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Abstract

We explore equivalence relations between states in
Markov Decision Processes and Partially Observ-
able Markov Decision Processes. We focus on two
different equivalence notions: bisimulation (Givan
et al, 2003) and a notion of trace equivalence, un-
der which states are considered equivalent roughly
if they generate the same conditional probability
distributions over observation sequences (where the
conditioning is on action sequences). We show that
the relationship between these two equivalence no-
tions changes depending on the amount and nature
of the partial observability. We also present an al-
ternate characterization of bisimulation based on
trajectory equivalence.

1 Introduction
Probabilistic systems are very useful modeling tools in many
fields of science and engineering. In order to understand the
behavior of existing models, or to provide compact models,
notions of equivalence between states in such systems are
necessary. Equivalence relations have to be defined in such
a way that important properties are preserved, e.g., thelong-
term behaviorof equivalent states should be the same. How-
ever, there are different ways in which “long-term behavior”
could be defined, leading to different equivalence notions.
In this paper, we focus on two equivalence relations which
have been explored in depth in the process algebra literature:
bisimulation[Milner, 1980; Larsen and Skou, 1991] and trace
equivalence[Hoare, 1980]. Roughly speaking, two states are
bisimilar if they have the same immediate behavior, and they
transition with the same probabilities to equivalence classes
of states. Two states are trajectory equivalent if they gener-
ate the same (conditional) probability distribution over ob-
servable system trajectories. At first glance, these notions are
quite similar; however, they are not the same, and in particu-
lar bisimulation has stronger theoretical guarantees for certain
classes of processes.

In this paper, we focus on bisimulation and trace
equivalence in the context of Markov Decision Processes
(MDPs) [Puterman, 1994] and Partially Observable Markov
Decision Processes[Kaelbling et al., 1998]. Bisimulation
has been defined for MDPs by Givan et al[2003] and has

generated several pieces of follow-up work and extensions
(e.g. Dean & Givan[1997], Ferns et al.[2004], Taylor et
al. [2009]). Comparatively little work has focused on bisimu-
lation for POMDPs, except for a basic definition of a bisimu-
lation notion for POMDP states[Pineau, 2004] (though the
terminology of “bisimulation” is not used there). To our
knowledge, trace equivalence has not really been explored in
either MDPs or POMDPs. However, using traces holds the
potential of offering a more efficient and natural way of com-
puting and approximating state equivalence through sampling
methods (rather than the global, model-based process used
typically to compute bisimulation).

In this paper we investigate the relationship between bisim-
ulation and trajectory equivalence, focusing on partiallyob-
servable systems. We show that these two notions are not
equivalent in MDPs, but they can be equivalent in POMDPs.
We also present a different characterization of bisimulation
based on trajectory equivalence. This could potentially yield
new algorithms for computing or approximating bisimula-
tion.

The paper is organized as follows. In Sec. 2, we present
the definitions and theoretical analysis of the relationship
between bisimulation and trajectory equivalence in MDPs.
The analysis reveals the surprising fact that trajectory equiva-
lence makes unnecessary distinctions in MDPs. In Sec. 3 we
present a weaker version of trajectory equivalence that does
not suffer from this problem. In Sec. 4, we consider these
equivalence relations in the context of POMDPs, under two
reasonable definitions of bisimulation. Finally, in Sec. 5,we
discuss our findings and present ideas for future work.

2 Fully Observable States
Definition 2.1. A Markov Decision Process (MDP)is a 4-
tuple M= 〈S ,A ,P,R〉, whereS is the set of states;A is
the set of actions;P : S ×A → Dist(S ) is the next state
transition dynamics;R : S ×A → Dist(R) is the reward
function.

We note that most often in the MDP literature, the reward
function is defined as a deterministic function of the current
state and action. The reward distribution is not explicitlycon-
sidered because, for the purpose of computing value func-
tions, only the expected value of the reward matters. How-
ever, in order to analyze state equivalences, we need to con-



sider the entire distribution, because its higher-order moments
(e.g. the variance) may be important. In what follows, we will
assume for simplicity that the rewards only take values in a
finite subset ofR, denotedR. This is done for simplicity of
exposition, and all results can be extended beyond this case.

