabilities to equivalence sgas — . .
. . : Definition 2.1. A Markov Decision Process (MDP)is a 4-
of states. Two states are trajectory equivalent if they gene wple M= (..., 2, %), where.# is the set of statesy is

ate the same (conditional) probability distribution ovér o : . ;
: - : : the set of actions? : . x &/ — Dist(.¥) is the next state
servable system trajectories. At first glance, these nstioa transition dynamics:7 : . x </ — Dist(R) is the reward

quite similar; however, they are not the same, and in particufunction
lar bisimulation has stronger theoretical guaranteesddam :
classes of processes. We note that most often in the MDP literature, the reward
In this paper, we focus on bisimulation and tracefunction is defined as a deterministic function of the curren
equivalence in the context of Markov Decision Processestate and action. The reward distribution is not explicitiy-
(MDPs) [Puterman, 1994and Partially Observable Markov sidered because, for the purpose of computing value func-
Decision ProcessdKaelbling et al, 1999. Bisimulation tions, only the expected value of the reward matters. How-
has been defined for MDPs by Givan et[aD03 and has ever, in order to analyze state equivalences, we need to con-



sider the entire distribution, because its higher-ordemerats S I
(e.g. the variance) may be important. In what follows, we wil (1,05
assume for simplicity that the rewards only take values in a [1]s0~5J/ ill}
finite subset ofR, denotedR. This is done for simplicity of { f
exposition, and all results can be extended beyond this case t
Bisimulation for MDPs is defined ibGivan et al, 2003 () (D)
for the case in which rewards are deterministic; here, we giv (1] [

the corresponding definition for reward distributions.

Definition 2.2. Given an MDP M= (¥, &/, 2, %), an  Figure 1. Example showing that bisimulation does not imply
equivalence relation R.¥ x . — {0,1} is defined to be a trajectory equivalence.
bisimulation relation if whenever sRt the following propes

hold: Theorem 2.6. Trajectory equivalence implies bisimulation.

1. vae o/.vr e R.2(s,8)(r) = Z(t,a)(r) Theorem 2.7. Bisimulation does not imply trajectory equiv-
2.Vae o#.Vec e Y/RI(sa)(c) = £(t,a)(c), where glence.

Z(s,8)(c) = Ygec Z(s.0)(5), . R :
where.# /R denotes the partition of” into R-equivalence Proof. Consider 'ghe MDP erlcted in Figure 1, with 4 states
classes.  Two states s and t disimilar . denoted so t. if and only one action. In this, as yveII as in all subsequent ex-
there ex.ists a bisimulation relation R su’ch that sRt ’ amples, the annotations on the links represent the rewards r

' ceived (in brackets) and the transition probabilities. His t

We will now define the notion of trajectory equivalence for MDP, t andt’ are bisimilar, and thus ands’ are also bisim-
MDP states, in a similar vein to the notion of trace equiv-jlar. Note that there is only one possible infinite action se-
alence for labelled transition systerftdoare, 1980 Intu- quencef, since there is only one action. Let= ((1,t)).
itively, two states are trajectory equivalent if they produhe  Then Pr(als,8) =0.5# 0= Pr(a|d,0). Thus,sands are
same trajectories. In MDPs, in order to define an analogougot trajectory equivalent. m
notion, we will need to give a similar, probabilistic defioit ) _ _ ]
conditionalon action sequences (since actions can be inde- These results show that trajectory equivalence is a suffi-
pendenﬂy determined by a controller or po||cy) cient but not necessary condition for bisimulation. Thisute
seems counterintuitive, as bisimulation is consideretiges
the strongest equivalence notion in the process algebrait
all action sequences. Let NO — © be a function which ture. Upon closer inspection, one can notice that this tésul