Bisimulation for MDPs is defined in[Givan et al., 2003]
for the case in which rewards are deterministic; here, we give
the corresponding definition for reward distributions.

Definition 2.2. Given an MDP M= 〈S ,A ,P,R〉, an
equivalence relation R: S ×S → {0,1} is defined to be a
bisimulation relation if whenever sRt the following properties
hold:

1. ∀a∈ A .∀r ∈ R.R(s,a)(r) = R(t,a)(r)

2. ∀a ∈ A .∀c ∈ S /R.P(s,a)(c) = P(t,a)(c), where
P(s,a)(c) = ∑s′∈cP(s,a)(s′),

whereS /R denotes the partition ofS into R-equivalence
classes. Two states s and t arebisimilar , denoted s∼ t, if
there exists a bisimulation relation R such that sRt.

We will now define the notion of trajectory equivalence for
MDP states, in a similar vein to the notion of trace equiv-
alence for labelled transition systems[Hoare, 1980]. Intu-
itively, two states are trajectory equivalent if they produce the
same trajectories. In MDPs, in order to define an analogous
notion, we will need to give a similar, probabilistic definition
conditionalon action sequences (since actions can be inde-
pendently determined by a controller or policy).

Definition 2.3. An action sequenceis a functionθ : N
+ 7→

A mapping a time step to an action. LetΘ be the set of
all action sequences. Let N: Θ 7→ Θ be a function which
returns the tail of any sequence of actions:∀i ∈ N

+.θ(i +
1) = N(θ)(i).

Consider anyfinite reward-state trajectoryα ∈ (R×S )∗

and letPr(α|s,θ) be the probability of observingα when
starting in states∈ S and choosing the actions specified by
θ .

Definition 2.4. Given an MDP, the states s, t ∈ S are tra-
jectory equivalent if and only if ∀θ ∈ Θ and for any finite
reward-state trajectoryα,

Pr(α|s,θ) = Pr(α|t,θ).

We note that conditioning on state-independent (open-
loop) sequences of actions may be considered non-standard
for MDPs, where most behavior is generated by state-
conditional policies (in which the choice of action depends
on the state). We focus here on open-loop sequences because
this is the closest match to trace equivalence. We conjecture
that a very similar analysis can be performed for closed-loop
policies, but we leave this for future work.

We are now ready to present our main results relating tra-
jectory equivalence and bisimulation in MDPs. The following
lemma can be proved easily by considering one-step trajecto-
ries.

Lemma 2.5. Trajectory equivalence implies model equiva-
lence.

The following theorem is a direct consequence of Lemma
2.5.
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Figure 1: Example showing that bisimulation does not imply
trajectory equivalence.

Theorem 2.6. Trajectory equivalence implies bisimulation.

Theorem 2.7. Bisimulation does not imply trajectory equiv-
alence.

Proof. Consider the MDP depicted in Figure 1, with 4 states
and only one action. In this, as well as in all subsequent ex-
amples, the annotations on the links represent the rewards re-
ceived (in brackets) and the transition probabilities. In this
MDP, t andt ′ are bisimilar, and thus,s ands′ are also bisim-
ilar. Note that there is only one possible infinite action se-
quenceθ , since there is only one action. Letα = 〈(1, t)〉.
ThenPr(α|s,θ) = 0.5 6= 0 = Pr(α|s′,θ). Thus,s ands′ are
not trajectory equivalent.

These results show that trajectory equivalence is a suffi-
cient but not necessary condition for bisimulation. This result
seems counterintuitive, as bisimulation is considered perhaps
the strongest equivalence notion in the process algebra litera-
ture. Upon closer inspection, one can notice that this result is
due to the full state observability in an MDP. More precisely,
because the identity of the state is fully observable, and is
included in the trajectory, very fine distinctions are made be-
tween trajectories. This is undesirable if one wants an equiv-
alence notion that is useful, for example, in reducing the state
space of an MDP. With the current definition of trajectory
equivalence, even completely disjoint but otherwise identical
subsets of the MDP would be considered distinct, as long as
their states are numbered differently. Hence, we will now
consider a weaker version of trajectory equivalence, whichis
closer in spirit to bisimulation, and has more desirable prop-
erties.

3 A Different Notion of Trajectory
Equivalence

In order to define a more appropriate notion of trajectory
equivalence, we need to allow the exact state identity to not
appear in the trajectory. In bisimulation, the equivalencere-
lation R is essentially used to partition the state space into
partitions. Afterwards, essentially the identity of a state is re-
placed by the partition to which it belongs (as follows from
the second condition in Definition 2.2). To exploit this idea,
we will consider now trajectory equivalence when the state
space is partitioned, and the identity of a state is replacedby
the identity of the partition to which it belongs.

Let Ψ(S ) be a partitioning of the state space into disjoint
subsets andψ : S → Ψ(S ) be the function mapping each
state to its corresponding partition inΨ(S ). Consider any



finite reward-partition trajectoryκ ∈ (R×Ψ(S ))∗ and let
Pr(κ|s,θ) be the probability of observingκ when starting in
states∈ S and choosing the actions specified byθ .

Definition 3.1. Given an MDP M= 〈S ,A ,P,R〉 and a
decompositionΨ(S ), two states s, t ∈ S are Ψ-trajectory
equivalent if and only ifψ(s) = ψ(t) and∀θ ∈Θ and for any
finite reward-partition trajectoryκ, Pr(κ|s,θ) = Pr(κ|t,θ).

If Ψ(S ) = S andψ is the identity function, we have tra-
jectory equivalence as defined in Sec. 2. Note, however, that
if Ψ is defined in an arbitrary way, this notion of equivalence
may not be useful at all.

Given that bisimulation distinguishes states with differ-
ent rewards, it is natural to define a clusteringΨR(S ) such
that ψR(s) = ψR(s′) if and only if ∀a ∈ A .∀r.R(s,a)(r) =
R(s′,a)(r). Let ψR be its equivalent membership function.

Theorem 3.2. ΨR-trajectory equivalence does not imply
bisimulation.

Proof. Consider the MDP in Figure 2, in which there is again
only one action. We can see thatΨR(S ) = {c0,c1,c2}, where
c0 = {s,s′}, c1 = {t1, t2, t ′,u1,u′1} andc2 = {u2,u′2}. Both s
ands′ observec1 w.p.1 in the first step. For any trajectories
of lengthn > 1, 〈0,c1〉〈1,c1〉

n−1 and〈0,c1〉〈1,c1〉〈2,c2〉
n−2

are observed w.p. 0.5 each. Thus,s ands′ areΨR-trajectory
equivalent. However, they are not bisimilar since neithert1
nor t2 is bisimilar tot ′.

Lemma 3.3. For all c ∈ S /∼ and d∈ ΨR(S ), either c⊆ d
or c∩d = /0.

Proof. Without loss of generality assumec∩d 6= /0. If c con-
tains only one states, thenc⊆ ψ(s). Now suppose thatc has
at least two states. For any two statess,s′ ∈ c, from Def. 2.2,
we have that∀a ∈ A , r.R(s,a)(r) = R(s′,a)(r) ⇒ ψR(s) =
ψR(s′), sos,s′ ∈ d.

Lemma 3.4. For all d ∈ ΨR(S ) there exists a set C⊆ S /∼
such that

⋃
c∈C c = d.

Proof. Immediate from Lemma 3.3 and the fact that⋃
c∈S /∼ c =

⋃
d∈ΨR(S ) d = S .

Theorem 3.5. Bisimulation impliesΨR-trajectory equiva-
lence.