; L . due to the full state observability in an MDP. More precisely
+
rﬁtirr’lls( g)'g)ta” of any sequence of actions: € N™.6(i + because the identity of the state is fully observable, and is

included in the trajectory, very fine distinctions are made b
Consider anyfinite reward-state trajectorg € (R x .)*  tween trajectories. This is undesirable if one wants anvequi
and letPr(a|s, 6) be the probability of observing when  alence notion that is useful, for example, in reducing theest
starting in states € . and choosing the actions specified by space of an MDP. With the current definition of trajectory
6. equivalence, even completely disjoint but otherwise igbanht
Definition 2.4. Given an MDP, the statestsc . are tra- subsets of the MDP would be considered distinct, as long as
jectory equivalent if and only if Y8 € © and for any finite  their states are numbered differently. Hence, we will now

Definition 2.3. An action sequencsds a functiond : Nt —
o/ mapping a time step to an action. Létbe the set of

reward-state trajectoryr, consider a weaker version of trajectory equivalence, wisich
closer in spirit to bisimulation, and has more desirablgpro
Pr(als,8) =Pr(alt,0). erties.

We note that conditioning on state-independent (open- _ ) )
loop) sequences of actions may be considered non-standadd A Different Notion of Trajectory
for MDPs, where most behavior is generated by state-  Equivalence

conditional policies (in which the choice of action depends d def . . f trai
on the state). We focus here on open-loop sequences becadB8gPrder to define a more appropriate notion of trajectory

this is the closest match to trace equivalence. We conjecturduivalence, we need to allow the exact state identity to not

that a very similar analysis can be performed for closeg-loo 2PP€ar in the trajectory. In bisimulation, the equivaleree
policies, but we leave this for future work. lation R is essentially used to partition the state space into

We are now ready to present our main results relating trgPartitions. Afterwards, essentially the identity of a stestre-

jectory equivalence and bisimulation in MDPs. The follogsin Placed by the partition to which it belongs (as follows from

lemma can be proved easily by considering one-step trajectd€ sécond condition in Definition 2.2). To exploit this idea
ries. we will consider now trajectory equivalence when the state

i ) o . space is partitioned, and the identity of a state is repléged
Lemma 2.5. Trajectory equivalence implies model equiva- {he identity of the partition to which it belongs.
lence. Let W(.#) be a partitioning of the state space into disjoint
The following theorem is a direct consequence of Lemmasubsets andp : .7 — W(.) be the function mapping each
2.5. state to its corresponding partition ¥(.#). Consider any



finite reward-partition trajectorx € (R x W(.#))* and let leta= 6(0). Again, by Lemma 3.4, there exigBssuch that
Pr(k|s, ) be the probability of observing when starting in ~ [Jec ¢ = d. We have:

states € . and choosing the actions specified éy ,

Definition 3.1. Given an MDP M= (%, o/, &, %) and a Pr(klso, 6) _51;1@(&,a)(sl)Pr(K Is1,N(8)
decompositio!(.#), two states g € . are W-trajectory ,
equivalentif and only if(s) = y(t) andv6 € © and for any = zc > P(so0,a)(s1)Pr(k’[s1,N(6))
finite reward-partition trajectory, Pr(k|s, 8) = Pr(k|t,8). f1ec

If W(.) =.7 andy is the identity function, we have tra- From the induction hypothesi®r(k’|s;,N(8)) is the same
jectory equivalence as defined in Sec. 2. Note, however, thats € ¢, o we can denote this Br(k’|c,N(8)), Hence, con-
if Wis defined in an arbitrary way, this notion of equivalencetinuing from above, we have:
may not be useful at all.

_ /
Given that bisimulation distinguishes states with differ- - ZCPr(K |c,N(6))SZECL@(so,a)(sl)

ent rewards, it is natural to define a clusterlig(.’) such '

that Yr(S) = Wr(S) if and only if Va € o7 .vr.Z(s,a)(r) = = Ecﬁ’ s0,a)(C)Pr(k’|c,N(8))

Z(S,a)(r). Let YR be its equivalent membership function.