Proof. Assumes0 ∼ t0. Take anyθ ∈ Θ and any finite trajec-
tory κ. The proof is by induction on the length ofκ .
Base case:|κ| = 1. Sayκ = 〈d〉. Let a = θ(0). By Lemma
3.4 there existsC⊆ S /∼ such that

⋃
c∈C c = d. Therefore:

Pr(κ|s0,θ) = ∑
s′∈d

P(s0,a)(s′) = ∑
c∈C

∑
s′∈c

P(s0,a)(s′)

= ∑
c∈C

P(s0,a)(c) = ∑
c∈C

P(t0,a)(c), becauses0 ∼ t0

= Pr(κ|t0,θ)

Induction step: Assume that the claim holds up to|κ| =
n−1. Letκ = 〈d1, · · · ,dn〉 andκ ′ = 〈d2, · · · ,dn〉. As before,

let a = θ(0). Again, by Lemma 3.4, there existsC such that⋃
c∈C c = d. We have:

Pr(κ|s0,θ) = ∑
s1∈d1

P(s0,a)(s1)Pr(κ ′|s1,N(θ))

= ∑
c∈C

∑
s1∈c

P(s0,a)(s1)Pr(κ ′|s1,N(θ))

From the induction hypothesis,Pr(κ ′|s1,N(θ)) is the same
∀s1 ∈ c, so we can denote this byPr(κ ′|c,N(θ)), Hence, con-
tinuing from above, we have:

= ∑
c∈C

Pr(κ ′|c,N(θ)) ∑
s1∈c

P(s0,a)(s1)

= ∑
c∈C

P(s0,a)(c)Pr(κ ′|c,N(θ))

= ∑
c∈C

P(t0,a)(c)Pr(κ ′|c,N(θ)),becauses0 ∼ t0

= Pr(κ|t0,θ)

which concludes the proof.

Theorems 3.2 and 3.5 are closer to what we would nor-
mally expect for these notions. The fact that trajectory equiv-
alence is weaker is not surprising, since bisimulation has
a “recursive” nature that is lacking inΨR-trajectory equiv-
alence. We now proceed by iteratively strengtheningΨR-
trajectory equivalence to bring it closer to bisimulation.

Let Γ be an operator that takes a partitioningΨ(S ) and re-
turns a more refined decomposition as follows. For any subset
d∈S , d∈Γ(Ψ(S )) if and only if, for any two statess, t ∈ d,
we have:

1. For anya∈ A and∀r, R(s,a)(r) = R(t,a)(r);

2. sandt andΨ-trajectory equivalent.

Let Γ(n) denote then-th iterate of Γ. It is clear that
Γ(ΨR(S )) equivalence isΨR-trajectory equivalence. Us-
ing Theorem 3.5, it is easy to prove that bisimulation implies
Γ(n)(ΨR(S )) equivalence by induction. Similarly, it can be
shown that for everyn, Γ(n)(ΨR(S )) does not imply bisim-
ulation. The counterexamples are similar in spirit to the one
from Theorem 3.2, but they grow linearly in height and expo-
nentially in width withn.

Theorem 3.6. The iteratesΓn have a fixed point,Γ∗.

Proof. Define a binary relation⊒ on the set of partitionings
of S , where for anyD1(S ) andD2(S ), D1(S ) ⊒ D2(S )
if and only if for anyd1 ∈ D1(S ) andd2 ∈ D2(S ), either
d1 ∩ d2 = /0 or d2 ⊆ d1. It is easy to see that the set of all
possible partitions ofS along with⊒ constitute a complete
partial order with bottom, where bottom is simplyΨR(S ). It
then follows from Theorem 5.11 in [Winskel, 1993] that Γ∗

exists and is well defined.

From the results so far, it is easy to see that bisimulation
impliesΓ∗ equivalence. We now show that the reverse is also
true.

Theorem 3.7. Γ∗-equivalence implies bisimulation.



s
[0],0.5

����
��

��
�� [0],0.5

��>
>>

>>
>>

> s′

[0],1
��

t1

[1],1

��

t2

[1],1

��

t ′

[1],0.5����
��

��
�� [1],0.5

��>
>>

>>
>>

>

u1

[1],1

YY u2

[2],1

YY u′1

[1],1

VV
u′2

[2],1

VV

Figure 2: Counterexample showing thatΨR-trajectory equivalence does not imply bisimulation

Proof. Let R be theΓ∗-equivalence relation. Givens and t
with sRt, we will show s∼ t by checking the conditions of
Def 2.2. The first condition follows from the definition ofΓ.
The second condition follows from the definition ofΓ and the
fact thatΓ∗ is a fixed point.

Hence, we have obtained a new fixed-point characteriza-
tion of bisimulation in terms of this new notion of trajectory
equivalence.

4 Equivalences in Partially Observable
Markov Decision Processes

We now turn our attention to the case of partial observability.

Definition 4.1. A Partially Observable Markov Decision
Process (POMDP)is a 6-tuple M= 〈S ,A ,P,R,Ω,O〉,
where〈S ,A ,P,R〉 define an MDP;Ω is a finite set of ob-
servations; andO : S ×A 7→ Dist(Ω) is the observation
distribution function, withO(s,a)(ω) = Pr(ot+1 = ω|st+1 =
s,at = a).

A belief stateb is a distribution overS , quantifying the
uncertainty in the system’s internal state. LetB be the set of
all belief states overS . After performing an actiona ∈ A

and witnessing observationω ∈ Ω from belief stateb, the
functionτ : B×A ×Ω 7→ B computes the new belief state
b′ = τ(b,a,ω) as follows,∀s′ ∈ S :

b′(s′) = Pr(s′|ω,a,b) =
O(s′,a)(ω)∑s∈S P(s,a)(s′)b(s)

Pr(ω|a,b)

wherePr(ω|b,a) = ∑
s′∈S

O(s′,a)(ω) ∑
s∈S

P(s,a)(s′)b(s)

Many standard approaches replace the POMDP with a corre-
sponding, continuous-statebelief MDP 〈B,A ,T ,ρ〉, where
B is the (continuous) state space;A is the action set;
the transition probability functionT : B ×A 7→ Dist(B)
is defined asT (b,a)(b′) = ∑ω∈Ω Pr(b′|b,a,ω)Pr(ω|a,b)
where Pr(ω|a,b) is as defined above andPr(b′|b,a,ω) =
11b′=τ(b,a,ω); and the reward functionρ : B ×A 7→ Dist(R)
is defined as:ρ(b,a)(r) = ∑s∈S b(s)R(s,a)(r)

Consider any finite reward-observation trajectoryβ ∈ (R×
Ω)∗ and letPr(β |b,θ) be the probability of observingβ when
starting in belief stateb and choosing the actions dictated by
θ .

Definition 4.2. Given a POMDP, two belief states b,c are
belief trajectory equivalent if and only if ∀θ ∈ Θ and
for any finite reward-observation trajectoryβ , Pr(β |b,θ) =
Pr(β |c,θ).

Lemma 4.3. Belief trajectory equivalence implies model
equivalence.

Proof. Assume thatb,c∈ B are belief trajectory equivalent.
Take anya∈ A andr ∈ R. Take anyθ ∈ Θ with θ(0) = a.
From belief trajectory equivalence, we have:

ρ(b,a)(r) = ∑
ω∈Ω

Pr(〈(r,ω)〉|b,θ)

= ∑
ω∈Ω

Pr(〈(r,ω)〉|c,θ) = ρ(c,a)(r)

Similarly, ∀ω ∈ Ω.Pr(ω|b,a) = Pr(ω|c,a).

Lemma 4.4. If b,c∈B are belief trajectory equivalent, then
for any a∈ A andω ∈ Ω, τ(b,a,ω) andτ(c,a,ω) are belief
trajectory equivalent.

Proof. We need to show that for any finite reward-
observation trajectoryα, θ ∈ Θ, a∈ A andω ∈ Ω we have
thatPr(α|τ(b,a,ω),θ) = Pr(α|τ(c,a,ω),θ).