Theorem 3.2. Wg-trajectory equivalence does not imply - ZC‘@ to,a) (c)Pr(k’|c.N(6)), becauseo ~ to

bisimulation.
= Pr(k|to, 0)

Proof. Consider the MDP in Figure 2, in which there is again

only one action. We can see thdk(.#) = {co,C1,C2}, where

Co={s;s}, 1= {ty,tp,t',u,u3 } andcy = {up,u}. Boths Theorems 3.2 and 3.5 are closer to what we would nor-
ands’ observec; w.p.1 in then_fllrst step. For any trajectories mally expect for these notions. The fact that trajectoryiequ
of lengthn > 1, (0,c1)(1,¢1)" " and (0,¢1)(1,¢1)(2, ¢2) alence is weaker is not surprising, since bisimulation has
are observed w.p. 0.5 each. Thasnds' areWg-trajectory 5 «recursive” nature that is lacking Wg-trajectory equiv-
equivalent. However, they are not bisimilar since neithier zjence. We now proceed by iteratively strengtherfitigr
nort; is bisimilar tot'. 0 trajectory equivalence to bring it closer to bisimulation.

: Letl be an operator that takes a partitionl¢~’) and re-
Lemmda 3'5" Forallce /. and de Wr(.7"), eithercCd  y,:ng a more refined decomposition as follows. For any subset
orcnd=0. de.#, del(W(.¥))ifand only if, for any two states t € d,

we have:

which concludes the proof. O

Proof. Without loss of generality assuneerd £ 0. If ¢ con-
tains only one stats thenc C ((s). Now suppose thathas 1. Foranyae </ andvr, Z(s,a)(r) = Z(t,a)(r);

at least two states. For any two stases < ¢, from Def. 2.2, 2. sandt andW-trajectory equivalent.
we have thava € 7, r.Z(s,a)(r) = Z(s,a)(r) = Yr(s) = )
Yr(S), sos,s € d. O Let T™ denote then-th iterate of I. It is clear that

I (Wr()) equivalence isPr-trajectory equivalence. Us-
Lemma 3.4. For all d € Wr(.¥) there exists asetC .7/ ing Theorem 3.5, it is easy to prove that bisimulation ingplie
such that Jg.c ¢ = d. W (Wr(S)) equivalence by induction. Similarly, it can be
shown that for every, '™ (Wg(.#)) does not imply bisim-
Proof. Immediate from Lemma 3.3 and the fact thatylation. The counterexamples are similar in spirit to the on
Uces/. €= Udewgr d =" 0 from Theorem 3.2, but they grow linearly in height and expo-
nentially in width withn.
Theorem 3.5. Bisimulation impliesWr-trajectory equiva-

, n ) .
lence. Theorem 3.6. The iterated " have a fixed poinf; *.

Proof. Define a binary relatiold on the set of partitionings
of .7, where for anyD1(.’) andDy(.¥), D1(.’) 3 D2(¥)

if and only if for anyd; € D1() andd, € D»(.¥), either
dind, =0 ordy; C d;. Itis easy to see that the set of all
possible partitions of” along withd constitute a complete

Proof. Assumesy ~ tg. Take anyd € © and any finite trajec-
tory k. The proof is by induction on the length ef

Base casejk| = 1. Sayk = (d). Leta= 6(0). By Lemma
3.4 there exist€ C . /.. such that J.cc ¢ = d. Therefore:

a)(s) = P(s.a)(d partial order with bottom, where bottom is simphg(.). It
Pr(kls, 6) g P(%0,2)(s) zcg (S0,8)(s) then follows from Theorem &1 in [Winskel, 1993 that™*
exists and is well defined. O
= ;ﬁ S0,)( chz to,a)(c), becauseyp ~ tg
From the results so far, it is easy to see that bisimulation
=Pr(k|to, 0) implies™ equivalence. We now show that the reverse is also

. . true.
Induction step: Assume that the claim holds up {&| =

n—1. Letk = (dy,---,dy) andk’ = (dp,--- ,dn). As before, Theorem 3.7. [*-equivalence implies bisimulation.
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Figure 2: Counterexample showing theg-trajectory equivalence does not imply bisimulation

Proof. Let R be thel*-equivalence relation. Givesandt

Definition 4.2. Given a POMDP, two belief statesdare

with sRt, we will shows ~t by checking the conditions of belief trajectory equivalent if and only if V6 € © and

Def 2.2. The first condition follows from the definition bf
The second condition follows from the definitionlofind the
fact thatl™ is a fixed point.

for any finite reward-observation trajectogy, Pr(8|b,6) =

Pr(B|c,6).
Lemma 4.3. Belief trajectory equivalence implies model

Hence, we have obtained a new fixed-point characteriza€duivalence.

tion of bisimulation in terms of this new notion of trajecfor

equivalence.

4 Equivalences in Partially Observable
Markov Decision Processes

We now turn our attention to the case of partial observabilit

Definition 4.1. A Partially Observable Markov Decision
Process (POMDP)is a 6-tuple M= (&, o/, 2, %#,Q, 0),
where(.”, &7, 2, %) define an MDPQ is a finite set of ob-
servations; and?/ : . x o/ — Dist(Q) is the observation
distribution function, withZ'(s,a)(w) = Pr(oi+1 = w|s+1 =
S&=a).

A belief stateb is a distribution over¥, quantifying the
uncertainty in the system’s internal state. 1%2te the set of
all belief states over”. After performing an actiom € .o/
and witnessing observatio € Q from belief stateb, the

Proof. Assume thab, c € # are belief trajectory equivalent.

Take anya € o/ andr € R. Take any8 € © with 6(0) = a.

From belief trajectory equivalence, we have:
p(b,a)(r) = %Pr(<(r7 w))|b, 6)
we
= Y Pr({(r,w))[c,6) =p(c.a)(r)
weQ
Similarly, Vo € Q.Pr(w|b,a) = Pr(w|c,a). O
Lemma 4.4. If b,c € % are belief trajectory equivalent, then

forany ac o andw € Q, 1(b,a, w) and1(c,a, w) are belief
trajectory equivalent.

Proof. We need to show that for any finite reward-
observation trajectorg, 8 € ©, a € &/ andw € Q we have

functiont : Z x </ x Q — % computes the new belief state thatPr(a|t(b,a w),0) = Pr(a|t(c,a w), ).

b’ = 1(b,a, w) as follows,vs € .7:
0(8,8) (W) Jser Z(5,8)(S)0(S)
Pr(w|a,b)

wherePr(wlb,a) = % O(s,a)(w) Y Z(sa)(s)b(s)
ses €

b'(s) = Pr(s|w,a,b) =

Let 6’ be a new action sequence €t(0) =aandN(0’') =
6. Taking an arbitrary reward, construct a new reward-
observation trajectorg’” wherea’ = {(r,w),a). We know
Pr(a’|b,8") = Pr(a’|c, 8’) sinceb andc are belief trajectory
equivalent. We also know that

Pr(a’|b,8") = p(b,a)(r)Pr(w|b,a)Pr(a|t(b,a w), ) and

Many standard approaches replace the POMDP with a correpy(q’|c, ') = p(c,a)(r)Pr(w|c,a)Pr(a|t(c,a, w), 8)

sponding, continuous-stabelief MDP (£, <7, 7, p), where
% is the (continuous) state spacey is the action set;
the transition probability functionZ : 2 x o/ — Dist(%)
is defined as.7 (b,a)(b') = S ueqPr(b|b,a, w)Pr(wla,b)
where Pr(w|a,b) is as defined above arfer(b'|b,a, w) =
Ly_¢(baw) and the reward functiop : # x o/ +— Dist(R)

From Lemma 4.3p(b,a)(r) = p(c,a)(r) andPr(w|b,a) =
Pr(w|c,a). SoPr(a|t(b,a,w),0) =Pr(a|1(c,a,w),H), and
since a,a, 8, w were all chosen arbitrarily, the proof con-
cludes. O

Previous work on POMDPs defines bisimulation between

Consider any finite reward-observation trajectfry (R x internal POMDP states. Instead, here we want to define
Q)* and letPr(|b, 6) be the probability of observingwhen  bisimulation between belief states. However, there are two
starting in belief staté and choosing the actions dictated by possible, reasonable definitions that one could adopt,twhic
6. we present below.

is defined asp(b,a)(r) = Y s .~ b(s)Z(s,a)(r)



t1 (o) ta(ap) t1 () th(wn)
U (ws) Uz () uj (ws) Uy ()
) ) W) W)

Figure 3: Example showing that weak belief bisimulationsioet imply trajectory equivalence.