Let θ ′ be a new action sequence s.t.θ ′(0) = a andN(θ ′) =
θ . Taking an arbitrary rewardr, construct a new reward-
observation trajectoryα ′ whereα ′ = 〈(r,ω),α〉. We know
Pr(α ′|b,θ ′) = Pr(α ′|c,θ ′) sinceb andc are belief trajectory
equivalent. We also know that

Pr(α ′|b,θ ′) = ρ(b,a)(r)Pr(ω|b,a)Pr(α|τ(b,a,ω),θ) and

Pr(α ′|c,θ ′) = ρ(c,a)(r)Pr(ω|c,a)Pr(α|τ(c,a,ω),θ)

From Lemma 4.3,ρ(b,a)(r) = ρ(c,a)(r) andPr(ω|b,a) =
Pr(ω|c,a). SoPr(α|τ(b,a,ω),θ) = Pr(α|τ(c,a,ω),θ), and
since α,a,θ ,ω were all chosen arbitrarily, the proof con-
cludes.

Previous work on POMDPs defines bisimulation between
internal POMDP states. Instead, here we want to define
bisimulation between belief states. However, there are two
possible, reasonable definitions that one could adopt, which
we present below.



s

0.5

}}zz
zz

zz
zz

z
0.5

!!DD
DD

DD
DD

D s′

0.5

||zz
zz

zz
zz

z
0.5

""DD
DD

DD
DD

D

t1(ω1)

��

t2(ω2)

��

t ′1(ω2)

��

t ′2(ω1)

��
u1(ω3)WW

u2(ω4)WW
u′1(ω3)VV

u′2(ω4)VV

Figure 3: Example showing that weak belief bisimulation does not imply trajectory equivalence.

Definition 4.5. A relation R⊆B×B is defined to be aweak
belief bisimulation relation1 if whenever bRc, the following
properties hold:

1. ∀a∈ A .∀r.ρ(b,a)(r) = ρ(c,a)(r)

2. ∀a∈ A .∀ω ∈ Ω.Pr(ω|b,a) = Pr(ω|c,a)

3. For any a∈ A and B∈ B/R, Pr(B|b,a) = Pr(B|c,a),
where

Pr(B|b,a) = ∑
b′∈B

T (b,a)(b′)

Two belief states b,c are weakly belief bisimilar, denoted
b ≈w c, if there exists a weak belief bisimulation relation R
such that bRc.

Definition 4.6. A relation R ⊆ B ×B is a strong belief
bisimulation relation if it respects the first two conditions of
Def. 4.5, and the following third condition:

3. ∀a ∈ A .∀ω ∈ Ω, τ(b,a,ω) and τ(c,a,ω) are strongly
belief bisimilar.

Two belief states b,c are strongly belief bisimilar , denoted
s≈ t, if there exists a strong belief bisimulation relation R
such that bRc.

Since both bisimulation definitions are quite similar in
spirit, one would expect them to be equivalent. However, as
we will now show, this is not the case.

Lemma 4.7. Any strong belief bisimulation is also a weak
belief bisimulation.

Proof. Let R be a strong belief bisimulation. Take any two
belief statesb andc such thatbRc. The first two conditions
in Def. 4.5 and Def. 4.6 are identical, so we only need to
prove that the third condition in Def. 4.5 holds. Consider an

1We do not use ‘weak’ and ‘strong’ here in the same sense as
[Milner, 1980].

arbitraryB∈ B/R anda∈ A . We have:

Pr(B|b,a) = ∑
b′∈B

T (b,a)(b′) = ∑
b′∈B

∑
ω∈Ω

Pr(b′|b,a,ω)Pr(ω|b,a)

= ∑
ω∈Ω

Pr(ω|b,a) ∑
b′∈B

Pr(b′|b,a,ω)

= ∑
ω∈Ω

Pr(ω|b,a) ∑
b′∈B

11b′=τ(b,a,ω)

= ∑
ω∈Ω

Pr(ω|c,a) ∑
b′∈B

11b′=τ(b,a,ω)

= ∑
ω∈Ω

Pr(ω|c,a) ∑
b′∈B

11b′=τ(c,a,ω) (from Def. 4.6)

= Pr(B|c,a)

The last step follows becauseτ(b,a,ω)Rτ(c,a,ω) implies
that ∀B ∈ B/R, τ(b,a,ω) ∈ B if and only if τ(c,a,ω) ∈
B.

Lemmas 4.3 and 4.4 are sufficient conditions for strong be-
lief bisimilarity. This observation, combined with Lemma 4.7
yields the following corollary.

Corollary 4.8. Belief trajectory equivalence implies strong
and weak belief bisimulation.

Theorem 4.9. Strong belief bisimulation implies belief tra-
jectory equivalence.

The proof uses the definition of strong belief bisimilarity
and by induction on the length of the trajectory. It is very
similar to previous proofs, and we omit it for succinctness.

Theorem 4.10. Weak belief bisimulation does not imply be-
lief trajectory equivalence.

Proof. Consider the POMDP in Figure 3. There is only one
available action and we assume all transitions yield the same
reward. The observation received upon entering a state is in-
dicated in parentheses next to the state name.

Let θ be the only available action sequence, and de-
note by δs the belief state concentrated at states. We
have:Pr(ω1|δs,θ) = Pr(ω1|δs′ ,θ) = 0.5 andPr(ω2|δs,θ) =
Pr(ω2|δs′ ,θ) = 0.5. Furthermore,δu1 ≈w δu′1

, δu2 ≈w δu′2
,

implying thatδt1 ≈w δt ′1
andδt2 ≈w δt ′2

, and henceδs ≈w δs′ .
However,δs andδs′ are not belief trajectory equivalent since

Pr(〈ω1,ω3〉|δs,θ) = 0.5 6= 0 = Pr(〈ω1,ω3〉|δs′ ,θ)



Note that this result is due mainly to the fact that the obser-
vation is obtained uponenteringa state, and past observations
are in some sense not taken into account.

5 Discussion and Future Work

We analyzed the relationship between bisimulation and tra-
jectory equivalence in MDPs and POMDPs. When the state
is fully observable, trajectory equivalence is stronger than
bisimulation, because it distinguishes between differences in
transition probabilities to individual states. Bisimulation, on
the other hand, can only distinguish between differences in
transition probabilities to classes of bisimilar states.

By considering partitions over states, we obtained a weaker
notion than bisimulation. We showed that bisimulation can
be characterized as the fixed point of a sequence of iterates in
which states are initially aggregated according to their imme-
diate reward.K-moment equivalence, presented in[Zhioua,
2008], is somewhat similar to our method and bisimulation
is only reached in the limit. Their method, however, still re-
quires replicating states at the end of trajectories to compute
the equivalence, whereas our approach only uses normal tra-
jectories.

We gave two definitions of bisimulation over belief states
for POMDPs, which at first sight seem very similar, but they
are not. The fact that strong belief bisimulation is equivalent
to belief trajectory equivalence is not surprising, because the
belief MDP is deterministic: from a belief stateb, for a given
action a and observationω, there is exactlyone reachable
belief state. It is well known in the process algebra literature
that trace equivalence and bisimulation are identical for deter-
ministic automata. If we did not consider the belief states,but
rather, the underlying states, we would be in a situation simi-
lar to the one presented in Sec. 3, considering that states that
yield the same observations upon arrival would be grouped
together.

The Γ iterative operator provides an alternative way of
computing bisimulation classes. It would be interesting to
analyze the number of iterations required to reach the fixed
point Γ∗. This approach could yield an alternative algorithm
for computing bisimulation classes, and could potentiallybe
extended to a metric, in the spirit of[Fernset al., 2004]. The
advantage of our method compared to other bisimulation con-
structions is that one can accumulate a set of trajectories from
action sequences and then approximateΨR-trajectory equiva-
lence, and furtherΓ(n)(ΨR(S ))-equivalence. This would not
require knowing the system model, and performance should
improve as the number of trajectories gathered increases. We
plan to study this idea, as well as algorithms for efficiently
gathering trajectories, in future work.

Note that two belief states are belief trajectory equivalent
if and only if they have the same probability of witnessing all
linear PSR tests[Littman et al., 2002], since linear PSR tests
are essentially finite reward-observation trajectories. This
means that one can compute trajectory equivalence by means
of a PSR model. This idea will be further studied in future
work.
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