Definition 4.5. Arelation RC & x Z is defined to be weak  arbitraryB € #/r anda € 7. We have:
belief bisimulation relation® if whenever bRc, the following

properties hold: Pr(B|b, a) = Z 9(b,a)(b') = Z Pr(b/‘b, a, (A))Pr(w“), a)
b'eB b'eBwe
1. Vae & .vr.p(b,a)(r) = p(c,a)(r) = Z Pr(w|b,a) z Pr(b'|b,a, w)
weQ b'eB
2. Vae &/ VYw € Q.Pr(wlb,a) = Pr(w|c,a) _ Z pr(w|b7a)wz by rbaw)
weQ eB
3. For any ac & and Be 4/R, Pr(B|b,a) = Pr(B|c,a),
Wherey / ( | ) ( | ) = z Pr(wlcva) Zjlf)’:'l'(b,a,w)
weQ b'eB
Pr(Blb,a) = Z 7 (b,a) (1) = ) Pr(wlc,a) Z Ly_r(caw) (from Def. 4.6)
b'eB weQ b'eB
= Pr(BJc,a)

Two belief states o are weakly belief bisimilar, denoted The last step follows becausgb,a, w)RrT(c,a, w) implies
b~ ¢, if there exists a weak belief bisimulation relation R that VB € %/R, 1(b,a,w) € B if and only if 17(c,a,w) €

such that bRc. B.

Definition 4.6. A relation #Z C % x % is a strong belief Lemmas 4.3 and 4.4 are sufficient conditions for strong be-
bisimulation relation if it respects the first two conditions of lief bisimilarity. This observation, combined with Lemm&a/4
Def. 4.5, and the following third condition: yields the following corollary.

Corollary 4.8. Belief trajectory equivalence implies strong
3. Vac &/ Vwe Q, 1(b,a,w) and 1(c,a,w) are strongly  5nq weak belief bisimulation.

belief bisimilar. ] o o )
Theorem 4.9. Strong belief bisimulation implies belief tra-
Two belief states Jo are strongly belief bisimilar, denoted ~ Jectory equivalence.

s~ t, if there exists a strong belief bisimulation relation R The proof uses the definition of strong belief bisimilarity
such that bRc. and by induction on the length of the trajectory. It is very

) o ) o ~__ similar to previous proofs, and we omit it for succinctness.
Since both bisimulation definitions are quite similar in

spirit, one would expect them to be equivalent. However, a
we will now show, this is not the case.

heorem 4.10. Weak belief bisimulation does not imply be-
Ief trajectory equivalence.

Proof. Consider the POMDP in Figure 3. There is only one
available action and we assume all transitions yield theesam
reward. The observation received upon entering a state is in
dicated in parentheses next to the state name.

Let 8 be the only available action sequence, and de-
note by & the belief state concentrated at state We
Proof. Let R be a strong belief bisimulation. Take any two have:Pr(w|ds, 8) = Pr(w|dy,0) = 0.5 andPr(wy|ds, 6) =
belief stated andc such thatRc The first two conditions  Pr(wy|dy,0) = 0.5. Furthermoregd,, ~w S, O, ~w By,

in Def. 4.5 and Def. 4.6 are identical, so we only need tOjypyving thatd. ~w & andd. ~w & . and hencex ~
prove that the third condition in Def. 4.5 holds. Consider an. F> 9 & ~w Oy anda, ~w o, s ~w .
However,ds anddy are not belief trajectory equivalent since

- Pr({wy,ws)|ds,0) =0.5# 0=Pr({wy,ws)|dy, 0
1We do not use ‘weak’ and ‘strong’ here in the same sense as ( ) ) 7 (¢ /1%.6)
[Milner, 1984. O

Lemma 4.7. Any strong belief bisimulation is also a weak
belief bisimulation.
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5 Discussion and Future Work
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